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Abstract
The hippocampus plays a critical role in storing and retrieving spatial information. By targeting
the dorsal hippocampus and manipulating specific "candidate" molecules using pharmacological
and genetic manipulations, we have previously discovered that long-term active place avoidance
memory requires transient activation of particular molecules in dorsal hippocampus. These
molecules include amongst others, the persistent kinases Ca-calmodulin kinase II (CaMKII) and
the atypical protein kinase C isoform PKC � /� for acquisition of the conditioned behavior,
whereas persistent activation of the other atypical PKC, protein kinase M zeta (PKM� ) is
necessary for maintaining the memory for at least a month. It nonetheless remains unclear what
other molecules and their interactions maintain active place avoidance long-term memory, and
the candidate molecule approach is both impractical and inadequate to identify new candidates
since there are so many to survey. Here we use a complementary approach to identify
candidates by transcriptional profiling of hippocampus subregions after formation of the
long-term active place avoidance memory. Interestingly, 24-h after conditioning and soon after
expressing memory retention, immediate early genes were upregulated in the dentate gyrus but
not Ammon’s horn of the memory expressing group. In addition to determining what genes are
differentially regulated during memory maintenance, we performed an integrative, unbiased
survey of the genes with expression levels that covary with behavioral measures of active place
avoidance memory persistence. Gene Ontology analysis of the most differentially expressed
genes shows that active place avoidance memory is associated with activation of transcription
and synaptic differentiation in dentate gyrus but not CA3 or CA1, whereas hypothesis-driven
candidate molecule analyses identified insignificant changes in the expression of many
LTP-associated molecules in the various hippocampal subfields, nor did they covary with active
place avoidance memory expression, ruling out strong transcriptional regulation but not
translational regulation, which was not investigated. These findings and the data set establish an
unbiased resource to screen for molecules and evaluate hypotheses for the molecular
components of a hippocampus-dependent, long-term active place avoidance memory.
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Introduction
The hippocampus is a thoroughly studiedmodel system for investigating how spatial memory is stored, and it has been a valuable
platform for candidate molecule approaches to investigating the cellular mechanisms of memory formation and persistence. For
example, by targeting and manipulating specific candidate molecules using pharmacological and genetic manipulations, it was
discovered that active place avoidance memory requires transient activation of several long-term potentiation (LTP)-associated
molecules in dorsal hippocampus, including a number of kinases such as the persistent kinases Ca-calmodulin kinase II (CaMKII)
and the atypical protein kinase C isoform PKC/� /� for acquisition of the conditioned behavior (Tsokas et al., 2016; Rossetti et al.,
2017; Sacktor and Fenton, 2018). Importantly, these molecules are not critical for maintaining the memory, whereas persistent
activation of the other atypical PKC, protein kinase M zeta (PKM� ) lasting at least a month is necessary for long-term memory
(Pastalkova et al., 2006; Tsokas et al., 2016; Hsieh et al., 2017), as shown in other memory systems (Drier et al., 2002; Shema,
Sacktor and Dudai, 2007; Serrano et al., 2008; von Kraus, Sacktor and Francis, 2010; Hardt et al., 2010; Madroñal et al., 2010;
Migues et al., 2010; Cai et al., 2011; LaFerriere et al., 2011; Shema et al., 2011; Barry et al., 2012; Vélez-Hernández et al., 2013; Li et
al., 2014; Wang et al., 2016).

Training in the active place avoidance task changes hippocampal synaptic function as well as the dynamics of local field
potentials and the activity of place cells in the hippocampus (Bures et al., 1997; Cimadevilla et al., 2000; Pavlowsky et al., 2017).
The active place avoidance memory is maintained by persistent PKM� activity (Hsieh et al., 2017). Memory-mediating molecules,
such as PKM� that are crucial for memory maintenance, interact with other effector and regulatory molecules in ways that
remain largely unknown (Kelly et al., 2007; Kelly, Crary and Sacktor, 2007; Yao et al., 2008; Tian et al., 2008; Migues et al., 2010;
Sacktor, 2011; Kandel, 2012; Shao et al., 2012; Eom et al., 2014; Wang et al., 2014; Vogt-Eisele et al., 2014; Yu et al., 2017; Sacktor
and Fenton, 2018). Although targeted candidate molecule approaches have shown that PKM� interacts with molecules that
include kidney and brain protein (KIBRA), N-ethylmaleimide-sensitive factor (NSF), protein interacting with C-kinase 1 (PICK1),
and the AMPA-type 2 glutamate receptor (GluA2). Although a picture has emerged from parallel studies that PKM� associates
with KIBRA and activates NSF increasing the insertion of GluA2 subunit-containing �
-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate ionotropic receptors into the postsynaptic density,
coincident with reducing their PICK1-mediated endocytosis from the postsynaptic sites that are maintained by CaMKII-activity
(Sacktor, 2011; Sacktor and Fenton, 2018), this hypothesis-driven approach is nonetheless for discovering and defining the
network of interacting molecules that maintain memory. However, modern genomic techniques such as transcriptome profiling
have made it possible to examine the molecular underpinnings of plasticity in animal behavior (reviewed in Harris and Hofmann,
2014). The present research combines hypothesis-driven techniques with the discovery-driven methods to identify novel
neuromolecular substrates of memory and begin to reveal the network of molecular interactions that may underlie the
maintenance of long-term memory.

In the present study we use an integrative approach across levels of biological organization to discover relationships
between measures of behavior and gene expression. We generate a database by measuring mouse behavior on multiple
dimensions of locomotion, learning and memory, and transcriptomes from tissue samples that were taken from the major
hippocampal subfields after behaviorally evaluating long-term active place avoidance or null control memories. Specifically, our
behavioral manipulations defined four behavioral groups: Two groups differed such that subjects could form one or two types
of active place avoidance memory. The subjects in the other two yoked control groups could not form a memory for a place
response, although the mice were exposed to the identical physical environment and stimuli. We used RNA-sequencing
(RNA-seq) to examine the transcriptomes of three micro-dissected anatomically distinct subregions of the dorsal hippocampal
circuit of the same subjects, the dentate gyrus, as well as the CA3 and CA1 subfields. We initially identified which genes were
differentially expressed between the four behavioral groups and three subfields, focusing on the most variably expressed genes.
We then examined whether gene expression for canonical memory-mediating molecules differed between the behavioral
groups and the hippocampal subfields. Finally, we integrated across the levels of behavioral and transcriptomic biological data
by harnessing the between-subject variation within each of the measurements. The co-variance structure between all pairs of
measurements defined potential networks of high-order interactions across these levels of biological function. We then
examined these interaction networks to discover novel associations between genes and the behavioral expression of memory
and to evaluate the hypothesized roles of key memory-mediating molecules (CaMKII, the atypical PKCs, and GluA2).
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Methods
All animal care and use comply with the Public Health Service Policy on Humane Care and Use of Laboratory Animals and were
approved by the New York University AnimalWelfare Committee and theMarine Biological Laboratory IACUC.Male C57BL/6J mice
were housed at the Marine Biological Laboratory on a 12:12 (light: dark) cycle with continuous access to food and water in home
cages with up to five littermates.
The Active Place Avoidance Task
To examine spatial learning andmemory, we used awell-established active place avoidance paradigm. Littermateswere randomly
assigned to one of our treatment groups (standard-trained, n=8; standard-yoked, n=8; conflict-trained, n=9; conflict-yoked, n=9,
Figure 1). All mice were exposed to nine 10-min trials in the active place avoidance arena. Mice were placed on an elevated
circular 40-cm diameter arena made of parallel bars that rotated at 1 rpm. The arena wall was transparent and thus contained
the mouse on the arena while allowing it to observe the environment. The location of the mouse in the arena was determined
from an overhead digital video camera interfaced to a PC-controlled tracking system (Tracker, Bio-Signal Group Inc., Acton, MA).
Trained mice in the active place avoidance task are conditioned to avoid the location of mild shocks (constant current 0.2 mA, 500
ms, 60 Hz) that can be localized by visual cues in the environment. Yoked-control mice are delivered the identical sequence of
shocks that was received by a particular trained mouse (Figure 1, Suppl. Table 2), the difference being that for the yoked mice,
the shocks cannot be avoided or localized to a portion of the environment. Mice are allowed to become familiar with walking
on the rotating arena during a pretraining trial with no shock. Then each mouse received three training trails separated by a
2-h inter-trial interval. The mice were returned to their home cage overnight. The next day, each mouse received a "Retest trial"
with the shock in the same location as before. For the next three training trials, the shock zone remains in the same place for
standard-trained animals but is relocated 180◦ for the conflict-trained mice. The next day, all mice receive a memory "Retention
trial" with the shock off to evaluate the strength of the conditioned avoidance.
RNA-sequencing and bioinformatics
For RNA-sequencing, the DG, CA3, CA1 subfields weremicro-dissected using a 0.25mm punch (ElectronMicroscopy Systems) and
a Zeiss dissecting scope (Figure 1). RNA was isolated using the Maxwell 16 LEV RNA Isolation Kit (Promega). RNA libraries were
preparedby theGenomic Sequencing andAnalysis Facility at theUniversity of Texas at Austin and sequencedon the IlluminaHiSeq
platform. Reads were processed on the Stampede Cluster at the Texas Advanced Computing Facility. Quality of raw and filtered
reads was checked using the program FASTQC (Wingett and Andrews, 2018) and visualized using MultiQC (Ewels et al., 2016). We
obtained 6.9 million ± 6.3 million reads per sample (Figure S1). Next, we used Kallisto to pseudo-align raw reads to a mouse
references transcriptome (Gencode version 7 (Waterston et al., 2002)), which yielded 2.6 million ± 2.1 million reads per sample
(Figure S1). Mapping efficiency was about 42% (Figure S1). Transcript counts from Kallisto (Bray et al., 2016) were imported into R
(R Development Core Team, 2013) and aggregated to yield gene counts using the gene identifier from the Gencode transcriptome.
DESeq2 was used to normalize and quantify gene expression with a false discovery corrected (FDR) p-value < 0.1 (Love, Huber and
Anders, 2014; Morgan et al., 2019). ShinyGo (Ge and Jung, 2018) was used to identify Gene Ontology terms associated with genes
that are correlated with PC1. All genes associated with particular GO terms were identified using the Gene Ontology Browser
(Krupke et al., 2017; Bult et al., 2019; Smith et al., 2019). We compared the GO terms for candidate genes, differentially expressed
genes, and a list of genes identified as important for long-term potentiation (Sanes and Lichtman, 1999; Harris et al., 2019). We
relied on the R packages ggplot2 (Wickham, 2009), cowplot (Wilke, 2016), and corrr (Ruiz, Jackson and Cimentada, 2019) for data
visualization. Illustrations were created using Adobe Illustrator.
Statistical analyses
Spatial behavior was evaluated by automatically computing (TrackAnalysis software (Bio-Signal Group Corp., Acton, MA) 26
measures that characterize a mouse’s use of space during the trial (Supp. Table 1). All statistical analyses were performed using
R version 3.6.0 (2019-04-26) – "Planting of a Treeε (R Development Core Team, 2013), relying heavily on the software from the
tidyverse library (Wickham, 2009; Wickham and Grolemund, 2017). Principal component analysis (PCA) was conducted to reduce
the dimensionality of the data (Lê, Josse and Husson, 2008; Kassambara and Mundt, 2017). One- and two-way ANOVAs were
used to identify group differences in behavioral measures across one or multiple trials, respectively (Stanley, 2018). For
statistical analysis of gene expression, we used DESeq2 to normalize and quantify gene counts with a false discovery corrected
(FDR) p-value < 0.1 (Love, Huber and Anders, 2014). DESeq2 models evaluated gene expression differences either between the
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four behavioral treatment groups (standard-trained, standard-yoked, conflict-trained, and conflict-yoked) or between the
combined memory-trained and combined yoked-control groups.
Data availability
Raw sequence data and differential gene expression data are available in NCBI’s Gene Expression Omnibus Database
(accession:GSE99765 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99765). All data, code, and the results are publicly
available on GitHub (https://github.com/raynamharris/IntegrativeProjectWT2015) with a stable version archived at Zenodo (Harris,
2017). Tables and supplementary tables are archived in Dryad (Harris et al., 2020). An overview of the bioinformatic workflow
used to create the figures and tables in the manuscript is described in Suppl. Figure 2.
Results
Characterizing cognitive behavior
We began by analyzing the place avoidance behavior amongst the memory-trained and corresponding yoked control groups,
recalling that the corresponding training and control groups received the identical time series of shocks (Figure 1). Avoidance
was evaluated in multiple ways, including as a reduction in the number of entrances to the shock zone, an increase in the time
to first enter the shock zone, and a decreased likelihood of being in the shock zone (Figure 2). As expected, the memory-trained
groups show avoidance behavior and the yoked groups do not show avoidance behavior, even though the corresponding trained
and yoked control groups experience identical physical conditions. These observations were confirmed by two-way ANOVAs, with
significant effects of training treatment, trial, and their interaction (see Table 1).

During the pretraining session, when the shock was off, there were no differences between the groups, as expected. Both the
standard and conflict place avoidance trained groups showed rapid avoidance learning of the initial location of the shock location
(T1-T3). Initial recall (or retest (Rt) of the conditioned place avoidance on the next day, also showed similar avoidance in the two
trained groups, and as expected, avoidance was not observed in the yoked controls. Place avoidance in the two trained groups
differed when the shock zone was subsequently relocated for the conflict group (T4-T6), specifically on the first trial with the new
shock location (T4), as expected. This conflict trained group also rapidly learned to avoid the relocated shock zone on subsequent
trials. In fact, on subsequent trials, their ability to avoid could not be distinguished from the group that received standard training
to the initial shock location and demonstrating that compared to the standard-trained group, the conflict trained group learned
to avoid more places. The ability to avoid the current location of shock was indistinguishable between the standard- and conflict-
trained groups andbehavior between the two yoked controlswere also not distinct fromeachother. Theday after the conditioning
trials, on the memory retention test (Rn) with no shock, the conditioned avoidance persisted and was indistinguishable between
the two trained groups but was not expressed in the yoked controls. These group similarities and differences reflect knowledge
about the location of shock rather than the experience of shock per se, because the 24 hours before sacrifice were physically
identical across the groups, constituting time in the home cage and 10 minutes on the arena with no shock.

Because spatial knowledge and memory are complex phenomena that we aim to relate to gene expression, we examined the
possibility of describing the differences between the groups with a statistically valid metric that does not privilege one estimate of
conditioned avoidance over another. After computing 26 measures from the trajectories during the behavioral sessions (Suppl.
Table 1), we performed a principal component analysis on these data in an effort to reduce the dimensionality of describing
different aspects of the measured behavior. PC1 explains 41% of the variance and separates trained and yoked mice (Figure 2).
Measurements related to shock avoidance and avoidance conditioning load most strongly on PC1 (Figure 2). In particular, as
shown by the large dots in Figure 2, PC1 clearly distinguishes the trained and yoked groups in the absence of shock during the
memory retention test just prior to sacrifice (p < 0.001, Table 1). PC2 explains 17% of the variance and is comprised of variables
that describe locomotor activity (Figure 2) and also appear to distinguish the standard and conflict experiences of the mice (p
< 0.05, Table 1). PC1 and PC2 were significantly negatively correlated (Figure S3). The sign of a PC is not informative as it was
arbitrarily chosen, and therefore the sign of correlations to these PC estimates of memory and activity are also arbitrary. The
meaning of any relationships must come from knowledge of the underlying biology, and we conclude that estimates of memory
can be best summarized by PC1.
Region-specific, cognitive behavior-driven differential gene expression
Wenext used RNA-seq to examine gene expression patterns in the DG, CA3, and CA1 subfields of the hippocampus in the different
groups of mice on the hypotheses that differential gene expression in the hippocampus will be sensitive to spatial cognitive
behavior and will differ across the DG, CA3, and CA1 subfields (Figure 3). Indeed, gene expression differed significantly amongst
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the groups and within the different subfields 24 hours after memory training and thirty minutes after the retention test during
which the mice express active place avoidance memory without reinforcement. The lists of differentially expressed genes are
provided in Suppl. Table 4 and Suppl. Table 5.

Because the behavior during the retention test did not differ between the standard-trained and conflict-trained groups, we
combined the groups and compared all yoked to all trained mice (Figure 3). Gene expression differed (FDR p ≤ 0.1) between the
trained and yoked groups the most in the DG, with substantially more increases of gene expression than decreases in the trained
mice compared to the yoked controls (Figure 3). No differentially expressed genes were detected in CA3 and only a handful of
genes were differentially expressed in CA1 following either standard or conflict training. Next we compared gene expression of
standard-trained and conflict trained mice (Figure 3). We found no detectable changes in gene expression in DG, CA3, or CA1
even though mice in the conflict group received more shocks and learned two locations of shock (Figure 3).

Because the behavior during the retention test did not differ between the standard-trained and conflict-trained groups, we
combined the groups and compared all yoked to all trained mice (Figure 3). Gene expression differed (FDR p ≤ 0.1) between the
trained and yoked groups the most in the DG, with substantially more increases of gene expression than decreases in the trained
mice compared to the yoked controls (Figure 3). No differentially expressed genes were detected in CA3 and only a handful
of genes were differentially expressed in CA1 following either standard or conflict training (Figure 3). Next we compared gene
expression of standard-trained and conflict trained mice (Figure 3). We found no detectable changes in gene expression in DG,
CA3, or CA1 even though mice in the conflict group received more shocks and learned two locations of shock (Figure 3).

Finally, we compared the standard-yoked and conflict-yoked mice (Figure 3). Yoked mice receive exactly the same number
and time series of shocks as their trained counterparts, but conflict-yoked mice received more shocks that standard-yoked mice.
Thus, this comparison provides insight into how gene expression may change in the absence of a conditioned spatial memory.
We found that differential gene expression in the standard-yoked and conflict-yoked groups was nearly absent in DG and CA3,
but it is substantial in CA1 (Figure 3). In CA1, approximately equal numbers of genes were increased or decreased when the two
yoked groups are compared (Figure 3). Together with the lack of differential gene expression between the two trained groups
(Figure 3), this suggests that gene expression in CA1 is sensitive to unidentified, non-spatial features of experience, but not merely
sensitive to the amount of shock.
Molecules-associated with active place avoidance behavior
Since the DG was most sensitive to the place memory training, subsequent analyses focus on the 214 differentially expressed
genes in DG between the combined trained and yoked control groups (Suppl. Table 3). This comparison is interesting because
the physical environments did not differ between the trained and control groups (Figure 2), but what the animals could encode,
learn, and remember did systematically differ between the two groups, as indicated by the presence and absence of robust place
avoidance memory (Figure 3).

To test four hypotheses for how the trained and yoked control groups would differ, we identified four Gene Ontology terms in
the Biological Process domain thatmap onto each hypothesis: 1) response to stimulus, 2) translation, 3) synapse organization, and
4) learning or memory (Table 2, C1). Next, we asked which genes in those GO domains are differentially expressed in the DG 24
hours after memory training and thirty minutes after the memory retention test (Table 2, C2). The majority of the genes that are
differentially expressed in the DG are well known for their response to stimuli. Multiple immediate genes (e.g. Arc, Fos, Fosl2, Egr1,
Jun, Homer1) and other transcription factors are differentially expressed in the DG. This is consistent with notion that immediate
early gene expression is associated with the ongoing process of memory updating, not merely the formation of memory because
further place avoidance learning was unlikely in the absence of reinforcement during the retention test response. Neuro6d was
the only transcription factor that showed decreased expression, whereas Npas4, which is thought to mediate learning-related
plasticity, especially of neural inhibition (Lin et al., 2008; Spiegel et al., 2014; Weng et al., 2018) wasmore highly expressed in the DG.
With respect to translation, we found that spatial training was only associated with increases in Cpeb4 and Eif5 expression. Amigo2,
Arc, Bdnf, Flrt3, Fzd5, Homer1, Lrrtm2, Npas4, Pcdh8, and Slitrk5 are all important for synapse organization andwere increased in the
trained DG. Fifteen genes from the "learning or memory" GO domain were found to be differentially expressed; all of these genes
appear in one or more of the other three GO domains. To estimate whether the results would differ if we chose arbitrary GO
terms we randomly selected the following terms: epithelial cell proliferation (GO:0050673), reproductive process (GO:0022414),
rhythmic process (GO:0048511), and multi-organism process (GO:0051704) and find that 18 DEGs were among the 4273 (0.41%)
total genes in the random GO terms compared to the 90 DEGs that were among the 7156 (1.48%) genes in our hypothesized GO
terms (proportions test z = 10.92; p = 1023), indicating that more differentially expressed genes were part of the hypothesized GO
categories than would be expected by chance.
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Arc is widely used as a marker of neural activity, so we were not surprised to find that Arc expression was positively correlated
with PC1 (Figure 4), which suggests it is related to the persistence of conditioned avoidance memory . This training-induced
relationship was not observed in the CA3 (r = -0.30, p = 0.327) or CA1 tissue (r = 0.20, p = 0.48) (Figure 4), nor were Arc and other
immediate early genes differentially expressed in these samples suggesting the relationship has to do more with the memory-
related information processing that each subregion is thought to be specialized for, rather than locomotor activity that is likely to
be globally related to the hippocampus but a confound of avoidance memory expression. We also wanted to discover potential
relationships between the persistence of conditioned avoidance behavior and gene expression in the DG in an unbiased manner,
without selecting genes based on presumed knowledge and hypotheses. To visualize the relationship between these genes and
behavior, we selected the 20 genes that were most positively correlated with PC1 (Figure 4). Then, we created a correlation
network between all pairwise comparisons greater than the absolute value of 0.6 (Figure 4), which illustrates that all the genes
that are positively correlated with PC1 are also positively correlated with one another. All immediate early genes are strongly
positively correlated with each other and with PC1. Even with sample sizes of 16, many of the genes that are correlated are also
differentially expressed and vice versa. This network of pairwise covariation amongst the differentially expressed genes suggest,
as in the case of the immediate early genes, that there functionally related groups of genes can be identified by analysis of such
covariance networks. To further explore potential responses to increased immediate early gene activity, we identified the top 5
GO terms associated with 85 genes that are both correlated with behavioral PC1 and differentially expressed in the DG (Table 3.)
This data-driven analysis suggests that the molecular function of these genes is to regulate transcription via RNA pol-II activity in
the dendritic regions of neurons to modulate the learning and memory.

Because PKM� is crucial for the persistence of active place avoidance memory in hippocampus (Pastalkova et al., 2006;
Sacktor, 2011) ), we next examined several candidate genes in the PKM� signaling cascade. We also included Igf2 because it
promotes acquisition of memory, likely by an independent process (Chen et al., 2011; Alberini and Chen, 2012). PKM� associates
with KIBRA and activates NSF increasing the insertion of GluA2 subunit-containing �
-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate ionotropic receptors into the postsynaptic density,
coincident with reducing their PICK1-mediated endocytosis from the postsynaptic sites that are maintained by CaMKII-activity.
Consequently, one might therefore predict significant negative and positive correlations in the expression of these genes on the
hypothesis that their levels of transcription is a straightforward determinant of their function because PICK1 function is
anti-related to the memory-promoting cell biological functions of PKM� , KIBRA, NSF, CaMKII and GluA2. Furthermore,
LTP-induction is associated with transient upregulation of PKC� /�, the other atypical PKC, whereas genetic deletion of the PKM�
gene Prkcz, results in LTP- and memory-triggered prolongation of compensatory upregulation of PKC� /� and the conventional
isoform PKC�2 (Tsokas et al., 2016). Consequently, on the same hypothesis, one might expect these molecules to also be
positively related to each other and measures of memory. We used this hypothesis-driven candidate gene approach to select
these genes and correlated their expression with the composite avoidance estimate expressed by PC1 (see above) for the three
hippocampal subfields (Figure 5). As can be seen, Igf2 expression was the most strongly positively correlated with the PC1
estimate of memory in each of the hippocampus subfields, but only the correlation between CA1 Igf2 and PC1 reached
significance. Of the memory maintaining candidate molecules, only the level of Gria2 in CA3 was significantly correlated with
PC1, but this was not predicted as it is a negative correlation. Because GluA2 mediates late-LTP, one would have expected the
opposite relationship of increased Gria2 expression to correlate with increased expression of memory. The correlations
amongst the candidate genes tended to be weak, although there were some significantly strong relationships, less so in dentate
gyrus and CA1 and more so in CA1 (Figure 5). The notion that the atypical PKCs may play complementary but competing roles in
maintenance of LTP and memory, perhaps through binding to KIBRA, predicts anti-correlations between Prkcz and Prkci and
whichever isoform is more expressed, to be correlated with KIBRA. This pattern was however not observed, suggesting a simple
model of transcriptional regulation does not map their functional relationships.

Finally, because glia and neurons contribute an approximately equal number of cells in our samples (Herculano-Houzel et al.,
2007), we considered several candidate genes associated with astrocytes, on the evidence that astrocytes contribute to memory.
Figure 6 illustrates that unlike the memory-associated candidate genes, not only were astrocyte-associated genes differentially
expressed in the trained compared to the control samples, but in addition, many of their expression values in CA3 tended to
co-vary with the PC1 estimate of memory. This was not the case in the dentate or CA1 samples. The expression of these genes
was characteristically positively correlated, especially in CA3, but also in the dentate gyrus and to a lesser extent in CA1, which
may in a sense, may at least partially reflect that we chose them because of their known association with astrocytic biology.
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Discussion
In the present study we evaluated conditioned active place avoidance, and in particular long-term memory for the conditioned
response by quantifying both the conditioned behavior and the associated transcriptional changes in three subfields of the
hippocampus 24 hours later the end of the training and 30-min after expression of the avoidance memory. We first used an
unbiased data-driven approach to identify genes that are sensitive to the maintenance of spatial memories across at least 24 h,
and we used Gene Ontology analyses to identify the potential mechanisms for that these differentially expressed genes might
have influenced brain structure and function. Then, we conducted a hypothesis-driven analysis of the data to characterize
whether the memory training is associated with altered expression of dozens of genes that have been previously shown to be
important for learning, memory, and the cellular model LTP. For this hypothesis-driven approach, we examined both differential
gene expression and covariance with estimates of avoidance behavior and with other candidate genes. Our RNA-seq methods
could not detect ribosomal RNA, nor did we perform protein sequencing, limiting the scope of this study to findings that may
related to memory-related transcriptional regulation.

As expected, and by design, both memory-trained groups (standard and conflict) show avoidance behavior but their yoked
counter parts do not. Because the comparison groups experience the identical physical conditions this design allows us to identify
molecular responses to avoidance training andmemory recall. Gene expression differs between the trained and yoked groups the
most in the DG, with substantially more increases of gene expression than decreases in the trained mice compared to the yoked
controls. Because the two trained groups did not differ, gene expression in DG is preferentially sensitive to active place learning,
and spatial cognition in general, rather than to the specific number of places at which the mice were conditioned. Very few
genes were differentially expressed in Ammon’s horn, which is expected if memory maintenance involves only a select number
of molecular components, but is not expected in light of theories of hippocampus memory and information processing (Marr,
1971; Treves and Rolls, 1992; Lisman et al., 2017) and findings that maintaining the active place avoidance memory persistently
enhances CA3-CA1 synaptic function for at least 30-days (Pavlowsky et al., 2017).

Nor did we find that memory-related differential expression of genes for the molecular translation machinery in the
MEK/ERK and MTOR pathways. The majority of the genes that are differentially expressed in DG or are positively correlated with
avoidance behavior belonged to transcription factors that regulate RNA polymerase II. Among these genes are the well-known
immediate early genes Arc, Fos, and Jun, and Npas4. In addition to being differentially expressed, expression of these genes is
highly correlated with one another. In previous experiments, Arc was activated during contextual threat avoidance conditioning
and optogenetically silencing the Arc-activated DG neurons was sufficient to impair contextual fear memory, whereas
optogenetically stimulating neurons that activated c-Fos was sufficient for expressing the memory (Liu et al., 2012). Indeed, as
we also observed in DG, prior work has shown that Arc and Fos expression are correlated in CA1 neurons regulating learning
(Mahringer et al., 2019). We cannot assert that the gene expression findings associated with active place avoidance memory are
due to altered gene expression specifically in neurons because we sampled bulk tissue, containing approximately equal
numbers of neurons and other cells that are largely the glial population (Herculano-Houzel et al., 2007). Because we examined
gene expression a day after training when training-associated immediate early gene activation is not expected, it is possible that
the robust immediate early gene activation that we observed is related to the mice learning about the absence of shock during
the retention test. However, that possibility predicts an inverse relationship between PC1 and immediate early gene expression
because mice that expressed the weakest place avoidance by entering the shock zone the most during the retention test (low
PC1 values) would have the greatest opportunity to learn that shock was absent and the 5 mice that showed perfect avoidance
by never entering during the retention trial could not have learned that the shock was off. We reject this possibility because the
correlations between immediate early gene expression in DG and PC1 on the retention test are all positive as is the correlation
between Igf2 expression in DG, CA3, and CA1 with the PC1 estimate of memory (Suppl. Fig 3d-f). IGF-II activity promotes
memory formation, enhancing the consolidation of long-term memory (Chen et al., 2011), which is a process that can last days
and relies on C/EPB signaling, that is likely related to the Cepb differential gene expression observed we observed in DG
(Alberini et al., 1994). Instead, these findings suggest that immediate early genes can respond not only to the novel experience
of stimuli that are encoded during the conditioning of a response, but that their activation in DG also corresponds to the
expression of long-term memory.

An analysis of the gene ontology revealed thatmany of the genes that are differentially expressed in theDG exert their function
in dendrites and are important for neuronal projections and cell-cell junctions, including synapses, which is expected from the
relationship between LTP and memory that forms the basis of the widely-accepted synaptic plasticity and memory hypothesis
(Takeuchi, Duszkiewicz and Morris, 2014). Although, we cannot distinguish the contributions of neurons and glia to the memory-
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related differential gene expression we observed, these findings suggest that the expression of the conditioned place avoidance
altered neural activity in a way that increases transcriptional activity, perhaps for the purpose of promoting dendritic growth.
Indeed, we note that expression of a number of astrocyte-related genes in DG, CA3, and CA1 were positively correlated with the
PC1 estimate of memory expression, including Aldh1a1, Aldh1l2, Gfap, Fgfr3, and Aqp4 (Fig. 6). Even though none of these genes
were differentially expressed after avoidance training, the correlation with expression of the conditioned avoidance behavior
adds to the growing evidence that astrocytes also play an active role in forming and/or stabilizing memory, perhaps by calcium-
dependent signaling at NMDA receptors (Parpura et al., 1994; Suzuki and Shimodaira, 2006; Henneberger et al., 2010; Suzuki et
al., 2011; Rusakov, 2015; Gao et al., 2016).

Synaptic reorganization requires that neurons polarize their dendrites to create new neural connections and direct channels
to specific regions within the synapse. Distruption of the processes that that regulate synaptic organization can impair memory or
cause disease. Dysregulation of Eif5 is associatedwithmany neurodegenerative diseases (Kapur, Monaghan and Ackerman, 2017).
Cpeb4 encodes cytoplasmic polyadenylation element binding protein 4, which regulates the translation of genes by modulating
their poly(A)-tail length and is a known regulator of genes associated with autism spectrum disorder (Parras et al., 2018). Many
of the genes that are mutated in autism spectrum disorder are crucial components of the activity-dependent signaling networks
that regulate synapse development and plasticity (Ebert and Greenberg, 2013). Deletion of Fmr1 can lead to dysregulated mRNA
translation, altered synaptic function, loss of protein synthesis-dependent synaptic plasticity (Bassell andWarren, 2008; Thomson
et al., 2017; Talbot et al., 2018). Some memory molecules have been characterized because they were found to be relevant in
cancer, thus, it’s possible that studies of memory can lead to discoveries that are important for cancer or development.

Very few of the differentially expressed genes in our study overlapped with the LTP-related molecules that are identified
from review of the LTP literature. Some classes of genes that are notably absent from the list of differentially expressed genes
but present in the LTP-related list are genes for receptors (calcium, glutamate, GABA, and serotonin), calcium or calmodulin-
binding proteins, and adhesion molecules. This is perhaps not surprising because the review focused on literature examining
LTP induction, the first minutes of long-term potentiation, whereas our experiments were designed to investigate 24-h memory
expression, which would be expected to correspond to LTP maintenance. Thus this work is consistent with the evidence that like
LTP-induction, many molecules known to be crucial for learning, are neither crucial nor expressed in LTP maintenance and as
we observe, memory persistence. This points to different molecular mechanisms for forming a memory and maintaining and/or
later expressing it days later.

What should one then make of the atypical PKCs and CaMKII, candidate molecules that are demonstrated to have crucial
roles in the maintenance of LTP and synaptic structure, as well as active place avoidance memory (Tsokas et al., 2016; Rossetti
et al., 2017; Sacktor and Fenton, 2018, Pastalkova et al., 2006; Hsieh et al., 2017; Wang et al., 2016)? Remarkably we did not
detect differential gene expression-related to these molecules, nor did we detect correlations between any of these molecules
and the behavioral measures of avoidancememory expression, whereas we did for Igf2 asmentioned above. It would however be
naive and/or hasty to conclude that despite being unbiased, this transcriptomic screen contradicts the findings of the candidate
molecule approaches that have identified a role for these molecules, especially in active place avoidance memory. This highlights
one of the shortcomings of using transcriptional profiling to identify molecular mechanisms of functions such as memory. The
abundance of mRNA does not relate in a straightforward way to the cellular abundance of protein because the relationship
depends on the translational regulation of the particular protein (Vogel and Marcotte, 2012). Indeed, as an example, while PKM�
is strongly regulated by repressing translation at dendrites (Hernandez et al., 2003), there is no evidence that it is transcriptionally
regulated, either in late-LTP (Kelly, Crary and Sacktor, 2007) or in active place avoidance conditioning (Hsieh et al., 2017), consistent
with the present findings.

While this highlights a confinement of transcriptional profiling, it also draws attention to the necessity of performing combined
transcriptional and proteomic profiling in tissue taken from the same subjects. In light of the present findings, the hypothesis
that PKM� ’s molecular interactions maintain memory (Sacktor, 2011; Sacktor and Fenton, 2018) predicts finding independence
between Prkcz (which encodes PKM� ) RNA and measures of memory in an unbiased screen that integrates memory-related
measures of behavior with circuit-specific transcriptional profiling as we have done here. The hypothesis also predicts that in
the same tissue, there will be concurrent positive relationships between measures of memory and the protein levels of PKM�
and the proteins with which it interacts like KIBRA and NSF (Yao et al., 2008; Vogt-Eisele et al., 2014). There is substantial utility in
such analyses that use experimental design and concurrent multi-scale measurements from single subjects in order to integrate
information from across levels of biology not only discover unknown and unanticipated mechanisms of complex, poorly defined
processes like memory, but to also test the validity of specific mechanistic hypotheses.
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trials ANOVA Predictor df F p sig
Pre-training (Pre) NumEntrances ∼treatment treatment 3, 30 0.09 0.967
Pre-training (Pre) pTimeShockZone ∼treatment treatment 3, 30 0.78 0.512
Pre-training (Pre) Time1stEntr ∼treatment treatment 3, 30 0.8 0.506
Initial training (T1 - T3) NumEntrances ∼treatment * trial treatment 3, 90 26.42 0 ***
Initial training (T1 - T3) NumEntrances ∼treatment * trial trial 2, 90 5.88 0.004 **
Initial training (T1 - T3) NumEntrances ∼treatment * trial treatment x trial 6, 90 0.72 0.631
Initial training (T1 - T3) pTimeShockZone ∼treatment * trial treatment 3, 90 48.26 0 ***
Initial training (T1 - T3) pTimeShockZone ∼treatment * trial trial 2, 90 0.88 0.419
Initial training (T1 - T3) pTimeShockZone ∼treatment * trial treatment x trial 6, 90 0.59 0.736
Initial training (T1 - T3) Time1stEntr ∼treatment * trial treatment 3, 90 0.02 0.997
Initial training (T1 - T3) Time1stEntr ∼treatment * trial trial 2, 90 0.11 0.895
Initial training (T1 - T3) Time1stEntr ∼treatment * trial treatment x trial 6, 90 3.24 0.006 **
Initial recall (Rt) NumEntrances ∼treatment treatment 3, 30 45.44 0 ***
Initial recall (Rt) pTimeShockZone ∼treatment treatment 3, 30 129.49 0 ***
Initial recall (Rt) Time1stEntr ∼treatment treatment 3, 30 7.96 0 ***
Conflict training (T4 - T6) NumEntrances ∼treatment * trial treatment 3, 90 9.37 0 ***
Conflict training (T4 - T6) NumEntrances ∼treatment * trial trial 2, 90 0.09 0.913
Conflict training (T4 - T6) NumEntrances ∼treatment * trial treatment x trial 6, 90 3.43 0.004 **
Conflict training (T4 - T6) pTimeShockZone ∼treatment * trial treatment 3, 90 25.26 0 ***
Conflict training (T4 - T6) pTimeShockZone ∼treatment * trial trial 2, 90 0.03 0.972
Conflict training (T4 - T6) pTimeShockZone ∼treatment * trial treatment x trial 6, 90 1.54 0.174
Conflict training (T4 - T6) Time1stEntr ∼treatment * trial treatment 3, 90 6.03 0.001 **
Conflict training (T4 - T6) Time1stEntr ∼treatment * trial trial 2, 90 0.05 0.954
Conflict training (T4 - T6) Time1stEntr ∼treatment * trial treatment x trial 6, 90 1.74 0.12
Conflict recall (Rn) NumEntrances ∼treatment treatment 3, 30 18.01 0 ***
Conflict recall (Rn) pTimeShockZone ∼treatment treatment 3, 30 26.9 0 ***
Conflict recall (Rn) Time1stEntr ∼treatment treatment 3, 30 5.97 0.003 **
All trials PC1 ∼treatment treatment 3, 302 91.83 0 ***
All trails PC2 ∼treatment treatment 3, 302 10.76 0 ***
Retention (Rn) PC1 ∼treatment treatment 3, 30 15.18 0 ***
Retention PC2 ∼treatment treatment 3, 30 3.25 0.035 *

Table 1. One-way ANOVAs were used to determine the effects of training treatment on behavior
during a single trial, including the pretraining and recall trails. Two-way ANOVAs were used to determinethe effects of treatment, training, and the interaction across three trials, including the initial training sessionand the conflict training session. Key: NumEntrances = total number of entrances into the shock zone;Time1stEntr = time (min) passes before entering the shock zone the first time; pTimeShockZone = proportionof time spent in the shock zone relative to the total time spend in the four equivalent areas centered in eachquadrant.
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GO terms DG DEGs Candidates LTP genes

Response
to stimulus
(GO:0050896)

Abhd2, Adrb1, Ahr,
Ankrd27, Apaf1, Arc,
Arid5b, Arl13b, Arpp21,
Atf3, B3gnt2, Bach1,
BC048403, Bmt2, Btg2,
C2cd4b, Ccnk, Cited2,
Fbxw7, Fermt2, Flrt3, Fos,
Fosb, Fosl2, Foxg1, Foxo1,
Fzd4, Fzd5, Gadd45g,
Gnaz, Gpi1, Gpr19, Hmgcr,
Homer1, Hspa1a, Hsph1,
Il16, Ing2, Irs1, Irs2, Jun,
Junb, Jund, Kdm6b, Kitl,
Klf2, Klf6, Klkb1, Lbh,
Lemd3, Lmna, Mc1r, Mest,
Myc, Nedd9, Nfil3, Npas4,
Nptx2, Nr4a1, Nr4a2,
Nr4a3, Ppp1r15a, Slc16a1,
Slc25a25, Slitrk5, Smad7,
Sox9, Srf, Srgap1, Stac2,
Syt4, Thbs1, Tiparp, Tnip2,
Tra2b, Trib1, Tsc22d2,
Zbtb33, Zfand5

Camk2a,
Fmr1, Gria2,
Igf2, Mtor,
Wwc1

Adcy1, Adra2a, Adra2b, Adra2c, Adrb1, Adrb2, Adrb3, Cacna1a,
Cacna1b, Cacna1c, Cacna1d, Cacna1e, Cacna1f, Cacna1s, Calb1,
Calm1, Calm2, Calm3, Camk1, Camk4, Capn1, Capn10, Capn2,
Capn3, Ccr7, Cd47, Cdh1, Cdh2, Chrm1, Chrm2, Chrm3, Chrm4,
Chrm5, Chrna1, Chrna3, Chrna7, Chrnb1, Chrnb2, Chrnb3,
Cnga2, Fgf2, Fyn, Gabbr1, Gabra1, Gabra2, Gabra3, Gabra5,
Gabra6, Gabrb1, Gabrb2, Gabrb3, Gabrr1, Gap43, Gfap, Gria1,
Gria2,Grin1,Grin2a,Grin2d,Grm1,Grm4,Grm5,Grm7,Gucy1a2,
Gucy1b2, Gucy2c, Gucy2d, Gucy2e, Gucy2g, Homer1, Homer2,
Homer3, Htr1a, Htr1b, Htr1f, Htr2a, Htr2b, Htr2c, Htr3a, Htr3b,
Htr4, Htr5a, Htr5b, Htr6, Htr7, Il1b, Inhba, Itga1, Itga10, Itga11,
Itga2, Itga2b, Itga3, Itga4, Itga5, Itga6, Itga7, Itga8, Itga9, Itgad,
Itgae, Itgal, Itgam, Itgav, Itgax, Itgb1, Itgb1bp1, Itgb2, Itgb2l, Itgb3,
Itgb4, Itgb5, Itgb6, Itgb7, Itgb8, Itgbl1, Itpkb, L1cam, Mapk1,
Mapk11, Mapk12, Mapk14, Mapk3, Mapk4, Mapk6, Mapk7,
Mapk8,Mapk9,Mas1, Ncam1, Ngf, Nos1, Nos3, Nrg1, Nrg2, Nrg3,
Nrgn, Pnoc, Sptbn1, Src, Stx1b, Syp, Th, Thy1, Tnc, Ube3a, Vamp2,
Vamp3, Vamp4, Vamp8

Translation
(GO:0006412)

Cpeb4, Eif5 Fmr1, Mtor NA
Synapse
organization
(GO:0050808)

Amigo2, Arc, Bdnf, Flrt3,
Fzd5, Homer1, Lrrtm2,
Npas4, Pcdh8, Slitrk5

Fmr1, Pick1 Ache, Bdnf, Cacna1a, Cacna1s, Camk1, Cdh1, Cdh2, Chrna1,
Chrna7, Chrnb1, Chrnb2, Dlg4, Drd1, Efna5, Epha5, Erbb4, Fyn,
Gabra1, Gabrb2, Gabrb3, Gap43, Grin1, Grin2a, Grm5, Homer1,
Htr1a, Itga3, Itgam, Itpka, L1cam,Mapk14, Nrg1, Nrg2, Ntrk2, Ptn,
Rab3a, Syn1, Tnc, Ube3a

Learning
or memory
(GO:0007611)

Adrb1, Arc, Bdnf, Btg2, Egr1,
Hmgcr, Jun, Npas4, Nptx2,
Pak6, Plk2, Ptgs2, Sgk1, Srf,
Syt4

Igf2, Mtor,
Prkcz

Adcy1, Adrb1, Adrb2, Bdnf, Cacna1c, Cacna1e, Calb1, Camk4,
Chrna7, Chrnb2, Cnr1, Creb1, Drd1, Egr1, Gabra5, Gria1, Grin1,
Grin2a, Grm4, Grm5, Grm7, Htr2a, Htr6, Htr7, Il1b, Itga3, Itga5,
Itga8, Itgb1, Ncam1, Ngf, Ntrk2, Oprl1, Pla2g6, Plcb1, Prkar1b,
Prkcz, Ptn, S100b, Snap25, Th

Table 2. Analysis of GO terms hypothesized to play a role in learning and memory. Column 1 containsfour GO categories representing four hypotheses about which genes are important for memory formationand recall: 1) response to stimulus, 2) translation, 3) synapse organization, and 4) learning or memory.Column 2 contains genes that were differentially expressed in the dentate gyrus (DG) of trained and yokedcontrol mice a day after memory training and thirty minutes after unreinforced expression of active placeavoidance memory. Of those DEG, 79 are associated with hypothesis 1 that genes would be related toresponse to stimulus, which includes many immediate early genes that trigger responses in signalingcascades with membrane-bound receptors. Only two genes were associated with the hypothesis thattranslation machinery that executes the response are needed. Only ten genes are associated with “synapticorganization” that includes synaptic receptors and channels that express the response. Fifteen genesassociated with learning or memory at the behavioral level were differentially expressed. Adrb1, Arc, Bdnf,
Btg2, Egr1 (aka ZIF-268), Hmgcr, Jun, Npas4, Nptx2, Pak6, Plk2, Ptgs2, Sgk1, Srf, and Syt4 All differentiallyexpressed genes in the learning and memory list also overlap with the genes in the response to stimulus list.Column 3 contains the candidate genes described in the introduction or discussion and includes Camk2a,
Fmr1, Gria2, Igf2, Mtor, Pick1, Prkcz (PKM � ), andWwc1 (KIBRA). Column 4 contains genes that were reviewed bySanes and Lichtman, 1999 to play a role in long-term potentiation, a cellular model of memory. Only fourgenes (shown in bold: Adrb1, Bdnf, Egr1, and Homer1) from the Sanes and Lichtman list were found to bedifferentially expressed in the DG.
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Domain Functional Category Gene

BP Memory Arc Bdnf Egr1 Kcnk10 Npas4 Plk2 Ptgs2 Sgk1 Syt4
BP Learning or memory Arc Bdnf Btg2 Egr1 Kcnk10 Npas4 Plk2 Ptgs2 Sgk1 Syt4
BP Tissue development Acan Arc Areg Atf3 Bdnf Btg2 Col10a1 Egr1 Errfi1 Fosl2 Frmd6 Fzd5Homer1Hoxc4Nr4a3

Pcdh8 Ptgs2 Rgs2 Slc25a25 Smad7 Tiparp
BP Cognition Arc Bdnf Btg2 Egr1 Kcnk10 Npas4 Plk2 Ptgs2 Sgk1 Syt4
BP Behavior Arc Bdnf Btg2 Egr1 Homer1 Kcnk10 Npas4 Nr4a3 Plk2 Ptgs2 Sgk1 Slc16a1 Syt4
CC Neuron projection Acan Arc Bdnf Cpeb4 Fzd5 Homer1 Nexn Pcdh8 Plk2 Ptgs2 Rgs2 Sgk1 Syt4
CC Cell junction Arc Cpeb4 Frmd6 Fzd5 Homer1 Nexn Pcdh8 Slc16a1 Smad7 Syt4
CC Dendrite Arc Bdnf Cpeb4 Fzd5 Homer1 Pcdh8 Plk2 Syt4
CC Dendritic tree Arc Bdnf Cpeb4 Fzd5 Homer1 Pcdh8 Plk2 Syt4
CC Somatodendritic

compartment
Acan Arc Bdnf Cpeb4 Fzd5 Homer1 Pcdh8 Plk2 Syt4

MF Regulatory region nucleic
acid binding

Atf3 Egr1 Egr4 Fosl2 Hoxc4 Nfil3 Npas4 Nr4a3 Per1 Smad7 Tiparp

MF Transcription regulatory
region DNA binding

Atf3 Egr1 Egr4 Fosl2 Hoxc4 Nfil3 Npas4 Nr4a3 Per1 Smad7 Tiparp

MF RNA polymerase II
regulatory region
sequence-specific DNA
binding

Atf3 Egr1 Egr4 Fosl2 Hoxc4 Nfil3 Npas4 Nr4a3 Per1

MF DNA-binding
transcription factor
activity, RNA polymerase
II-specific

Atf3 Btg2 Egr1 Egr4 Fosl2 Hoxc4 Nfil3 Npas4 Nr4a3

MF RNA polymerase II
regulatory region DNA
binding

Atf3 Egr1 Egr4 Fosl2 Hoxc4 Nfil3 Npas4 Nr4a3 Per1

Table 3. Discovery-driven analysis of GO terms that are positively correlated with PC1. Column 1 lists thethree GO domains: Biological Process (BP), Cellular Compartment (CC), and Molecular Function (MF). Columns2 lists the top 5 most significant functional categories that are represented in the list of 58 genes that arepositively correlated with PC1, a measure of avoidance behavior
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Figure 1. Experimental Design. a)Mice were assigned to one of four groups: standard-trained (red, n=8),standard-yoked (dark grey, n=8), conflict-trained (peach, n=9), or conflict-yoked (light grey, n=9). Mice wereplaced on the rotating arena (1 rpm) for trials that lasted 10 min and were separated by 2-h inter-trialintervals or overnight (∼ 17 h). Behavior was recorded during the pretraining (P), initial training (T1-T3), retest(Rt), conflict training (T4-T6), and retention (Rn) trials. In the trial schematics, the 60◦ -sector represents theshock zone or for the yoked groups, the equivalent region that is used for evaluating place avoidance.Whereas the trained mice receive shocks only in the shock zone indicated by the sector, the yoked miceexperience shock throughout the arena. b) Standard-trained and standard-yoked mice received an identicalnumber of shocks (and time series), with the most shocks occurring on trial 1. Conflict-trained andconflict-yoked mice received an identical number of shocks (and time series), with the most shocks occurringon trial 4, the first trial of conflict training. c) A schematic representation and a photo show the size andlocation of tissue samples collected from the dorsal hippocampus for RNA-sequencing. Tissues from fivesubfields (CA1, CA2, CA3, CA4, DG) were collected, but only the DG (orange), CA3 (teal), and CA1 (purple)subfields were processed for RNA-seq.
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Figure 2. Characterizing and comparing behavior amongst the groups. Standard-trained andconflict-trained groups rapidly learned to effectively avoid the shock zone whereas the yoked control groupsdid not avoid the corresponding region measured by a) reduction in the number of entrances into the shockzone, b) and increased latency to enter the shock zone for the first time, c) and a reduction in the proportionof time spent in the shock zone. d) PCA performed on the 26 measures of behavior taken across all 9 trials,results in PC1 that distinguishes the trained and yoked groups, in particular during the retention test justprior to sacrifice when physical conditions are identical for all the mice because there is no shock. Large dotsindicate group averages on the retention test while transparency is highest for pretraining and lowest forretention. e,f) Parameter loadings for PC1 and PC2 indicate that PC1 is comprised of estimates of placeavoidance and PC2 estimates of locomotor behavior. Statistics are provided in Table 1. Key: NumEntrances =total number of entrances into the shock zone; Time1stEntr = time (min) passes before entering the shockzone the first time ; pTimeShockZone = proportion of time spent in the shock zone relative to the total timespend in the four equivalent areas centered in each quadrant; MaxTimeAvoid = maximum time (s) avoidingthe shock zone; TimeShockZone = total time (s) spent in the shock zone; SpeedArena.cm.s = average speedestimated in each 2 second epoch; TotalPath = total distance walked; Path2ndEntr = distance walked beforeentering the shock zone twice; EntPerDist = number of entrances per meter walked; MaxPathAvoid =maximum distance walked without entering the shock zone; Linearity = straightness of locomotion, estimatedevery 2 seconds as the ratio of the end-to-end Euclidean distance divided by the integral of the pathsegments; Speed1stEntr = speed when entering the shock zone the first time; Speed2ndEntr = speed whenentering the shock zone the second time; sdSpeed = standard deviation of the speed estimates;RayleighLength = the Rayleigh vector length estimating the angular bias of the animal’s dwell probability.
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Figure 3. Subfield and treatment-specific gene expression differences. Volcano plots illustrating thesignificant and non-significant differences in gene expression when a-c) the two yoked groups are comparedto the two trained groups, d-e) the two trained groups are compared, and f-i) the two yoked groups arecompared. Rows show gene expression differences by region from DG (a,d,g) where information enters thehippocampus, to CA3 (b,e,h), and CA1 (c,f,i), the output of the hippocampus. Each dot represents a genewhose color corresponds to whether its expression increased, decreased, or was not significantly different(NS) between the two groups compared. The total number of differentially expressed genes (DEGs) arereported in the top left corner of each panel.
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Figure 4. Correlations between gene expression in the DG and estimates of long-term avoidance
memory. a) The immediate early gene Arc is differentially expressed in the DG and is positively correlatedwith behavior PC1 (an estimate of avoidance memory): red = trained, black = yoked. c) Arc is also among thetop 20 genes that are positively correlated with PC1. For the full list of genes that are positively correlatedwith PC1, see Suppl. table 4. d) The genes that are positively associated with PC1 are highly correlated witheach other. All correlations greater than 0.6 or less than -0.6 are shown in red or blue, respectively.
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Figure 5. Region-specific candidate gene analysis of PKM� -related signaling genes. a) In the DG, none ofthe candidate memory-related genes are significantly correlated with behavioral PC1; however, b) Pick1 isnegatively correlated with Fmr1, Nsf and Prkci. The translation regulators Fmr1 aremTor are positivelycorrelated with each other. c) In CA3, Gria2 is negatively correlated with PC1 and positively correlated withPC2. d) Camk2a, Prkci, Prkcz, and Wwc1 all show positive correlations with one another. Igf2 and Fmr1 are alsopositively correlated. e) In CA1, Igf2 is positively correlated with PC1. f) Nsf is negatively correlated with
Cam2ka, Prkci, and Wwc1. Gria2 is positively correlated with Fmr1 and Prkcb. Prkci is positively correlated with
Wwc1. Correlations greater than 0.6 or less than -0.6 are highlighted in the figure.
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Figure 6. Region-specific candidate gene analysis of astrocyte-related genes. None of theastrocyte-related genes were significantly correlated in DG (a) or CA1 (e), but Aldh1l1, Aldoc, Fgfr, and Gfapexpression in the CA3 all show a correlations greater than 0.6 to behavioral PC1 (c). These candidate genesare highly, positively correlated with one another, especially in the CA3 (d) and to a lesser extent in the DG (b)and CA1(f).
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Figure S1. Quality control of RNA-sequencing data. a) On average, each sample yielded 6.9 million rawreads. b) Of those raw reads, on average 2.6 million mapped to the reference transcriptome. c) Thealignment efficiency of Kallisto was about 42% . d) Principal component analysis (PCA) and e) t-DistributedStochastic Neighbor Embedding (t-SNE) both confirm that all samples can be divided into three clusters basedon subfield (DG, CA3, or CA1), as expected, with CA1 and CA3 being more similar to one another than to DG.
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Figure S3. Additional correlations. a) Arc expression in the DG is significantly correlated with principalcomponents (PC) 1 of the behavioral data. Note, there is a negative correlation between PC1 and PC2 of thebehavioral data (inset). b, c) Arc expression in the CA3 and CA1 is not significantly correlated with PC1 of thebehavioral data. d-f) Correlations between Igf2 and PC1 are positively in all hippocampal subfields andsignificant in CA1.
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