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Abstract

Motivation. A common but critical task in genomic data analysis is finding features
that separate and thereby help explain differences between two classes of biological
objects, e.g., genes that explain the differences between healthy and diseased patients.
As lower-cost, high-throughput experimental methods greatly increase the number of
samples that are assayed as objects for analysis, computational methods are needed to
quickly provide insights into high-dimensional datasets with tens of thousands of objects
and features.

Results. We develop an interactive exploration tool called GENVISAGE that rapidly
discovers the most discriminative feature pairs that best separate two classes in a
dataset, and displays the corresponding visualizations. Since quickly finding top feature
pairs is computationally challenging, especially when the numbers of objects and
features are large, we propose a suite of optimizations to make GENVISAGE more
responsive and demonstrate that our optimizations lead to a 400X speedup over
competitive baselines for multiple biological data sets. With this speedup,
GENVISAGE enables the exploration of more large-scale datasets and alternate
hypotheses in an interactive and interpretable fashion. We apply GENVISAGE to
uncover pairs of genes whose transcriptomic responses significantly discriminate
treatments of several chemotherapy drugs.

Availability. Free webserver at http://genvisage.knoweng.org:443/ with source
code at https://github.com/KnowEnG/Genvisage

1 Introduction

A common approach to discovery in biology is to construct experiments or analyses that
directly contrast two specific classes of biological objects. Examples of this include
examining patient samples contrasting tumor versus normal tissue [1], studying the
differences in molecular effects of two competing drug treatments [2], or characterizing
differentially expressed genes versus genes with unaltered gene expression in a carefully
designed experiment [3]. To understand the mechanisms that determine these object
classes, researchers often employ statistical and machine learning tools to identify a
manageable subset of features, e.g. genes, that accentuate, discriminate, or help explain
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the differences between classes, i.e., separate the two classes. We therefore refer to this
problem as the separability problem.

Challenge 1: Explainable Separation with Guarantees. Many tools have been
developed in several different biological settings [4-9] that attempt to solve the
separability problem by focusing on discovering pairs of features that taken together
strongly discriminate the classes. Feature pair methods can provide a better
characterization of what distinguishes two object classes by offering insights into the
interplay of important features that would not be found using single feature statistical
tests [10] or univariate classifiers [11]. Specifically, predictors built with gene feature
pairs are more robust to normalization and can achieve better model performance than
predictors using single genes as features [5,6]. On the other hand, methods focused on
feature pairs offer the advantage of providing more interpretable or explainable results
over more complicated machine learning approaches that return a complex combination
of several features to discriminate the classes, such as multivariate regression with
LASSO regularization [12] or pattern mining from random forest models [13]. Some
existing papers [7,14-16] employ these more complex machine learning approaches to
heuristically return more interpretable feature pairs. However, these heuristic methods
do not fully explore the search space nor do they offer a guarantee on the quality of the
returned feature pairs.

Challenge 2: Scalability in Data Size. A major problem with current methods
that address the separability problem with either feature pairs or more complex
machine learning models is that they do not scale to the growing size of genomic data
sets. As is often the case with genomics, the biological objects being analyzed (e.g.,
tissue samples or drug experiments) are frequently represented by high dimensional
numeric feature vectors (e.g., transcript abundance measurements). Additionally, with
the rise of low-cost sequencing, the possible number of biological objects in a dataset is
also increasing and likely to grow in orders of magnitude over the next decade [17].
Applying the standard methods to datasets with tens of thousands of objects and
features results in massive running times that preclude interactive exploration of the
data. For example, exhaustively searching for the optimal feature pairs from the full
space of possibilities in a typical genomic analysis resulted in running times over an
hour on a 200 node compute cluster in Watkinson et al. [9].

One reason that more complex machine learning and feature pair based methods do
not scale well with the number of features and objects is the the selection of the metric
for scoring separability. In Watkinson et al. [9], a metric called synergy is proposed for
evaluating the utility of feature pairs, aiming to capture both linear and non-linear
aspects of the separability of the two class. Consequently, the intrinsic complexity of
these metrics makes them difficult to benefit from optimization techniques. Metrics
based only on quantifying linear separability, on the other hand, may return a more
limited subset of interesting features, but they also may be more intuitive for users to
understand and simultaneously enable more performance optimizations and speedups.
The linear separability metric has been used in previous studies to identify pairs of
genes with expression differences between two cancer types [18] or pairs of motifs that
discriminate between different types of genomic sequences [19].

Our Proposal GENVISAGE: A Scalable and Explainable Tool for Addressing
Separability. Motivated by these observations, we present GENVISAGE, an
interactive data exploration tool designed to address the separability problem and scale
to the size of large genomic analysis datasets. With GENVISAGE, we not only achieve
high separability quality with our carefully formulated problem; but also enable
explanations on separation via intuitive visualization; meanwhile, we are capable to
handle large scale datasets efficiently — the best of all three world. Specifically, to
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enable this scalability, GENVISAGE focuses on returning the top ranking feature pairs
that discriminate the objects of separate classes, rather than returning larger subsets of
features using more complex and longer to train machine learning approaches.
GENVISAGE is also based around a linear separability metric that provides an intuitive
interpretation to feature pairs while enabling and simplifying the design of several
important performance optimizations. These optimizations include (a) elimination of
repeated computation for different features pairs; (b) pruning poor ranking pairs during
early execution; (c¢) sampling with a quality guarantee to further reduce running time;
and (d) cleverly traversing the search space of feature pairs for improved efficiency.

We applied GENVISAGE to two large genomic datasets with tens of thousands of
objects and high-dimensional feature vectors where it is computationally expensive to
score the separability for all possible feature pairs. In one, called LINCS, we find pairs
of genes whose expression discriminates between perturbagen experiments involving
different drug treatments, and in the other, called MSIGDB, we find pairs of
annotations (such as pathway membership) that separate differentially expressed cancer
genes from other genes. With the carefully designed separability metric of GENVISAGE
and its suite of sophisticated optimizations that accelerates evaluation, we are able to
accurately return the highest ranking separating feature pairs for both datasets within two
minutes on a single machine. This reflects a 180X and 400X speedup over a
competitive baseline for the MSIGDB and LINCS data sets (respectively). We also
show that the feature pairs identified by GENVISAGE often more significantly
discriminate between the object classes than the corresponding best ranking individual
features, even after accounting for the larger search space. Finally, we performed an
in-depth analysis for nine distinct drug treatments in the LINCS dataset and found
1070 feature (gene) pairs that had significant separability scores. These gene pairs were
enriched in literature support for known relationships between the genes and the drug,
as well as known interactions between the genes themselves.

Summarized Benefits of Using GENVISAGE. By focusing on separating feature
pairs, GENVISAGE offers researchers the ability to gain additional insight into their
object classes beyond singular features, without the prolonged duration needed to train
a complex machine learning model. By implementing optimizations that take advantage
of a linear separability metric, GENVISAGE enables researchers to quickly explore their
data, identify the strongest, most compelling features, and from simple visualizations
form hypotheses about the interplay between features and with the object classes. The
performance of our tool also allows researchers to investigate multiple definitions of the
object classes and investigate alternative hypotheses interactively on the fly, as well as
build a feature set to later pass to more in-depth, longer running machine
learning-based analysis.

2 Methods

We begin by formally defining the separability problem, introducing our separability
metric, and finally detailing optimizations that enable the rapid identification of the
best separating feature pairs.

2.1 Problem Definition

Let M be a feature-object matrix of size m x N, where each row is a feature and each
column is an object as shown in Figure 1. One example feature-object matrix is one
where each object corresponds to a tissue sample from a cancer patient and each feature
corresponds to a gene, where the (4,7)*" entry represents the expression level of the i*"
gene in the j** tissue sample. We denote the m features as F = {f, fo, -+ , fm} and N
objects as O = {01,092, - ,on}. Each entry M, ; in M corresponds to the value of
feature f; for object o; as illustrated in Figure 1.

January 30, 2020

3/24

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110


https://doi.org/10.1101/2020.02.05.935411
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.935411; this version posted February 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

L~ :
o o) [ of -Joy Generate Feature Pairs Evaluate Each Feature Pair
fi Data Matrix _ EarlyStop
Sampling Traversal Pre-Transformation Sampl\llleolz)urlsemg
Module Module i
T M, o || Eection 281 (Section 2.3.2)
Candidate Feature
Ordering Ordering Separability Metric
I (Section 2.3.3)|| || (Section 2.3.4) N N
Rocchio-based (Section 2.2)
o.i0 I~ T |

a. Input for GENVISAGE b. Methods and Optimizations in GENVISAGE c. Output of GENVISAGE

Fig 1. GENVISAGE Workflow. Given (left) a feature-object matrix and green positive
and red negative class labels on the objects, GENVISAGE (center) evaluates all pairs of
features using several optimizations to identify (right) the top feature pair and its
corresponding visualization that best separates the object classes.

We are also given two non-overlapping sets of objects, one with a positive label, O,
and the other with a negative label, O_. In our example, tumor samples, O, may be
assigned the positive label, and the healthy tissue samples, O_, the negative label. The
number of labeled objects, n, is equal to |(’3| where O = O4UO_. Also, let I, be the
label of object o € (5, i.e., I = 1if of is positive and [, = —1 if oy is negative.

GENVISAGE aims to find feature pairs that best separate the objects in O from
those in O_ using only those features, and then output a visualization that
demonstrates the separability (see Figure 1). (We will define the metric for separability
subsequently.) A feature pair that leads to a good “visual” separation between the
positive and the negative sets may be able to explain or characterize their differences
via a interesting, non-trivial relationship among the features. The overall workflow is
depicted in Figure 1. We now formally define the separability problem.

Problem 1 (Separability). Given a feature-object matriz M and two labeled object sets
(O4,0-_), identify the top-k feature pairs (f;, f;) that separate O4 from O_ based on a
given separability metric.

We will describe our separability metric in Section 2.2, and then discuss optimization
techniques in Section 2.3. The notation used in the description of the method is
summarized in Supplementary Table B.1.

2.2 Separability Metric

Given a feature pair (f;, f;) as axes, we can visualize the object sets Oy and O_ in a
2-D space, where each object corresponds to a point with x-value and y-value as the
object’s value on feature f; and f; respectively. A desirable (i.e., both interesting and
interpretable) visualization would be one in which the objects are linearly separated,
defined as follows. Two sets of objects, i.e., Oy and O_, are said to be linearly
separable [20] if there exists at least one straight line such that O, and O_ are on
opposite side of it. We focus on metrics that capture this linear separation, since it
corresponds to an intuitive 2-D visualization. Given a feature pair (f;, f;) and a line ¢,
we can predict the label of an object o, denoted as nf”f, using Equation 1 below, where
wo, w; and w; are coefficients of £ and w; > 0:

Predicted Label : nf]k = sign(w; - M +w; - M i + wp) (1)

If oy, lies above the line /, i.e., o; has higher value on y-axis than the point on line /¢
with the same value on x-axis as oy, then 77Z ’; = 1; otherwise, 77 —1. Let QZ * be the
indicator varlable denoting whether the sign of the predlcted 1abel matches the real
label [ if 77” -l = 1, then 96 ’ = 1; otherwise, 9 i =

GENVISAGE’s beparablhty metrlc captures how well the objects in the feature pair’s
2-D wvisualization can be linearly separated, formally defined next. Given a feature pair
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(a) Brute Force

(b) Rocchio-Based

Fig 2. Calculating Separability Score 6; ;. The scored separating line can be defined

using (a) brute force (few sample lines are shown) or (b) the representative line from a

Rocchio-based measure based on the object class centroids (white circles).

(fi, f;) and a line ¢, the separability score of the line (denoted 9f7 ;) is defined as the sum
of the indicators (#°F) for all objects: 05,

2]

0,k
= Zk ei,j .

Figure 2(a) shows separability

scores Gf’j for different separating lines. For example, the separating line with Gf’j =12
correctly separates six green points and six red points. The final separability score for a
feature pair (f;, f;) (denoted as 6; ;) is defined as the best separability score Gf,j among
all possible lines ¢. Accordingly, we define the overall separability error of the feature

pair as err; ; =n — 0, ;.

Brute Force Calculation of 6§, ;. As suggested in Figure 2(a), the simplest way to
calculate 0; ; is to first enumerate all possible separating lines ¢ and calculate QfJ for
each of them. We can easily trim down the search space to O(n?) lines by linking the
points corresponding to every two objects in the 2-D plane. This is because the results
of all other possible lines can be covered by these O(n?) lines [21]. Nevertheless, it is
still very time-consuming to consider O(n?) lines for each feature pair (f;, f;).

Rocchio-based Measure. We can speed up the process by selecting a single
representative line L providing us with an estimate of the true separability score 6; ;. In
order to achieve a fast and reliable estimate, we select our representative line based on
Rocchio’s algorithm [22]. Let us denote the centroids of positive objects O and
negative objects O_ for a given (f;, f;) as /‘Zj = (./\/l;",./\/lj) and p; ; = (M, M)
respectively, where /\/l;r and /\/l;r are the values of the centroids of the positive objects

on feature f; and f;, and M;" and M are the values of the centroids of the negative
objects on feature f; and f;. The perpendicular bisector of the line joining the two
centroids is selected as the representative separating line L (see Figure 2(b)), with its

coefficients corresponding to Equation 1 defined as w; = M} — M

and wo = —

((Mj)k(m;)? (MF)?—(M])?
2 2

+ ).

7

Wy

= M - M7

J J?

Brute-force vs. Rocchio-based. Compared to the brute force calculation, the
Rocchio-based measure is much more light-weight, but at the cost of accuracy in
calculating 0; ;. Intuitively, the representative line is a reasonable proxy to the best
separating line since the Rocchio-based measure assigns each object to its nearest
centroid. We further empirically demonstrate that OiLJ is a good proxy for 6; ; in
Section 3.2. Thus, we will focus on the Rocchio-based measure subsequently, removing

L (or ¢) from the superscripts where it appears, and using 6; ; and GiL’j interchangeably.
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2.3 Proposed Suite of Optimizations

In this section, we first analyze the time complexity of identifying the top-k feature
pairs using the Rocchio-based measure, and then propose several optimization
techniques to reduce the complexity.

Time Complexity Analysis. For a given feature pair (f;, f;), if we have already
calculated the class centroids for each feature, the separating line L can be calculated in
O(1). We can then calculate the number of correctly separated objects 6; ; via O(n)
evaluations. Since there are O(m?) feature pair candidates, the total time complexity is
O(m?n), which can be very large, since m and n are typically large.

Optimizations: Overview. To reduce the time complexity, we introduce two
categories of optimizations: those that reduce the amount of time for fully evaluating a
given feature pair (Section 2.3.1, 2.3.2) and those that reduce the number of feature
pairs that require full evaluation (Section 2.3.3, 2.3.4). In the following, we refer to
these optimizations as modules to indicate that they can be used in any
combination—however, in reality, careful engineering is necessary to “stitch” these
modules together to multiply the effects of the optimizations.

TRANSFORMATION module (Section 2.3.1) reduces redundant calculations across
feature pairs by mapping the feature-object matrix M into a new space that enables
faster evaluation of object labeling. EARLYSTOP module (Section 2.3.2) takes
advantage of the fact that evaluation of a poorly separating feature pair can be
terminated early without having to evaluate the separability of all n objects.

SAMPLING module (Section 2.3.3) first identifies likely top-k feature pair candidates
by evaluating their separability on a sampled subset of all objects, and then conducts
full evaluations only on these feature pair candidates. Finally, TRAVERSAL module
(Section 2.3.4) reduces the number of feature pairs checked by greedily choosing feature
pairs based on the separability of the corresponding single features. These optimization
modules can be used on their own or combined with each other. In Section 3, we will
show how these optimizations modules greatly reduce the running time of finding the
top-k separating feature pairs without significantly affecting the accuracy.

2.3.1 Pre-Transformation for Faster Feature Pair Evaluation @ We observe
that there is massive redundancy across 6; ;’s computation of different feature pairs.
Motivated by this, we propose the TRANSFORMATION optimization module which
will pre-calculate some common computational components once across different features

and reuse these components in evaluating the separability for each different feature pair.

This TRANSFORMATION module transforms the original M; ;, matrix into another
space /\//L r using the identified common feature pair components and updates the
separability score equation accordingly. Specifically, with this transformation of the
feature-object matrix MZ ks evaluatlng whether an object was correctly separated is
simplified as: if szgn(./\/ll 6+ MJ k) =1, then 6f ; = 1; otherwise, 67 ; = 0. Details and
an example can be found in Supplementary Note A.1 and Supplementary Figure C.1.

2.3.2 Early Termination Given a feature pair (f;, f;), we need to scan all the
objects to compute the separability score ¢; ;. However, since we only need to identify
feature pairs in the top-k, we can stop for each feature pair as soon as we can make that
determination, without scanning all objects; we call this the EARLYSTOP module.

High Level Idea. We maintain a upper bound 7 for the separability error err; ; of the
top-k feature pairs. Then, the lower bound of the separability score can be denoted as
(n— 7). Given a feature pair (f;, f;), we start to scan the object list until the number of
incorrectly classified objects exceeds 7. If so, we can terminate early and prune this
feature pair since it cannot be among the top-k. Otherwise, (f;, f;) is added to the
top-k feature pair set and we update 7 accordingly.
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Fig 3. Optimization Module Examples. (a) When evaluating a feature pair with
EARLYSTOP module, the transformed M scores are scanned left to right and each
incorrectly classified object is marked in blue. Without object ordering (above),
evaluation terminates after five checked objects. When objects are reordered by the
most “problematic” (below), the feature pair is rejected after checking only the first two
objects. (b) To calculate the top-3 feature pairs with SAMPLING, the confidence

interval of 6, ; is calculated for every feature pair evaluated on the sample set S (above).

The 3" interval lower bound ( is obtained (red dotted line), and all feature pairs with a
larger upper bound are designated as candidates for validation (blue intervals). The
selected candidates (center box) are evaluated on the whole object set O to compute the
exact 0; ; and pick the top-3 (right box).

Enhancement by Object Ordering. Although EARLYSTOP has the potential to

always reduce the running time, its benefits are sensitive to the ordering of the objects
for evaluation. Since we terminate as soon as we find 7 incorrectly classified objects, we
can improve our running time if we examine “problematic” objects that are unlikely to
be correctly classified relatively early. For this, we order the objects in descending order

of the number of single features f; that incorrectly classify the object oy, i.e., M, < 0.

Thus, the first object evaluated is the one that is incorrectly classified by the most single
features. The benefit of this strategy is illustrated with an example in Figure 3(a).

2.3.3 Sampling-based Estimation One downside of the EARLYSTOP module
is that the improvement in the running time is highly data-dependent. Here, we propose

a stochastic method, called SAMPLING, that reduces the number of examined objects.

Instead of calculating 6; ; over the whole object set O, SAMPLING works on a sample
set drawn from O.

High Level Idea. SAMPLING primarily consists of two phases: candidate generation
and validation (Figure 3(b)). In phase one, we estimate the confidence interval of 6; ;
for each feature pair using a sampled set of objects and generate the candidate feature
pairs for full evaluation based on where their confidence intervals lie. If the confidence
interval overlaps with the score range of the current top-k, then it is selected for
evaluation. In phase two (lower half of Figure 3(b)), we evaluate only the feature pairs
in the candidate set, calculating 6; ; over the whole object set, @, to obtain the final
top-k feature pairs. Unlike our previous optimizations, SAMPLING returns an
approximation of the top-k ranking feature pairs.

Candidate Generation. Let S be a sample set drawn uniformly from O. Given a

feature pair (f;, f;), let 6; ;(S) be the number of correctly separated objects in S. We

can estimate 6; ; from 6; ;(S) using 6; ; = b ‘ S(IS) n by assuming the ratio of correctly

separated samples in S is the same as that in O. Using Hoeffding’s inequality [23], we
have that by selecting Q(E%) samples, that 6, ; is in the confidence interval

[0; j — en, 0; ; + en] with high probability (details in Supplementary Note A.2). Since
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the sample size |S| is independent of the number of objects, this module helps
GENVISAGE scale to datasets with large n.

Following the top half of Figure 3(b), we can first calculate the confidence interval of
8; ; for each feature pair (f;, f;). Next, we compute the lower bound of §; ; for the top-k
feature pairs, denoted as ( as shown by the red dotted line. Finally, we can prune
feature pairs away whose upper bound is smaller than (, keeping the candidate set C of
feature pairs depicted by blue intervals. These feature pairs C will be further validated
in phase two, i.e., candidate validation. Typically, |C| will be orders of magnitude
smaller than m?2, the original search space for all feature pairs.

Candidate Validation. We re-evaluate all of the candidates generated from phase one
to produce our final feature pair ranking. This evaluation is performed using the whole
object set O and the top-k feature pairs are reported (lower half of Figure 3(b)).

Enhancement by Candidate Ordering. In Section 2.3.2 we proposed an
enhancement that allows us to terminate computation early by manipulating the order
of the objects; here we similarly found a way to reduce the running time by changing
the order in which feature pair candidates are validated in phase two. Instead of
directly validating each feature pair candidate, we first order the candidates in
descending order according to the upper bound of each candidate’s confidence interval.
Then, we sequentially calculate the full separability score 0; ; for each feature pair, and
update (¢ correspondingly. Recall that ¢ is the current estimate of the lower bound of
0;.; for the top-k feature pairs. Finally, we terminate our feature pair validation when
the next feature pair’s upper bound smaller than the current value of ¢ (Figure 4).

o e ¢+ Terminate!

1 1 ‘l '

@) L@ 2. 2 g 2y
HANTHO] [ | I R ) ¢ L

High ———»1 ow : i

(@) Ordering  (b) Calculate @ (c) Calculate @ (d) Calculate @

| ™y

Fig 4. Candidate Ordering Enhancement. (a) Feature pair candidates are sorted by
the upper bounds of their confidence intervals (solid red boundary), and the lower
bound of the top-3 feature pairs, i.e., ¢, is set (red dotted line). (b,c,d) For each feature
pair, we calculate 6; ; (filled blue circle) using all objects and update ¢ if necessary.
Note that ¢ is increased in (d) after evaluating the third feature pair and since ¢ is
larger than the upper bound of the fourth feature pair, candidate validation can
terminate and return the top ranking pairs.

2.3.4 Search Space Traversal The optimizations discussed so far check fewer
than n objects for each feature pair and reduce the number of feature pairs for full
evaluation. Our TRAVERSAL module aims to reduce the number of feature pairs
considered from m? to a smaller number. Instead of examining each feature pair, we
only examine a limited number of feature pairs, but in an optimized traversal order.
The number of examined feature pairs, y, determines a trade-off between efficiency and
accuracy. Fewer feature pairs checked will result in faster running times, though at the
cost of accuracy to the top-k. The order of the feature pairs must be determined
carefully and we propose two alternative orderings based on the ranking of single
features by their separability scores 6; ;. The first traversal order, called horizontal
traversal, prioritizes feature pairs that have at least one high ranking single feature in
the considered feature pair. The second order, called wvertical traversal, prioritizes
feature pairs where both features have high single feature scores rankings. See
Supplementary Figure C.2 for more details and an example.
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3 Results

In this section, we illustrate that GENVISAGE rapidly identifies meaningful, significant,
and interesting separating feature pairs in real biological datasets. First, we describe the
datasets and the algorithms used in our evaluation. Each algorithm that we evaluate

represents a combination of optimization modules for ranking top-k feature pairs using

our Rocchio-based measure—we report the running time and accuracy of the algorithms.

Second, we compare the top-k feature pairs returned by GENVISAGE with the
corresponding top-k single features, and examine their significance and support in
existing publications. Last, we present some sample visualizations to illustrate the
separability of the object classes.

3.1 Evaluation Setup

Fl=m [ [O=N | S| | x_| #0fO [ ave(0:]) | ave(O-])
MSicDB | 19,912 22,209 | 400 | 107 10 295 21,914
LINCS 22,268 | 98,061 | 400 | 107 40 165 97,897
Table 1. Dataset Statistics. For each dataset, the number of features m, objects IV,
sample size |S| used by SAMPLING module, feature pairs x examined by TRAVERSAL
module, number of object sets: # of O, average positive set size: avg(|OL|), and
average negative set size: avg(|O_|).

Datasets. We consider datasets from two biological applications (see Table 1): (a) in
MS1cDB, we find gene annotations such as pathways and biological processes that
separate the differentially expressed genes from the undisturbed genes in specific cancer
studies; (b) in LINCS, we find genes whose expression levels can distinguish
experiments in which specific drug treatments were administered from others.

In MSIGDB, we are given a feature-object matrix with genes as the objects and
gene properties as the features. Rather than being a 0/1 membership indicator matrix,
the values of this feature-object matrix indicate the strength of the relationship between
the gene and the set of genes that have been annotated with the gene property. Matrix
values are calculated using random walks [24] on a heterogeneous network built from
prior knowledge found in gene annotation and protein homology databases (see
Supplementary Note A.3 for more details). The positive genes for each dataset in
MSIGDB are the set of differentially expressed genes (DEGs) in a specific cancer study
downloaded from the Molecular Signatures Database (MSigDB) [25]. Each of our tests
is an application of GENVISAGE to such a dataset, reporting pairs of properties that
separate DEGs of that cancer study (the “positive” set) from all other genes (the
“negative” set).

In LINCS, the feature-object matrix contains expression values for different genes
(features) across many drug treatment experiments (objects) conducted on the MCF7
cell line by the LINCS L1000 project [26]. The values of the matrix are gene expression
values as reported by the “level-4’ imputed z-scores measured in the L1000 project. In
each dataset, the positive object set includes multiple experiments that used the same
drug, at varying dosages and for varying durations. We applied GENVISAGE on each
dataset so as to find the top pairs of genes (feature pairs) whose expression values
separate the LINCS experiments relating to a single drug from all other LINCS
experiments.

Note that the average number of positive objects in any dataset is far fewer than the
average number of negative objects. To address this imbalance, we adjust 05]» to a

: Ll 4k [O_| ¢,k
weighted sum form: 6; ; = Zokeo_ 07 + oot - Zoke(’)Jr 0",

Algorithms. We evaluated six combinations of our optimization modules from
Section 2.3, listed in Table 2. For our baseline, we use the algorithm with only the
matrix pre-transformation optimization module (TRANSFORMATION). The rightmost
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EARLY- | SAMP- Candidate | TRAVER; Approx- | Complex-

STOP LING Ordering SAL mation tity
BASELINE no no no Any no O(m*n)
EARLYORDERING | yes no no Any no O(m®n)
SAMPONLY no yes no Any yes O(mn +
(guaran- | m?|S| +

tee) |C|n)
SAMPOPT no yes yes Any yes O(mn +
(guaran- | m?|S| +

tee) IC|n)
HOR1ZSAMPOPT | no yes yes Horizontal yes O(mn +
(heuris- | x|S| +

tic) IC|n)
VERTSAMPOPT | no yes yes Vertical | yes O(mn +
(heuris- | x|S| +

tic) IC|n)

Table 2. Selected Algorithms Using Different Optimization Modules. All algorithms,
including the BASELINE, are using TRANSFORMATION. In addition, EARLYSTOP
and TRAVERSAL are coupled with object ordering and feature ordering by default,
respectively. For each algorithm (row), shows which optimization modules are employed,
whether the algorithm is returning the exact answer or an approximation answer, and
the running time complexity for that combination. The term “guarantee” (“heuristic”,
resp.) indicates that the returned answer is with (without, resp.) stochastic guarantee.
In addition, m and n are the number of features and objects, S is the sampled set size,
X is the limit on the number of feature pairs considered, and C is the number of
generated feature pair candidates.

column of Table 2 shows the varying time complexity of the algorithms. Consider the
HORI1ZSAMPOPT as an example. First, TRANSFORMATION takes O(mn) time.
Then, TRAVERSAL requires a sorting over the feature set, taking O(mlogm) time.
Finally, with SAMPLING over x feature pairs, the running time is reduced from
O(m?n) time to O(x|S| + |C|n) time, where the first and second term represent the
time for candidate generation and candidate validation respectively. Note that |C| is
typically orders of magnitude smaller than y in HOR1ZSAMPOPT, as discussed in
Section 2.3.3. Combinations of modules beyond the six reported were always inferior to
one of the ones shown in the sense that they returned the same top-k feature pairs and
had a longer running time. We implemented the algorithms in C++, and conducted the
evaluations on a machine with 16 CPUs and 61.9 GB of RAM.

3.2 Comparison of Different Algorithms

In this section, we first justify that Rocchio-based measure is a good proxy for the best
possible separating score computed by a brute force method. Then we compare the
performance of the algorithms in terms of the running time and the separability of their
top-1000 feature pairs.

Accuracy of Rocchio-based approximation. As discussed in Section 2.2, when
using brute force, we need to consider O(n?) lines in order to find the best separating
line £* + arg, max{6 ;}, with a time complexity of O(n*m?) when considering all
feature pairs. An alternative is to use Rocchio-based representative separating line L,
dramatically reducing O(n?) lines considered to O(1). Since the brute force method
becomes computationally infeasible for datasets with large n, we compared the
Rocchio-based measure to the brute force-based measure using specially defined small
object sets, O, for the 10 datasets in MS1GDB. For this comparison, the up-regulated
genes in each MS1GDB test was defined as the set of positive objects and the
down-regulated genes as the set of negative objects, resulting in an average number of
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295 objects for each comparison. We call the brute force-based separability score the
true separability score, since it examines all possible separating lines. We first find the
best feature pair using Rocchio-based measure and the brute force based measure
separately (potentially different feature pairs) and then calculate the ratio of the true
separability scores of the Rocchio versus the brute force best feature pairs. We observe
that the Rocchio-based method picks a best feature pair that has true separability score
similar to the best pair picked by brute force, with the ratio of the two scores being
better than 0.94 in all ten datasets (Supplementary Figure C.3 (a)). Second, for the
best feature pairs identified by Rocchio-based method for the ten datasets, we calculate
the ratio of the Rocchio-based separability score and the brute force-based separability
score, and find the difference to be greater than 0.96 on average (Supplementary
Figure C.3 (b)).

Running Time. Figure 5 depicts the running times of our different selected algorithms.

Each plotted box corresponds to one algorithm, representing the distribution of running

times for finding the top-k feature pairs (by Rocchio score) for all datasets.
10°
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Fig 5. Running Time Comparison. A boxplot for each algorithm is shown with the

median value appearing in matching color above. For each boxplot, whiskers are set to
be 1.5x the interquartile range, the outliers are shows as red dots, and the average is
marked with as a black star. The number on the top shows the median running time for
each algorithm.

First, let us compare the median running times among different algorithms. For
MSie¢DB, the BASELINE takes more than 2 hours, EARLYORDERING takes less than 1
hour, SAMPONLY and SAMPOPT take around 6 and 5 minutes respectively, while
Hor1zSAMPOPT and VERTSAMPOPT both take only 1 minute on average. Overall, the
optimizations result in a reduction of the running time by over 180x. We next examine
the effect of different modules on the running time. (¢) EARLYSTOP: we observe that
the EARLYSTOP module helps achieve a 2x speed up, with the average number of
checked objects (genes) reduced from 20K to 5K (Supplementary Table B.2); (b)
SAMPLING: the SAMPLING module helps reduce the running time dramatically, with
20x reduction from BASELINE to SAMPOPT, since on average only 2M candidates are
generated from all possible 200M feature pairs (Supplementary Table B.2); (¢)
TRAVERSAL: the modules HORIZSAMPOPT and VERTSAMPOPT achieve an additional
6x speed-up compared to SAMPOPT by terminating after only considering y = 107
feature pairs, approximately % of all possible feature pairs. This speedup of
Hor1zSAMPOPT and VERTSAMPOPT is approaching the limit set by the feature
ordering overhead (around 6s) and the time for the TRANSFORMATION module
(around 8s) (Supplementary Table B.2). The improvement over SAMPOPT is not
stronger since the candidate generation phase of SAMPOPT is able to remove a vast
amount of the feature pairs from full evaluation that would also be ignored by
Hori1zSAMPOPT and VERTSAMPOPT (Supplementary Table B.2).

Next, consider the log-scale interquartile range (IQR) of the running times for the
different selected algorithms (Figure 5). We observe that EARLYORDERING has the
largest interquartile range, indicating that the EARLYSTOP module, which tries to
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reduce the number of objects evaluated for each feature pair, is very dependent on the
object set and feature values. As we discussed in Section 2.3.2, EARLYSTOP has no
guarantee on improving the running time. In fact, the algorithm can occasionally be
worse than the BASELINE as shown in Figure 5(b) because EARLYSTOP incurs
additional overhead for checking the criteria for pruning and early termination when
scanning the object list for each feature pair. Similar results for LINCS are shown in
Figure 5(b) (see Supplementary Note A.4).

Separability Quality. In Supplementary Figure C.3 (a), we found the the accuracy of
the baseline method which computes the Rocchio-based estimate of top-k features to be
high. The EARLYSTOP module is deterministic and produces the same top-k feature
pairs as the baseline method only with optimized computation. The SAMPLING
module, on the other hand, is stochastic and can only provide an approximation of the
top-k feature pair ranking. Finally, the TRAVERSAL module is heuristic and may
output top-k feature pairs that are very different from the ranking produced by the
BASELINE algorithm. and since BASELINE returns the true Rocchio-based separability
score of each feature pair, we measured the quality of each selected algorithm by
counting the number of common feature pairs returned in the top-100 between the

BASELINE and the given algorithm. Figure 6 shows this separability quality comparison.
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Fig 6. Separability Quality Comparison. Boxplots in the style of Figure 5 comparing
the number of feature pairs each method returned from the 100 best feature pairs of the

Baseline.
Let us first focus on MS1aDB. EARLYORDERING, as expected, has exactly the same

separability quality as the BASELINE. We also observe that the SAMPONLY and
SAMPOPT rankings are nearly identical to the top-100 feature pairs of the BASELINE,
owing to the probabilistic guarantee described in Supplementary Note A.2. The
Hor1zSAMPOPT and VERTSAMPOPT algorithms output a median of 92 and 48 feature
pairs in common with BASELINE, respectively, because of the heuristic TRAVERSAL
module. In the MSIGDB results, HORIZSAMPOPT performs much better than
VERTSAMPOPT, with the median much higher and the interquartile range much
narrower, as shown in Figure 6(a). This suggests, as we hypothesized, that interesting
separating feature pairs exist outside of only the combinations of the top single features
as in VERTSAMPOPT. We repeated this quality analysis for LINCS and found that the
SAMPLING based algorithms returned identical top-100 feature pairs for all 40
datasets. The quality of the TRAVERSAL based algorithms was again lower, though
the performance separation of the HORIZSAMPOPT and the VERTSAMPOPT algorithms
was not as large as for MS1GDB.

Takeaways. If the accuracy is paramount, SAMPOPT is recommended; if the running
time is paramount to the user, HORIZSAMPOPT is recommended.

3.3 Feature Pair vs. Single Feature.

In this section, we quantify the statistical significance of the top ranking results of the
selected algorithms. We show that we often find separating feature pairs that are more
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significant than the best single separating feature. To assess the significance of a
separating feature or feature pair, we first calculate the p-value using the one-sided
Fisher’s exact test on a 2 x 2 contingency table. This contingency table is constructed
with the rows being the true positive and negative labels, the columns being the
predicted positive and negative labels, and the values being the number of objects that
belong to each table cell. Using the Fisher’s exact test p-value, we assert that feature
pairs can provide a better separability compared to single features, i.e., (a) feature pairs
have stronger p-values compared to the corresponding individual features even after
appropriate multiple hypothesis correction and (b) there exist high-ranked pairs of
features that are poorly-ranked on their own as single features.

Single Feature. Finding top-k single features is a special case of finding feature pairs
by setting ¢ = j. For each single feature obtained, we compute the p-value with Fisher’s
exact test, denoted as pval. Next, we define the Bonferroni corrected p-value as
corrected_pval = pval X m X n, since there are m X n possible hypotheses, one for each
possible single feature and separating line. We say a selected feature is significant if the
corrected p-value is smaller than the threshold 1075, i.e., — log,,(corrected_pval) > 5.
In Figure 7, we plot the distribution of the corrected p-value of the top-100 features
reported for each dataset in MSIGDB and LINCS. We observe that 10 out of 10
datasets in MSIGDB and 32 out of 40 datasets in LINCS have at least one significant
single feature, and will focus on these datasets for further analysis. We observe very
small p-values, < 107°°, in the left part of Figure 7(a) and 7(b), indicating that single
features are sufficient to separate the object classes for several datasets well.

|
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(a) MSIGDB (b) LINCS

Fig 7. Single Feature Bonferroni Corrected P-value Distribution vs. Feature Pairs’
Corrected P-value Distribution. For each test (x-axis), shows the significance
(—log;(corrected_pval)) of the top-100 best single features (grey dots) and feature
pairs (blue dots) for the (a) MS1GDB and (b) LINCS datasets. We order the datasets
by their best corrected single feature p-value, and discard the datasets where no single
feature has corrected p-value better than 107°.

Feature Pair. We next build the contingency tables and calculate the p-value for the
top-k feature pairs. To correct for m? possible feature pairs and the n? possible ways to
choose the separating lines for each feature pair, we apply a Bonferroni p-value
correction to produce the corrected_pval = pval x m? x n?. We plot the distribution of
the corrected p-values for the top-k feature pairs in Figure 7. Once again, the threshold
for defining a significant feature pair is set to 1075. We find that 10 out of 10 datasets
in MS1¢DB and 27 out of selected 32 datasets in LINCS have at least one significant
feature pair by this metric. Visual comparison of the top-100 single features to the
top-100 feature pairs (Figure 7) per dataset reveals several datasets where the corrected
p-values of the feature pairs are more significant than those of the best single features,
even after accounting for the larger search space. Admittedly, this is not always the
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case, e.g., for five LINCS datasets no feature pair was found to be significant at
corrected_pval < 10~° while at least one single feature did meet this threshold. Overall,
this analysis suggests that rapid discovery of top feature pairs may identify more
significant patterns in the given dataset than a traditional single-feature analysis does.
In the following, we further illustrate that feature pairs can also provide better and
newer insights compared to single features.

Improvement from Single Feature to Feature Pair. Having computed the
corrected p-value for each single feature and feature pair in the top-100 for our datasets,
we now examine the improvement of each feature pair from its two corresponding single
features in terms of p-value. For each feature pair (f;, f;), we define the improvement

quotient as the ratio between the corrected p-value of (f;, f;) and the better one of the

] . . _ corrected_pval(fi,f;)
corrected p-value of f; or f;, i.e., improv_quot = min(correctedpual(f;) correctedpoal(F;))

We examined only the improv_quot for the top-20 feature pairs for each of the 10 runs
in MS1GDB and 32 runs in LINCS. We found that on average across these datasets, 9.3
of the top-20 feature pairs in MSIGDB and 8 of the top-20 feature pairs in LINCS are
more significant than their corresponding single features (— log,, (improv_quot) > 5).
The distribution of the improv_quot is plotted in Supplementary Figure C.4. Overall,
these histograms show that there is a improvement from single features to some feature
pairs in terms of the separability significance. Next, we will explore the improved

feature pairs more carefully, commenting on their redundancy, reliability, and relevance.

New Insights from Feature Pairs. In order to assess the quality of the top ranking
feature pairs, we focused on the LINCS data set where the objects are experimental
treatments on the MCF7 breast cancer cell line with the same drug and the features are
expression values for different genes. For the evaluations above, we used object sets for
the 40 drugs with the largest number of LINCS experiments. For the following analysis,
we refine our list to those that are common drugs and have at least 60 LINCS
experiments on the MCF7 cell line. These nine drugs are vorinostat, trichostatin,
estradiol, tamoxifen, doxorubicin, gemcitabine, daunorubicin, idarubicin, and
pravastatin. For each chosen drug, we ran the SAMPOPT algorithm of GENVISAGE to
rank the top-1000 feature (gene) pairs for separating the LINCS experiments of the
drug from all other MCF7 experiments.

For all drugs, except pravastatin, all of the top-1000 ranked feature pairs were found
to be significant, i.e. —log;,(corrected_pval) > 5 (see Table 3). As described in the
Section 3.3, we are especially interested in feature pairs whose corrected p-value is
better than the corrected p-values of their corresponding single features
(—logy (improv_quot) > 0). We found 1070 “improved” feature pairs with larger
separability over their single feature among the top1000 of these evaluation drug sets.
One drug, trichostatin, had especially strong single features and showed no feature pairs
that significantly improved on them. The remaining seven drugs, however, benefited
from the feature pair analysis yielding between 9 (tamoxifen) and 369 (doxorubicin)
improved feature pairs (Table 3).

Many of the above-mentioned 1070 significantly improved feature pairs are partially
redundant, in the sense that they comprise a common best-ranked single feature (gene).
An example of this is with the object set for the drug (small molecule) estradiol. We
found the gene PRSS23 as the single feature with the highest separability and many
feature pairs containing PRSS23 and a second gene as having an improved corrected
p-value, for example (PRSS23, RAP1GAP), (PRSS23, TSC22D3), and (PRSS23,
BAMBI). We looked for evidence of the relationship between the drug estradiol and
these feature pair genes in the Comparative Toxicogenomics Database (CTD) [27] and
with our own literature survey. From this search, we found evidence for the pronounced
effect of estradiol in increasing expression levels of PRSS23 [28], RAP1GAP [29], and
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Drug NumExprs | Avg Signif | Top1000 Signif | Top1000 Improved
vorinostat 904 235.5 1000 287
trichostatin 689 277.1 1000 0
estradiol 325 166.8 1000 203
tamoxifen 122 105.8 1000 9
doxorubicin 104 28.0 1000 369
gemcitabine 97 52.5 1000 116
daunorubicin 91 40.9 1000 28
idarubicin 78 30.1 1000 58
pravastatin 61 -7.5 0 0
Grand Total 43.1 9068 1070

Table 3. For each chosen drug from LINCS, the number of experiments in MCF7 cell line that were
performed with that drug (NumExprs), and statistics for the top1000 feature pairs for that drug including
the average — log,((corrected_pval) (Avg Signif), number of feature pairs with —log,(corrected_pval) > 5
(Top1000 Signif), and number with — log,,(improv_quot) > 0 (Topl000 Improved).

BAMBI [30], and decreasing expression of TSC22D3 [31]. So although the top single
feature (gene PRSS23) reoccurred in multiple top feature pairs, each secondary feature
gene was also meaningfully related to the administered drug in this case.

We next examined the 1070 improved feature pairs, found over the 9 LINCS
datasets, to determine their consistency with existing biological knowledge bases (see
Supplementary Note A.5 for details). The interaction networks from these sources
covered 23,167 genes and had at least one known interaction between 2.17% of all
possible gene pairs. Of the 996 unique feature pairs with significant improv_quot where
both genes mapped onto the genes covered by the interaction networks, 133 gene pairs
(13.4%) were found to have at least one known interaction. This six-fold enrichment
demonstrates that GENVISAGE more often finds pairs of genes that have a known
relationship than is expected by chance. One example is (GLRX, NMET) that is
especially good for separating vorinostat experiments from all others. Not only are both
of these genes known to have increased mRNA expression in response to
vorinostat [32], [33], but the two genes are annotated by STRING to both be in
database pathways of nucleotide biosynthesis, co-express with each other in other model
organisms, and mentioned together often in literature abstracts. Later, in Section 3.4,
we will demonstrate that the positive objects and negative objects are visually
separated under this feature pair, as in Figure 8.

In Supplementary Table B.3, we examine several of the “improved” feature gene
pairs reported by GENVISAGE analysis for the LINCS nine drug datasets. Of
thirty-nine feature pairs in this table, twelve of them have three types of accompanying
evidence: 1) a literature-based relationship between the drug and the first gene, 2) a
literature-based relationship between the drug and the second gene, and 3) an
interaction network relationship between the pair of genes. Six have two of the three
types of evidence and there are only three with no evidence at all. Particularly
interesting are the top improved feature pairs in which neither of the single gene
features ranked well alone. An example is the gene pair CDKN1A and CEBPB for
separating doxorubicin experiments from others. Either gene feature alone is not within
the top 600 genes for separating doxorubicin experiments from others. However, the
combination of the pair is significant at a corrected p-value of 2 x 1072% and is the
second most improved feature pair for doxorubicin. This feature pair also has all three
types of accompanying evidence; doxorubicin is known to increase expression of
CDKN1A and CEBPB [34], and the pair of genes are annotated in STRING to have
evidence for co-expression and text mining relationships. This feature pair can be used
to form an interesting hypothesis for further analysis or experiment. The potential for
finding more significant and previously unidentified features is why GENVISAGE is
designed to recover top ranking feature pairs instead of just single features.
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3.4 Owutput Visualizations

As discussed in Section 1, the output of GENVISAGE is not simply a ranking of the top
feature pairs with their scores, but also a visualization that helps users to interpret the
separability. In Figure 8, we depict sample output visualizations from the MS1GDB and
LINCS runs. For MSIGDB, we select the feature pair with the highest improved
p-value, i.e., improv_quot, using the SAMPOPT algorithm. For our LINCS
representative, we visualize the gene feature pair (GLRX, NMET) for the drug vorinostat
as described in the previous section. For the MSIGDB example (Figure 8(a)), we
observe that the feature values for negative objects are clustered around zero, while the
genes differentially expressed in papillary thyroid carcinomas from this MSIGDB study
have larger values overall, indicating stronger connections to the two Gene Ontology
terms features, cell adhesion and response to reactive oxygen species. This is consistent
with studies that have highlighted the over expression of important cell adhesion genes
in thyroid cancer [35]. For the LINCS example (Figure 8(b)), positive objects mostly
have elevated expression for the two reported genes (GLRX and NMET7) compared to
the negative objects. The direction of this differential gene expression for both genes is
consistent with literature for vorinostat experiments [32], [33]. These above two
examples illustrate how visualization of significant feature pairs can be a useful way to
explain the separability of object sets and understand the data.

Delys_Thyrmd_Cancer vorinostat
18.73 W 374
17.74 3.46
16.76 3.19
15.77.9 2.91
14.79% 2.64
138 2 2.36
12.825 2.08
11.83® 1.81
10.85= 1.53 I~
9.86 9 2 126 W
8.88 T 0.98 =
7.89 071 =
6.91 ~ 0.43
5.93 O 0.16
4.94 8 ° -0.12
) 3.96 2 -0.4
297 Q -0.67
1.99 O -0.95
o 1 -1.22
| 0.02 -1.5
ANN—TO—O0—AO—=NONONONDS DT MONOVONINOOMOAININOAIT NN
COUMOVANOINNONHOTHNMOOM LomMANOUNFARTOONOINHOTOOM
SOHHNMMININONNGRRS HHC OO HNNMYTHNONNBRag
G0:0000302-response
to reactive oxygen species GLRX
(a) MS1IGDB (b) LINCS

Fig 8. Visualization Output of GENVISAGE. Heatmap visualization with the pair of
top features providing the x and y axes and the name of the run providing the plot title.
The relative density of objects determines the color of the heatmap cells with blue
indicating a greater proportion of positive objects and red indicating a greater
proportion of negative objects. The class centroids are represented by blue (positive

class) and red circles (negative class). The two examples shown are representatives from
MS1GDB and LINCS datasets.

4 Discussion

The GENVISAGE algorithm with its optimization modules enables researchers to
visualize and explore the interplay between important pairs of genomic features rapidly,
rather than relying on slow machine learning feature extraction methods or only
examining the simple list of top single features. The optimization modules led to a two
orders of magnitude speed up in the task of returning the top feature pairs for
separating the biological classes in our two benchmark datasets, MSIGDB and LINCS.
The quality of these top feature pairs was confirmed by their agreement with literature
and interaction databases, and the features are easily understood with intuitive heatmap
visualizations. GENVISAGE relies on the Rocchio-based separability measure, which
well approximates the best possible linear separator quickly and enables optimizations

January 30, 2020

16/24

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587


https://doi.org/10.1101/2020.02.05.935411
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.05.935411; this version posted February 5, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

like TRANSFORMATION that can pre-compute important quantities from the
feature-object matrix before the positive and negative object sets are even provided.
One potential downside of the Rocchio-based measure is that because of its dependency
on linearity, feature pairs with distinct object class distributions that form complex,
non-convex, non-isotropic patterns are potentially very interesting, but will not be
well-ranked by GENVISAGE. Finally, in GENVISAGE, the optional SAMPLING
module and TRAVERSAL modules make stochastic or greedy decisions in order to
estimate the quality of and prune the potential candidate feature pairs for evaluation.
While this greatly benefits the amount of time required to find the top ranking pairs, it
has the potential to do so at the cost of ranking accuracy. Overall, we observed that for
our settings, the sacrifice in accuracy was slight for the SAMPOPT feature pair rankings
and more substantial when using the HOR1ZSAMPOPT and VERTSAMPOPT rankings
with the greedy candidate traversal. However, users of GENVISAGE are able to
optimize the trade-off with performance and accuracy by modifying the sample size, |S],
used by the SAMPLING module or the number of candidate feature pairs examined, Y,
by TRAVERSAL module depending on the needs of their research and dataset.
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Appendix A Supplementary Notes
A.1 Pre-Transformation Module

Let us review the process of computing the separability 6; ;. Given a feature pair (f;, f;)
and the corresponding positive and negative centroids, (i) we first compute wy, w; and
w; for L. Next, for each object oy, (%) we obtain the predicted label n£ ;-k according to
Equation 1. This step requires two multiplications and three additions. Finally, (iii) we
calculate 0F ; and the separability 6; ; based on formulations in Section 2.2. This whole
process is repeated for every feature pair candidate. However, there is massive
redundancy across the processing of different feature pairs. For instance, when
calculating the separability for two different feature pairs (f;, f;) and (f;, f;7) with a
common f;, w; is in fact shared, and calculation of w; - M, ;, in Equation 1 is repeated
for each object oy.

Given this, we propose the TRANSFORMATION optimization module which will
pre-calculate some common computational components once across different features
and reuse these components the separability for each feature pair to eliminate the
repeated computation. This TRANSFORMATION module transforms the original M; j
matrix into another space using our identified common feature pair components and
updates the separability score equation accordingly.

For each feature f;, we find the average values of the positive and negative objects
for that feature, M;" and M; respectively, and then we pre-transform M, j, i.e., the

value of object oy, on the feature ¢, to M, =

+ —_
(MF = M7) - My = CESOREY

& The basic idea is to decompose Equation 1
into two components, with each one only related to a single feature. This
transformation incorporates the class centroids into the matrix values, obviating their
integration later for every feature pair that involves the given feature. We also
multiplies in the class label of the object, I, rather than repeating this multiplication
every time the object is evaluated (see example in Supplementary Figure C.1). With
this transformation of the feature-object matrix, evaluating whether an object was
correctly separated is simplified as: if sign(M;  + M, ) =1, then Gf)j = 1; otherwise,
Ol’f ; = 0. Note that this step only involves one addition and one comparison and is
performed only once for each feature. Next, we can calculate overall separability score
0 => 9§ ;- Overall, we not only eliminate the steps of computing wo, w; and w; for
every feature pair, but also reduce the cost of calculating nﬁ ; in Equation 1. With the

TRANSFORMATION module, we calculate Mas a pre-transformation step, and use it
when evaluating feature pairs instead of M and calculate 6; ; accordingly.

A.2 Estimation Accuracy in SAMPLING Module

We have proposed SAMPLING for estimating ¢; ; in Section 2.3.3. Next, we formally
quantize the sample set size in Theorem 1.

Theorem 1 (Estimation Accuracy). By considering Q% -log(%)) samples, with

0i4(S) _ iy : ]
|19| — | <, e, |05 5 — 0; 5] < en.

probability at least 1 — §, we have

We can treat log(1/§) as a constant, e.g., by setting § = 0.05. Thus, Theorem 1
essentially states that with only Q(}z) samples, with probability 95%, the confidence

interval for 6; ; is [6;; — en, 0; j + en).
A.3 Construction of MSiIGDB Feature-Object Matrix

To construct the feature-object matrix for MSIGDB, which has gene objects and gene
property features, we collected prior knowledge about gene annotations and protein
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homology from several databases. Our gene annotations and gene properties were
extracted from Gene Ontology terms [36], PFam domains [37], and Reactome [38] and
KEGG [39] pathways. We constructed a heterogeneous network with nodes for all
22,210 genes and 21,235 properties from these databases and with edges representing
their annotations between genes and properties. We also created weighted
homology-based edges in the network between pairs of genes based on their protein
sequence similarity as determined by BLAST scores [40]. We used the first phase of the
DRaWR algorithm [24] with a restart probability of 0.5 to perform a random walk
restarting from each gene node on the heterogeneous network, thereby scoring the
connectivity of all nodes in the network to the gene. For each gene-property pair (g, r),
we assigned the numeric value from the random walk stationary probability distribution
that represents not only whether the gene is annotated with that property, but also
whether other genes closely related to gene g are annotated with property r. We thus
obtained a feature-object matrix describing each gene (object) as a vector of its strength
of association with each property (feature) in light of prior biological knowledge.

A.4 Speedup Analysis for LINCS

In Figure 5(b), we observe over 400x average decrease in the running time of finding
the top-k feature pairs that separate the LINCS experiments of a single perturbagen
from others. The greatest speedup comes with adding the SAMPLING module, where
only 100K feature pair candidates, i.e., |C|, are checked out of all 250M feature pairs
(Supplementary Table B.2). For the selected algorithms with best running times,
Hor1zSAMPOPT and VERTSAMPOPT, the pre-transformation and feature ordering
overhead account for an average of 45 + 35 = 80s of the overall 104 and 94 median
seconds respectively.

A.5 Gene Interaction Datasets

For our knowledge bases of protein and gene interactions, we downloaded datasets
derived from 8 data sources: STRING [41], Reactome [42], Pathway Commons [43],
HumanNet [44], BioGRID [45], Intact [46], DIP [47], and BLAST [40] databases. The
datasets were downloaded, harmonized, and mapped to Ensembl gene identifiers using
the KnowEnG Knowledge Network Builder
https://github.com/KnowEnG/KN_Builder. The final processed network used in this
work can be downloaded from
https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md#gene.

Appendix B Supplementary Tables
B.1 GENVISAGE Method Notation

Notation used in this paper.

l Symb. [ Description [ Symb. [ Description ‘

M feature-object matrix F feature set in M

fi feature 7 in F m number of features in F

o object set in M N number of objects in O

o4 positive object set o_ negative object set

@ labelled object set n number of labelled objects in O
Ok object k£ in O I label of object o

4 separating line in 2-D L representative line in 2-D
nf]k predicted label of o Off o, is correctly separated?
nyj # correctly separated ox 0;,; separability score

M M after transformation 0; ; estimated 0; ;
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B.2 Running Time Detailed Comparison

For each dataset collection, MSigDB and LINCS, show two statistics FPsChecked and
ObjectsChecked, for each optimization module phase (columns). FPsChecked is the
number of feature pairs evaluated in the phase, and ObjectsChecked is the average
number of sample objects that are evaluated across all feature pairs.

B.3 In-depth Analysis of ’Improved’ Feature Pairs

For each drug dataset (col C), we return a limited number of gene feature pairs (cols
E,F) that after correction were the most ”improved” over their corresponding single
feature results either by the change in the corrected_pvalue (cols H,I,J,N,O) or the
change in the feature rankings (cols K,L,M,P). Pubmed IDs (cols Q,R) are provided
when the relationship between the drug and the gene feature were found in the
Comparative Toxicogenomics Database (CTD) or by manual literature search (denoted
by *-asterisk). When relationships between the gene features themselves were
discovered, the type and strength of the relationships were reported (col S) and the
number of relationships quantified (col T).

Appendix C Supplementary Figures
C.1 Example for TRANSFORMATION Module

The TRANSFORMATION module is applied once to the original values in the
feature-object matrix M (above) to produce M (below). For two features, f; and f;.
The top half depicts M; , and M, before transformation, where green color represents
a positive label and red color represents a negative label. In this example, the centroids
of the positive and negative objects are ,u:j = (5,7) and p; ; = (3,5) respectively.
Hence, we can rewrite /\//\lzk = (2M,; 1, —8) -l and ./\//\lj,k = (2M, 1, — 12) - I}, for features
fi and f; respectively. After calculation, we can obtain the values for /T/l\zk and M\j’k

shown in the bottom half
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C.2 Illustration for TRAVERSAL Module

We rank individual features based on their single feature separability scores, 6;;, from
best to worst, {f1fa, -+ fin }-

e Horizontal traversal: For each feature f; , pair it with each other feature le-, where
j >, to obtain (f;, f;) Repeat for each f;, where 1 < i < m.

e Vertical traversal: For each feature fj,-7 pair it with each other feature fi’ , where
1 < 7, to obtain (f;,fjl) Repeat for each fjl., where 1 < j < m.

For an example, suppose there are 20,000 features, m = 2 x 10%. Initially, the
2
number of possible feature pairs is roughly 75~ = 2 x 10%. However, if we limit the
number of considered feature pairs to x = 107, we reduce our search space to % of the
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(a) Horizontal Traversal

(b) Vertical Traversal

total number of feature pairs. We order the single features by their individual
separability scores. In horizontal traversal, only feature pairs with at least one
individual feature ranked in the top 500 will be considered; while vertical traversal will
consider only feature pairs with both individual features ranked better than 2000.

C.3 Separability Score Comparison

Comparison of Brute Force-based and Rocchio-based separability score. (a) For each of
10 datasets, we display the ratio of the true separability score between the best feature
pair chosen by brute force and by the Rocchio-based method. (b) For each dataset, we
display the ratio of the true separability score and the Rocchio-based separability score
for the best feature pair selected using Rocchio-based method.
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(a) Best Feature Pair Comparison
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(b) Measure Comparison

C.4 Histogram of improv_quot

Histogram of improv_quot. For the top-20 feature pairs from all runs from the (a)
MSIGDB and (b) LINCS datasets, distribution of the improvement of the feature pair
significance over the corresponding single feature significance. The red line shows the
significance threshold of 5.
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(c) MSIcDB (d) LINCS
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