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Abstract

Motivation. A common but critical task in genomic data analysis is finding features
that separate and thereby help explain differences between two classes of biological
objects, e.g., genes that explain the differences between healthy and diseased patients.
As lower-cost, high-throughput experimental methods greatly increase the number of
samples that are assayed as objects for analysis, computational methods are needed to
quickly provide insights into high-dimensional datasets with tens of thousands of objects
and features.
Results. We develop an interactive exploration tool called GENVISAGE that rapidly
discovers the most discriminative feature pairs that best separate two classes in a
dataset, and displays the corresponding visualizations. Since quickly finding top feature
pairs is computationally challenging, especially when the numbers of objects and
features are large, we propose a suite of optimizations to make GENVISAGE more
responsive and demonstrate that our optimizations lead to a 400X speedup over
competitive baselines for multiple biological data sets. With this speedup,
GENVISAGE enables the exploration of more large-scale datasets and alternate
hypotheses in an interactive and interpretable fashion. We apply GENVISAGE to
uncover pairs of genes whose transcriptomic responses significantly discriminate
treatments of several chemotherapy drugs.
Availability. Free webserver at http://genvisage.knoweng.org:443/ with source
code at https://github.com/KnowEnG/Genvisage

1 Introduction 1

A common approach to discovery in biology is to construct experiments or analyses that 2

directly contrast two specific classes of biological objects. Examples of this include 3

examining patient samples contrasting tumor versus normal tissue [1], studying the 4

differences in molecular effects of two competing drug treatments [2], or characterizing 5

differentially expressed genes versus genes with unaltered gene expression in a carefully 6

designed experiment [3]. To understand the mechanisms that determine these object 7

classes, researchers often employ statistical and machine learning tools to identify a 8

manageable subset of features, e.g. genes, that accentuate, discriminate, or help explain 9
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the differences between classes, i.e., separate the two classes. We therefore refer to this 10

problem as the separability problem. 11

Challenge 1: Explainable Separation with Guarantees. Many tools have been 12

developed in several different biological settings [4–9] that attempt to solve the 13

separability problem by focusing on discovering pairs of features that taken together 14

strongly discriminate the classes. Feature pair methods can provide a better 15

characterization of what distinguishes two object classes by offering insights into the 16

interplay of important features that would not be found using single feature statistical 17

tests [10] or univariate classifiers [11]. Specifically, predictors built with gene feature 18

pairs are more robust to normalization and can achieve better model performance than 19

predictors using single genes as features [5, 6]. On the other hand, methods focused on 20

feature pairs offer the advantage of providing more interpretable or explainable results 21

over more complicated machine learning approaches that return a complex combination 22

of several features to discriminate the classes, such as multivariate regression with 23

LASSO regularization [12] or pattern mining from random forest models [13]. Some 24

existing papers [7, 14–16] employ these more complex machine learning approaches to 25

heuristically return more interpretable feature pairs. However, these heuristic methods 26

do not fully explore the search space nor do they offer a guarantee on the quality of the 27

returned feature pairs. 28

Challenge 2: Scalability in Data Size. A major problem with current methods 29

that address the separability problem with either feature pairs or more complex 30

machine learning models is that they do not scale to the growing size of genomic data 31

sets. As is often the case with genomics, the biological objects being analyzed (e.g., 32

tissue samples or drug experiments) are frequently represented by high dimensional 33

numeric feature vectors (e.g., transcript abundance measurements). Additionally, with 34

the rise of low-cost sequencing, the possible number of biological objects in a dataset is 35

also increasing and likely to grow in orders of magnitude over the next decade [17]. 36

Applying the standard methods to datasets with tens of thousands of objects and 37

features results in massive running times that preclude interactive exploration of the 38

data. For example, exhaustively searching for the optimal feature pairs from the full 39

space of possibilities in a typical genomic analysis resulted in running times over an 40

hour on a 200 node compute cluster in Watkinson et al. [9]. 41

One reason that more complex machine learning and feature pair based methods do 42

not scale well with the number of features and objects is the the selection of the metric 43

for scoring separability. In Watkinson et al. [9], a metric called synergy is proposed for 44

evaluating the utility of feature pairs, aiming to capture both linear and non-linear 45

aspects of the separability of the two class. Consequently, the intrinsic complexity of 46

these metrics makes them difficult to benefit from optimization techniques. Metrics 47

based only on quantifying linear separability, on the other hand, may return a more 48

limited subset of interesting features, but they also may be more intuitive for users to 49

understand and simultaneously enable more performance optimizations and speedups. 50

The linear separability metric has been used in previous studies to identify pairs of 51

genes with expression differences between two cancer types [18] or pairs of motifs that 52

discriminate between different types of genomic sequences [19]. 53

Our Proposal GENVISAGE: A Scalable and Explainable Tool for Addressing 54

Separability. Motivated by these observations, we present GENVISAGE, an 55

interactive data exploration tool designed to address the separability problem and scale 56

to the size of large genomic analysis datasets. With GENVISAGE, we not only achieve 57

high separability quality with our carefully formulated problem; but also enable 58

explanations on separation via intuitive visualization; meanwhile, we are capable to 59

handle large scale datasets efficiently — the best of all three world. Specifically, to 60
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enable this scalability, GENVISAGE focuses on returning the top ranking feature pairs 61

that discriminate the objects of separate classes, rather than returning larger subsets of 62

features using more complex and longer to train machine learning approaches. 63

GENVISAGE is also based around a linear separability metric that provides an intuitive 64

interpretation to feature pairs while enabling and simplifying the design of several 65

important performance optimizations. These optimizations include (a) elimination of 66

repeated computation for different features pairs; (b) pruning poor ranking pairs during 67

early execution; (c) sampling with a quality guarantee to further reduce running time; 68

and (d) cleverly traversing the search space of feature pairs for improved efficiency. 69

We applied GENVISAGE to two large genomic datasets with tens of thousands of 70

objects and high-dimensional feature vectors where it is computationally expensive to 71

score the separability for all possible feature pairs. In one, called LINCS, we find pairs 72

of genes whose expression discriminates between perturbagen experiments involving 73

different drug treatments, and in the other, called MSigDB, we find pairs of 74

annotations (such as pathway membership) that separate differentially expressed cancer 75

genes from other genes. With the carefully designed separability metric of GENVISAGE 76

and its suite of sophisticated optimizations that accelerates evaluation, we are able to 77

accurately return the highest ranking separating feature pairs for both datasets within two 78

minutes on a single machine. This reflects a 180X and 400X speedup over a 79

competitive baseline for the MSigDB and LINCS data sets (respectively). We also 80

show that the feature pairs identified by GENVISAGE often more significantly 81

discriminate between the object classes than the corresponding best ranking individual 82

features, even after accounting for the larger search space. Finally, we performed an 83

in-depth analysis for nine distinct drug treatments in the LINCS dataset and found 84

1070 feature (gene) pairs that had significant separability scores. These gene pairs were 85

enriched in literature support for known relationships between the genes and the drug, 86

as well as known interactions between the genes themselves. 87

Summarized Benefits of Using GENVISAGE. By focusing on separating feature 88

pairs, GENVISAGE offers researchers the ability to gain additional insight into their 89

object classes beyond singular features, without the prolonged duration needed to train 90

a complex machine learning model. By implementing optimizations that take advantage 91

of a linear separability metric, GENVISAGE enables researchers to quickly explore their 92

data, identify the strongest, most compelling features, and from simple visualizations 93

form hypotheses about the interplay between features and with the object classes. The 94

performance of our tool also allows researchers to investigate multiple definitions of the 95

object classes and investigate alternative hypotheses interactively on the fly, as well as 96

build a feature set to later pass to more in-depth, longer running machine 97

learning-based analysis. 98

2 Methods 99

We begin by formally defining the separability problem, introducing our separability 100

metric, and finally detailing optimizations that enable the rapid identification of the 101

best separating feature pairs. 102

2.1 Problem Definition 103

Let M be a feature-object matrix of size m×N , where each row is a feature and each 104

column is an object as shown in Figure 1. One example feature-object matrix is one 105

where each object corresponds to a tissue sample from a cancer patient and each feature 106

corresponds to a gene, where the (i, j)th entry represents the expression level of the ith 107

gene in the jth tissue sample. We denote the m features as F = {f1, f2, · · · , fm} and N 108

objects as O = {o1, o2, · · · , oN}. Each entry Mi,j in M corresponds to the value of 109

feature fi for object oj as illustrated in Figure 1. 110
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Fig 1. GENVISAGE Workflow. Given (left) a feature-object matrix and green positive
and red negative class labels on the objects, GENVISAGE (center) evaluates all pairs of
features using several optimizations to identify (right) the top feature pair and its
corresponding visualization that best separates the object classes.

We are also given two non-overlapping sets of objects, one with a positive label, O+ 111

and the other with a negative label, O−. In our example, tumor samples, O+, may be 112

assigned the positive label, and the healthy tissue samples, O−, the negative label. The 113

number of labeled objects, n, is equal to |Ô| where Ô = O+ ∪ O−. Also, let lk be the 114

label of object ok ∈ Ô, i.e., lk = 1 if ok is positive and lk = −1 if ok is negative. 115

GENVISAGE aims to find feature pairs that best separate the objects in O+ from 116

those in O− using only those features, and then output a visualization that 117

demonstrates the separability (see Figure 1). (We will define the metric for separability 118

subsequently.) A feature pair that leads to a good “visual” separation between the 119

positive and the negative sets may be able to explain or characterize their differences 120

via a interesting, non-trivial relationship among the features. The overall workflow is 121

depicted in Figure 1. We now formally define the separability problem. 122

Problem 1 (Separability). Given a feature-object matrixM and two labeled object sets 123

(O+,O−), identify the top-k feature pairs (fi, fj) that separate O+ from O− based on a 124

given separability metric. 125

We will describe our separability metric in Section 2.2, and then discuss optimization 126

techniques in Section 2.3. The notation used in the description of the method is 127

summarized in Supplementary Table B.1. 128

2.2 Separability Metric 129

Given a feature pair (fi, fj) as axes, we can visualize the object sets O+ and O− in a 130

2-D space, where each object corresponds to a point with x-value and y-value as the 131

object’s value on feature fi and fj respectively. A desirable (i.e., both interesting and 132

interpretable) visualization would be one in which the objects are linearly separated, 133

defined as follows. Two sets of objects, i.e., O+ and O−, are said to be linearly 134

separable [20] if there exists at least one straight line such that O+ and O− are on 135

opposite side of it. We focus on metrics that capture this linear separation, since it 136

corresponds to an intuitive 2-D visualization. Given a feature pair (fi, fj) and a line `, 137

we can predict the label of an object ok, denoted as η`,ki,j , using Equation 1 below, where 138

w0, wi and wj are coefficients of ` and wj > 0: 139

Predicted Label : η`,ki,j = sign(wi · Mi,k + wj · Mj,k + w0) (1)

If ok lies above the line `, i.e., ok has higher value on y-axis than the point on line ` 140

with the same value on x-axis as ok, then η`,ki,j = 1; otherwise, η`,ki,j = −1. Let θ`,ki,j be the 141

indicator variable denoting whether the sign of the predicted label matches the real 142

label lk: if η`,ki,j · lk = 1, then θ`,ki,j = 1; otherwise, θ`,ki,j = 0. 143

GENVISAGE’s separability metric captures how well the objects in the feature pair’s 144

2-D visualization can be linearly separated, formally defined next. Given a feature pair 145
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(b) Rocchio-Based

Fig 2. Calculating Separability Score θi,j . The scored separating line can be defined
using (a) brute force (few sample lines are shown) or (b) the representative line from a
Rocchio-based measure based on the object class centroids (white circles).

(fi, fj) and a line `, the separability score of the line (denoted θ`i,j) is defined as the sum 146

of the indicators (θ`,ki,j ) for all objects: θ`i,j =
∑
k θ

`,k
i,j . Figure 2(a) shows separability 147

scores θ`i,j for different separating lines. For example, the separating line with θ`i,j = 12 148

correctly separates six green points and six red points. The final separability score for a 149

feature pair (fi, fj) (denoted as θi,j) is defined as the best separability score θ`i,j among 150

all possible lines `. Accordingly, we define the overall separability error of the feature 151

pair as erri,j = n− θi,j . 152

Brute Force Calculation of θi,j. As suggested in Figure 2(a), the simplest way to 153

calculate θi,j is to first enumerate all possible separating lines ` and calculate θ`i,j for 154

each of them. We can easily trim down the search space to O(n2) lines by linking the 155

points corresponding to every two objects in the 2-D plane. This is because the results 156

of all other possible lines can be covered by these O(n2) lines [21]. Nevertheless, it is 157

still very time-consuming to consider O(n2) lines for each feature pair (fi, fj). 158

Rocchio-based Measure. We can speed up the process by selecting a single 159

representative line L providing us with an estimate of the true separability score θi,j . In 160

order to achieve a fast and reliable estimate, we select our representative line based on 161

Rocchio’s algorithm [22]. Let us denote the centroids of positive objects O+ and 162

negative objects O− for a given (fi, fj) as µ+
i,j = (M+

i ,M
+
j ) and µ−i,j = (M−i ,M

−
j ) 163

respectively, where M+
i and M+

j are the values of the centroids of the positive objects 164

on feature fi and fj , and M−i and M−j are the values of the centroids of the negative 165

objects on feature fi and fj . The perpendicular bisector of the line joining the two 166

centroids is selected as the representative separating line L (see Figure 2(b)), with its 167

coefficients corresponding to Equation 1 defined as wi =M+
i −M

−
i , wj =M+

j −M
−
j , 168

and w0 = −( (M
+
i )2−(M−i )2

2
+

(M+
j )2−(M−j )2

2
). 169

Brute-force vs. Rocchio-based. Compared to the brute force calculation, the 170

Rocchio-based measure is much more light-weight, but at the cost of accuracy in 171

calculating θi,j . Intuitively, the representative line is a reasonable proxy to the best 172

separating line since the Rocchio-based measure assigns each object to its nearest 173

centroid. We further empirically demonstrate that θLi,j is a good proxy for θi,j in 174

Section 3.2. Thus, we will focus on the Rocchio-based measure subsequently, removing 175

L (or `) from the superscripts where it appears, and using θi,j and θLi,j interchangeably. 176
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2.3 Proposed Suite of Optimizations 177

In this section, we first analyze the time complexity of identifying the top-k feature 178

pairs using the Rocchio-based measure, and then propose several optimization 179

techniques to reduce the complexity. 180

Time Complexity Analysis. For a given feature pair (fi, fj), if we have already 181

calculated the class centroids for each feature, the separating line L can be calculated in 182

O(1). We can then calculate the number of correctly separated objects θi,j via O(n) 183

evaluations. Since there are O(m2) feature pair candidates, the total time complexity is 184

O(m2n), which can be very large, since m and n are typically large. 185

Optimizations: Overview. To reduce the time complexity, we introduce two 186

categories of optimizations: those that reduce the amount of time for fully evaluating a 187

given feature pair (Section 2.3.1, 2.3.2) and those that reduce the number of feature 188

pairs that require full evaluation (Section 2.3.3, 2.3.4). In the following, we refer to 189

these optimizations as modules to indicate that they can be used in any 190

combination—however, in reality, careful engineering is necessary to “stitch” these 191

modules together to multiply the effects of the optimizations. 192

TRANSFORMATION module (Section 2.3.1) reduces redundant calculations across 193

feature pairs by mapping the feature-object matrix M into a new space that enables 194

faster evaluation of object labeling. EARLYSTOP module (Section 2.3.2) takes 195

advantage of the fact that evaluation of a poorly separating feature pair can be 196

terminated early without having to evaluate the separability of all n objects. 197

SAMPLING module (Section 2.3.3) first identifies likely top-k feature pair candidates 198

by evaluating their separability on a sampled subset of all objects, and then conducts 199

full evaluations only on these feature pair candidates. Finally, TRAVERSAL module 200

(Section 2.3.4) reduces the number of feature pairs checked by greedily choosing feature 201

pairs based on the separability of the corresponding single features. These optimization 202

modules can be used on their own or combined with each other. In Section 3, we will 203

show how these optimizations modules greatly reduce the running time of finding the 204

top-k separating feature pairs without significantly affecting the accuracy. 205

2.3.1 Pre-Transformation for Faster Feature Pair Evaluation We observe 206

that there is massive redundancy across θi,j ’s computation of different feature pairs. 207

Motivated by this, we propose the TRANSFORMATION optimization module which 208

will pre-calculate some common computational components once across different features 209

and reuse these components in evaluating the separability for each different feature pair. 210

This TRANSFORMATION module transforms the original Mi,k matrix into another 211

space M̂i,k using the identified common feature pair components and updates the 212

separability score equation accordingly. Specifically, with this transformation of the 213

feature-object matrix M̂i,k, evaluating whether an object was correctly separated is 214

simplified as: if sign(M̂i,k + M̂j,k) = 1, then θki,j = 1; otherwise, θki,j = 0. Details and 215

an example can be found in Supplementary Note A.1 and Supplementary Figure C.1. 216

2.3.2 Early Termination Given a feature pair (fi, fj), we need to scan all the 217

objects to compute the separability score θi,j . However, since we only need to identify 218

feature pairs in the top-k, we can stop for each feature pair as soon as we can make that 219

determination, without scanning all objects; we call this the EARLYSTOP module. 220

High Level Idea. We maintain a upper bound τ for the separability error erri,j of the 221

top-k feature pairs. Then, the lower bound of the separability score can be denoted as 222

(n− τ). Given a feature pair (fi, fj), we start to scan the object list until the number of 223

incorrectly classified objects exceeds τ . If so, we can terminate early and prune this 224

feature pair since it cannot be among the top-k. Otherwise, (fi, fj) is added to the 225

top-k feature pair set and we update τ accordingly. 226
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(a) EARLYSTOP Example (b) SAMPLING Example

Fig 3. Optimization Module Examples. (a) When evaluating a feature pair with

EARLYSTOP module, the transformed M̂ scores are scanned left to right and each
incorrectly classified object is marked in blue. Without object ordering (above),
evaluation terminates after five checked objects. When objects are reordered by the
most “problematic” (below), the feature pair is rejected after checking only the first two
objects. (b) To calculate the top-3 feature pairs with SAMPLING, the confidence
interval of θi,j is calculated for every feature pair evaluated on the sample set S (above).
The 3rd interval lower bound ζ is obtained (red dotted line), and all feature pairs with a
larger upper bound are designated as candidates for validation (blue intervals). The
selected candidates (center box) are evaluated on the whole object set Ô to compute the
exact θi,j and pick the top-3 (right box).

Enhancement by Object Ordering. Although EARLYSTOP has the potential to 227

always reduce the running time, its benefits are sensitive to the ordering of the objects 228

for evaluation. Since we terminate as soon as we find τ incorrectly classified objects, we 229

can improve our running time if we examine “problematic” objects that are unlikely to 230

be correctly classified relatively early. For this, we order the objects in descending order 231

of the number of single features fi that incorrectly classify the object ok, i.e., M̂i,k ≤ 0. 232

Thus, the first object evaluated is the one that is incorrectly classified by the most single 233

features. The benefit of this strategy is illustrated with an example in Figure 3(a). 234

2.3.3 Sampling-based Estimation One downside of the EARLYSTOP module 235

is that the improvement in the running time is highly data-dependent. Here, we propose 236

a stochastic method, called SAMPLING, that reduces the number of examined objects. 237

Instead of calculating θi,j over the whole object set Ô, SAMPLING works on a sample 238

set drawn from Ô. 239

High Level Idea. SAMPLING primarily consists of two phases: candidate generation 240

and validation (Figure 3(b)). In phase one, we estimate the confidence interval of θi,j 241

for each feature pair using a sampled set of objects and generate the candidate feature 242

pairs for full evaluation based on where their confidence intervals lie. If the confidence 243

interval overlaps with the score range of the current top-k, then it is selected for 244

evaluation. In phase two (lower half of Figure 3(b)), we evaluate only the feature pairs 245

in the candidate set, calculating θi,j over the whole object set, Ô, to obtain the final 246

top-k feature pairs. Unlike our previous optimizations, SAMPLING returns an 247

approximation of the top-k ranking feature pairs. 248

Candidate Generation. Let S be a sample set drawn uniformly from Ô. Given a 249

feature pair (fi, fj), let θi,j(S) be the number of correctly separated objects in S. We 250

can estimate θ̃i,j from θi,j(S) using θ̃i,j =
θi,j(S)
|S| · n by assuming the ratio of correctly 251

separated samples in S is the same as that in Ô. Using Hoeffding’s inequality [23], we 252

have that by selecting Ω( 1
ε2 ) samples, that θi,j is in the confidence interval 253

[θ̃i,j − εn, θ̃i,j + εn] with high probability (details in Supplementary Note A.2). Since 254
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the sample size |S| is independent of the number of objects, this module helps 255

GENVISAGE scale to datasets with large n. 256

Following the top half of Figure 3(b), we can first calculate the confidence interval of 257

θi,j for each feature pair (fi, fj). Next, we compute the lower bound of θi,j for the top-k 258

feature pairs, denoted as ζ as shown by the red dotted line. Finally, we can prune 259

feature pairs away whose upper bound is smaller than ζ, keeping the candidate set C of 260

feature pairs depicted by blue intervals. These feature pairs C will be further validated 261

in phase two, i.e., candidate validation. Typically, |C| will be orders of magnitude 262

smaller than m2, the original search space for all feature pairs. 263

Candidate Validation. We re-evaluate all of the candidates generated from phase one 264

to produce our final feature pair ranking. This evaluation is performed using the whole 265

object set Ô and the top-k feature pairs are reported (lower half of Figure 3(b)). 266

Enhancement by Candidate Ordering. In Section 2.3.2 we proposed an 267

enhancement that allows us to terminate computation early by manipulating the order 268

of the objects; here we similarly found a way to reduce the running time by changing 269

the order in which feature pair candidates are validated in phase two. Instead of 270

directly validating each feature pair candidate, we first order the candidates in 271

descending order according to the upper bound of each candidate’s confidence interval. 272

Then, we sequentially calculate the full separability score θi,j for each feature pair, and 273

update ζ correspondingly. Recall that ζ is the current estimate of the lower bound of 274

θi,j for the top-k feature pairs. Finally, we terminate our feature pair validation when 275

the next feature pair’s upper bound smaller than the current value of ζ (Figure 4). 276

Fig 4. Candidate Ordering Enhancement. (a) Feature pair candidates are sorted by
the upper bounds of their confidence intervals (solid red boundary), and the lower
bound of the top-3 feature pairs, i.e., ζ, is set (red dotted line). (b,c,d) For each feature
pair, we calculate θi,j (filled blue circle) using all objects and update ζ if necessary.
Note that ζ is increased in (d) after evaluating the third feature pair and since ζ is
larger than the upper bound of the fourth feature pair, candidate validation can
terminate and return the top ranking pairs.

2.3.4 Search Space Traversal The optimizations discussed so far check fewer 277

than n objects for each feature pair and reduce the number of feature pairs for full 278

evaluation. Our TRAVERSAL module aims to reduce the number of feature pairs 279

considered from m2 to a smaller number. Instead of examining each feature pair, we 280

only examine a limited number of feature pairs, but in an optimized traversal order. 281

The number of examined feature pairs, χ, determines a trade-off between efficiency and 282

accuracy. Fewer feature pairs checked will result in faster running times, though at the 283

cost of accuracy to the top-k. The order of the feature pairs must be determined 284

carefully and we propose two alternative orderings based on the ranking of single 285

features by their separability scores θi,i. The first traversal order, called horizontal 286

traversal, prioritizes feature pairs that have at least one high ranking single feature in 287

the considered feature pair. The second order, called vertical traversal, prioritizes 288

feature pairs where both features have high single feature scores rankings. See 289

Supplementary Figure C.2 for more details and an example. 290
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3 Results 291

In this section, we illustrate that GENVISAGE rapidly identifies meaningful, significant, 292

and interesting separating feature pairs in real biological datasets. First, we describe the 293

datasets and the algorithms used in our evaluation. Each algorithm that we evaluate 294

represents a combination of optimization modules for ranking top-k feature pairs using 295

our Rocchio-based measure—we report the running time and accuracy of the algorithms. 296

Second, we compare the top-k feature pairs returned by GENVISAGE with the 297

corresponding top-k single features, and examine their significance and support in 298

existing publications. Last, we present some sample visualizations to illustrate the 299

separability of the object classes. 300

3.1 Evaluation Setup 301

|F|=m |O|=N |S| χ # of Ô avg(|O+|) avg(|O−|)
MSigDB 19,912 22,209 400 107 10 295 21,914

LINCS 22,268 98,061 400 107 40 165 97,897

Table 1. Dataset Statistics. For each dataset, the number of features m, objects N ,
sample size |S| used by SAMPLING module, feature pairs χ examined by TRAVERSAL

module, number of object sets: # of Ô, average positive set size: avg(|O+|), and
average negative set size: avg(|O−|).
Datasets. We consider datasets from two biological applications (see Table 1): (a) in 302

MSigDB, we find gene annotations such as pathways and biological processes that 303

separate the differentially expressed genes from the undisturbed genes in specific cancer 304

studies; (b) in LINCS, we find genes whose expression levels can distinguish 305

experiments in which specific drug treatments were administered from others. 306

In MSigDB, we are given a feature-object matrix with genes as the objects and 307

gene properties as the features. Rather than being a 0/1 membership indicator matrix, 308

the values of this feature-object matrix indicate the strength of the relationship between 309

the gene and the set of genes that have been annotated with the gene property. Matrix 310

values are calculated using random walks [24] on a heterogeneous network built from 311

prior knowledge found in gene annotation and protein homology databases (see 312

Supplementary Note A.3 for more details). The positive genes for each dataset in 313

MSigDB are the set of differentially expressed genes (DEGs) in a specific cancer study 314

downloaded from the Molecular Signatures Database (MSigDB) [25]. Each of our tests 315

is an application of GENVISAGE to such a dataset, reporting pairs of properties that 316

separate DEGs of that cancer study (the “positive” set) from all other genes (the 317

“negative” set). 318

In LINCS, the feature-object matrix contains expression values for different genes 319

(features) across many drug treatment experiments (objects) conducted on the MCF7 320

cell line by the LINCS L1000 project [26]. The values of the matrix are gene expression 321

values as reported by the “level-4’ imputed z-scores measured in the L1000 project. In 322

each dataset, the positive object set includes multiple experiments that used the same 323

drug, at varying dosages and for varying durations. We applied GENVISAGE on each 324

dataset so as to find the top pairs of genes (feature pairs) whose expression values 325

separate the LINCS experiments relating to a single drug from all other LINCS 326

experiments. 327

Note that the average number of positive objects in any dataset is far fewer than the 328

average number of negative objects. To address this imbalance, we adjust θ`i,j to a 329

weighted sum form: θ`i,j =
∑
ok∈O− θ

`,k
i,j + |O−|

|O+| ·
∑
ok∈O+

θ`,ki,j . 330

Algorithms. We evaluated six combinations of our optimization modules from 331

Section 2.3, listed in Table 2. For our baseline, we use the algorithm with only the 332

matrix pre-transformation optimization module (TRANSFORMATION). The rightmost 333
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EARLY-
STOP

SAMP-
LING

Candidate
Ordering

TRAVER-
SAL

Approx-
mation

Complex-
tity

Baseline no no no Any no O(m2n)

EarlyOrdering yes no no Any no O(m2n)

SampOnly no yes no Any yes
(guaran-
tee)

O(mn +
m2|S| +
|C|n)

SampOpt no yes yes Any yes
(guaran-
tee)

O(mn +
m2|S| +
|C|n)

HorizSampOpt no yes yes Horizontal yes
(heuris-
tic)

O(mn +
χ|S| +
|C|n)

VertSampOpt no yes yes Vertical yes
(heuris-
tic)

O(mn +
χ|S| +
|C|n)

Table 2. Selected Algorithms Using Different Optimization Modules. All algorithms,
including the Baseline, are using TRANSFORMATION. In addition, EARLYSTOP

and TRAVERSAL are coupled with object ordering and feature ordering by default,
respectively. For each algorithm (row), shows which optimization modules are employed,
whether the algorithm is returning the exact answer or an approximation answer, and
the running time complexity for that combination. The term “guarantee” (“heuristic”,
resp.) indicates that the returned answer is with (without, resp.) stochastic guarantee.
In addition, m and n are the number of features and objects, S is the sampled set size,
χ is the limit on the number of feature pairs considered, and C is the number of
generated feature pair candidates.

column of Table 2 shows the varying time complexity of the algorithms. Consider the 334

HorizSampOpt as an example. First, TRANSFORMATION takes O(mn) time. 335

Then, TRAVERSAL requires a sorting over the feature set, taking O(m logm) time. 336

Finally, with SAMPLING over χ feature pairs, the running time is reduced from 337

O(m2n) time to O(χ|S|+ |C|n) time, where the first and second term represent the 338

time for candidate generation and candidate validation respectively. Note that |C| is 339

typically orders of magnitude smaller than χ in HorizSampOpt, as discussed in 340

Section 2.3.3. Combinations of modules beyond the six reported were always inferior to 341

one of the ones shown in the sense that they returned the same top-k feature pairs and 342

had a longer running time. We implemented the algorithms in C++, and conducted the 343

evaluations on a machine with 16 CPUs and 61.9 GB of RAM. 344

3.2 Comparison of Different Algorithms 345

In this section, we first justify that Rocchio-based measure is a good proxy for the best 346

possible separating score computed by a brute force method. Then we compare the 347

performance of the algorithms in terms of the running time and the separability of their 348

top-1000 feature pairs. 349

Accuracy of Rocchio-based approximation. As discussed in Section 2.2, when 350

using brute force, we need to consider O(n2) lines in order to find the best separating 351

line `∗ ← arg` max{θ`i,j}, with a time complexity of O(n2m2) when considering all 352

feature pairs. An alternative is to use Rocchio-based representative separating line L, 353

dramatically reducing O(n2) lines considered to O(1). Since the brute force method 354

becomes computationally infeasible for datasets with large n, we compared the 355

Rocchio-based measure to the brute force-based measure using specially defined small 356

object sets, Ô, for the 10 datasets in MSigDB. For this comparison, the up-regulated 357

genes in each MSigDB test was defined as the set of positive objects and the 358

down-regulated genes as the set of negative objects, resulting in an average number of 359
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295 objects for each comparison. We call the brute force-based separability score the 360

true separability score, since it examines all possible separating lines. We first find the 361

best feature pair using Rocchio-based measure and the brute force based measure 362

separately (potentially different feature pairs) and then calculate the ratio of the true 363

separability scores of the Rocchio versus the brute force best feature pairs. We observe 364

that the Rocchio-based method picks a best feature pair that has true separability score 365

similar to the best pair picked by brute force, with the ratio of the two scores being 366

better than 0.94 in all ten datasets (Supplementary Figure C.3 (a)). Second, for the 367

best feature pairs identified by Rocchio-based method for the ten datasets, we calculate 368

the ratio of the Rocchio-based separability score and the brute force-based separability 369

score, and find the difference to be greater than 0.96 on average (Supplementary 370

Figure C.3 (b)). 371

Running Time. Figure 5 depicts the running times of our different selected algorithms. 372

Each plotted box corresponds to one algorithm, representing the distribution of running 373

times for finding the top-k feature pairs (by Rocchio score) for all datasets. 374

(a) MSigDB (b) LINCS

Fig 5. Running Time Comparison. A boxplot for each algorithm is shown with the
median value appearing in matching color above. For each boxplot, whiskers are set to
be 1.5× the interquartile range, the outliers are shows as red dots, and the average is
marked with as a black star. The number on the top shows the median running time for
each algorithm.

First, let us compare the median running times among different algorithms. For 375

MSigDB, the Baseline takes more than 2 hours, EarlyOrdering takes less than 1 376

hour, SampOnly and SampOpt take around 6 and 5 minutes respectively, while 377

HorizSampOpt and VertSampOpt both take only 1 minute on average. Overall, the 378

optimizations result in a reduction of the running time by over 180×. We next examine 379

the effect of different modules on the running time. (a) EARLYSTOP: we observe that 380

the EARLYSTOP module helps achieve a 2× speed up, with the average number of 381

checked objects (genes) reduced from 20K to 5K (Supplementary Table B.2); (b) 382

SAMPLING: the SAMPLING module helps reduce the running time dramatically, with 383

20× reduction from Baseline to SampOpt, since on average only 2M candidates are 384

generated from all possible 200M feature pairs (Supplementary Table B.2); (c) 385

TRAVERSAL: the modules HorizSampOpt and VertSampOpt achieve an additional 386

6× speed-up compared to SampOpt by terminating after only considering χ = 107 387

feature pairs, approximately 1
20 of all possible feature pairs. This speedup of 388

HorizSampOpt and VertSampOpt is approaching the limit set by the feature 389

ordering overhead (around 6s) and the time for the TRANSFORMATION module 390

(around 8s) (Supplementary Table B.2). The improvement over SampOpt is not 391

stronger since the candidate generation phase of SampOpt is able to remove a vast 392

amount of the feature pairs from full evaluation that would also be ignored by 393

HorizSampOpt and VertSampOpt (Supplementary Table B.2). 394

Next, consider the log-scale interquartile range (IQR) of the running times for the 395

different selected algorithms (Figure 5). We observe that EarlyOrdering has the 396

largest interquartile range, indicating that the EARLYSTOP module, which tries to 397
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reduce the number of objects evaluated for each feature pair, is very dependent on the 398

object set and feature values. As we discussed in Section 2.3.2, EARLYSTOP has no 399

guarantee on improving the running time. In fact, the algorithm can occasionally be 400

worse than the Baseline as shown in Figure 5(b) because EARLYSTOP incurs 401

additional overhead for checking the criteria for pruning and early termination when 402

scanning the object list for each feature pair. Similar results for LINCS are shown in 403

Figure 5(b) (see Supplementary Note A.4). 404

Separability Quality. In Supplementary Figure C.3 (a), we found the the accuracy of 405

the baseline method which computes the Rocchio-based estimate of top-k features to be 406

high. The EARLYSTOP module is deterministic and produces the same top-k feature 407

pairs as the baseline method only with optimized computation. The SAMPLING 408

module, on the other hand, is stochastic and can only provide an approximation of the 409

top-k feature pair ranking. Finally, the TRAVERSAL module is heuristic and may 410

output top-k feature pairs that are very different from the ranking produced by the 411

Baseline algorithm. and since Baseline returns the true Rocchio-based separability 412

score of each feature pair, we measured the quality of each selected algorithm by 413

counting the number of common feature pairs returned in the top-100 between the 414

Baseline and the given algorithm. Figure 6 shows this separability quality comparison. 415

(a) MSigDB (b) LINCS

Fig 6. Separability Quality Comparison. Boxplots in the style of Figure 5 comparing
the number of feature pairs each method returned from the 100 best feature pairs of the
Baseline.

Let us first focus on MSigDB. EarlyOrdering, as expected, has exactly the same 416

separability quality as the Baseline. We also observe that the SampOnly and 417

SampOpt rankings are nearly identical to the top-100 feature pairs of the Baseline, 418

owing to the probabilistic guarantee described in Supplementary Note A.2. The 419

HorizSampOpt and VertSampOpt algorithms output a median of 92 and 48 feature 420

pairs in common with Baseline, respectively, because of the heuristic TRAVERSAL 421

module. In the MSigDB results, HorizSampOpt performs much better than 422

VertSampOpt, with the median much higher and the interquartile range much 423

narrower, as shown in Figure 6(a). This suggests, as we hypothesized, that interesting 424

separating feature pairs exist outside of only the combinations of the top single features 425

as in VertSampOpt. We repeated this quality analysis for LINCS and found that the 426

SAMPLING based algorithms returned identical top-100 feature pairs for all 40 427

datasets. The quality of the TRAVERSAL based algorithms was again lower, though 428

the performance separation of the HorizSampOpt and the VertSampOpt algorithms 429

was not as large as for MSigDB. 430

Takeaways. If the accuracy is paramount, SampOpt is recommended; if the running 431

time is paramount to the user, HorizSampOpt is recommended. 432

3.3 Feature Pair vs. Single Feature. 433

In this section, we quantify the statistical significance of the top ranking results of the 434

selected algorithms. We show that we often find separating feature pairs that are more 435
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significant than the best single separating feature. To assess the significance of a 436

separating feature or feature pair, we first calculate the p-value using the one-sided 437

Fisher’s exact test on a 2× 2 contingency table. This contingency table is constructed 438

with the rows being the true positive and negative labels, the columns being the 439

predicted positive and negative labels, and the values being the number of objects that 440

belong to each table cell. Using the Fisher’s exact test p-value, we assert that feature 441

pairs can provide a better separability compared to single features, i.e., (a) feature pairs 442

have stronger p-values compared to the corresponding individual features even after 443

appropriate multiple hypothesis correction and (b) there exist high-ranked pairs of 444

features that are poorly-ranked on their own as single features. 445

Single Feature. Finding top-k single features is a special case of finding feature pairs 446

by setting i = j. For each single feature obtained, we compute the p-value with Fisher’s 447

exact test, denoted as pval. Next, we define the Bonferroni corrected p-value as 448

corrected pval = pval ×m× n, since there are m× n possible hypotheses, one for each 449

possible single feature and separating line. We say a selected feature is significant if the 450

corrected p-value is smaller than the threshold 10−5, i.e., − log10(corrected pval) ≥ 5. 451

In Figure 7, we plot the distribution of the corrected p-value of the top-100 features 452

reported for each dataset in MSigDB and LINCS. We observe that 10 out of 10 453

datasets in MSigDB and 32 out of 40 datasets in LINCS have at least one significant 454

single feature, and will focus on these datasets for further analysis. We observe very 455

small p-values, ≤ 10−50, in the left part of Figure 7(a) and 7(b), indicating that single 456

features are sufficient to separate the object classes for several datasets well. 457

(a) MSigDB (b) LINCS

Fig 7. Single Feature Bonferroni Corrected P-value Distribution vs. Feature Pairs’
Corrected P-value Distribution. For each test (x-axis), shows the significance
(− log10(corrected pval)) of the top-100 best single features (grey dots) and feature
pairs (blue dots) for the (a) MSigDB and (b) LINCS datasets. We order the datasets
by their best corrected single feature p-value, and discard the datasets where no single
feature has corrected p-value better than 10−5.

Feature Pair. We next build the contingency tables and calculate the p-value for the 458

top-k feature pairs. To correct for m2 possible feature pairs and the n2 possible ways to 459

choose the separating lines for each feature pair, we apply a Bonferroni p-value 460

correction to produce the corrected pval = pval ×m2 × n2. We plot the distribution of 461

the corrected p-values for the top-k feature pairs in Figure 7. Once again, the threshold 462

for defining a significant feature pair is set to 10−5. We find that 10 out of 10 datasets 463

in MSigDB and 27 out of selected 32 datasets in LINCS have at least one significant 464

feature pair by this metric. Visual comparison of the top-100 single features to the 465

top-100 feature pairs (Figure 7) per dataset reveals several datasets where the corrected 466

p-values of the feature pairs are more significant than those of the best single features, 467

even after accounting for the larger search space. Admittedly, this is not always the 468
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case, e.g., for five LINCS datasets no feature pair was found to be significant at 469

corrected pval ≤ 10−5 while at least one single feature did meet this threshold. Overall, 470

this analysis suggests that rapid discovery of top feature pairs may identify more 471

significant patterns in the given dataset than a traditional single-feature analysis does. 472

In the following, we further illustrate that feature pairs can also provide better and 473

newer insights compared to single features. 474

Improvement from Single Feature to Feature Pair. Having computed the 475

corrected p-value for each single feature and feature pair in the top-100 for our datasets, 476

we now examine the improvement of each feature pair from its two corresponding single 477

features in terms of p-value. For each feature pair (fi, fj), we define the improvement 478

quotient as the ratio between the corrected p-value of (fi, fj) and the better one of the 479

corrected p-value of fi or fj , i.e., improv quot =
corrected pval(fi,fj)

min(corrected pval(fi),corrected pval(fj))
. 480

We examined only the improv quot for the top-20 feature pairs for each of the 10 runs 481

in MSigDB and 32 runs in LINCS. We found that on average across these datasets, 9.3 482

of the top-20 feature pairs in MSigDB and 8 of the top-20 feature pairs in LINCS are 483

more significant than their corresponding single features (− log10(improv quot) > 5). 484

The distribution of the improv quot is plotted in Supplementary Figure C.4. Overall, 485

these histograms show that there is a improvement from single features to some feature 486

pairs in terms of the separability significance. Next, we will explore the improved 487

feature pairs more carefully, commenting on their redundancy, reliability, and relevance. 488

New Insights from Feature Pairs. In order to assess the quality of the top ranking 489

feature pairs, we focused on the LINCS data set where the objects are experimental 490

treatments on the MCF7 breast cancer cell line with the same drug and the features are 491

expression values for different genes. For the evaluations above, we used object sets for 492

the 40 drugs with the largest number of LINCS experiments. For the following analysis, 493

we refine our list to those that are common drugs and have at least 60 LINCS 494

experiments on the MCF7 cell line. These nine drugs are vorinostat, trichostatin, 495

estradiol, tamoxifen, doxorubicin, gemcitabine, daunorubicin, idarubicin, and 496

pravastatin. For each chosen drug, we ran the SampOpt algorithm of GENVISAGE to 497

rank the top-1000 feature (gene) pairs for separating the LINCS experiments of the 498

drug from all other MCF7 experiments. 499

For all drugs, except pravastatin, all of the top-1000 ranked feature pairs were found 500

to be significant, i.e. − log10(corrected pval) > 5 (see Table 3). As described in the 501

Section 3.3, we are especially interested in feature pairs whose corrected p-value is 502

better than the corrected p-values of their corresponding single features 503

(− log10(improv quot) > 0). We found 1070 “improved” feature pairs with larger 504

separability over their single feature among the top1000 of these evaluation drug sets. 505

One drug, trichostatin, had especially strong single features and showed no feature pairs 506

that significantly improved on them. The remaining seven drugs, however, benefited 507

from the feature pair analysis yielding between 9 (tamoxifen) and 369 (doxorubicin) 508

improved feature pairs (Table 3). 509

Many of the above-mentioned 1070 significantly improved feature pairs are partially 510

redundant, in the sense that they comprise a common best-ranked single feature (gene). 511

An example of this is with the object set for the drug (small molecule) estradiol. We 512

found the gene PRSS23 as the single feature with the highest separability and many 513

feature pairs containing PRSS23 and a second gene as having an improved corrected 514

p-value, for example (PRSS23, RAP1GAP), (PRSS23, TSC22D3), and (PRSS23, 515

BAMBI). We looked for evidence of the relationship between the drug estradiol and 516

these feature pair genes in the Comparative Toxicogenomics Database (CTD) [27] and 517

with our own literature survey. From this search, we found evidence for the pronounced 518

effect of estradiol in increasing expression levels of PRSS23 [28], RAP1GAP [29], and 519
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Drug NumExprs Avg Signif Top1000 Signif Top1000 Improved

vorinostat 904 235.5 1000 287

trichostatin 689 277.1 1000 0

estradiol 325 166.8 1000 203

tamoxifen 122 105.8 1000 9

doxorubicin 104 28.0 1000 369

gemcitabine 97 52.5 1000 116

daunorubicin 91 40.9 1000 28

idarubicin 78 30.1 1000 58

pravastatin 61 -7.5 0 0

Grand Total 43.1 9068 1070

Table 3. For each chosen drug from LINCS, the number of experiments in MCF7 cell line that were
performed with that drug (NumExprs), and statistics for the top1000 feature pairs for that drug including
the average − log10(corrected pval) (Avg Signif), number of feature pairs with − log10(corrected pval) > 5
(Top1000 Signif), and number with − log10(improv quot) > 0 (Top1000 Improved).

BAMBI [30], and decreasing expression of TSC22D3 [31]. So although the top single 520

feature (gene PRSS23) reoccurred in multiple top feature pairs, each secondary feature 521

gene was also meaningfully related to the administered drug in this case. 522

We next examined the 1070 improved feature pairs, found over the 9 LINCS 523

datasets, to determine their consistency with existing biological knowledge bases (see 524

Supplementary Note A.5 for details). The interaction networks from these sources 525

covered 23,167 genes and had at least one known interaction between 2.17% of all 526

possible gene pairs. Of the 996 unique feature pairs with significant improv quot where 527

both genes mapped onto the genes covered by the interaction networks, 133 gene pairs 528

(13.4%) were found to have at least one known interaction. This six-fold enrichment 529

demonstrates that GENVISAGE more often finds pairs of genes that have a known 530

relationship than is expected by chance. One example is (GLRX, NME7) that is 531

especially good for separating vorinostat experiments from all others. Not only are both 532

of these genes known to have increased mRNA expression in response to 533

vorinostat [32], [33], but the two genes are annotated by STRING to both be in 534

database pathways of nucleotide biosynthesis, co-express with each other in other model 535

organisms, and mentioned together often in literature abstracts. Later, in Section 3.4, 536

we will demonstrate that the positive objects and negative objects are visually 537

separated under this feature pair, as in Figure 8. 538

In Supplementary Table B.3, we examine several of the “improved” feature gene 539

pairs reported by GENVISAGE analysis for the LINCS nine drug datasets. Of 540

thirty-nine feature pairs in this table, twelve of them have three types of accompanying 541

evidence: 1) a literature-based relationship between the drug and the first gene, 2) a 542

literature-based relationship between the drug and the second gene, and 3) an 543

interaction network relationship between the pair of genes. Six have two of the three 544

types of evidence and there are only three with no evidence at all. Particularly 545

interesting are the top improved feature pairs in which neither of the single gene 546

features ranked well alone. An example is the gene pair CDKN1A and CEBPB for 547

separating doxorubicin experiments from others. Either gene feature alone is not within 548

the top 600 genes for separating doxorubicin experiments from others. However, the 549

combination of the pair is significant at a corrected p-value of 2× 10−25 and is the 550

second most improved feature pair for doxorubicin. This feature pair also has all three 551

types of accompanying evidence; doxorubicin is known to increase expression of 552

CDKN1A and CEBPB [34], and the pair of genes are annotated in STRING to have 553

evidence for co-expression and text mining relationships. This feature pair can be used 554

to form an interesting hypothesis for further analysis or experiment. The potential for 555

finding more significant and previously unidentified features is why GENVISAGE is 556

designed to recover top ranking feature pairs instead of just single features. 557
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3.4 Output Visualizations 558

As discussed in Section 1, the output of GENVISAGE is not simply a ranking of the top 559

feature pairs with their scores, but also a visualization that helps users to interpret the 560

separability. In Figure 8, we depict sample output visualizations from the MSigDB and 561

LINCS runs. For MSigDB, we select the feature pair with the highest improved 562

p-value, i.e., improv quot, using the SampOpt algorithm. For our LINCS 563

representative, we visualize the gene feature pair (GLRX, NME7) for the drug vorinostat 564

as described in the previous section. For the MSigDB example (Figure 8(a)), we 565

observe that the feature values for negative objects are clustered around zero, while the 566

genes differentially expressed in papillary thyroid carcinomas from this MSigDB study 567

have larger values overall, indicating stronger connections to the two Gene Ontology 568

terms features, cell adhesion and response to reactive oxygen species. This is consistent 569

with studies that have highlighted the over expression of important cell adhesion genes 570

in thyroid cancer [35]. For the LINCS example (Figure 8(b)), positive objects mostly 571

have elevated expression for the two reported genes (GLRX and NME7) compared to 572

the negative objects. The direction of this differential gene expression for both genes is 573

consistent with literature for vorinostat experiments [32], [33]. These above two 574

examples illustrate how visualization of significant feature pairs can be a useful way to 575

explain the separability of object sets and understand the data.

(a) MSigDB (b) LINCS

Fig 8. Visualization Output of GENVISAGE. Heatmap visualization with the pair of
top features providing the x and y axes and the name of the run providing the plot title.
The relative density of objects determines the color of the heatmap cells with blue
indicating a greater proportion of positive objects and red indicating a greater
proportion of negative objects. The class centroids are represented by blue (positive
class) and red circles (negative class). The two examples shown are representatives from
MSigDB and LINCS datasets. 576

4 Discussion 577

The GENVISAGE algorithm with its optimization modules enables researchers to 578

visualize and explore the interplay between important pairs of genomic features rapidly, 579

rather than relying on slow machine learning feature extraction methods or only 580

examining the simple list of top single features. The optimization modules led to a two 581

orders of magnitude speed up in the task of returning the top feature pairs for 582

separating the biological classes in our two benchmark datasets, MSigDB and LINCS. 583

The quality of these top feature pairs was confirmed by their agreement with literature 584

and interaction databases, and the features are easily understood with intuitive heatmap 585

visualizations. GENVISAGE relies on the Rocchio-based separability measure, which 586

well approximates the best possible linear separator quickly and enables optimizations 587
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like TRANSFORMATION that can pre-compute important quantities from the 588

feature-object matrix before the positive and negative object sets are even provided. 589

One potential downside of the Rocchio-based measure is that because of its dependency 590

on linearity, feature pairs with distinct object class distributions that form complex, 591

non-convex, non-isotropic patterns are potentially very interesting, but will not be 592

well-ranked by GENVISAGE. Finally, in GENVISAGE, the optional SAMPLING 593

module and TRAVERSAL modules make stochastic or greedy decisions in order to 594

estimate the quality of and prune the potential candidate feature pairs for evaluation. 595

While this greatly benefits the amount of time required to find the top ranking pairs, it 596

has the potential to do so at the cost of ranking accuracy. Overall, we observed that for 597

our settings, the sacrifice in accuracy was slight for the SampOpt feature pair rankings 598

and more substantial when using the HorizSampOpt and VertSampOpt rankings 599

with the greedy candidate traversal. However, users of GENVISAGE are able to 600

optimize the trade-off with performance and accuracy by modifying the sample size, |S|, 601

used by the SAMPLING module or the number of candidate feature pairs examined, χ, 602

by TRAVERSAL module depending on the needs of their research and dataset. 603
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Appendix A Supplementary Notes

A.1 Pre-Transformation Module

Let us review the process of computing the separability θi,j . Given a feature pair (fi, fj)
and the corresponding positive and negative centroids, (i) we first compute w0, wi and

wj for L. Next, for each object ok, (ii) we obtain the predicted label ηL,ki,j according to
Equation 1. This step requires two multiplications and three additions. Finally, (iii) we
calculate θki,j and the separability θi,j based on formulations in Section 2.2. This whole
process is repeated for every feature pair candidate. However, there is massive
redundancy across the processing of different feature pairs. For instance, when
calculating the separability for two different feature pairs (fi, fj) and (fi, fj′) with a
common fi, wi is in fact shared, and calculation of wi · Mi,k in Equation 1 is repeated
for each object ok.

Given this, we propose the TRANSFORMATION optimization module which will
pre-calculate some common computational components once across different features
and reuse these components the separability for each feature pair to eliminate the
repeated computation. This TRANSFORMATION module transforms the original Mi,k

matrix into another space using our identified common feature pair components and
updates the separability score equation accordingly.

For each feature fi, we find the average values of the positive and negative objects
for that feature, M+

i and M−i respectively, and then we pre-transform Mi,k, i.e., the

value of object ok on the feature i, to M̂i,k =(
(M+

i −M
−
i ) ·Mi,k −

(M+
i )2−(M−i )2

2

)
· lk. The basic idea is to decompose Equation 1

into two components, with each one only related to a single feature. This
transformation incorporates the class centroids into the matrix values, obviating their
integration later for every feature pair that involves the given feature. We also
multiplies in the class label of the object, lk, rather than repeating this multiplication
every time the object is evaluated (see example in Supplementary Figure C.1). With
this transformation of the feature-object matrix, evaluating whether an object was
correctly separated is simplified as: if sign(M̂i,k + M̂j,k) = 1, then θki,j = 1; otherwise,

θki,j = 0. Note that this step only involves one addition and one comparison and is
performed only once for each feature. Next, we can calculate overall separability score
θi,j =

∑
k θ

k
i,j . Overall, we not only eliminate the steps of computing w0, wi and wj for

every feature pair, but also reduce the cost of calculating ηki,j in Equation 1. With the

TRANSFORMATION module, we calculate M̂ as a pre-transformation step, and use it
when evaluating feature pairs instead of M and calculate θi,j accordingly.

A.2 Estimation Accuracy in SAMPLING Module

We have proposed SAMPLING for estimating θi,j in Section 2.3.3. Next, we formally
quantize the sample set size in Theorem 1.

Theorem 1 (Estimation Accuracy). By considering Ω( 1
ε2 · log( 1

δ )) samples, with

probability at least 1− δ, we have | θi,j(S)|S| −
θi,j
n | ≤ ε, i.e., |θ̃i,j − θi,j | ≤ εn.

We can treat log(1/δ) as a constant, e.g., by setting δ = 0.05. Thus, Theorem 1
essentially states that with only Ω( 1

ε2 ) samples, with probability 95%, the confidence

interval for θi,j is [θ̃i,j − εn, θ̃i,j + εn].

A.3 Construction of MSigDB Feature-Object Matrix

To construct the feature-object matrix for MSigDB, which has gene objects and gene
property features, we collected prior knowledge about gene annotations and protein
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homology from several databases. Our gene annotations and gene properties were
extracted from Gene Ontology terms [36], PFam domains [37], and Reactome [38] and
KEGG [39] pathways. We constructed a heterogeneous network with nodes for all
22,210 genes and 21,235 properties from these databases and with edges representing
their annotations between genes and properties. We also created weighted
homology-based edges in the network between pairs of genes based on their protein
sequence similarity as determined by BLAST scores [40]. We used the first phase of the
DRaWR algorithm [24] with a restart probability of 0.5 to perform a random walk
restarting from each gene node on the heterogeneous network, thereby scoring the
connectivity of all nodes in the network to the gene. For each gene-property pair (g, r),
we assigned the numeric value from the random walk stationary probability distribution
that represents not only whether the gene is annotated with that property, but also
whether other genes closely related to gene g are annotated with property r. We thus
obtained a feature-object matrix describing each gene (object) as a vector of its strength
of association with each property (feature) in light of prior biological knowledge.

A.4 Speedup Analysis for LINCS

In Figure 5(b), we observe over 400× average decrease in the running time of finding
the top-k feature pairs that separate the LINCS experiments of a single perturbagen
from others. The greatest speedup comes with adding the SAMPLING module, where
only 100K feature pair candidates, i.e., |C|, are checked out of all 250M feature pairs
(Supplementary Table B.2). For the selected algorithms with best running times,
HorizSampOpt and VertSampOpt, the pre-transformation and feature ordering
overhead account for an average of 45 + 35 = 80s of the overall 104 and 94 median
seconds respectively.

A.5 Gene Interaction Datasets

For our knowledge bases of protein and gene interactions, we downloaded datasets
derived from 8 data sources: STRING [41], Reactome [42], Pathway Commons [43],
HumanNet [44], BioGRID [45], Intact [46], DIP [47], and BLAST [40] databases. The
datasets were downloaded, harmonized, and mapped to Ensembl gene identifiers using
the KnowEnG Knowledge Network Builder
https://github.com/KnowEnG/KN_Builder. The final processed network used in this
work can be downloaded from
https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md#gene.

Appendix B Supplementary Tables

B.1 GENVISAGE Method Notation

Notation used in this paper.

Symb. Description Symb. Description

M feature-object matrix F feature set inM
fi feature i in F m number of features in F
O object set inM N number of objects in O
O+ positive object set O− negative object set

Ô labelled object set n number of labelled objects in Ô
ok object k in Ô lk label of object ok
` separating line in 2-D L representative line in 2-D

η`,ki,j predicted label of ok θ`,ki,j ok is correctly separated?

θ`i,j # correctly separated ok θi,j separability score

M̂ M after transformation θ̃i,j estimated θi,j
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B.2 Running Time Detailed Comparison

For each dataset collection, MSigDB and LINCS, show two statistics FPsChecked and
ObjectsChecked, for each optimization module phase (columns). FPsChecked is the
number of feature pairs evaluated in the phase, and ObjectsChecked is the average
number of sample objects that are evaluated across all feature pairs.

B.3 In-depth Analysis of ’Improved’ Feature Pairs

For each drug dataset (col C), we return a limited number of gene feature pairs (cols
E,F) that after correction were the most ”improved” over their corresponding single
feature results either by the change in the corrected pvalue (cols H,I,J,N,O) or the
change in the feature rankings (cols K,L,M,P). Pubmed IDs (cols Q,R) are provided
when the relationship between the drug and the gene feature were found in the
Comparative Toxicogenomics Database (CTD) or by manual literature search (denoted
by *-asterisk). When relationships between the gene features themselves were
discovered, the type and strength of the relationships were reported (col S) and the
number of relationships quantified (col T).

Appendix C Supplementary Figures

C.1 Example for TRANSFORMATION Module

The TRANSFORMATION module is applied once to the original values in the
feature-object matrix M (above) to produce M̂ (below). For two features, fi and fj .
The top half depictsMi,k andMj,k before transformation, where green color represents
a positive label and red color represents a negative label. In this example, the centroids
of the positive and negative objects are µ+

i,j = (5, 7) and µ−i,j = (3, 5) respectively.

Hence, we can rewrite M̂i,k = (2Mi,k − 8) · lk and M̂j,k = (2Mi,k − 12) · lk for features

fi and fj respectively. After calculation, we can obtain the values for M̂i,k and M̂j,k

shown in the bottom half.
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C.2 Illustration for TRAVERSAL Module

We rank individual features based on their single feature separability scores, θi,i, from

best to worst, {f ′1f
′

2, · · · , f
′

m}.

• Horizontal traversal: For each feature f
′

i , pair it with each other feature f
′

j , where

j ≥ i, to obtain (f
′

i , f
′

j). Repeat for each f
′

i , where 1 ≤ i ≤ m.

• Vertical traversal: For each feature f
′

j , pair it with each other feature f
′

i , where

i ≤ j, to obtain (f
′

i , f
′

j). Repeat for each f
′

j , where 1 ≤ j ≤ m.

For an example, suppose there are 20,000 features, m = 2× 104. Initially, the

number of possible feature pairs is roughly m2

2 = 2× 108. However, if we limit the
number of considered feature pairs to χ = 107, we reduce our search space to 1

20 of the
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total number of feature pairs. We order the single features by their individual
separability scores. In horizontal traversal, only feature pairs with at least one
individual feature ranked in the top 500 will be considered; while vertical traversal will
consider only feature pairs with both individual features ranked better than 2000.

C.3 Separability Score Comparison

Comparison of Brute Force-based and Rocchio-based separability score. (a) For each of
10 datasets, we display the ratio of the true separability score between the best feature
pair chosen by brute force and by the Rocchio-based method. (b) For each dataset, we
display the ratio of the true separability score and the Rocchio-based separability score
for the best feature pair selected using Rocchio-based method.

(a) Best Feature Pair Comparison (b) Measure Comparison

C.4 Histogram of improv quot

Histogram of improv quot. For the top-20 feature pairs from all runs from the (a)
MSigDB and (b) LINCS datasets, distribution of the improvement of the feature pair
significance over the corresponding single feature significance. The red line shows the
significance threshold of 5.

(c) MSigDB (d) LINCS
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