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Abstract
Kinase-catalyzed phosphorylation of proteins forms the back-
bone of signal transduction within the cell, enabling the coor-
dination of numerous processes such as the cell cycle, apop-
tosis, and differentiation. While on the order of 105 phos-
phorylation events have been described, we know the specific
kinase performing these functions for less than 5% of cases.
The ability to predict which kinases initiate specific individual
phosphorylation events has the potential to greatly enhance the
design of downstream experimental studies, while simultane-
ously creating a preliminary map of the broader phosphoryla-
tion network that controls cellular signaling. To this end, we de-
scribe EMBER, a deep learning method that integrates kinase-
phylogeny information and motif-dissimilarity information into
a multi-label classification model for the prediction of kinase-
motif phosphorylation events. Unlike previous deep learning
methods that perform single-label classification, we restate the
task of kinase-motif phosphorylation prediction as a multi-label
problem, allowing us to train a single unified model rather than
a separate model for each of the 134 kinase families. We utilize
a Siamese network to generate novel vector representations, or
an embedding, of motif sequences, and we compare our novel
embedding to a previously proposed peptide embedding. Our
motif vector representations are used, along with one-hot en-
coded motif sequences, as input to a classification network while
also leveraging kinase phylogenetic relationships into our model
via a kinase phylogeny-based loss function. Results suggest that
this approach holds significant promise for improving our map
of phosphorylation relations that underlie kinome signaling.
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Introduction
Phosphorylation is the most abundant post-translational mod-
ification of protein structure, affecting from one to two-thirds
of eukaryotic proteins. In humans, the number of kinases
catalyzing this reaction hints at its importance, with kinases
being one of the largest gene families with roughly 520 mem-
bers distributed among 134 families (1–3). During phospho-
rylation, a kinase facilitates the addition of a phosphate group
at serine, threonine, tyrosine, or histidine residues, though
other sites exist. Phosphorylation of a substrate at any of
these residues occurs within the context of specific consen-
sus phosphorylation sequences, which we refer to here as

“motifs”. Additional substrate binding sequences within the
kinase or substrate, as well as protein scaffolds that facili-
tate structural orientation and downstream catalysis of the re-
action, modify the efficacy of motif phosphorylation. Typi-
cally, the net effect of kinase phosphorylation is to switch the
downstream target into an “on” or “off” state, enabling the
transmission of information throughout the cell. Kinase ac-
tivity touches nearly all aspects of cellular behavior, and the
alteration of kinase behavior underlies many diseases while
simultaneously establishing the basis for therapeutic inter-
ventions (4–11).
Although the importance of phosphorylation in cell informa-
tion processing and its dysregulation as a driver of disease is
well recognized, the map of kinase-motif phosphorylation in-
teractions is mostly unknown. So, while upwards of 100,000
motifs are known to be phosphorylated, less than 5% of these
have an associated kinase identified as the catalyzing agent
(12). This knowledge gap provides a considerable impetus
for the development of methods aimed at predicting kinase-
motif phosphorylation events that, at a minimum, could help
focus experimental efforts.
As a result, a number of computational tools have been devel-
oped, spanning a myriad of methodological approaches in-
cluding random forests (13), support vector machines (14),
logistic regression (15), and Bayesian decision theory (16).
Advances in deep learning have similarly spawned new ap-
proaches, with two methods recently described. The first,
MusiteDeep, utilizes a convolutional neural network (CNN)
and a subsequent attention layer to generate single predic-
tions (17). The second deep learning method, DeepPhos, ex-
ploits densely connected CNN (DC-CNN) blocks for its pre-
dictions (18). Both of these approaches train individual mod-
els for each kinase family, requiring separate models for each
of the 134 families. In addition to this practical challenge, a
further disadvantage of these approaches is the potential lost
opportunity gains from transfer learning, as models do not
directly incorporate motif phosphorylation by kinases from
different kinase families.
Here, we describe, EMBER (Embedding-based multi-label
prediction of phosphorylation events), a deep learning ap-
proach for predicting multi-label kinase-motif phosphoryla-
tion relationships. In our approach, we utilize a Siamese
neural network, modified for our multi-label prediction task,
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to generate a high-dimensional embedding of motif vectors.
Along with one-hot encoded motif sequences, these two rep-
resentations are leveraged together as a dual input into our
classifier, improving learning and prediction. We also find
that this approach performs as well or better than a previ-
ously proposed protein embedding, ProtVec, trained on sig-
nificantly more data (19). We further integrate information
regarding evolutionary relationships between kinases into our
classification network loss function, informing predictions
in light of the sparsity associated with these data, and we
find that this information improves prediction accuracy. As
EMBER utilizes transfer learning across families, we expect
that model accuracy will improve more so than other deep
learning as data describing kinase-substrate relationships in-
creases. Together, these results suggest that this approach
holds significant promise for improving our map of phospho-
rylation relationships that underlie the kinome and broader
cellular signaling.

Methods
Kinase-motif interaction data. As documented kinase-
motif interactions are sparse in relation to the total number
of known phosphorylation events, we attempted to maximize
the number of examples of such interactions for training.
To do this, we integrated multiple datasets describing motif-
kinase relationships across multiple vertebrate species. Our
data was sourced from PhosphoSitePlus, PhosphoNetworks,
and Phospho.ELM, all of which are collections of annotated
and experimentally verified motif-kinase relationships (20),
(21), (22). From these data sources, non-redundant motif-
kinase relationships were extracted and integrated into a sin-
gle set of interactions. We used the standard single-letter
amino acid code for representation of amino acids, with an
additional ’X’ symbol to represent an ambiguous amino acid.
We defined our motifs as peptides composed of a central
phosphorylatable amino acid — either serine (S), threonine
(T), or tyrosine (Y) — flanked by 7 amino acids on either
side. Therefore, each motif is a 15-amino acid peptide or
“15-mer”. As a phosphorylatable amino acid may not have
7 flanking amino acids to either side if it is located near the
end of a substrate sequence, we used ‘-’ to represent the ab-
sence of an amino acid in order to maintain a consistent motif
length of 15 amino acids across all instances.
Deep learning models are known to generally require large
amounts of examples per class in order to achieve adequate
performance. Our original dataset was considerably imbal-
anced in that all positive labels (verified kinase-motif inter-
actions) had a very low positive- to negative-label ratio. For
example, the TLK kinase family only has 9 positive labels
(verified TLK-motif interactions) and more than 10,000 neg-
ative labels (lack of evidence for a TLK-motif interaction).
To maximize our ability to learn from our data, we only uti-
lized kinases that had a relatively large number of experi-
mentally validated motif interactions as input into the model,
reducing the number of kinase-motif relationships to be used
for our model. However, this data filtering also served to
considerably mitigate the imbalances in our data. Kinases

Table 1. Summary of the number of identified motifs phosphorylated by each kinase
family.

Kinase family Number of motifs
Akt 464
CDK 903
CK2 900
MAPK 1514
PIKK 574
PKA 1533
PKC 1801
Src 993

were then grouped into respective kinase families contingent
on data collected from the RegPhos (1) database, resulting in
eight kinase families. The number of kinases per family is
presented in Table 1. Our resulting data set included 7535
phosphorylatable motifs and their reaction-associated kinase
families (Table 1). Furthermore, our data is multi-label in
that a single motif may be phosphorylated by multiple ki-
nases, including those from other families, resulting in a data
point with potentially multiple positive labels. We set aside
857 motifs for the independent test set.

Motif embeddings.

ProtVec embedding. We chose to investigate two methods to
achieve our motif embedding. First, we considered ProtVec,
a learned embedding of amino acids, originally meant for
protein function classification (19). ProtVec is the result of
a Word2Vec implementation trained on a corpus of 546,790
sequences obtained from Swiss-Prot, which were broken up
into 3 amino acid-long subsequences. As a result, ProtVec
provides a 100-dimensional distributed representation, or
"word embedding", that establishes coordinates for each pos-
sible amino acid 3-gram, resulting in a 9048 x 100 matrix.
We averaged the embedding coordinates, per amino acid, re-
ducing the first tensor dimension from 9048 to 22.

Siamese embedding. We implemented a Siamese network to
provide a novel learned representation of our motifs (Figure
1). The Siamese network is composed of two identical "twin"
networks, deemed as such due to their identical hyperparame-
ters as well as their identical learned weights and biases (23).
During training, each twin network receives a separate mo-
tif sequence, represented as a one-hot encoding, and denoted
either as a or b in Figure 1. Motifs are processed through
the network until reaching the final fully-connected layers,
ha and hb, which provide the resultant embeddings for the
original motif sequences. Next, the layers are joined by cal-
culating the pairwise Euclidean distance between ha and hb,
resulting in da and db. The pairwise mean between da and
db can be interpreted as the overall dissimilarity between ma

and mb, represented by D. The loss function operates on
the final layer, striving to embed relatively more similar data
points closer to each other, and relatively more different data
points farther away. In this way, the network amplifies the
similarities and differences between motifs, and it translates
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such relationships into a semantically meaningful vector rep-
resentation for each motif in the embedding space.

Fig. 1. Siamese network architecture, composed of twin neural networks, each con-
taining identical long short-term memory (LSTM) layers followed by fully-connected
layers. The twin networks are joined at the final layer. a and b represent a pair of
motifs from the training set, while ha and hb represent the respective hidden layers
output by either LSTM. The difference between the hidden layers is calculated to
obtain the distance layer, which is then averaged to get a final scalar value repre-
senting the dissimilarity between the motifs. After training is complete, each motif
is input into a single twin and the output of the embedding layer gives the resultant
representation of the given motif.

We utilized a contrastive loss as described in (24), but we
modified the function to account for the multi-label aspect
of our task. The canonical Siamese loss between a pair of
samples, a and b, is defined as

L(a,b,Y ) = (1−Y )1
2(Dw)2 +(Y )1

2 [max(0,m−Dw)]2,

(1)
where Dw is the Euclidean distance between the outputs of
the embedding layer, m is the margin which is a hyperparam-
eter defined prior to training, and Y ∈ {0,1}. The value of Y
is determined by the label of each data point in the pair. If a
pair of samples has identical labels, they are declared “same”
(Y = 0). Conversely, if a pair of samples has different la-
bels, they are declared “different” (Y = 1). This definition
relies on the assumption that each sample may only have one
true label. To adapt the original Siamese loss to account for
the multi-label aspect of our task, we replaced the discrete
variable Y with a continuous variable, namely, the Jaccard
distance between kinase-label set pairs. Thus, our modified
loss function is defined as

LJ (a,b,Y ) = (1−Ja,b)
1
2(Dw)2 +(Ja,b)

1
2 [max(0,m−Dw)]2,

(2)
where Ja,b is shorthand for J(Ka,Kb), which is the Jaccard
distance between the kinase-label set Ka and the kinase-label
set Kb, associated with motif sample a and motif sample b,
respectively. Formally,

J(Ka,Kb) = 1− |Ka∩Kb|
|Ka∪Kb|

(3)

and consequently,

0≤ J(Ka,Kb)≤ 1. (4)

In this way we have defined a continuous metric by which to
compare a pair of motifs, rather than the usual 0-1 distinction.
The Siamese network was trained for 250,000 iterations on
the training set, precluding the data points in the indepen-
dent test set. When composing a mini-batch, we alter-
nated between "similar" and "dissimilar" motif pairs dur-
ing training. Similar pairs were defined as motifs whose
J(Ka,Kb) > 0.5, and dissimilar pairs were defined as mo-
tifs whose J(Ka,Kb) ≤ 0.5. After training, we must pro-
duce the final embedding space to be used in training of our
subsequent classification network. To obtain the final em-
bedding, we input each motif into a single arbitrary twin
of the original network (because both twins learn the same
weights and biases), producing a high-dimensional (1500-
dimensional) vector representation of the original motif se-
quence. The resultant motif embedding effected by the sin-
gle Siamese twin is further discussed in the Results section.
We used k-nearest neighbors classification on each family to
quantitatively compare the predictive capabilities of ProtVec
and Siamese embeddings in the coordinate-only space.

Predictive model framework. An overview of the architec-
ture of EMBER is shown in Figure 2. EMBER takes as input
raw motif sequences and the coordinates of each respective
motif in the embedding space. We use one-hot encoded mo-
tifs as the second type of input into our model. Each mo-
tif sequence is represented by a 15 x 22 vector. In addition,
we utilize the embedding provided by our Siamese network,
which creates a latent space of dimensions m x 1500 where
m is the number of motifs. The space is reshaped to m x 15
x 100 such that each motif coordinate is 15 x 100.
We utilized convolutional neural networks (CNNs) in lieu of
recurrent neural networks (RNNs) which are typically used
in prediction from sequential data due because our prelimi-
nary work showed better performance of the former. Each
type of input, both one-hot sequences and embeddings, is in-
troduced to the network through their respective CNNs, fol-
lowed by downstream fully-connected (FC) layers. The dual
CNN-FC networks have identical hyperparameters in an ef-
fort to equally weight both sequence and coordinate input.
The CNN-FC networks are then concatenated in the final
layer, which is then fed through a sigmoid activation func-
tion and outputs a 8 x 1 vector per motif.

Kinase phylogenetic distances. We sought to leverage
the phylogenetic relationships between kinases to improve
predictions of kinase-motif interactions. Specifically, we
considered the dissimilarity of a pair of kinase families
in conjunction with the dissimilarity of the two respective
groups of motifs that either kinase family phosphorylates
(i.e., “kinase-family dissimilarity” vs. “motif-group dissim-
ilarity”). Note that the terms “distance” and “dissimilarity”
are interchangeable. As the phylogenetic distances given by
Manning et al. (2), do not provide distances between typical
and atypical kinase families, we established a proxy phyloge-
netic distance that allows us to define distances between these
two families. We define this proxy phylogenetic distance
through the Levenshtein edit distance, Lev(ka,kb), between

Kirchoff et al. | EMBER: kinase-substrate multi-label prediction bioRχiv | 3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.04.934216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.934216
http://creativecommons.org/licenses/by/4.0/


Fig. 2. EMBER model architecture. For simplification, we show a 6-amino acid motif in conjunction with a 7-word vocabulary. Here, the motif is converted into a one-of-seven
encoding in order to create a proper input vector of dimensions 7 x 6; the implemented model uses a 22-word vocabulary and motifs of length 15. The one-hot encoded
motif is fed into the embedding network, which is a single twin of the pre-trained Siamese network. The figure shows a 2-dimensional output vector for illustrative purposes,
resulting in an output vector 2 x 7. These coordinates serve as an objective measure of the motif’s relationship to every other motif in the dataset. The coordinates and
the one-hot encoded sequences are fed into respective CNNs. The resulting transformed matrices are concatenated and fed into a series of fully-connected layers, and the
network provides a one-hot label vector as output.

kinase-domain sequences, that is, the specific subsequences
of kinases that are directly involved in phosphorylation. This
distance was calculated by performing local alignment, uti-
lizing the BLOSUM62 substitution matrix to weight indels
and substitutions. To calculate overall kinase-family dissim-
ilarity, we took the average of the Levenshtein edit distances
between each kinase domain pair, per family,

d(fa,fb) =

∑
ka∈fa

∑
kb∈fb

Lev(ka,kb)

|fa| · |fb|
(5)

where d(fa,fb) is the dissimilarity metric (distance) between
kinase family a and kinase family b. ka is the kinase-domain
sequence of a kinase belonging to family a, kb is the kinase-
domain sequence of a kinase belonging to family b, and the
Levenshtein distance between kinase domain ka and kinase
domain kb is determined by Lev(ka,kb). This formula was
applied per kinase family pair and stored in an a x b kinase-
family dissimilarity matrix. Here, we also refer to this proxy
metric for evolutionary dissimilarity between kinase families
as the “phylogenetic distance”.

Kinase-family dissimilarity vs. motif-group dissimilarity. For
our (kinase-family dissimilarity)-(motif-group dissimilarity)
correlation, we defined motif-group dissimilarity in the same
manner as kinase-family dissimilarity, finding the Leven-
shtein distance based on local alignment using BLOSUM62.
Then, we sought to find the correlation between kinase-
family dissimilarity and motif-group dissimilarity. There-
fore, calculation of motif-group dissimilarity, per kinase fam-
ily pair, was defined identically as in Equation 5, but based
on the motifs specific to each kinase family, resulting in an a
x b motif-group dissimilarity matrix.

Kinase phylogenetic loss. To leverage evolutionary relation-
ships between kinase families into our predictions, we con-
structed a mean squared error (MSE) loss function weighted
by a kinase phylogenetic metric. Specifically, our weighted
MSE loss per minibatch is defined as:

PMSE(ŷ,y) = 1
n

n∑
i=1

PT
i (yi− ŷi)2, (6)

where n is the size of the mini batch, yi is the one-hot actual
label vector for sample i, ŷi is the predicted label vector for
sample i, and Pi is the phylogenetic weight vector for sample
i given by

Pi =
[
w0,i, ...,w|K|,i

]T
, (7)

with wk,i being the average phylogenetic weight scalar of
label k for sample i:

wk,i = 1
|Li|

∑
j∈Li

Fk,j , (8)

and Fk,j is the vector of family weights of label k. Finally,
Li is the set of indices corresponding to positive labels for
sample i

Li = {i ∈ [0, ...,m−1] : yi = 1} , (9)

where m is the length of the one-hot true label vector for
sample i.
We note that our phylogenetic weights within the MSE
loss performed better than the standard binary cross-entropy
(BCE) loss usually employed for classification tasks. We hy-
pothesize that MSE’s improved performance has to do with
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Fig. 3. Heat map matrix depicting pairwise kinase-domain Levenshtein distances.
The distances were normalized; the yellow end of the color bar represents far dis-
tances, and the pink end of the color bar represents close distances. The distances
were normalized, but the original set of distances included distances between ki-
nase families and themselves, i.e. Lev(PKA,PKA), which are very small. As
a result, all remaining pairwise distances, i.e. Lev(Ka,Kb) where a 6= b were
pushed to distances between 0.65 and 1.00. Note that the distances are unitless.

information lost when applying the BCE loss in comparison
to the MSE loss. Consider the BCE loss equation:

BCE(ŷ,y) =−
∑
i

yi log(ŷi). (10)

Here, any actual negative label (y = 0) will not be integrated
into the loss, thus losing information that may aid in model
training.

Results
Correlation between kinase phylogenetic dissimilarity
and phosphorylated motif dissimilarity. We sought to il-
luminate the relationship between kinase-family dissimilar-
ity and phosphorylated motif-group dissimilarity described in
the Methods section. To this end, we calculated the correla-
tion between average kinase-family dissimilarities and motif-
group dissimilarities based on normalized pairwise alignment
scores. From this, we found a Pearson correlation of 0.667,
indicating a moderate positive relationship between kinase
dissimilarity and that of their respective phosphorylated mo-
tifs. While moderate, this correlation between kinase dissim-
ilarity and motif dissimilarity suggests a potential signal in
the phylogenetic relationships that could be leveraged to im-
prove predictions.
Using our normalized distances as a proxy for phylogenetic
distance (see Methods), the dissimilarity between kinases is
displayed as a heatmap in Figure 3. The Akt and PKC fam-
ily have the greatest similarity (lowest dissimilarity) of all
pairwise comparisons, with PKA-Akt and MAPK-CDK fol-
lowing as the next most similar family pairs. Together, these
results provide motivation to include both motif dissimilarity
and kinase relatedness into the predictive model, as achieved
through our custom phylogenetic loss function described in

Table 2. Precision and recall scores of independent test set predictions, given by
kNN performed on the ProtVec and Siamese embeddings.

Precision Recall
Family ProtVec Siamese ProtVec Siamese
Akt 0.463 0.463 0.500 0.500
CDK 0.933 0.933 0.504 0.504
CK2 0.849 0.911 0.735 0.706
MAPK 0.833 0.846 0.791 0.748
PIKK 0.463 0.964 0.500 0.508
PKA 0.829 0.815 0.574 0.599
PKC 0.744 0.812 0.512 0.562
Src 0.968 0.999 0.737 0.955
average 0.760 0.843 0.607 0.634

Methods, and the effects of which are described later in Re-
sults.

Motif embedding via Siamese network. We also sought
to develop a novel learned representation of motifs using a
Siamese neural network. Siamese networks were first in-
troduced in the early 1990s as a method to solve signature
verification, posed as an image-to-image matching problem
(23). Siamese networks perform metric learning by exploit-
ing the dissimilarity between a pair of data points. Training a
Siamese network effects a function with the goal of produc-
ing a meaningful embedding, capturing semantic similarity
in the form of a distance metric. We hypothesized that in-
corporating high-dimensional vector representations of mo-
tifs (i.e., an embedding) into the input of a classification net-
work would provide more predictive power than methods that
do not utilize such information. In our model, we opted to
use a single bidirectional long short-term memory (LSTM)
layer, followed by fully-connected layers for each twin, as
we found that the bidirectional LSTM architecture provided
superior results when compared to the convolutional neural
networks (CNN) alternative (data not shown). We performed
k-nearest neighbors on both the ProtVec and Siamese embed-
dings of motifs and found that the Siamese embedding pro-
duced better predictions, on average, than the ProtVec em-
bedding (see Table 2). More specifically, the Siamese em-
bedding resulted in an average precision of 0.843 compared
to ProtVec’s 0.760. Likewise, the Siamese embedding had
better recall, with an average recall of 0.634 compared to
ProtVec’s 0.607.
We performed dimensionality reduction for visualization of
the Siamese embeddings using uniform manifold approxi-
mation and projection (UMAP) (25). For our UMAP im-
plementation, we used 200 neighbors, a minimum distance
of 0.1, and Euclidean distance for our metric. The result-
ing 2-dimensional UMAP motif embeddings derived from
the Siamese network are shown in Figure 4. As can be seen,
the motifs phosphorylated by a given kinase family have a
distinctive distribution in the embedding space, with some
distributions being highly unique and with significant over-
lap between other families. More specifically, our Siamese
embedding shows that motifs phosphorylated by either PKC,
PKA, or Akt appear to occupy a similar latent space. Sim-

Kirchoff et al. | EMBER: kinase-substrate multi-label prediction bioRχiv | 5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2020. ; https://doi.org/10.1101/2020.02.04.934216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.934216
http://creativecommons.org/licenses/by/4.0/


ilarly, motifs phosphorylated by either CDK or MAPK also
occupy a similar space. These observations mirror the phylo-
genetic relationships shown in Figure 3, where the MAPK
and CDK families have a relatively short mean evolution-
ary distance between them, and the PKC-PKA distance, even
shorter still. In addition to these overlapping families, we
also observe that Src-phosphorylated motifs form a distinct
cluster. This is likely driven by the fact that Src is the only
tyrosine kinase family among the 8 kinase families we inves-
tigated, with its motifs invariably having a tyrosine (Y) at the
eighth position in the 15-amino acid sequence, compared to
the other 7 families whose motifs have either a serine (S) or
a (T) in this position. This effects a significant sequence dis-
crepancy between Src-phosphorylated motifs and remaining
motifs. The fact that Src-phosphorylated motifs cluster so
precisely serves as a sanity check that our Siamese embed-
ding is capturing sequence (dis)similarity information despite
being trained through comparison of motif-kinase phospho-
rylation events instead of motif sequence comparisons. We
note that the embedding produced by our Siamese network is
quite qualitatively similar to the ProtVec embedding in terms
of these kinase-label clusters indicated in the UMAP projec-
tions.

Prediction of phosphorylation events. Following train-
ing of EMBER with both motif sequences and motif vec-
tor representations as input, we conducted an ablation test
in which we removed the motif vector representation (or co-
ordinate) input along with its associated CNN layers; this
was achieved by applying a dropout rate of 1.00 on the fi-
nal layer of the coordinate associated CNN. This ablation
test allowed us to observe how our novel motif sequence-
coordinate model compares to a canonical deep learning
model whose input consists of solely one-hot encoded motif
sequences (such as in the methods utilized by (17) and (18)).
We also compared EMBER trained on the standard BCE loss
to EMBER trained on our kinase phylogenetic loss. All pre-
dictive models, as described in Table 3, were trained on the
same training set and evaluated on the same independent test
set.
Comparisons between the predictive capability of the models
described here are quantified as area under the ROC curve
(AUROC) and area under the precision-recall curve (mean
precision), and these metrics are presented for each of the
four models in Table 3. As indicated by Table 3, EMBER,
utilizing both sequence and coordinate information, outper-
forms the canonical sequence model in both AUROC and
mean precision. In addition, integration of the phylogenetic
loss provides a generally small but consistent additional boost
in performance, showing the best overall results out of the
three models for AUROC and mean precision. Individual
metric curves for each kinase label, produced by EMBER
trained via the phylogenetic loss, are shown in Figure 5.
A confusion matrix providing greater detail and illustrating
the relative effectiveness of our model for prediction of differ-
ent kinase families is shown in Figure 6. In order to compute
the confusion matrix, we set a prediction threshold of 0.5,
declaring any prediction above 0.5 as "positive" and any pre-

Fig. 4. Siamese embedding of motifs. Each point represents one of the 7535
motifs, and each panel displays kinase-specific phosphorylation patterns, with each
colored point corresponding to a motif in the test set phosphorylated by the specified
kinase. Highlighted points are slightly enlarged in size to enhance readability.
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Fig. 5. Receiver operator curves and precision-recall curves per kinase label, re-
sulting from EMBER.

Fig. 6. Confusion matrix for EMBER predictions on the test set. The numbers
inside each box represent the raw number of predictions per box. The color scale is
based on the ratio of predictions (in the corresponding box) to total predictions, per
label. A lighter color corresponds to a larger ratio of predictions to total predictions.
Therefore, even though (Src, Src = 98) is the lightest color in the matrix, it is not the
highest value in the matrix.

diction equal to or less than 0.5 as "negative". As indicated by
the confusion matrix, the model often confounds motifs that
are phosphorylated by closely related kinase families, for ex-
ample, MAPK and CDK. This is presumably due to the close
phylogenetic relationship between MAPK and CDK, as in-
dicated by their relatively low phylogenetic distance of 0.75
(Figure 3). Furthermore, our Siamese network embeds mo-
tifs of these respective families into the same relative space,
as shown in Figure 4, further illustrating the confounding na-
ture of these motifs. A similar trend is found for motifs phos-
phorylated by PKC, PKA, and Akt. This trio is also shown to
be closely related as indicated by the correlations in Figure 3
and the embeddings in Figure 4.

Discussion
Illuminating the map of kinase-substrate interactions has the
potential to enhance our understanding of basic cellular sig-
naling as well as drive health applications, for example, by
facilitating the development of novel kinase inhibitor-based
therapies that disrupt kinase signaling pathways. Here, we
have presented a deep learning-based approach that aims to
predict which substrates are likely to be phosphorylated by a
specific kinase. In particular, our multi-label approach es-
tablishes a unified model that utilizes all available kinase-
motif data to learn broader structures within the data and im-
prove predictions across all kinase families in tandem. This
approach avoids challenges in hyperparameter tuning inher-
ent in the development of an individual model for each ki-
nase. We believe that this approach will enable continuing
improvement in predictions, as newly generated data describ-
ing any kinase-motif phosphorylation event can assist in im-
proving predictions for all kinases. That is, a kinase-motif
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Table 3. AUROC and mean precision results achieved on the independent test set across classification models. The area under the receiver operating characteristic (AUROC)
and area under the precision-recall curve (mean precision) are presented per kinase family for each classification model. From left to right, we include results for the initial
kNN performed on the Siamese embedding, the ablated sequence-only CNN, EMBER trained using a BCE loss, and EMBER trained using the kinase phylogenetic MSE loss
as described in Methods.

AUROC Mean precision
Family kNN Seq-CNN EMBER (BCE) EMBER (P-MSE) kNN Seq-CNN EMBER (BCE) EMBER (P-MSE)
Akt 0.886 0.892 0.910 0.902 0.460 0.518 0.509 0.510
CDK 0.876 0.900 0.906 0.907 0.488 0.639 0.642 0.658
CK2 0.914 0.915 0.919 0.925 0.694 0.745 0.747 0.745
MAPK 0.904 0.895 0.907 0.916 0.750 0.694 0.764 0.767
PIKK 0.863 0.878 0.892 0.891 0.598 0.645 0.652 0.657
PKA 0.851 0.866 0.865 0.873 0.696 0.724 0.723 0.746
PKC 0.879 0.886 0.891 0.893 0.721 0.738 0.754 0.763
Src 0.999 0.997 0.997 0.997 0.994 0.993 0.993 0.993
micro-average 0.917 0.886 0.921 0.929 0.720 0.652 0.731 0.778
macro-average 0.897 0.904 0.911 0.913 0.675 0.712 0.723 0.730

interaction discovered for PKA will improve the predictions
not just for PKA, but also for Akt, PKC, MAPK, etc. through
the transfer learning capabilities inherent in our multi-label
model.
We showed that incorporation of a learned vector repre-
sentation of motifs, namely the motifs’ coordinates in the
Siamese embedding space, serves to improve performance
over a model that utilizes only one-hot encoded motif se-
quences as input. Not only did the Siamese embedding im-
prove prediction of phosphorylation events through a neu-
ral network architecture, but it also outperformed ProtVec,
a previously developed embedding, in a coordinate-based
kNN task. This improvement over ProtVec was in spite of
the fact that the Siamese network utilized less than 7,000
training sequences of 15 amino acids in length compared to
ProtVec’s 500,000 sequences of approximately 300 amino
acids in average length. The Siamese embedding was further
generated through direct comparison of kinase-motif phos-
phorylation events rather than simply the sequence-derived
data used by ProtVec. Furthermore, ProtVec is a generalized
protein embedding while the Siamese embedding described
here has the potential to be customized. For example, the
use of the Jaccard distance in the Siamese loss allows the
network to be trained on any number of multi-label datasets
such acetylation, methylation, and carbonylation reactions.
We also found that there is a small though meaningful rela-
tionship between the evolutionary distance between kinases
and the motifs they phosphorylate, supporting the concept
that closely related kinases will tend to phosphorylate similar
motifs. When encoded in the form of our phylogenetic loss
function, this relationship was able to slightly improve pre-
diction accuracies. Together, these results suggest that EM-
BER holds significant promise towards the task of illuminat-
ing the currently unknown relationships between kinases and
the substrates they act on.
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