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ABSTRACT  
Increased intraocular pressure (IOP) represents a major risk factor for glaucoma, a 
prevalent eye disease characterized by death of retinal ganglion cells that carry 
information from the eye to the brain; lowering IOP is the only proven treatment strategy 
to delay disease progression.  The main determinant of IOP is the equilibrium between 
production and drainage of aqueous humor, with compromised drainage generally 
viewed as the primary contributor to dangerous IOP elevations.  Drainage occurs 
through two pathways in the anterior segment of the eye, called conventional and 
uveoscleral.  To gain insights into the cell types that comprise these pathways, we used 
high-throughput single cell RNA sequencing (scRNA-seq). From ~24,000 single cell 
transcriptomes, we identified 19 cell types with molecular markers for each and used 
histological methods to localize each type. We then performed similar analyses on four 
organisms used for experimental studies of IOP dynamics and glaucoma: cynomolgus 
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macaque (Macaca fascicularis), rhesus macaque (Macaca mulatta), pig (Sus scrofa) 
and mouse (Mus musculus). Many human cell types had counterparts in these models, 
but differences in cell types and gene expression were evident.  Finally, we identified 
the cell types that express genes implicated in glaucoma in all five species.  Together, 
our results provide foundations for investigating the pathogenesis of glaucoma, and for 
using model systems to assess mechanisms and potential interventions.  
 
INTRODUCTION 
Glaucoma, the leading cause of irreversible blindness worldwide (Quigley and 
Bromann, 2006), results from loss of retinal ganglion cells (RGCs), which carry 
information about the visual world from the eye to the rest of the brain (Weinreb et al., 
2014). Of the major risk factors, including age, race and family history, the only 
modifiable one is intraocular pressure (IOP). Indeed, lowering IOP remains the only 
proven treatment strategy to delay disease progression, with several pharmacological 
and surgical approaches in widespread clinical use.  However, therapeutic advances 
have been limited by incomplete understanding of the tissues that regulate IOP and the 
means by which increased IOP leads to RGC loss.  We address the first of these issues 
here. 
 
There are two major compartments in the eye, an anterior segment containing aqueous 
humor (AH) and a posterior segment containing vitreous humor. The primary 
determinant of IOP is the equilibrium between the production and drainage of AH. AH is 
produced by the ciliary body, circulates within the anterior chamber, and is then drained 
through one of two pathways, conventional (trabecular) or uveoscleral (Costagliola et 
al., 2019) (Figure 1A,B).  In the conventional pathway, AH exits the anterior chamber 
through a lattice-like biological filter called the trabecular meshwork (TM), which is 
composed of collagenous beams lined with specialized TM cells. It then passes through 
a region of cells embedded within a denser extracellular matrix called the 
juxtacanalicular tissue (JCT) prior to being conveyed into a specialized vessel called 
Schlemm canal (SC). From SC, AH exits the eye through a network of collector 
channels (CC) continuous with the venous system. The remaining AH exits the anterior 
chamber via the uveoscleral pathway, draining through the interstices of the ciliary 
muscle, ultimately exiting the eye via the suprachoroidal space and the sclera. In 
principle, increased IOP could result from either excessive production or insufficient 
drainage of AH, but in practice, the latter is more commonly implicated (Grant 1958; 
Braunger et al., 2015; Stamer and Clark, 2016).  
 
The cellular composition of the AH outflow pathways has been studied histologically 
(Alvarado et al., 1984; Tamm, 2009), but because of their small size, intricate 
architecture and tightly invested tissues, it is impractical to dissect individual 
components for molecular analysis. Therefore, most studies of gene expression in these 
tissues have relied on bulk measurements of tissue or cultured cells (Liu et al., 2013; 
Sathiyanathan et al., 2017; Carnes et al., 2018). It has therefore been difficult to assess 
gene expression patterns of individual cell types. To circumvent this limitation, we used 
high throughput single cell RNA sequencing (scRNAseq; Figure 1C). We profiled 
~24,000 single cells from adult human TM and surrounding tissues, applied 
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computational methods to cluster the cells based on their transcriptomes, and used 
histological methods to match the molecularly defined clusters to specific cell types. We 
identified 19 cell types and defined molecular markers for each of them.   
 
We then used this cell atlas in two ways. First, we assessed expression in each cell 
type of genes that have been implicated in glaucoma, either as causal genes with 
Mendelian inheritance or as susceptibility loci identified in genome-wide association 
studies (GWAS) (Wiggs and Pasquale, 2017; Lewis et al.,2017; Choquet et al., 2018; 
Gao et al., 2018; Khawaja et al., 2018; Macgregor et al., 2018; Sears et al., 2019; 
Youngblood et al., 2019; Krumbiegel et al.,2019), and compared expression levels in 
cell types of the outflow pathways to those in retinal RGCs and retinal glia (Yan et al., in 
prep).  We found that genes associated with elevated IOP were more likely to be 
preferentially expressed in the anterior segment, whereas those associated with normal 
tension glaucoma were more likely to be expressed predominantly in the retina. 
 
Second, we used the human atlas as a foundation for assessing four animal models 
frequently used to study AH outflow pathways and glaucoma – Cynomolgus macaque 
(Macaca fascicularis), rhesus macaque (Macaca mulatta), pig (Sus scrofa) and mouse 
(Mus musculus) (Bachmann et al., 2006; Fernandes et al., 2015; Picaud et al.,2019).  
The utility of these models depends in large part on the extent to which their cell types 
and patterns of gene expression in them correspond to those in humans.  We show that 
broad cell classes were generally conserved across all five species and could be 
localized to expected areas within the eye, but that some cell types within classes were 
less well conserved. In some cases, molecular markers specific for human cell types 
were either absent or much less specific for cell types within other species. Disease 
genes in humans, which often demonstrated highly specific expression in outflow 
pathway cell types, mapped well in macaque species but less reliably in the pig and 
mouse. These results may help guide tests of therapeutic strategies in these models.  
 
 
RESULTS 
 
Cell atlas of human trabecular meshwork and aqueous outflow structures 
We used a droplet-based method (Zheng et al., 2017) to obtain 24,023 high quality 
single cell transcriptomes from human trabecular meshwork tissue dissected from 7 
eyes of 6 post-mortem donors (Figure 1D and Table S1). Computational analysis (see 
Methods) divided these cells into 19 clusters (Figure 2A), ranging in frequency from 
0.1-36% of cells profiled (Figure 2C).  Cells in nearly all clusters were obtained from all 
individuals (Figure 2B; C7 and C9 discussed below). We identified selectively 
expressed genes for each cluster (Figure 2D), then used in situ hybridization and 
immunohistochemistry to relate the molecularly defined clusters to cell types defined by 
classical criteria of morphology and location.  
 
Conventional pathway 
The conventional pathway includes the trabecular meshwork, Schlemm canal, collector 
channels and closely associated structures (Figure 1B). The trabecular meshwork 
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includes an anterior, non-filtering, insert region, and a more posterior filtering region, 
which itself is divided into two parts: an inner part comprised of “beam cells” through 
which AH first filters, and an outer part comprised of JCT cells residing adjacent to 
Schlemm canal, which modulates outflow resistance through the generation and 
degradation of extracellular matrix (Acott and Kelley, 2008; Stamer and Clark, 2017).   
 
We identified 8 cell types within the conventional pathway, 3 of which corresponded to 
filtering trabecular meshwork cells. They were characterized and localized as follows:  
 
Clusters 3, 5 and 8 demonstrated high expression levels of MYOC, MGP, and PDPN 
(Figure 3A), markers previously associated with trabecular meshwork, as well as other 
genes such as RARRES1 (Birke et al., 2010; Watanabe et al., 2010; Stamer and Clark, 
2017). We used immunostaining for PDPN and RARRES1 to show that these genes 
were indeed expressed by cells encasing the trabecular beams (Figure 3B-D). Clusters 
3 and 5 could be distinguished by preferential expression of FABP4 and TMEFF2, 
respectively, each of which marked a subset of beam cells, which we call Beam A and 
Beam B (Figure 3H and S1A, J). The FABP4+ Beam A cells and TMEFF2+ Beam B 
cells were intermingled, but with a tendency for the latter to be closer to the JCT. 
Cluster 8 could be distinguished from C3 and C5 by selective expression of CHI3L1 and 
ANGPTL7, both previously suggested to be potential markers for a TM cell 
subpopulation (Liton et al., 2006). In situ hybridization demonstrated localization of cells 
expressing these genes predominantly to the JCT (Figure 3I and S2I). Other DE genes 
in this cluster (C8) included RSPO4, FMOD, and NELL2. Thus, our transcriptomic 
method identifies three cell types comprising the filtering TM: two types of beam cells 
and a distinct JCT cell.   
 
A fourth cluster (C16) corresponded to cells of Schwalbe’s line, which is located in the 
“insert” region of the anterior non-filtering meshwork abutting the peripheral corneal 
endothelium. This cluster had DE genes associated with corneal endothelium (e.g., 
CA3, MGARP, SLC11A2, TGFBI), but some cells shared markers associated with beam 
cells (e.g., MYOC, IGFBP2, NELL2, PTGDS). The candidate TM marker AQP1 was 
preferentially expressed in these non-filtering TM cells, consistent with the observation 
that deletion of AQP1 in mice did not affect outflow facility (Figure 3J) (Zhang et al., 
2002). Although it has been suggested that Schwalbe’s line contains TM precursors 
(Kelley et al., 2009), we detected no DE genes suggestive of “stemness” (Yun et al., 
2016) in this cluster; if present, they may have been too rare to be detected.   
 
Schlemm canal endothelial cells (C13) expressed canonical endothelial markers 
PECAM-1 (CD31), VE-cadherin (CDH5), and claudin-5 (CLDN5) as well as the 
hemostasis genes PLAT (tPA) and VWF (Figure 3A). This cluster also selectively 
expressed the lymphatic endothelial cell markers CCL21 (secondary lymphoid-tissue 
chemokine) and FLT4 (VEGFR3), consistent with the notion that SC is a modified 
lymphatic vessel (Aspelund et al., 2014; Thomson et al., 2014; Ulvmar and Makainin, 
2016). Other lymphatic endothelial markers expressed in SC at lower levels were 
PROX-1 and LYVE-1. Fibronectin-1 (FN1), a TGF-beta inducible ECM gene implicated 
in glaucoma pathogenesis, was differentially expressed in SC endothelium, as were 
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MMRN1 and PLVAP (Herrnberger et al., 2012; Medina-Ortiz et al., 2013). We used the 
markers POSTN and TFF3 (Figure 3K) to distinguish endothelium of the outflow tract 
from the vascular endothelium in the ciliary muscle, which shared many endothelial 
markers (discussed later). Some intermingled cells in Schlemm canal expressed CD31 
and the vascular endothelial marker ALPL (Figure 4C) raising the possibility that this 
structure contains two cell types.   
 
Because blunt dissection of the TM may have left behind components of the 
conventional outflow structures such as the outer wall of Schlemm canal, we collected a 
corneoscleral rim sample, which included all adjacent tissues after blunt dissection 
(Figure 3E). This sample contained an additional vascular cell type (C19) and a 
fibroblastic type (C9) that were poorly represented in the other samples. Using the 
differentially expressed gene ACKR1 (aka DARC), we identified C19 as the endothelium 
of the collector channels downstream from Schlemm Canal (Figure 3G). ACKR1 has 
been identified as a marker to distinguish venular from non-venular endothelial cells, 
which is consistent with the pre/perivenular location of the channels (Thiriot et al.,2017). 
Other DE genes for collector channel cells include SELE, SELP, COL15A1. The other 
new cluster, C9, consisted of matrix fibroblasts. Immunostaining for the selectively 
expressed gene ADH1B showed that C9 cells were present within the sclera located 
adjacent to the TM and outer wall of Schlemm canal (Figure 3F and S2H). This cluster 
was distinguished from TM cell types through its higher level of expression of FBLN2, 
TIMP2, TNXB, and multiple collagen genes (COL1A2, COL6A1, COL6A2, COL6A3, 
COL14A1), markers consistent with previous single cell studies on fibroblasts in other 
organ systems (Xie et al., 2018). However, it also shared a set of ECM and complement 
genes with TM cells (C3,5,8) including DCN, PCOLCE, FBLN1, MFAP4, SERPING1, 
C1S, and C1R, suggesting that these neighboring cells play overlapping roles.  
 
Finally, the corneoscleral rim sample included cells with transcriptomic signatures 
marking them as corneal epithelium based on expression of previously described 
markers such as AQP3, AQP5 and KRT5 (Diehn et al., 2005). These cells will be 
described elsewhere.  
 
Uveoscleral pathway 
AH that does not exit the eye through the conventional pathway instead exits via the 
uveoscleral pathway, draining through the interstices of the ciliary muscle. Seven 
clusters in our dataset comprised components of this pathway. The largest cluster (C1) 
corresponded to ciliary muscle cells (Wiederholt et al., 2000). It expressed markers 
classically associated with well-differentiated smooth muscle, including DES, CNN1, 
MYH11, MYLK and ACTC1 (Figure 4A). We used the DE genes DES and CHRM3 to 
localize this cluster histologically to the longitudinal ciliary muscle (Figure 4B and S1B).  
The high expression levels of ATP2A1/SERCA1, a marker of type II fast twitch skeletal 
muscle, suggest that ciliary muscle may also have characteristics of skeletal muscle, 
although it lacks expression of other classical skeletal muscle markers including MYH1,-
2,-4 and -7.  
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Six additional cell types were found within the ciliary muscle. One, vascular endothelium 
(C12), was associated with intramuscular capillaries. This cluster shared canonical 
endothelial markers with Schlemm canal and collector channels but was distinguished 
from the latter by the presence of ALPL (Figure 4C) and absence of lymphatic markers. 
Similarly, PLVAP, while present in Schlemm canal and collector channels, was not 
expressed in ciliary muscle capillary endothelium, consistent with observations that 
these cells do not have pores (Ishikawa 1962).  
 
C11 comprises contractile pericytes, which express canonical markers PDGFRB, 
MCAM/CD146, and NOTCH3 as well as HIGD1B (Barron et al., 2016). These cells were 
labeled by immunostaining against NDUFA4L2, and were found within the ciliary muscle 
and also wrapped around small vessels (Figure S1C).  
 
A small neuronal cluster expressing CHRNA3, UCHL1, SCG2, and GAP43 was 
identified and localized to the ciliary muscle with immunostaining against CALB2 (aka 
calretinin) and ELAVL4 (aka HuD) (Figure 4D, S1D). These cells presumably 
correspond to the sparse neurons described in histological and ultrastructural studies 
(Tamm et al., 1995; Flugel-Koch et al., 2009). 
 
Two clusters, C2 and C17, expressed markers characteristic of Schwann cells, 
consistent with prior electron microscopy studies showing that Schwann cells ensheath 
axons within ciliary muscle (Ishikawa 1962). Markers common to both clusters included 
PLP1 and LGI4. They were distinguished by differential expression of CDH19 in C2 and 
a set of genes that encode myelin components, such as MBP, MPZ, and PMP2, in C17. 
Immunostaining for CDH19 marked these cells within the ciliary muscle (Figure 4F). We 
conclude that C2 and C17 represent non-myelinating and myelinating Schwann cells, 
respectively.  
 
Finally, C6 comprised uveal melanocytes, demonstrating expression of canonical 
markers MLANA, PMEL, MITF, TRPM1 and TYR. Using the marker MLANA, we 
localized these cells to the ciliary muscle (Figure 4G).  
 
Immune cells  
Our dataset also included 4 types of immune cells: B cells, NK/T cells, mast cells and 
macrophages. The macrophages (C4) were CD163+ and LYVE1+ (Margeta et al., 
2016) and localized predominantly to the trabecular meshwork (Figure 4E). They also 
expressed CD68, CD14, CCL3, CCL4, CXCL8, IL1B, TREM2 and MS4A genes, all of 
which have been associated with macrophages in other tissues. Mast cells were 
localized to the TM using the marker IL1RL1 and also expressed CPA3, RGS13, and 
KIT (Figure S1E). B cells, characterized by expression of CD27, CD79A, IGHM, IGKC, 
MZB1 and JCHAIN were found in only one donor sample but were identified 
histologically in tissues from other donors using the marker CD27 (Figure S1F). NK/T 
cells were identified by expression of the DE genes CD2, CD3D, IL7R, TRAC, GZMA, 
GZMB, and NKG7. 
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Cell-type specific expression patterns of glaucoma-associated disease genes  
To improve understanding of how genes associated with glaucoma contribute to 
disease pathogenesis, we mapped their expression by the 19 cell types in our atlas. We 
included both known monogenic causes (Mendelian genes) and genes implicated as 
risk factors in GWAS studies (Wiggs and Pasquale, 2017; Lewis et al.,2017; Choquet et 
al., 2018; Gao et al., 2018; Khawaja et al., 2018; Macgregor et al., 2018; Sears et al., 
2019; Youngblood et al., 2019; Krumbiegel et al.,2019). Mendelian genes assessed 
were ANGPT1, ANGPT2, CPAMD8, CYP1B1, FOXC1, LOXL1, LTBP2, MYOC, OPTN, 
PITX2, TEK (TIE2), and TBK1. Well-established GWAS loci genes include ARHGEF12, 
ATXN2, CAV1, CAV2, TXNRD2, TMCO1. We also screened an additional 462 genes 
listed in the NHGRI-EBI GWAS Catalog for notable expression patterns (Buniello et al., 
2019). Overall, 189 genes were expressed in a minimum of 10% of cells in any given 
class at a minimum expression level of 0.5 log (TPM+1). Examples are shown in Figure 
5 with a full list in Figure S2. 
 
Most genes implicated in juvenile glaucoma and high IOP (e.g. MYOC, FOXC1, PITX2, 
CYP1B1), were expressed strongly by all three TM cell types (Beam A, Beam B and 
JCT), with no evidence for selective expression by any one of the three (Figure 5A,B). 
Notably, they were all also expressed at high levels in ciliary muscle. EFEMP1 exhibited 
robust cell-type specific expression in beam cells and JCT; in contrast to the first group, 
it was not present in ciliary muscle, and was expressed differentially among the TM 
types, JCT>Beam B>Beam A. In contrast, some genes demonstrated stronger 
expression in non-TM cell types than in TM, including GAS7 (ciliary muscle, Schwann 
cells), KALRN (ciliary muscle), PRSS23 (Schlemm canal, collector channel, vessel 
endothelium and Schwann cells), and CAV1/CAV2 (all three endothelial types, ciliary 
muscle, pericytes and melanocytes). Thus, although defects in the TM are clear 
contributors to elevated IOP, genes that regulate IOP may not act exclusively within the 
TM. 
 
Because glaucoma risk involves susceptibility of RGCs to degeneration as well as 
increased IOP, we also interrogated expression in four relevant retinal cell types: RGCs 
and three glial types with which they interact, astrocytes, Müller glia and microglia 
(Figure 4B). Data for retinal cells are taken from a human retinal cell atlas (see 
Methods and Yan et al., in prep). We found a distinction between genes associated with 
primary open angle glaucoma (POAG) involving elevated IOP, and those with Normal 
Tension Glaucoma (NTG), in which IOP is not elevated. Whereas most genes 
associated with elevated IOP were expressed in cells of the outflow pathways, as 
discussed above, genes more closely associated with NTG, including OPTN, ATXN2, 
TMCO1 and SIX6 were expressed at highest levels in RGCs.  
 
Several susceptibility genes, including CAV1, CAV2 and POU6F2, were expressed at 
high levels in both anterior segment and retina. POU6F2 is a transcription factor that 
has been linked to thinner than average central corneal thickness, a highly heritable trait 
and also a strong risk factor for the development of POAG (Gordon et al., 2002). The 
expression of POU6F2 has been detected in human RCGs (Zhou et al., 1996), mouse 
corneal limbal stem cells, and a subset of mouse RGCs (King et al., 2018). We found 
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preferential expression of POU6F2 in both corneal endothelium (specifically, Schwalbe 
line cells) and RGCs (Figure 5B).  
 
Two genes associated with exfoliation glaucoma (XFG) and the related exfoliation 
syndrome (XFS), LOXL1 and CNTNAP2, demonstrated divergent regional expression 
patterns: the former localized predominantly to TM (beam cells and JCT), whereas the 
latter localized to RGCs. This result offers further insight into XFG as both a primary and 
secondary open angle glaucoma, characterized not only by IOP elevation due to TM 
obstruction but also an inherent susceptibility to glaucomatous optic neuropathy.  
 
Finally, motivated by extensive literature implicating the complement system in ocular 
disease pathogenesis and progression (Clark and Bishop, 2018; Pauly et al., 2019), we 
investigated the expression of complement genes in the anterior segment. We found 
many genes encoding complement factors were selectively expressed in the 
conventional outflow pathway (Figure 5C). For example, expression of C1qa, C1qb and 
C1qc, was observed in resident macrophages; the serine proteases C1R and C1S, the 
C1-inhibitor SERPING1, and other complement genes CFD, CFH, C3 and C7 were 
expressed preferentially in both TM cells and scleral fibroblasts.  
 
Model Species  
Analysis of mechanisms underlying IOP regulation and tests of therapeutic interventions 
rely almost entirely on model species.  Yet, limited information is available on how 
closely cells and molecules of the anterior segment in commonly used models resemble 
those of humans.  To address this issue, we profiled cells dissociated from anterior 
segment tissues of 4 model species:  the Rhesus macaque (M. mulatta, 5158 cells); the 
cynomolgus Macaque (M. fascicularis, 9155 cells); the common swine (S. scrofa, 6709 
cells); and mouse (M. musculus, 5067 cells). These species are among the most 
commonly used for studies on glaucoma: rhesus and cynomolgus monkeys are 
frequently used for basic studies of primate visual physiology and preclinical tests, 
respectively (Picaud et al.,2019); porcine anterior segments are used in aqueous 
outflow studies (Bachmann et al., 2006); and the broadest range of genetically modified 
lines is available in mice (Fernandes et al., 2015).  We used a machine learning 
algorithm (XGBoost; Chen and Guestrin, 2016; see Methods) to find correspondences 
of cell types in the model species with those in humans. While significant conservation 
was noted among certain cell types across species, there were also notable differences. 
 
M. mulatta 
Cells collected from anterior chamber angle structures of M. mulatta clustered into 15 
types (Figure 6A). We identified 3 TM-like clusters in this species, similar to humans 
(Figure 6B). One cluster corresponded to human Beam Cell A (mmC4), sharing 
markers including BMP5 and EDN3; another corresponded to human JCT (mmC10) 
sharing preferential expression of markers including ANGPTL7 and CHI3L1. The third 
cluster (mmC1), which we call Beam Cell X, could not be mapped to a single human 
cluster, but instead shared multiple markers of all human TM types; it was distinguished 
from mmC4 and mmC10 by its preferential expression of CYP1B1 and MGARP. We 
identified types mapping 1:1 to human Schlemm canal (mmC7), vascular endothelium 
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(mmC8), and the uveoscleral outflow pathway including ciliary muscle (mmC2), 
melanocytes (mmC9), myelinating Schwann cells (mmC5) and non-myelinating 
Schwann cells (mmC14) (Figure 6F-K). Two types of pericytes were present (mmC11, 
mmC12) compared to one in humans. Among immune cells, macrophage and NK/T 
clusters were present. B cells, mast cells and neurons were not detected, possibly due 
to their sparsity. Finally, due to targeted dissection of the TM strip in this species, 
collector channel endothelium, corneal epithelium and Schwalbe line cells were not 
recovered.  
 
M. fascicularis  
Cells collected from anterior chamber angle structures of M. fascicularis clustered into 
19 types (Figure 6C). We identified 3 trabecular meshwork-like clusters (mfC2, mfC6, 
mfC15). Of these, one cluster, mfC2, preferentially expressed BMP5 and EDN3 and 
could be confidently mapped to human Beam Cell A (Figure 6D). The other two clusters 
(mfC6 and mfC15) expressed genes observed in multiple human TM clusters including 
MYOC, MGP and ANGPTL7; mfC6 tended to express more genes overlapping with the 
human JCT cluster (e.g. FMOD, CEMIP) and mfC15 a combination of human beam cell, 
fibroblast and Schwalbe line markers (e.g. ANGPTL5, COL6A3, AQP1, and POU3F3) 
(Figure S2A). Three vascular endothelial clusters were identified (mfC11, mfC14, 
mf19); these corresponded to the human capillary endothelium, collector channels and 
Schlemm canal endothelium, respectively. Other clusters mapped closely to cell types 
in the human dataset, including ciliary muscle (mfC4), Schwann cells (mfC5), 
macrophages (mfC3), B cells (mfC20) and NK/T cells (mfC10), melanocytes (mfC8, 
mfC12) and pericytes (mfC13, mfC16). No neurons were identified.  
 
Based on results from human, we profiled cells from one sample that included the 
residual corneoscleral rim in addition to TM strips in hopes of identifying collector 
channel endothelium and matrix fibroblasts.  Indeed, both additional cell types were 
recovered, in addition to multiple epithelial cell types (not described here). Matrix 
fibroblasts appeared during the initial unsupervised clustering as mfC7. Collector 
channel endothelium (mf14) could be identified within the original Schlemm canal 
cluster using a supervised approach based on differential expression patterns identified 
in humans (Figure S2B).  
 
S. scrofa 
Molecular profiling of porcine anterior segment tissue yielded 15 clusters (Figure 7A). 
Two clusters comprised TM cells. One mapped to human beam cell A (ssC1), with 
differential expression of SFRP4 and TMEFF2 in addition to PON1, FMO1 and 
RARRES1. The other mapped to human JCT (ssC3), selectively expressing CCN3, 
FMO3, CEMIP and BMP3 (Figure 7B,C). While expression of MYOC was low across all 
clusters, it was preferentially expressed in ssC1. Both TM clusters expressed CYP1B1, 
MGP, CFH, and NR2F1. 
 
Of 2 endothelial clusters identified, one mapped to human Schlemm Canal (ssC14) and 
the other to capillary endothelium (ssC12). While the pig does not possess a continuous 
SC and instead has more discontinuous vessels referred to as an aqueous plexus, cells 
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lining this structure resemble those of human SC. The SC was distinguished from 
capillary endothelium through differential expression of lymphatic markers CCL21, 
PROX1 and LYVE1, and was histologically validated with immunostaining against 
LYVE1 (Figure 7D).  
 
A ciliary muscle cluster (ssC16) was marked by preferential expression of DES and 
ACTA2, both of which we confirmed with immunostaining; the latter also stained 
pericytes (Figure 7E). NDUFA4L2 was expressed predominantly by pericytes (ssC11) 
and CM but also corneal endothelium and to a lesser degree TM cells (Figure 7F). The 
low yield of ciliary muscle in our dissection can be attributed to the porcine angle 
anatomy, which differs from that of primates in having no clear anatomical connection 
between the ciliary muscle and conventional drainage structures (McMenamin and 
Steptoe, 1991). It is therefore easily excluded during dissection. 
 
Other clusters corresponding to human cell types included myelinating (ssC18) and 
non-myelinating (ssC13) Schwann cells, melanocytes (ssC15), macrophages (ssC4) 
and NK/T cells (ssC10). Five clusters were derived from ocular surface epithelium due 
to a permissive dissection technique in which the TM/corneoscleral rim was dissociated.  
Cell types absent in this collection included Mast cells, B cells and neuronal types.  
 
M. musculus 
The mouse eye is small compared to those of other species profiled, so we dissociated 
the entire anterior segment, including cornea, iris and ciliary body. Presumably for this 
reason, initial clustering by cell class signatures revealed that 8766 of 13833 single cell 
profiles corresponded cells of the ocular surface epithelium. We eliminated these cells 
and re-analyzed the remaining 5067 cells, yielding 20 clusters (Figure 8A).  
 
Although the mouse iridocorneal angle is more compact than that of humans, 
anatomical studies suggest that conventional outflow structures in mice are similar in 
many respects, with trabecular lamellae, distinctive juxtacanalicular tissue, and a 
continuous Schlemm canal (Overby et al., 2014). We identified three candidate TM 
clusters (mC6, mC9, and mC14) through their high levels of Myoc expression. Two of 
these clusters, mC14 and mC6, mapped preferentially to human Beam cell A and JCT, 
respectively, while also demonstrating some ECM expression patterns similar to the 
human corneoscleral fibroblast cluster (Figure 8B). The third candidate TM cluster, 
mC9, despite sharing many markers with fibroblasts (e.g. Pi16, Fbn1, Mfap5, Tnxb, 
Clec3b), was closely related to mC14 and thus tentatively named Beam Cell X. All three 
TM clusters also expressed Mgp and Pdpn similar to human TM cells; the latter was 
confirmed histologically with immunostaining, as was expression of Chil1 (CHI3L1) in 
mC9 and mC14 (Figure 8D-G, Figure S4). Other DE genes within the mouse JCT 
cluster included Nell2, Chad and Tnmd, whereas DE genes within the mouse Beam 
clusters included Sfrp4 (both mC9 and mC14), Tmeff2 (mC14) and Fmo2 (mC14). 
 
Among other outflow cell types, we identified 2 separate vessel clusters (mmC10, 
mmC19) corresponding to vascular and Schlemm canal endothelium, respectively. 
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Postn, which was also differentially expressed within the human Schlemm canal cluster, 
was also expressed in mouse Schlemm canal as well as JCT (Figure 8H,I). 
 
Other clusters mapping to human cell types included corneal endothelium / Schwalbe 
line (mC12), smooth muscle (mC17), pericytes (mC8), Schwann cells (mC18) and uveal 
melanocytes (mC2). (Figure 8J,K) In contrast to our human data, the smooth muscle 
and Schwann cell clusters were small, which can be attributed in large part to the 
diminutive murine accommodative apparatus (Overby et al., 2014). 
 
Owing to the dissection method, the mouse dataset also included a large number of 
cells derived from iris and ciliary body. We tentatively identified these clusters based on 
markers identified in previous studies (Diehn et al., 2005, Janssen et al., 2012); they 
comprised melanocytes, stromal fibroblasts, pigmented epithelium and nonpigmented 
epithelium of the iris and ciliary body.  
 
Conservation of expression patterns among species 
Next, we assessed expression patterns in model species of key genes selectively 
expressed in cell types of the human aqueous humor outflow pathways. In general, 
conservation was striking. 
 
Many markers expressed across all human trabecular meshwork clusters (Figure 9A) 
were conserved in other species (Figure 9A). They included matrix-related genes such 
as DCN and MGP and the retinoic acid-related genes RARRES1 and RBP. However, 
some differences among species were evident. PDPN, a selective marker for TM cells 
in humans, was less selective for these cells in other species. For example, it was also 
found at similar levels in uveal melanocytes in all four non-human species. BMP5, 
expressed in Beam Cell A in human and macaque, was present but less specific in pig 
and absent in mouse. The human JCT marker, CHI3L1, was preferentially expressed in 
JCT clusters in monkey and mouse but was notably absent in pig. 
 
There was also excellent correspondence between markers of for other cell types that 
comprise the conventional pathway. Markers of collector channel, Schlemm canal and 
vascular endothelium markers were generally well conserved among humans and 
macaque species (Figure 9B). Pig and mouse also shared many similar markers; 
however, Schlemm canal in these species tended to demonstrate more prominent 
expression of lymphatic markers than primates. Among species in which Schwalbe line / 
corneal endothelial cells were obtained, there was also good correspondence (Figure 
9C). Of note, whereas the Schwalbe line cluster in humans includes cells at the junction 
between cornea and TM, the corresponding clusters in pig and mouse more likely 
represent a larger proportion of corneal endothelia. Markers of cell types comprising the 
uveoscleral pathway and immune cells were also very well conserved among species 
(Figure 9D,E).  
 
Finally, we analyzed patterns of disease gene expression could be identified in these 
model species (Figure 9F). To facilitate comparison, individual TM cell clusters from 
each species were merged during this analysis, and a threshold was set such that only 
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genes with expression in >10% of cells in a minimum of one cluster were plotted. While 
some genes were consistently expressed in corresponding cell types across species, 
others exhibited significant differences. For example, we noted that the classic anterior 
segment dysgenesis genes FOXC1 and PITX2 were reliably expressed in trabecular 
meshwork cell types across all species. Similarly, MYOC was also expressed in TM 
cells across species; however, in this case, subtle differences in other cell types were 
observed. For example, in human and macaque, MYOC was strongly expressed in both 
TM and ciliary muscle, whereas in pig and mouse it was expressed only in TM. 
Similarly, MYOC was highly expressed in Schwalbe line cells of human but not in the 
corresponding corneal endothelial clusters of pig and mouse (as mentioned above, 
likely because these represent a larger set of corneal endothelia, not just the peripheral 
subset). LOXL1, while expressed in TM clusters of human, pig and mouse, was absent 
in the TM of both Macaque species. KALRN, expressed in human, macaque and mouse 
CM, was absent in pig. Finally, CYP1B1, expressed in TM cells across human, 
macaque and pig, did not meet threshold expression levels in mouse TM. This is 
consistent with prior studies, which have reported CYP1B1 cDNA but not protein 
expression in human adult TM samples, and negative IHC staining in mouse TM 
(Vasilou and Gonzalez, 2008). 
 
DISCUSSION 

We used scRNAseq to profile cells comprising the aqueous humor outflow pathway in 
humans, generating a cell atlas for these tissues and identifying new markers for each 
cell type. We then used the atlas to localize the expression of genes implicated in 
glaucoma. These findings offer new insights into molecular architecture of the TM cells 
and highlight potential roles in IOP homeostasis for non-TM cell types in the anterior 
chamber angle. Finally, we profiled cells in the outflow pathways of four model species 
– M. mulatta, M. fascicularis, S. scrofa, and M. musculus – providing a foundation for 
using these models in studies on regulation and dysregulation of IOP. 

 
Technical issues 
A major challenge in human vision research is that essentially all ocular tissues must be 
obtained either post-mortem or post-enucleation. Furthermore, post-mortem ocular 
tissues of the anterior segment suitable for transplantation are understandably 
prioritized for this purpose over research. In this study, all post-mortem tissues 
sequenced were obtained within ~6 hours of death from a Rapid Autopsy Program 
enrolling predominantly oncology patients. While donors had no documented 
pathological ocular history or clinical evidence of eye disease on examination, they did 
have varying degrees of chronic systemic disease and different levels of antemortem 
exposure to chemotherapeutic and steroid medications and this represents a limitation 
of our study. Furthermore, lack of documented or physically evident ocular pathology 
cannot be taken as evidence that none existed. Since we focused primarily on cell type 
classification in this study, rather than quantitative determination of gene expression 
levels, we believe that the donors’ systemic diseases did not influence the ultimate cell 
atlas. This was further corroborated in two ways: (1) demonstrating that the same cell 
types were obtained from all individuals and (2) performing histological validation on 
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tissues obtained from a wider variety of donors through an eye bank, as well as on 
separate rapid autopsy patients.  
 
Human cell atlas 
In the human AH outflow pathway, we identified 19 major cell types: 8 comprising the 
conventional outflow pathway (including 3 distinct populations within the filtering 
trabecular meshwork), 7 comprising the uveoscleral pathway, and 4 immune cell 
populations.  
 
By histological criteria, the filtering trabecular meshwork has been divided into three 
layers: a uveal layer adjacent to the anterior chamber, a juxtacanalicular layer adjacent 
to Schlemm canal, and a corneoscleral layer in between (Tamm, 2009; Stamer and 
Clark, 2017). The JCT cells in our dataset clearly localized closest to Schlemm canal, 
with the Beam A and B cells localizing to the other two layers. It is tempting to assign 
Beam A and B to uveal and corneoscleral layers, respectively, but our histological 
analysis suggests that they are in fact intermingled.  
 
The lymphatic marker podoplanin (PDPN, aka D2-40) emerged as a robust marker for 
all human TM cell types (clusters 3, 5, and 8) consistent with previous studies (Birke et 
al., 2010, Watanabe et al., 2010). Along with CCL2 (a chemoattractant for monocytes) 
and VCAM1 (a mediator of immune cell migration), there was a marked specificity of 
PDPN expression among cells of the conventional pathway as compared to the 
uveoscleral pathway, suggesting that the former acts as an immunological “sink” guiding 
antigen presenting cells and other immune cells toward SC, the venous system, and 
ultimately toward the spleen (Aspelund et al., 2014). Consistent with this idea, Schlemm 
canal expresses markers of lymphatic vessels (e.g., CCL21 and FLT4/VEGFR3, 
whereas collector channels express venular markers (e.g. ACKR1).   
 
Model species 
In comparing the cellular composition of human AH outflow pathways to those of 
commonly used models, we documented excellent correspondence for many cell types 
across species. Ciliary muscle cells, pericytes, melanocytes, and Schwann cells were 
present in all species and demonstrated shared expression of canonical markers. 
Corneal endothelium was identified in pig and mouse, but in neither macaque species, 
likely due to our targeted dissection technique. Two or more types of vascular 
endothelium, defined as PECAM1+ TIE1+ clusters, were also present in each species, 
and could be assigned either to Schlemm canal or other vasculature. Among immune 
cells, Lyve1+ CD163+ CD68+ macrophages were also present in all species; other 
immune cells were identified in each species with less correlation, perhaps due to their 
relatively sparse numbers. Similarly, neurons were limited to the human dataset most 
likely due to their low numbers.  
 
On the other hand, while trabecular meshwork cells could be identified in each species, 
they demonstrated substantial variability across species. Three TM types –two beam 
cell types and one JCT cell type – were present in all three primates, but they failed to 
map 1:1 across species. Beam A and JCT cells were present in all three species, but 
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the second beam type, which we call Beam X, appeared to be intermediate in 
expression pattern between human Beam A and Beam B. Moreover, we identified only 
one beam cell type in pig and mouse, although it is possible that further analysis with 
increased sample size would allow a subdivision of this cluster. Some DE markers, such 
as PDPN, RARRES1, CHI3L1, and ANGPTL7, which were selectively expressed by 
beam and/or JCT cells in human tissue, were either absent in the model species, or 
nonspecific. Others were conserved across species, including MYOC, EDN3, and 
RBP4. Interestingly, PDPN did not demonstrate the same specificity in any of our model 
species, suggesting that this may be a human-specific feature.  
 
Genes involved in the retinoic acid pathway were expressed in the conventional outflow 
tract across species. They included RARRES1, RARRES2, RBP4, FABP5, ADH1B and 
the glaucoma-associated disease gene CYP1B1 (Figure S2K,L), which converts retinol 
to retinoic acid (Chambers et al., 2007). In addition to a possible role for retinoic acid in 
maintaining a tolerogenic microenvironment within the anterior chamber, retinoic acid 
response genes have been implicated as potentially important mediators in the steroid-
induced upregulation of MYOC (Prat et al., 2017).  
 
Glaucoma 
Glaucoma is a phenotypically heterogeneous disease with traits dictated by complex 
interactions among age, environment and genes. Examination of cell-type specific 
expression patterns of both Mendelian genes and GWAS susceptibility loci revealed 
multiple expression patterns, of which we note four groups. First, several IOP-
associated disease genes were selectively expressed by TM cell types (e.g., CYP1B1 
and EFEMP1), supporting their potential contribution to function and or/dysfunction of 
this tissue. Second, others were expressed not only by TM but also cells of the 
uveoscleral pathway (e.g., MYOC, PITX2, and FOXC1).  Third, a few genes implicated 
in high IOP mapped selectively to cells of the uveoscleral pathway (e.g., KALRN). 
Together, these results may indicate an integral contribution of uveoscleral pathway to 
disorders of IOP. Finally, some genes were expressed by RGCs, often in addition to TM 
cells. For example, TMCO1, while clearly expressed in the anterior segment outflow 
pathways, also demonstrated robust expression in RGCs, consistent with reports 
suggesting it to be linked more closely with inherent RGC susceptibility independent of 
IOP (Scheetz et al., 2016). 
 
Although TM cells have been shown to exhibit phagocytic abilities, it is possible that 
resident macrophages in the conventional outflow pathway also contribute to the 
phagocytic workload at this site of filtration and that their stimulation or recruitment to 
the TM may serve lower IOP, as has been suggested to occur after Selective Laser 
Trabeculoplasty (SLT) (Alvarado et al., 2010). Similarly, dysfunctional macrophages 
may contribute to elevated IOP in some cases of secondary open-angle glaucoma 
(Hamanaka et al., 2002).  
 
MATERIALS & METHODS 
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Tissue Acquisition. Human ocular tissues used for sequencing, immunohistochemistry 
and in situ hybridization were obtained from Massachusetts General Hospital in 
collaboration with the Rapid Autopsy Program, Susan Eid Tumor Heterogeneity 
Initiative. Eyes were collected a median of 6 hours postmortem (range 3-14hrs; see 
Table S1). The whole globe was immediately transported to the lab in a humid chamber 
on ice. Hemisection was performed at the pars plana and the anterior segment was 
then placed in Ames medium equilibrated with 95% O2/5% CO2. For sequencing, the 
following dissection was performed: after isolation of the anterior segment, the lens, iris, 
and ciliary body were removed with a gentle peeling method. The corneoscleral button 
was hemisected and a small wedge was set aside for fixation. Approximately 9 clock 
hours (or 270 degrees) of TM tissue was peeled from the scleral sulcus of the remaining 
tissue with jewelers' forceps. A permissive dissection technique allowed for adjacent 
tissue from the ciliary muscle to be incorporated into the collection tube if it was 
liberated in conjunction with the TM strip.  
 
Other human corneoscleral buttons used for IHC and in situ hybridization were provided 
by the Lions Vision Gift (Portland, OR) and were collected <16 hr postmortem and fixed 
in ice-cold 4% PFA. No ocular disease was reported in any of the human donors and no 
abnormalities were noted during microdissection. Donor details are provided in Table 
S1. 
 
Non-human primate eyes were obtained from macaques 4 to 10 years of age that had 
reached the end of unrelated studies at supplying institutions. No ocular or visual 
abnormalities were noted. Data presented in this manuscript did not covary with any 
treatment that had been applied to the animals. For sequencing, two eyes from one 
female crab-eating macaque (Macaca fascicularis, 6 years of age) were used, and two 
eyes from one male rhesus macaque (Macaca mulatta). Eyes were collected either pre-
mortem under deep anesthesia or post-mortem (≤ 45 min), after which a rapid 
hemisection was performed and the anterior immediately placed in ice-cold Ames 
solution (Sigma-Aldrich; equilibrated with 95% O2/5% CO2 for all use), where they were 
stored before experimentation. Experiments described below commenced within 6 
hours of death.   
Porcine (sus scrofa) eyes were obtained from a local abattoir, transported back to the 
lab in a humid chamber on ice, and dissected as above. For sequencing, 2 eyes from 2 
individual pigs were used. Due to the porcine iridocorneal anatomy, TM strips were not 
dissected, and instead, corneoscleral wedges were trimmed and digested in toto.  
 
Mouse eyes were collected from male and female 12-week-old CD1 mice obtained from 
Charles River Laboratories. After euthanasia, eyes were enucleated and transferred to 
Ames medium equilibrated with 95% O2/5% CO2. The anterior segment was dissected 
from the posterior portion of the eye with microscissors, and the lens was gently 
removed with forceps. The entire anterior segment, including cornea, iris, ciliary body, 
and the TM was digested.  
 
Single cell isolation. Tissues were digested enzymatically for 30 minutes at 37°C with 
papain (Worthington, LS003126) 20 units/mL in Ames. Following digestion, the tissues 
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were triturated into single cell suspensions with 0.15% ovomucoid and 0.04% bovine 
serum albumin (BSA) in Ames solution and filtered through a 40 um strainer. Single cell 
suspensions were diluted at a concentration of 500-1800 cells/µL in 0.04% non-
acetylated BSA/Ames for loading into 10X Chromium Single Cell Chips. (Zheng et al., 
2017). Data were obtained using both V2 and V3 kits and specified in Table S1. 
 
Droplet-based scRNA-seq. Single cell libraries were generated with either Chromium 
3’ v2 or V3 platform (10X Genomics, Pleasanton, CA) following the manufacturer’s 
protocol. Briefly, single cells were partitioned into Gel bead in Emulsion (GEMs) in the 
GemCode instrument with cell lysis and barcoded reverse transcription of RNA, 
followed by amplification, shearing and 5’ adaptor and sample index attachment. On 
average, approximately 10,000 single cells were loaded on each channel and 
approximately 6,000 cells were recovered. Libraries were sequenced on Illumina HiSeq 
2500. 
 
Histology. Corneoscleral wedges were fixed in 4% PFA for 2-24 hr, transferred to PBS, 
sunk in 30% sucrose overnight, then embedded in tissue freezing medium and mounted 
onto poly-d-lysine coated slides in 20 μm meridional sections with ProLong Gold 
Antifade (Invitrogen). For IHC, slides were incubated for 1 hr in protein block, overnight 
with primary antibodies, and 2 hr with secondary antibodies. Initial block and secondary 
antibody incubation were done at room temperature and primary antibody incubation at 
4°C. Single molecule fluorescent in situ hybridization was performed using commercially 
available RNAScope Multiplex Fluorescent Assay V2 (Advanced Cell Diagnostics, 
Newark, CA). Briefly, slides were baked at 60°C for 30 minutes and incubated for 10 
minutes at RT with hydrogen peroxide. Two Protease III incubations were performed 
(30min, then 15 min). Probe hybridization and subsequent steps were per standard 
manufacturer protocol. Antibodies and in situ probes are catalogued in Table S2. 
 
Image acquisition, processing and analysis. Images were acquired on Zeiss LSM 
710 confocal microscopes with 405, 488-515, 568, and 647 nm lasers, processed using 
Zeiss ZEN software suites, and analyzed using ImageJ (NIH). Images were acquired 
with 20X, 40X or 100X oil lens at the resolution of 1024X1024 pixels, a step size of 1.0 
μm, and 90μm pinhole size.  
 
Computational Methods. 
Clustering analysis: Sequencing data was demultiplexed and aligned using the 
cellranger (10X Genomics) mkfastq and count functions respectively (cellranger version 
2 for samples collected with v2 kit and version 3 for samples collected with v3 kit). 
Reads were aligned to the following reference genome: Human samples-GRCh38, 
Macaca Mulatta-Mmul8, Macaca Fascicularis-MacFas5 with our augmented 
transcriptome file (Peng et al, 2019), Pig-Sscrofa11, Mouse-mm10. The number of 
genes/transcripts detected per cell was plotted for every sample and a threshold was 
chosen based on their distributions for each species. Cells with fewer than 600 genes 
were excluded from further analysis for primates and pig; the threshold for mouse was 
1000 genes/cell.  
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The analysis pipeline follows methods described by Peng et al. (2019). (1) For each 
species, the UMI count matrix was normalized by the total number of UMI counts for 
each cell and multiplied by a scale factor, the median UMI counts of the group to correct 
library size differences. The normalized UMI count matrix was then log transformed 
after adding 1. (2) High Variable Genes (HVG) were identified using method described 
in Pandey et al., 2018. For every gene, the mean (μ) and coefficient of variation (CV) of 
UMI counts among cells within each group was calculated. The excess CV (eCV) was 
measured by subtracting the predicted value from a Poisson-Gamma mixture based null 
model of CV v.s. μ. HVGs were defined as genes whose eCV> [mean of eCV] + 1.3*[SD 
of eCV]. (3) Batch correction was performed on the expression matrix of HVGs using 
linear regression model adapted from the ‘RegressOut’ function in the ‘Seurat’ R 
package. (4) Principal Component analysis (PCA) was performed on the batch-
corrected expression matrix of the HVGs. The top 90 PCs were calculated using the 
‘irlba’ R package on centered and scaled data. Statistically significant PCs were 
estimated based on the Tracy-Widom distribution (Patterson et. al., 2006). The PCA-
reduced data was projected to 2D using t-distributed stochastic neighbor embedding (t-
SNE) for visualization. (5) Unsupervised Louvain-Jaccard clustering method was 
applied to cells in the PCA reduced dimensional space of the significant PCs (Shekhar 
et al, 2016). (6) Clusters formed by either low quality cells or doublets were removed 
before further analysis. The former could be identified with lower median number of 
genes/transcripts per cell, higher proportion of reads from mitochondrial genes, and lack 
of uniquely expressed genes. The latter could be identified as overall higher number of 
genes/transcripts than other clusters, expression of marker genes from multiple types, 
and also lack of uniquely expressed genes. (7) To assess the overall relationships 
among clusters, a dendrogram was built in each species using normalized expression 
matrix of HVGs. (8) To correct for potential over-clustering due to batch effect, or the 
lack of computation power in distinguishing types, the following steps were taken. To 
address the first issue, cluster pairs that mapped closest to each other on the 
dendrogram were tested, and they were merged iteratively until sufficient differences 
were found between the current cluster pair ( ≥5 DE genes enriched both ways, log fold-
change >1.2, adjusted p value < 0.001; statistical testing was performed using the 
‘MAST’ R package). After each merge, a new dendrogram was built for testing the new 
pair. To address the second issue, sub-clustering was performed on each cluster with 
newly defined HVGs among cells and using previous described testing method for 
verification. In most cases, result from sub-clustering represented over-clustering; 
however, in some cases, we were able to distinguish real types (i.e. the human 
Schlemm canal and collector channel cells were grouped as one cluster at the initial 
clustering, but split into two at the sub-clustering step). In other cases, the lack of 
clustering power was due to limited sample size, as in all the species we analyzed 
except the human dataset. Referring to the cross species mapping (described below) to 
first spot the cluster as a potential cell type mixture in non-human dataset, we used 
supervised methods to separate them with type markers found in human. For example,  
the Schlemm canal and collector channel in M. fascicularis were initially clustered as a 
single type using unsupervised methods, but the human type markers were present in 
separate cell populations (FigureS2B), allowing us to split the cluster. Subsequently, 
criteria described above were applied to verify the new clusters. (9) Due to differences 
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in the dissection method, we obtained a large amount of corneal epithelium from our 
mouse collection. The presence of these cells saturated the dynamic range in feature 
space and weakened our computational power in classification of other types; therefore 
the majority of corneal epithelium was removed at the initial analysis.  
 
Cross species comparison: To evaluate the transcriptomic similarity between human 
and other model species, we applied a boosted-tree based machine learning algorithm 
XGBoost (Chen and Guestrin, 2016) using the ‘xgboost’ R package. We used the 
human dataset for training because it was the largest. Classifiers were trained on 80% 
of the human dataset using the HVGs shared between human and each of the other 
species. The remaining 20% was used as a validation dataset to evaluate the accuracy 
of the classifier; for all four classifiers built, the validation accuracy was >95%. Data 
from non-human species were used as the testing dataset whereby cells that get more 
than a 16% vote (calculated from the equation below) for the ‘winner’ type are assigned 
with human type identity, while those failing to pass the criteria are assigned as 
‘unmapped’.  
The criteria is calculated as promotion of winning votes ≥: 3 × #

#	&'	()*+,
, where # of types 

in the human dataset is 19.  In some cases, a single cluster in the testing dataset might 
map to two types in the training dataset, and this serves as a clue of potential cell type 
mixture as mentioned previously. Further sub-clustering and verification was performed 
accordingly.  
 
Data availability: The accession number for the raw and unprocessed data files 
reported in this paper is GEO: GSExxxxxx.(in process). Data can be visualized at the 
Broad Institute’s Single Cell Portal at https://portals.broadinstitute.org/single_cell. 
 
 
Study Approval. All animal procedures performed in this study were conducted in 
compliance with the Association for Research in Vision and Ophthalmology’s Statement 
for the Use of Animals in Ophthalmic and Vision Research and guidelines for the care 
and use of animals and human subjects at Harvard University and Partners Healthcare. 
Acquisition and use of human tissue was approved by the Human Study Subject 
Committees (DFCI Protocol Number: 13-416 and MEE - NHSR Protocol Number 18-
034H). Acquisition and use of non-human tissue was approved by the Institutional 
Animal Care and Use Committee (IACUC) at Harvard University. 
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FIGURE LEGENDS 
 
Figure 1. Human aqueous humor outflow pathways 
A Diagram of the anterior segment of the human eye, which includes the cornea, iris, 
ciliary body and lens. Aqueous humor is secreted by the ciliary body (CB) and circulates 
(blue arrows) within the anterior chamber prior to draining from the eye through one of 
two pathways located within the iridocorneal angle, delineated here by the boxed area.   
B Enlarged view of the iridocorneal angle, boxed area in (A), highlighting two outflow 
pathways for aqueous humor (AH). In the conventional pathway, AH traverses the 
trabecular meshwork (TM), first through the uveal meshwork (orange highlight), then the 
corneoscleral meshwork (light green highlight) and finally the juxtacanalicular tissue 
(JCT, dark green highlight) prior to entering Schlemm canal (SC). AH exits the SC via 
collector channels (CC) that empty into aqueous veins (AV) that themselves merge with 
episcleral veins (EV). Non-filtering TM is located at the insert region (yellow highlight), 
referred to as Schwalbe line (SL), which abuts the corneal endothelium.  In the 
uveoscleral pathway, AH exits via the interstices of the ciliary muscle (CM).  SS, Scleral 
spur.  
C Workflow for obtaining single cell transcriptomes. 
D Dissection procedure. Left: anterior segment following dissection at the pars plana, 
posterior view.  Middle: blunt dissection of TM strip following removal of lens, iris and 
ciliary body. Right: Strip of isolated TM.  
 
Figure 2. Cell types and gene expression by cells of the human outflow pathways 
A Clustering of 24,023 single-cell expression profiles from human trabecular meshwork 
and associated structures visualized by t-distributed stochastic neighbor embedding (t-
SNE). Arbitrary colors are used to distinguish clusters deemed to be distinct by 
unsupervised analysis. Clusters were numbered according to relative size, with 1 being 
the largest.  
B tSNE plot shown in Figure 2A, but with cells colored by sample of origin. Note that 
corneal epithelial cells (C7) and fibroblasts (C9) were derived primarily from the rim 
sample (H9).  
C Frequency of each cell type; numbering as in A and D 
D Violin plots showing expression of genes selectively expressed by cells of each type. 
Dendrogram on left shows transcriptional relationships among cell types.  
K-Epi, corneal epithelium; JCT, juxtacanalicular tissue; CM, ciliary muscle; Mø, 
macrophage. 
 
 
Figure 3. Cells of the Human Conventional Outflow Pathway  
A Dot plot showing genes selectively expressed in cells of the conventional outflow 
pathway.  In this and subsequent figures, the size of each circle is proportional to the 
percentage of cells expressing the gene, the color depicts the average normalized 
transcript count in expressing cells and abbreviations are as in Fig. 1D.  
B Labeled meridional section of a human corneoscleral rim visualized using 
autofluorescence, demonstrates outflow anatomy at the iridocorneal angle visualized 
after removal of iris and ciliary body. Dashed line indicates scleral spur.  
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C Trabecular meshwork (beam & JCT) cells immunostained with PDPN (green) and 
RARRES1 (red). SC, Schlemm’s canal 
D Higher magnification of region bracketed in C. 
E Corneoscleral rim section demonstrates the tissue left behind after TM dissection. No 
cells in this region are positive for PDPN (green) or PECAM1/CD31 (red), indicating 
successful removal of relevant structures (TM and SC) during dissection protocol. 
F Scleral fibroblasts identified in the corneoscleral rim collection immunostained with 
ADH1B 
G Immunostaining against PECAM1/CD31 (green) highlights Schlemm canal, collector 
channels, and ciliary muscle capillaries, while ACKR1/DARC co-stains only the collector 
channels. Same field as B. 
H Fluorescent RNA in situ hybridization against TMEFF2 (green) and PPPR1B1 (red) 
highlights beam cells. 
I Fluorescent RNA in situ hybridization against ANGPTL7 (green) and CHI3L1 (red) 
highlights cells in the JCT. 
J Schwalbe line cells at the junction of TM and corneal endothelium co-stain with PDPN 
(green) and AQP1 (red). 
K Fluorescent RNA in situ hybridization against POSTN and TFF3 highlights Schlemm 
canal endothelium.  
Bars show 50µm. 
 
Figure 4. Cells of the Human Uveoscleral Pathway  
A Dot plot showing genes selectively expressed in cells of the uveoscleral outflow 
pathway. 
B Smooth muscle cells immunostained with DES (red) and melanocytes stained with 
MLANA (green) in ciliary muscle.  
C Capillaries in the ciliary muscle immunostained with PECAM1 (green) and ALPL 
(red). Occasional PECAM1+ALPL+ staining was also noted in Schlemm Canal (SC) 
suggesting that this structure contains more than one cell type. 
D Immunostaining against LYVE1 (green) and CD27 (red) identify macrophages in the 
TM. 
E Immunostaining against CALB2 (red) highlight intrinsic neurons of the ciliary muscle. 
F Schwann cells in the ciliary muscle stained with CDH19 (red), amidst ciliary muscle 
cells stained for desmin (DES; green). 
G Higher magnification of area bracketed in B demonstrates MLANA-positive 
melanocyte (green). 
Bars show 50µm in B-C, and 25µm in D-G. 
 
Figure 5. Human disease genes 
A,B. Cell-type specific expression of several genes implicated in glaucoma, as 
illustrated by tSNE (A; arranged as in Fig. 2A) and dot plot (B). B also includes data 
from a retinal cell atlas, showing expression in RGCs and three types of retinal glia.   
NTG, Normal Tension Glaucoma.  
C. Dot plot showing cell-type specific expression of complement genes. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933911doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Figure 6. Cell types and gene expression by cells of the outflow pathways in 2 
Macaque Species (Mulatta and Fascicularis)  
A tSNE plot showing 15 cell types derived from TM and associated structures of M. 
mulatta 
B tSNE plot showing 19 cell types derived from TM and associated structures of M. 
fascicularis 
C Transcriptional correspondence between human and M. mulatta cell types, 
summarized as a ‘‘confusion matrix.’’ In this and subsequent figures, the size of the 
circle and its intensity indicate the percentage of cells of a given cluster from the model 
species (column) assigned to a corresponding human cluster (row) by a classification 
algorithm trained on the human cells.  
D Transcriptional correspondence between human and M. fascicularis, shown as in C.    
E Violin plot showing examples of genes selectively expressed by each cell type in M. 
mulatta. 
F-K Histological localization of cluster markers in meridional sections of iridocorneal 
angles from M. fascicularis confirms identities of computationally derived cell types. 
PDPN stains trabecular beams (F, H) but also melanocytes within the ciliary muscle 
(CM) identified through co-staining with MLANA (K); Schlemm canal is outlined with 
PECAM1+ immunostaining whereas CM is highlighted with immunostaining against 
DES (G); CDH19 highlights Schwann cells in CM (F,I). Fluorescent RNA in situ 
hybridization against RARRES1 (green) and CYP1B1 (red) highlights cells in the TM 
(Beams > JCT). 
Bars show 50µm in F-H, J and K, and 25µm in I. 
 
 
Figure 7. Cell types and gene expression by cells of the outflow pathways in the 
pig  
A tSNE plot showing 18 cell types derived from TM and associated structures of pig. 
B Transcriptional correspondence between human and pig cell types, shown as in Fig. 
6C.  
C Violin plot showing examples of genes selectively expressed by each cell type in pig 
D Immunostaining against PECAM1 (green) highlights both the Aqueous plexus (AqP) 
and a downstream collector channel/scleral vessel whereas LYVE1 stains only the AqP. 
E Immunostaining against ACTA2 (green) highlights ciliary muscle and pericytes 
(asterisk). 
F. Immunostaining against NDUFA4L2 (green) is strongest at the border of iris vessels, 
indicating pericytes, but also shows weak staining in the TM and corneal endothelium, 
consistent with transcriptional data.  
Bars show 50µm 
 
Figure 8. Cell types and gene expression by cells of the outflow pathways in the 
mouse  
A tSNE plot showing 20 cell types derived from TM and associated structure of mouse. 
B Transcriptional correspondence between human and mouse cell types, shown as in 
Fig. 6C. 
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C Violin plot showing examples of genes selectively expressed by each cell type in 
mouse.  
D-G Pdpn is present in multiple cell types including pigmented and nonpigmented 
epithelium of the iris and CB as well as a subset of TM cells, K Endo, and K Epi, 
whereas Chil1 (ortholog to CHI3L1 in humans) stains a different subset of TM cells and 
to a lesser extent cells within the CB. E-G Higher magnification of boxed area. 
H-I. Immunostaining against Postn (green), a secreted protein, highlights Schlemm 
canal and JCT cells.  Pecam1 (red) highlights SC as well as vascular endothelial 
clusters.  
J-K Immunostaining against Aqp1 highlights corneal clusters (K stroma, K Endo) most 
vividly, in addition to iris, ciliary body and TM cells.  
Bars show 50µm 
 
Figure 9. Comparison of gene expression across species 
A-E Key genes are shown in dot plots for cell types comprising the trabecular meshwork 
(A), vascular endothelium (B), Schwalbe line / Corneal Endothelium (C) and uveoscleral 
outflow pathway (D) as well as immune cells (E). 
F Heat map showing expression of genes implicated in human POAG in aqueous 
outflow cells of human (replotted from Fig S1) and model species.  
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