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Abstract
Resolving genomes at haplotype level is crucial for understanding the evolutionary
history of polyploid species and for designing advanced breeding strategies. As a
highly complex computational problem, polyploid phasing still presents consider-
able challenges, especially in regions of collapsing haplotypes.
We present WHATSHAP POLYPHASE, a novel two-stage approach that addresses

these challenges by (i) clustering reads using a position-dependent scoring function
and (ii) threading the haplotypes through the clusters by dynamic programming.
We demonstrate on a simulated data set that this results in accurate haplotypes with
switch error rates that are around three times lower than those obtainable by the
current state-of-the-art and even around seven times lower in regions of collapsing
haplotypes. Using a real data set comprising long and short read tetraploid potato
sequencing data we show that WHATSHAP POLYPHASE is able to phase the majority
of the potato genes a�er error correction, which enables the assembly of local
genomic regions of interest at haplotype level. Our algorithm is implemented as
part of the widely used open source tool WhatsHap and ready to be included in
production settings.

Keywords: polyploidy; phasing; haplotypes; cluster editing; high-throughput
nucleotide sequencing; plant science; sequence analysis

Background
Polyploid genomes have more than two homologous sets of chromosomes. Poly-
ploidy is common tomany plant species, including important food crops like potato
(Solanum tuberosum), bread wheat (Triticum aestivum) and durum wheat (Triticum
durum). Resolving polyploid genomes at the haplotype level, i.e., assembling the
sequences of alleles residing on the same chromosome, is crucial for understand-
ing the evolutionary history of polyploid species: Evolutionary events, such as
whole genome duplications, can be traced back and reveal the ancestry of polyploid
organisms [1]. Beyond that, knowledge of haplotypes is key for advanced breed-
ing strategies or genome engineering, especially for improving yield quality in
important crop species [1, 2, 3].
In this work we focus on phasing from long read information. Plant genomes

typically exhibit many highly repetitive regions and frequently underwent struc-
tural variation events, rendering alignments from short reads alone problematic.
Although long reads su�er from a higher number of sequencing errors, they align
better to the reference genome and span more variant positions. Consequently,
there are larger overlaps between read pairs, which is the key information formolec-
ular phasing methods. This is especially important for polyploid phasing, where
the assignment must distinguish not only between two but between k haplotypes.
While phasing diploid genomes using long reads has become a routine step, poly-

ploid phasing still presents considerable challenges [4]. Higher ploidy increases
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Figure 1:MECmodel in collapsed regions. Frequently, in polyploid organisms, two
or more haplotypes are locally identical on larger stretches of heterozygous sites,
as shown by the pink and blue haplotype sequences in the le� picture. The MEC
model favors assigning the reads of two haplotypes to only one partition, because
the spare partition can be used to collect noisy reads, which gives a lower MEC
score but also results in unbalanced and likely wrong partitions.

the complexity of the underlying computational problem: In the diploid case, as-
sembling one haplotype over all heterozygous variants directly determines the
complementary second haplotype. For genomes of higher ploidy, this is not the
case. In addition, polyploid genomes usually exhibit larger regions of two or more
identical haplotypes. The Minimum Error Correction (MEC) model [5], which is the
most common and successful formalization for diploid haplotype assembly from
sequence reads, is not suited to distinguish between locally identical haplotypes. It
aims to minimize the number of corrections that are applied to the reads in order
to partition them into distinct sets such that reads from the same partition belong
to the same haplotype. The MEC score is the minimum number of necessary cor-
rections. In theMECmodel it does not pay o� to assign identical haplotypes. Hence,
in regions of locally similar haplotypes, this model is likely to result in incorrect
haplotype assignments, see Figure 1. Consequently, MEC-based approaches for
polyploid phasing struggle in such regions and, beyond that, face the challenge
that dynamic programming techniques for MEC [6] quickly become infeasible in
practice.

Related work
Throughout the last years, a few polyploid phasing methods have already been pro-
posed. In 2013, Aguiar et al. were the �rst to introduce a theoretical framework for
polyploid haplotype assembly with the HapCompass [7, 8] model, which is based on
spanning trees and uses the MinimumWeighted Edge Removal (MWER) criterion.
In 2014, Berger et al. introduced HapTree [9], a maximum likelihood approach to
discover themost likely haplotypes given aligned read data. To address the problem
of computational complexity, the most likely haplotypes are assembled for a small
set of SNP positions �rst and then iteratively extended, keeping only the most likely
sub-solutions in each step. HapTree was shown to outperform HapCompass in
terms of accuracy and runtime [9, 10]. Together with SDhaP [11], a semi-de�nite
programming approach based on an approximate MEC criterion, HapCompass
and HapTree were evaluated and compared to each other in a simulation study
conducted by Motazedi et al. [10] in 2017. The study, where simulated data of the
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tetraploid potato genome asmodel organismwas used, revealed that, out of the com-
pared methods, HapTree provided the best results in terms of precision. However,
it also showed the highest time and memory requirements and o�en su�ered from
low recall. SDhaP showed low performance in regions of locally similar haplotypes,
which is probably related to the underlying MEC model. For ploidies above six,
HapCompass was the only implementation to remain stable, although it showed
an overall poor performance. As a result, none of the methods came out to be
applicable for practical use due to computational ine�ciency that prohibits scaling
to large genomic regions as well as frequent failures and low overall accuracy. In
fact, the authors conclude that there is “clearly room for improvement in polyploid
haplotyping algorithms” [10].
H-PoP [12] was shown to outperform these previous approaches both in accuracy

and runtime and is since then considered as the state-of-the-art method. It consists
of a model called Polyploid Balanced Optimal Partition (PBOP) that aims to create k
partitions of sequence reads that minimize twomeasures: Reads from one partition
are supposed to be equal on as many variant loci as possible, whereas reads from
di�erent partitions should contain as many di�erences as possible. For k = 2, this
equals the diploid MEC model and can thus be seen as a polyploid generalization
of MEC. When genotype information is present, genotype constraints are added to
the model; the appropriate extension is then referred to as H-POPG.
More recent advances have not proven to be useful for whole-genome single-

individual haplotyping, like PolyHarsh [13], a Gibbs sampling method that is also
based on the MEC model and has only been shown to work on very small arti�cial
examples, TriPoly [14] that infers haplotypes from trio data and thus requires family
data, and SDA [15]. The latter provides two algorithms based on a discrete matrix
completion approach and correlation clustering, respectively, and is used to resolve
segmental duplications of higher ploidy during genome assembly. However, it is
not designed to scale to the whole genome.
Othermatrix-basedmodels are SCGD-hap [16], a structurally constrained gradient

descent approach, and AltHap [17], which builds on SCGD-hap and aims to solve an
iterative sparse tensor decomposition problem. This model yielded results similar
to those of H-PoP, but also relies on MEC.
Some tools have been proposed that do not work well with long read data. The

work by [18] is based on minimum fragment removal. The long and relatively
erroneous long reads would lead to a removal of too much data. RANBOW [1] uses
allele co-occurrences on small sets of sampled positions in overlapping short reads.
This approach is susceptible to high error rates found in long reads, as it seeds the
phasing on local partitions of reads based on their allele combination on the small
position samples. Thus, a large portion of the reads are clustered incorrectly and a
lot of overlapping position samples are required to correct these mistakes.
Apart from the limitations of the underlying model, current methods do not give

reliable information about the accuracy of the resulting haplotypes since these
are either output in one consecutive sequence or in very long blocks. In particular,
this means that there is no information about the positions of likely switch errors.
Thus, large regions of the resulting haplotypes might be out of place, but it is not
possible to identify these regions, which makes the results very di�cult to use in
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practice. In the H-POPG algorithm, for example, the haplotypes are only divided
into blocks if there is no read that covers the a�ected neighboring variant loci.
Further uncertainties in the phasing are not considered in the model and thus not
reported.

Contribution
To our knowledge, there is currently nomethod that is designed to properly address
polyploid phasing by o�ering an accurate model and is able to produce reliable
blocks according to the phasing certainty while at the same time being computa-
tionally e�cient and thus applicable in practice. To address this gap, we present
WHATSHAP POLYPHASE, a method that departs from the MEC model in order to
deal with the additional challenges arising in polyploid phasing. By taking cover-
age into account via a newly established threading step, WHATSHAP POLYPHASE
is able to detect and properly phase regions where multiple haplotypes coincide.
Additionally, our method is able to integrate information from input genotypes for
accurate phasing results.
We introduce cuts within the haplotypes at positions with increased phasing

uncertainty and thereby output phased blocks that ensure high accuracy within
the fragments. We provide a sensible way to compute these block boundaries at
varying, user-de�ned degrees of strictness. This way, we enable a con�gurable
trade-o� between longer blocks that potentially contain errors and shorter but
highly accurate blocks.
We demonstrate on a simulated data set that WHATSHAP POLYPHASE returns

results that are around three times more accurate than those computed by the
state-of-the-art tool H-POPG, in particular in regions of identical haplotypes, where
our method phases with around seven times lower switch error rates than the
competition. The e�cient implementation of WHATSHAP POLYPHASE allows for
scaling to gigabase-sized genomes, while being su�ciently fast: an arti�cial human
tetraploid Chr01 (249Mb) is phased in less than 3.5 hours on a single core of a
standard desktop.
WHATSHAP POLYPHASE is ready to be included in production settings since

it is implemented as part of the widely used open source tool WHATSHAP
(https://whatshap.readthedocs.io), o�ering convenient usage by supporting stan-
dard input and output format (BAM and VCF). We used the tool to phase real
potato data, assign corrected long reads to haplotypes and to locally assemble
reads. WHATSHAP POLYPHASE is available at https://bitbucket.org/whatshap/
whatshap.

Results
Phasing Model and Algorithm
WHATSHAP POLYPHASE is a novel two-stage approach that produces accurate hap-
lotypes for polyploid genomes using data from single-molecule sequencing tech-
nologies. See Figure 2 for an overview of the method.
The �rst phase of the algorithm uses cluster editing [19] to �nd clusters of reads

which are likely to originate from identical haplotypes. In short, this is done by
computing a statistical similarity score for each pair of reads and constructing a
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R2   0  0  1 ...
...

chr1 20 A G ...
chr1 66 C T ...
chr1 75 A C ...

CTGGACTGATGCAACAA ref. 
genome

variant pos.
genotypes

reads

Phase I: Scoring and clustering Phase II: ThreadingInput Output

CTTAGAAAGCTAAAAT|CAAA|GCTAC
ATCGCTAAGTTCGGTA|AGAC|CCGAA
ATCGCAAGATTTATGA|GACC|TTAGA
TCCCTATCCCAAATGA|GGAG|GGAGG 

phased haplotype blocksDP: coverage, genotypes, 
switch cost

cluster editing

read pair sim.

scoring

Figure 2: Overview of WHATSHAP POLYPHASE. The input allele matrix results from a
given BAM and VCF �le and an optional realignment step. Phase I: Statistical scoring
of each read pair classi�es them into belong to the same or to di�erent haplotypes.
The scores are used as weights for a graph over all reads, which is clustered by Cluster
Editing (grey round shapes). Phase II threads k haplotypes (colored lines) through the
clusters (here k = 4) balancing coverage violations and switch costs while respecting
the genotype information. This results in k phased haplotypes, subdivided into blocks
(vertical lines).

graph using the reads as nodes and the scores as edge weights [20]. The size of the
graph makes it infeasible to solve cluster editing to optimality in reasonable time,
so we rely on an iterative heuristic to produce accurate clusters. We deliberately
make no assumptions on the ploidy at the clustering stage. In particular, reads of
multiple haplotypes that are locally identical end up in the same cluster.
The second phase consists of the actual haplotype assembly by threading k haplo-

types through the set of clusters obtained in the�rst phase.We take theposition-wise
read coverage of each cluster into account to determine the number of haplotypes
threaded through each cluster. In contrast to MEC-based models, this allows us to
handle genomic regions where some haplotypes are locally identical by allowing
that multiple haplotypes run through the same cluster. During the threading step,
we further expect haplotypes to stay in the same cluster for as long as possible and
ensure that the consensus genotype �ts the input genotype, if provided. We cut
the phasing into blocks at variant pairs showing insu�cient phasing con�dence
to increase its accuracy at the cost of decreased phasing block lengths. See the
Methods section for details of WHATSHAP POLYPHASE.

WHATSHAP POLYPHASE produces accurate results
To demonstrate that WHATSHAP POLYPHASE works well in practice, we ran it on an
arti�cial tetraploid dataset at di�erent coverages and compared our results to those
of H-POPG, the state-of-the-art method for polyploid phasing. We used common
evaluation statistics that capture di�erent properties of haplotype sequences to
compare the solutions computed by both tools to ground truth haplotypes available
for our data sets.

Evaluation statistics. For ploidy k, a set of ground truth haplotype sequences h =

{h1, ..., hk} and predicted haplotypes h∗ = {h∗1, ..., h∗k}, we compute the number of
Hamming errors HE as

HE = min
σ∈Sk

1

k

k∑
i=1

dH(hi, h
∗
σ(i))
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where Sk represents the permutation group on {1, ..., k} and dH() the Hamming
distance between two sequences. TheHamming rate (HR) is then de�ned as the sum
of Hamming errors divided by the total number of all phased variants. If subtracted
from 1, the Hamming rate is equivalent to the reconstruction rate and the correct
phasing rate presented in [14] and [12], respectively.
A well established evaluation metric for diploid phasing is the switch error rate

(SER), forwhichweuse a polyploid version. Instead of counting thenumber of incor-
rect alleles on each haplotype, the SER counts the minimum number of switches,
i.e., how o�en the assignment between predicted and true haplotypes must be
changed in order to reconstruct the true haplotypes from the predicted ones. The
polyploid extension of the switch error was already introduced as the vector error
rate in [9].
More formally, for every position j let Πj be the set of one-to-one mappings

between h and h∗, such that for each π ∈ Πj it holds that hi[j] = h∗π(i)[j] for all
haplotypes hi. The switch error rate is then de�ned as:

SER = min
(π1,...,πm)∈Π1×...×Πm

1

k(m− 1)

m−1∑
i=1

dS (πi, πi+1)

wherem is the number of variants and dS (πi, πi+1) the number of di�erent map-
pings between πi and πi+1.
If the genotype of h∗ is not equal to the genotype of h for every position, the

set Π1 × . . . × Πm is empty and the vector error cannot be computed. Therefore
we compare only those positions, on which the predicted genotype is correct and
report the fraction ofmissing variants (MV), that is, either unphased or incorrectly
genotyped variants, separately.
Phasing toolsmay not phase the entire input region as one set of haplotypes. If the

phasing between two consecutive variants is too uncertain (e.g., if not enough reads
cover both variants), the phasing might be split into blocks. In our evaluation, we
applied the HR and SER on all reported phasing blocks separately and aggregated
them. More precisely, we summed up the number of respective errors and divided
them by the total number of variants (HR) or by the total number of variants
excluding the �rst variant in every block (SER). Since this favors shorter blocks,
we also included the N50 block length into our evaluation, which is the smallest
block length needed to cover 50% of the considered genomic region when using
only blocks of that size and larger.

Testing on arti�cial tetraploid human. We generated a tetraploid version of human
chromosome 1 by combining sequencing data of two individuals (NA19240 and
HG00514), for which high-quality trio-based haplotype information is available
[21]. We refer to these haplotypes as ground truth haplotypes. We merged PacBio
sequencing data for these two samples to produce tetraploid data at di�erent cover-
ages (40× and 80×). Using the read simulator PBSIM [22], we additionally generated
equivalent simulated data sets with known read origin.
We ranWHATSHAP POLYPHASE and H-POPG and compared the resulting phas-

ings to the ground truth haplotypes. H-POPG de�nes phased blocks based on
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the connected components of the underlying reads by introducing cuts between
pairs of variants not connected by any sequencing reads. Per default, WHATSHAP
POLYPHASE uses a more sensitive approach (see Methods section) typically leading
to shorter but more accurate haplotype blocks. Additionally, our algorithm sup-
ports di�erent levels of block cut sensitivities, which allow to balance block length
against block accuracy. In order to provide a better comparison of both tools, we
ran WHATSHAP POLYPHASE with di�erent con�gurations, which can be seen in
Figure 3.
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Figure 3: N50 block lengths and the respective block-wise switch error rates for
di�erent block cut strategies of WHATSHAP POLYPHASE (default strategy marked
by a circle) on the real read dataset (top) and the simulated dataset (bottom) with
40× and 80× coverage.

Even when forcing our tool to yield block lengths as computed in H-POPG we
observe around 25% lower switch error rates among the tested datasets (Figure 3,
see Suppl. Figure 7 for Hamming error rates). As expected, higher coverage has a
positive e�ect on the error rates. More sensitive block cuts, and in particular the
default setting for WHATSHAP POLYPHASE, lead to a dramatic decrease in switch
error rates.
Table 1 shows all used evaluation metrics on H-POPG andWHATSHAP POLYPHASE

for their default settings. We can see that WHATSHAP POLYPHASE phases more
accurately, with at least three times lower switch error rates than H-POPG on the
varying data sets. For the Hamming rate the di�erences are even larger. Among
other reasons, this is caused by the block cut policy of H-POPG, leading to switch
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Table 1: Comparison of WHATSHAP POLYPHASE and H-POPG on real (a) and simulated (b)
datasets. Performances are based on the switch error rate (SER), block-wise Hamming rate
(HR) and N50 for the block size. The total length of the chromosome is 249 Mb.

coverage method SER (%) HR (%) N50 (bp) runtime (s)

40× WH-PP 0.60 1.57 31140 2909
H-PoPG 2.01 27.53 1785293 1853
SER(H-PoPG

WH-PP ) 3.35

80× WH-PP 0.35 2.01 64315 11559
H-PoPG 1.24 27.66 2587104 3668
SER(H-PoPG

WH-PP ) 3.54

(a) real read data

coverage method SER (%) HR (%) N50 (bp) runtime (s)

40× WH-PP 0.43 1.72 51416 1792
H-PoPG 1.68 26.38 1917094 1215
SER(H-PoPG

WH-PP ) 3.91

80× WH-PP 0.32 3.39 103287 5260
H-PoPG 0.99 25.65 2142893 2447
SER(H-PoPG

WH-PP ) 3.09

(b) simulated read data

errors on sparsely connected variants, which have a big impact on the global correct-
ness of the phasings. The con�gurable block cut strategy of WHATSHAP POLYPHASE
allows to maintain accurate blocks with low Hamming rates.
While comparing the WHATSHAP POLYPHASE phasing against the ground truth,

we noticed that a small portion of variants was marked as unphased, namely 0.31%

and 0.07% for the real reads with 40× and 80× coverage, respectively. This happens
when a variant is supposed to be heterozygous, but is reported as homozygous by
WHATSHAP POLYPHASE due to the actual alleles of the reads. H-POPG strictly sticks
to the input genotypes and never deviates from them, resulting in no unphased
variants. However, in practice it is not necessarily a mistake to deviate, as the given
genotype could be wrongly called by another tool. For the simulated reads the
fraction of unphased reads by WHATSHAP POLYPHASE goes down to 0.19% and
0.01% (for 40× and 80× coverage), indicating that for real data the genotypes are
more likely to contradict the observed read alleles.

Identifying collapsing regions
We de�ne regions in the genome where two or more haplotypes share the same
sequence for at least 50 variant positions as collapsing regions. For MEC-based ap-
proaches, these parts are particularly di�cult to phase since di�erent con�gura-
tions of haplotypes with locally identical sequences are not distinguishable based
on their MEC scores and the MEC model exploits this to explain sequencing errors
with “noise” haplotypes.
We evaluated the ability to correctly assemble haplotypes in these regions. Again,

both WHATSHAP POLYPHASE and H-POPG were run on chromosome 1 of the simu-
lated and real datasets with 40× and 80× coverage, respectively. Collapsing regions
take up a large part (17.28%) of the simulated Chr01.
Table 2a shows the results. It can be seen that the di�erences between switch error

rates achieved by H-POPG and by WHATSHAP POLYPHASE are remarkably higher in
the case of collapsing regions than for the rest of the genome. In comparison to
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Table 2: Comparison between the resulting switch error rates of WHATSHAP POLYPHASE
(WH-PP) and H-POPG on collapsing regions over at least 50 variants as compared to non-
collapsing regions and the average throughout the genome. Results (switch error rates in
%) are presented for Chr01 of the real (a) and simulated (b) dataset on both 40× and 80×
coverage. The third rowmarks the quotient between the switch error rate of H-POPG and
that of WHATSHAP POLYPHASE to highlight by which magnitude the results di�er.

coverage method collapsing regions non-collapsing regions total

40×
WH-PP 0.29 0.69 0.60

H-PoPG 2.02 2.16 2.02
SER(H-PoPG

WH-PP ) 6.97 3.13 3.37

80×
WH-PP 0.14 0.46 0.35

H-PoPG 1.05 1.30 1.24
SER(H-PoPG

WH-PP ) 7.50 2.83 3.54

(a) real read data

coverage method collapsing regions non-collapsing regions total

40×
WH-PP 0.18 0.45 0.43

H-PoPG 2.01 1.63 1.68
SER(H-PoPG

WH-PP ) 11.17 3.62 3.91

80×
WH-PP 0.08 0.37 0.32

H-PoPG 0.94 0.98 0.99
SER(H-PoPG

WH-PP ) 11.75 2.65 3.09

(b) simulated read data

WHATSHAP POLYPHASE, the switch error rate of H-POPG is around 7 times higher
in collapsing regions, while on average throughout the whole chromosome, this
factor is only 3.37. For higher coverage, these values are further increased to 7.5 and
3.5, respectively. The closest results are achieved in non-collapsing regions, i.e.,
regions where either all haplotype sequences are unique or coincide on fragments
shorter than 50 variants. In these regions, H-POPG returns 3.13 times more switch
errors.
For the simulated data (see Table 2b), the di�erences are even more striking,

especially on 80× coverage. In regions with coinciding haplotypes, WHATSHAP
POLYPHASE outperforms H-POPG by a factor of up to 11.75. Compared to the average
quotient of 3.09, WHATSHAP POLYPHASE thereby yields an almost 4 times higher
reduction in switch error rates in collapsing regions. On lower coverage, similar
results are obtained.
As for the previous experiments, we repeated this analysis with block lengths

computed as in H-POPG. The results of this second run are presented in Suppl. Ta-
ble 3.

Potato data
We applied our algorithm to real sequencing data for tetraploid potato (Solanum
tuberosum), for which we generated paired-end short Illumina and long Oxford
Nanopore reads. In a �rst step, we aligned the reads produced by the di�erent
technologies to the potato reference genome published by the Potato Genome Se-
quencing Consortium (PGSC) [24]. We observed unbalanced coverage distributions
for the alignments, especially for the short Illumina reads, hinting towards a high
number of structural variations and rearrangements being present in the data (Fig-
ure 4a). Thus, the Illumina reads are ill-suited for reliable variant calling as their
short length makes it more di�cult to unambiguously align them to the reference.
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Figure 4: Phasing of potato genome. (a) Per-base coverage distribution of Illumina and
ONT MinION alignments on Chr01. (b) For each gene, we consider only the longest
phased block. The x-axis shows howmany of the heterozygous variants were at least
phased in the largest block, the y-axis displays for howmany genes this was the case. (c)
IGV [23] screenshot showing alignments of uncorrected (top) and corrected MinION
reads (bottom) of F gene on Chr04. The corrected reads are colored (red, green, blue,
purple) according to the haplotypes WHATSHAP POLYPHASE assigned them to. (d)Mul-
tiple sequence alignment of the ORFs detected in the four haplotype sequences. The
uppermost gray sequence represents the reference, the others correspond to the four
haplotypes (same order as in panel c)
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We therefore relied on the much longer nanopore reads to identify SNPs that we
can later use for phasing. However, Oxford Nanopore reads typically come with
high sequencing error rates, complicating the calling process. In order to obtain
reliable variant positions and genotypes from these error-prone reads, we ran an
error correction pipeline [25] to reduce the number of sequencing errors (see Meth-
ods section). Figure 4c shows an exemplary IGV [23] screenshot of uncorrected
reads (top) and corrected (bottom) for the FRIGIDA-like protein 5 isoform X2 gene.
Next, we ran minimap2 [26] to align the corrected nanopore reads to the potato
reference genome and called variants using FreeBayes [27]. To verify the genotypes
produced in this way, we added an additional step to WHATSHAP POLYPHASE that
re-genotypes the positions based on the nanopore reads prior to phasing and only
keeps those variants, for which the newly predicted genotype matches the one
reported by FreeBayes (see Methods section).
We focused on the potato genes [24] as they are biologically interesting for phasing.

Of in total 36274 genes containing heterozygous variants a�er calling and retyping,
91% could be (at least partially) phased by WHATSHAP POLYPHASE. On average,
about 2.13 phased blocks were produced per gene. Furthermore, for each gene,
we took the longest phased block and determined the number of phased variants
inside of this block relative to the total number of heterozygous variants reported in
the gene. For 58% of all genes, the longest block covered at least half of all variants
within the respective genomic interval (see Figure 4b). For about 11% of all genes,
the longest block covered all heterozygous variants. These are genes that we can
phase completely in a single block. The fraction of genes for which the longest
block covered at least 90% of all heterozygous variants is about 26%.
We used the FRIGIDA-like protein 5 isoform X2 (accession: XP_015169713) gene

as an example to demonstrate how WHATSHAP POLYPHASE enables haplotype-
resolved assembly. We extracted the phasing of the longest phasing block reported
for this gene and separated the reads by haplotype. In order to do so, we extended
the commands whatshap haplotag and whatshap split, previously implemented
in the diploid version of whatshap, to higher ploidies. Brie�y, the idea is to tag each
sequencing read according to the computed haplotype sequence it is most similar
to and separate the reads based on these tags (see Methods section). The reads
shown in Figure 4c are colored according to the resulting haplotype assignments.
In the next step, we separately ran wtdbg2 [28] on each haplotype-speci�c read
set to produce local assemblies of the four haplotypes. Suppl. Figure 8 shows a
visualization of a multiple sequence alignment of these haplotypes. We ran the
NCBI ORF�nder [29] on each of the assemblies and detected a long ORF in the
�rst three haplotypes representing the FRIGIDA like coding sequence. For the
fourth haplotype we could not detect a corresponding ORF, as the putative FRIGIDA
gene in the fourth phase showed an early STOP codon highlighted in Figure 4c.
Interestingly, the fourth phase showed an additional frameshi� mutation shown in
the inset of Figure 4c where only the phasing information provides the information
that this is linked to the premature STOP codon highlighting the necessity of (local)
phasing to understand gene architecture. Using COBALT [30], we generatedmultiple
sequence alignments of the amino acid sequences resulting from these three ORFs
and the corresponding reference sequence (Figure 4d). The three sequences show
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an overall good alignment with the reference with small di�erences, which may
serve as an input for functional follow-up studies.

Runtimes
We show the runtimes of WHATSHAP POLYPHASE and H-POPG for phasing the
arti�cial human Chr01 in Table 1. Both programs were run on a single core on a
dual socket machine (2×Intel Xeon E5-2670 v2) with 256GB of memory. At coverage
40×, WHATSHAP POLYPHASE took about 49 min to phase the real data, while H-
POPG took about 30 min. WHATSHAP POLYPHASE phased the simulated data set
in about 30 min and H-POPG in 20 min. At coverage 80×, WHATSHAP POLYPHASE
took 3.2 hours on the real data and H-POPG 1 h. On the simulated data, WHATSHAP
POLYPHASE took 1.5 hours and H-POPG 41 min for phasing.

Discussion
We introduce a novel two-stage algorithm enabling accurate haplotype phasing of
polyploid genomes. Our model consists of two phases performing a clustering of
the reads based on their similarity and assembling the �nal haplotypes through the
resulting clusters. We emphasize that unlike approaches based on solving the MEC
problem, WHATSHAP POLYPHASE takes coverage of the read clusters into account
to resolve regions with multiple coinciding haplotypes. Additionally the phasing
can be cut at low con�dent positions to maximize phasing accuracy.
Applying our algorithm to chromosome 1 of a tetraploid dataset created of human

samplesHG00514 andNA19240 showed that in comparisonwithH-POPG, the current
state-of-the-art phasing method, WHATSHAP POLYPHASE returns around 61% and
68% lower switch error rates on real and simulated data at di�erent coverages.
The phased blocks produced using the default settings of WHATSHAP POLYPHASE
are shorter compared to the ones reported by H-POPG, but by a factor of three
times more accurate. We o�er a way to con�gure the trade-o� between block
length and accuracy via a parameter and are thus also able to compare both tools
with the block sizes used by H-POPG. In this case, block lengths are very similar,
but WHATSHAP POLYPHASE still returns lower switch error rates. Note, however,
that we usually recommend more conservative settings in order to obtain more
interpretable results.
The Hamming rate behaves di�erently from the switch error rate, as pointed out

in the result section. The reason for that is that most of the actual mistakes done by
the phasing algorithms are in fact switch errors, where haplotype sequences are
wrongly connected. The Hamming rate is very sensitive to these errors, because
a single switch on two haplotypes in the middle of a block can potentially cause
50% of the variants being phased wrongly on the two a�ected haplotypes. While
the additional block cuts eliminate only 50-65% of the switches, the impact on
the Hamming rate is much higher. Moreover, if a su�cient number of switches is
already present in the data, additional switches do not cause a substantial increase
in the Hamming rate anymore, as newly introduced switches have a chance to
cancel out old ones. Even though H-POPG does outperformWHATSHAP POLYPHASE
in terms of Hamming rates for equally long blocks, it is debatable how much
the phasings bene�t from this, as the phased blocks are very unreliable for both
algorithms.
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Furthermore,we show that the coverage-aware approachof haplotype threading is
able to resolve regions where multiple haplotypes coincide, which occur frequently
in polyploid genomes. A comparison to H-POPG shows that WHATSHAP POLYPHASE
performs particularlywell in these regions. The switch error rates are 7 times higher
in H-POPG for the real data andmore than 11 times higher for the simulated dataset.
When using larger blocks according to the block de�nition of H-POPG, the switch
error rate of H-POPG is still more than 3 times higher in these collapsing regions as
opposed to 1.22 times, on average. Within chromosome 1 of our simulated dataset,
with a total length of 249MB, we found around 17% of the genome to be part of
long collapsing regions over at least 50 variants. These results clearly highlight the
limitation of MEC-based approaches with regard to these regions and the need for
phasing methods that address this problem.
Finally, we present a typical use case of polyploid phasing using real sequencing

data of potato. Due to the high genomic diversity and lack of high quality reference
sequences, large-scale polyploid phasing remains challenging. We restricted our
analysis to the gene regions and use the FRIGIDA-like protein 5 isoform X2 gene
as an example to demonstrate that our polyploid phasing tools enable haplotype-
resolved assembly of polyploid organisms.

Conclusions
Polyploid phasing is a di�cult technological and computational problem. Current
state-of-the-art tools rely on theMinimumError Correctionmodel, which is success-
ful for diploid phasing, but has limitations in the conceptually and computationally
far more complex polyploid case. We provide an implementation that departs from
the MEC paradigm and instead uses a novel clustering and threading method, tak-
ing coverage and genotype information into account. Doing so, it represents the
�rst algorithm designed to speci�cally handle locally identical haplotypes and, in
consequence, performs signi�cantly better in such regions than the state-of-the-art.
To our knowledge, it is also the �rst approach that o�ers a con�gurable trade-o�
between the lengths of phased haplotype blocks and phasing accuracy to �t the
user’s individual needs. Our implementation scales to whole genomes while being
su�ciently fast.
Current challenges lie in resolvingmore switch error locations, as they either lead

to block cuts or to switch errors, which have a high impact on the Hamming rate.
Also, the running time of our approach scales exponentially with increasing ploidy,
which requires further optimization to enable phasings with ploidy higher than six.
Another limitation in practice is given by the fact that alignment-based phasing
methods heavily depend on the quality of the alignments and the subsequent variant
calls. In case of strong deviations from the reference genome, as, for example, in
large regions of our proof-of-concept potato phasing study presented in this paper,
any alignment-based method that relies on the reference genome will struggle.
On good quality reference genomes such as the arti�cial tetraploid benchmark

genome proposed in this paper we show that our method WHATSHAP POLYPHASE
delivers haplotype reconstructions with signi�cantly lower error rates compared to
the state-of-the-art tool H-POPG. Our algorithm is implemented as part of thewidely
used open source tool WHATSHAP and is hence ready to be included in production
settings.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933523
http://creativecommons.org/licenses/by-nd/4.0/


14

Methods
Here, we present the phasing algorithm in detail. We denote with k the ploidy of
the phased genome, with n the number of heterozygous variants in the genomic
region of interest and withm the number of reads. We assume that all variants are
biallelic, denoting the major allele with 0 and the minor allele with 1. Each read r is
represented by a sequence r0, . . . , rn−1 of length n over the alphabet Σ = {0, 1,−}
such that ri is the allele for the i-th variant and “−” indicates an uncovered variant.
We use olp(r, s) = |{i | ri, si ∈ {0, 1}}| to denote the size of the overlap (number of
shared variants) between two reads r, s and dis(r, s) = |{i | ri, si ∈ {0, 1}, ri 6= si}|
for the number of disagreements between r and s. The ratio between these values
is a value between 0 and 1 and called theHamming rate between two reads. The true
(and to us unknown) haplotype of a read r is denoted asH(r) ∈ {0, . . . , k − 1}. The
objective is to �nd k sequencesH ′0, . . . ,H

′

k−1 of length n over Σ, which are close or
identical to the original haplotypesH0, . . . ,Hk−1.

Clustering. The �rst step of our algorithm is to cluster reads that are likely to orig-
inate from the same haplotype. The clustering is based on pairwise similarity of
overlapping reads. The similarity scores of the read pairs are then used in the clus-
tering process. Two reads with an overlap of less than 2 variants are not considered
as overlapping and always get a neutral score of 0.
We make two assumptions about the reads for the scoring scheme. First, all

true haplotypes are expected to be equally frequent among the reads. Second, the
Hamming rate between all pairs of haplotypes is expected to be the same (i.e.,
all haplotypes are equally di�erent from each other). While the �rst assumption
is reasonable, the second one is a simpli�cation, as in practice the dissimilarity
between even a �xed pair of haplotypes can vary heavily depending on evolutionary
history and chromosomal region. The idea is to estimate the expected Hamming
rate between reads from the same haplotype, which we call dsame, and the expected
Hamming rate for reads from di�erent haplotypes, called ddiff . The former depends
only on the sequencing error rate, while the latter additionally includes the dif-
ferences between the true haplotypes. With dall we further denote the expected
Hamming rate over all overlapping read pairs.
For two reads r and s, the probability of observing the same allele at a shared

variant locus equals dsame ifH(r) = H(s) or ddiff ifH(r) 6= H(s). Since the variants
are independent from each other in ourmodel, dis(r, s) should follow one of the two
binomial distributionsBolp(r,s),dsame

orBolp(r,s),ddiff with olp(r, s) being the number
of attempts and dsame or ddiff being the success probability. For each individual read
pair we can then decide which of the two possible distributions is the most likely
one.
According to our �rst assumption, a 1

k -fraction of all possible read pairs include
reads from the same haplotype each, as for a read r there is a 1

k chance that an-
other one is from the same haplotype. In order to estimate dsame we compute the
Hamming rate over all overlapping read pairs and use the average of the lower
1
k -fraction as estimate. As alternative one could also use the sequencing error rate
to compute dsame, since the corresponding reads contain only sequencing errors.
These error rates are, however, not always available, especially when preprocessing
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Figure 5: Cluster editing example The input graph on the le� contains one node per
read and positive weighted edges (blue) for similar reads and negative weighted edges
(pink) for dissimilar reads. All other edges are zero-edges and not drawn for sake of
simplicity. The model considers blue edges as present edges and pink edges as missing
edges, as shown in the second graph. The information of the pink edges is still used as
insertion cost for missing edges. The third graph indicates operations needed to get a
clique graph as dashed edges. The blue edges need to be deleted, the pink needs to be
inserted. The �nal clique graph is shown on the right.

steps like error correction are included. Since dall can be simply computed and
dall ≈ 1

kdsame + k−1
k ddiff , we get an estimate on ddiff as well. Finally, the similarity

score of reads r and s is de�ned as

log

(
f (dis(r, s), olp(r, s), dsame)

f (dis(r, s), olp(r, s), ddiff)

)
with f being the binomial probability density function for dis(r, s) successes.
Please note that the score is negative if the read pair appears to be from di�erent

haplotypes and positive in the opposite case.
In our studies we noticed that the disagreement rate between haplotypes varied

between di�erent regions. In order to increase the accuracy of our model, we
partition the variants into windows w1, . . . , wl of average read length and compute
dsame and ddiff independently for each window. If the overlap region of a read pair
spans multiple windows, we use the weighted average of the d-values.
As clustering model we chose Cluster Editing [19], which takes a complete graph

with real edge weights as input and �nds the most cost-e�cient way to transform it
into a graph only consisting of disjoint cliques. Therefore, positive weighted edges
are interpreted as present edges and negative ones as missing edges. The absolute
value of a weight is the cost to either insert a missing or delete a present edge. A
small example of this model can be found in Figure 5. For our algorithm, we model
each read as a node of the input graph and use the similarity score for each read
pair to obtain edge weights. Non-overlapping read pairs are de�ned to have an edge
weight of 0, which we call a zero-edge. The resulting cliques can be interpreted as
clusters of reads with high con�dence of originating from the same haplotype.
The number of clusters depends on the data and is not an input parameter. In

practice, we get much more than k clusters for two reasons: First, the distance
between variants can vary and can become too large for some variant pairs such that
enough reads connect them with su�cient con�dence. Second, collapsed regions

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933523
http://creativecommons.org/licenses/by-nd/4.0/


16

lead to clusters with reads from multiple haplotypes, forcing single-haplotype
clusters to be discontinued. Restricting the cluster editingmodel to k clusters would
force clusters to span poorly connected variants and split up reads from locally
identical sequences. As this would likely introduce errors, we instead postpone
the problem of reducing the clusters to k haplotypes to the second part of our
algorithm.
Due to the NP-hardness of the Cluster Editing problem, it is infeasible to solve

it to optimality on large real-world instances as given by the comparison of all
read pairs. Instead, we use a heuristic that greedily picks an edge in each iteration
and decides whether it should be present in the resulting clique graph or not,
potentially inserting or deleting edges. We denote the �rst case as making an edge
permanent and the second one asmaking an edge forbidden. If an edge (u, v) is made
permanent, for all other nodesw itmust hold, that either both (u,w) and (v, w)must
be in the �nal clique graph or none of them. Similarly, if (u, v) is made forbidden,
there must not be any node w such that both (u,w) and (v, w) are in the �nal clique
graph. Following these conditions, we can compute induced costs for each edge
(u, v), which re�ect the costs of obligatory insertion and deletion operations for
making (u, v) permanent or forbidden. These costs are called icp(u, v) and icf(u, v)

respectively and were originally de�ned in [31]. Once an edge becomes permanent
(forbidden) its weight is set to∞ (−∞) and all induced costs of incident edges are
updated accordingly.
To improve the running time, we ignore zero-edges in the heuristic and assume

them to not be present in the solution, unless one of them is needed to complete a
clique.

Haplotype Threading. For the second part of the algorithm, we developed a novel
approach called haplotype threading, which performs the actual phasing to k haplo-
types. The cluster editing step results in a setC of read clusters with two properties:
First, the number of clusters at a position i ∈ {0, . . . , n− 1} can be larger than k, so
that some clusters do not contribute to any computed haplotype. Second, the reads
in a cluster c ∈ C usually do not cover the whole chromosome, but only a part of
the n variants, so in order to obtain whole-chromosome haplotypes, these must be
assembled frommultiple clusters. This is done by threading a haplotype through
the clusters, meaning that for every haplotype, a path through C is assembled by
choosing one cluster c ∈ C for each haplotype at every variant position i.
In a genome of ploidy k, we seek for k haplotypes and thus assemble all k se-

quences simultaneously by choosing k-tuples of clusters at each position. Dupli-
cate clusters within tuples are allowed since reads from one cluster can belong to
multiple true haplotypes: For regions with high local similarity between the true
haplotypes, the corresponding reads are likely placed into one cluster by the cluster
editing step.
In the threading process, we aim at achieving three objectives: (i) genotype con-

cordance, (ii) read coverage and (iii) haplotype contiguity. The �rst, genotype concor-
dance, captures the agreement between the known target genotype and the chosen
clusters. For the true haplotypesH0, . . . ,Hk−1 of length n, the corresponding geno-
type can be described as the component-wise sum G = H0 + H1 + · · · + Hk−1
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and is denoted by G = g0, g1, . . . , gn−1. Furthermore, for each cluster c and each
position i, we can compute the consensus cons(c, i) ∈ {0, 1,−} as themost frequent
allele among all reads in c at position i. Using this de�nition, we can compute a
consensus genotype of a k-tuple (c0, . . . , ck−1) at position i as

∑k−1
j=0 cons(cj , i). For

each position i, we then only take those cluster tuples into account whose consen-
sus genotype at i is concordant with the target genotype, i.e.,

∑k−1
j=0 cons(cj , i) = gi.

Reducing the search space of possible tuples this way increases e�ciency as well
as accuracy by �ltering out non-promising combinations beforehand. In case there
is no tuple with a concordant genotype at position i, we allow genotype deviations
of 1; if this also fails, all possible tuples are considered.
To determine the best �t among the possible cluster tuples, we designed an

objective function that takes the remaining two criteria into account as follows.
The second criterion is read coverage. Since in locally identical regions multiple
haplotypes can be threaded through the same cluster—which leads to multiple
appearances of this cluster in the k-tuple—this number of haplotypes has to cor-
respond to the coverage of the chosen cluster. The relative coverage of a cluster
c at position i describes the number of reads in c covering i divided by the total
number of reads in all clusters that cover i. We denote this value by cov(c, i). Then,
we can compute the expected copy number of a cluster c at i, i.e. the expected num-
ber of haplotypes that are threaded through c, by cnexp(c, i) =

⌈
k cov(c, i)− 1

2k

⌉
.

The true copy number of c in a chosen cluster tuple (c0, . . . , ck−1) is given by
cn true((c0, . . . , ck−1), c, i) = |{i | i ∈ {0, . . . , k − 1}, c = ci}|. Deviations of the
true number of occurrences from the expected ones are penalized by a constant
factor pcov per cluster, so that a cluster tuple (c0, . . . , ck−1) is evaluated by the cost
function

costscov((c0, . . . , ck−1), i) =

k−1∑
j=0

pcov[[cnexp(cj , i) 6= cn true((c0, . . . , ck−1), cj , i)]]

where [[x 6= y]] returns 1 if x 6= y and 0 otherwise.
The third and last criterion, haplotype contiguity, encourages haplotypes to stay in

the samecluster as long as possible, so that switching of haplotypes between clusters
is penalized. For two consecutive cluster tuples (c0, . . . , ck−1) and (c′0, . . . , c

′
k−1) at

positions i and i+ 1, we denote the cost factor by pswitch, which results in the cost
function

costsswitch((c0, . . . , ck−1), (c′0, . . . , c
′
k−1)) =

k−1∑
i=0

pswitch[[ci 6= c′i]]

We developed a dynamic programming approach to rapidly �nd the optimal
sequence of tuples that minimizes all costs. We compute a two-dimensional matrix
S with a column for every variant j from 0 to n − 1 and a row for every possible
genotype-conform tuple of clusters. Since the number of eligible cluster tuples
can di�er between variant positions, the columns of S do not necessarily have the
same lengths. We denote the length of a column j with lj . Using the cost functions
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(a) Example of tetraploid threading (b) Critical switching positions

Figure 6: Visualization of the threading. (a) Clusters of reads are represented as grey
shapes with their horizontal span indicating the covered variants and the height being
the respective coverage. The k = 4 threads are shown as colored lines passing through
the clusters. Multiple threads can co-enter the same cluster if the coverage is suited. (b)
Alternative threading with the same score in our model. Two positions cause ambiguity
and allow switches in the threading compared to (a). These are candidate cut positions
to prevent switch errors in the �nal phasing.

de�ned above, S[i, j] is then computed as

S[i, 0] = costscov(ci, 0) ,

S[i, j] = costscov(ci, j)+

min
k∈{0,...,lj−1−1}

(
S[k, j − 1] + costsswitch(ck, ci)

)
for j > 0 ,

where ci denotes the cluster tuple in row i. The optimal threading score is then
given by the minimum value in the last column. Starting at this position, we assem-
ble the sequence of clusters with minimum costs via backtracing.
The threading process is illustrated in Figure 6a for k = 4. The clusters from the

�rst step are drawn as grey shapes in a two-dimensional space, where the horizontal
position refers to the variants covered by the reads inside a cluster and the height
represents the relative coverage of a cluster at every position. The position on the
y-axis has no numerical meaning and is just used for illustration purpose. Starting
from the le�, a 4-tuple of the �ve present clusters needs to be chosen. According to
the coverage, the best choice is to thread one haplotype through each of the four
clusters with highest coverage and ignoring the smallest one, as this is likely to
contain noisy reads only. From thereon, the threads change clusters whenever a
cluster ends or undergoes a drastic change in relative coverage.

Block cuts. Phasing tools are able to divide phased haplotypes into blocks if there
is not enough evidence in the data to connect these blocks. This is usually done
when there are two variants with no connecting read in between. For polyploid
organisms, however, even a single connecting read is not su�cient, as reads from
k − 1 di�erent haplotypes are needed to resolve the connection of k haplotypes on
both sides. In general, block cuts are a trade-o� between block length and accuracy,
as one of these metrics can easily be optimized by giving up the other one. To o�er
more �exibility to the user, WHATSHAP POLYPHASE provides di�erent modi of
applying block cuts to either get short and accurate or long but less accurate blocks.
Since it is uncertainwhether di�erent read clusters represent the sameor di�erent

haplotypes, themost conservativemethod is to cut the phasingwhenever one thread
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switches to another cluster, which we call single-switch-cuts. While this yields the
lowest block-wise error rate, many of these cuts can be avoided. If only one thread
switches the cluster, while the other k − 1 threads stay, one could conclude that the
old cluster is linked to the new one by process of elimination. If two ormore threads
switch, the continuation is ambiguous and a cut can be placed here to prevent switch
errors, which we call a multi-switch-cut. In principle, only the switching threads
need to be cut, while the rest can stay connected. To the best of our knowledge,
however, there is no established method to express such selective block cuts in a
VCF �le. Therefore, all haplotypes are interrupted in case of a multi-switch-cut.
The last type of cuts is the separation-cut, which is necessary to handle collapsed

regions. Assume a cluster contains multiple threads at some position and the num-
ber of threads has to be decreased by 1 for the next position due to a decrease in
coverage. Even though this is not covered by the multi-switch-cuts, there is still
a choice which of the contained threads should leave the cluster. If all threads
have been in the cluster since the start of the current block, the leaving thread
can be chosen arbitrarily. However, if they entered the current cluster on di�erent
positions or from di�erent predecessor clusters, the choice a�ects the resulting
haplotype sequences and we need to insert a separation-cut here to avoid potential
switch errors. Figure 6b shows an example, where two threads (green and blue)
share the same cluster before one of them has to leave. Either of them switching
would lead to a di�erent result, for which we do not know the correct one.

Preprocessing and phasing the potato genome
We ran a recently developed error correction pipeline [25] to reduce the typically
high number of sequencing errors in the Oxford Nanopore MinION reads, in order
to use them for variant calling and phasing. Illumina reads were �rst self-corrected
using Lighter [32], the corrected reads were used to build a de Bruijn graph with
bcalm2 [33] and theMinION reads were aligned to the graph with GraphAligner [25].
We used the default parameters for the error correction pipeline (Lighter k = 21,
bcalm2 k = 61 and abundance = 3, GraphAligner default alignment parameters).
The corrected read sequence of each mapped MinION read was obtained from the
path of its respective alignment in the graph. The corrected reads where aligned
to the reference genome using minimap2 [26] and converted to BAM-format using
samtools [34]. In the next step, we ran FreeBayes [27] (with additional parameters:
-p 4 –no-indels –no-mnsp –no-complex) inside of all gene regions to call SNPs
from the corrected Nanopore alignments. As base qualities are not produced during
error correction and FreeBayes seems to need them in order to compute genotypes,
we added a constant quality of 40 for all bases to the BAM �le before calling SNPs.
Finally, we ran WHATSHAP POLYPHASE in order to phase the variants with option
–verify-genotypes. This option invokes an additional step prior to phasing, which
re-genotypes all variants and only keeps those positions for which the computed
genotype matches the input genotype. For determining the genotype of a position,
we implemented a simple algorithm that calculates the fraction of reference and
alternative alleles that cover a variant and compare it to the fractions that we would
expect for all possible genotypes. We then assign the genotype whose expected
fractions of reference and alternative alleles best match the ones observed in the
data.
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We focused on the FRIGIDA-like protein 5 isoform X2 gene to demonstrate a use
case of polyploid phasing. We �rst extracted all phased variants that are part of
the longest phasing block reported by WHATSHAP POLYPHASE for this gene. In
order to assign reads to the haplotypes computed by WHATSHAP POLYPHASE, we
extended the command whatshap haplotag, which was previously implemented
for the diploid version of whatshap, to the polyploid case. Given a phased VCF with
predicted haplotypes and BAM-�le with sequencing reads, we assign each read
to the haplotype it is most similar to in terms of the alleles observed at variant
positions in the read. This assignment is stored by tagging the respective sequences
in the BAM �le, which enables visualizing the haplotype clusters by programs like
IGV [23] (see Figure 4c). Furthermore, we extended the subcommand whatshap
split to higher ploidies, which can be used to split tagged reads by haplotype and
store them in separate �les. For each haplotype, we produced a BAM-�le with reads
in this way.
In the next step, we ran wtdbg2 [28] (with options -x ccs -g 1m) separately

for reads corresponding to each haplotype to generate haplotype-resolved assem-
blies for the Frigida gene. Those were further analyzed with NCBI’s ORF�nder
and COBALT algorithms [29, 30] using their web interfaces (https://www.ncbi.
nlm.nih.gov/orffinder/, https://www.ncbi.nlm.nih.gov/tools/cobalt/re_
cobalt.cgi).
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Supplement
Supplement 1 — Hamming rates for arti�cial tetraploid human
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Figure 7: N50 block lengths and the respective block-wise Hamming rates for di�er-
ent block cut strategies of WHATSHAP POLYPHASE (default strategy marked by a
circle) on the real read dataset (top) and the simulated dataset (bottom) with 40×
and 80× coverage. Note that Hamming rates above 10 or 20 percent do not seem to
be useful in practice. If one used such a phasing to query whether two alleles lie on
the same haplotype, the chance of error would be as high. The results illustrate that
both methods are unable to produce good phasings over longs blocks. WHATSHAP
POLYPHASE achieves reasonably low Hamming error rates the default block cut
strategy.
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Supplement 2 — Comparison between H-POPG andWHATSHAP POLYPHASE in collapsing regions, using long
blocks similar to H-POPG

Table 3: Comparison between the resulting switch error rates of H-POPG andWHATSHAP
POLYPHASE using block lengths that are comparable to H-POPG (WH-PP-H) on collapsing
regions over at least 50 variants as compared to non-collapsing regions and the average
throughout the genome. Results (switch error rates in %) are presented for Chr01 of the real
(a) and the simulated (b) dataset, testing 40× and 80× coverage. The third row marks the
quotient between the switch error rate of H-POPG and that of WHATSHAP POLYPHASE to
highlight by which magnitude the results di�er.

coverage method collapsing regions non-collapsing regions total

40×
WH-PP-H 0.66 1.81 1.65
H-PoPG 2.02 2.16 2.02

SER(H-PoPG
WH-PP ) 3.06 1.19 1.22

80×
WH-PP-H 0.38 1.16 0.99
H-PoPG 1.05 1.30 1.24

SER(H-PoPG
WH-PP ) 2.76 1.12 1.25

(a) real read data

coverage method collapsing regions non-collapsing regions total

40×
WH-PP-H 0.45 1.29 1.19
H-PoPG 2.01 1.63 1.68

SER(H-PoPG
WH-PP ) 4.47 1.62 1.41

80×
WH-PP-H 0.25 0.88 0.82
H-PoPG 0.94 0.98 0.99

SER(H-PoPG
WH-PP ) 3.76 1.11 1.21

(b) simulated read data

Supplement 3 – Alignment of the haplotype sequences of the FRIGIDA gene and the reference genome

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.04.933523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.04.933523
http://creativecommons.org/licenses/by-nd/4.0/


24 REFERENCES

a

b

Figure 8: Haplotype assemblies for the FRIGIDA gene. We ran Reveal https:
//github.com/jasperlinthorst/reveal to produce a graph that represents an
alignment of the local haplotype assemblies for the FRIGIDA gene and the cor-
responding reference sequence. We visualized this graph using GFAviz [35]. The
red sequence corresponds to the reference genome. a) shows the whole graph, b)
shows the part of the graph that corresponds to the FRIGIDA-like protein 5 isoform
X2 gene.
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