

1 Title page

2

3 Exosome-mediated apoptosis pathway during WSSV infection in 4 crustacean mud crab

5

6 Yi Gong^{1,2,3}, Tongtong Kong^{1,2,3}, Xin Ren^{1,2,3}, Jiao Chen^{1,2,3}, Shanmeng Lin^{1,2,3},
7 Yuebing Zhang^{1,2,3}, Shengkang Li^{1,2,3*}

8

⁹ *Guangdong Provincial Key Laboratory of Marine Biology, Shantou University,*
¹⁰ *Shantou 515063, China*

11 ² Institute of Marine Sciences, Shantou University, Shantou 515063, China

¹² *³STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063,*
¹³ *China*

14

15 * Corresponding author: Shengkang Li

16 Tel: +86-754-86502485

17 Fax: +86-754-86503473

18 Email: lisk@stu.edu.cn

20 **Abstract**

21 MicroRNAs are regulatory molecules that can be packaged into exosomes to
22 modulate recipient's cellular response, while their role during viral infection is
23 beginning to be appreciated. However, the involvement of exosomal miRNAs during
24 immunoregulation in invertebrates has not been addressed. Here, we found that
25 exosomes released from WSSV-injected mud crabs could suppress viral invasion by
26 inducing apoptosis of hemocytes. Besides, miR-137 and miR-7847 were found to be
27 less packaged in mud crab exosomes during viral infection, with both miR-137 and
28 miR-7847 shown to be negative apoptosis regulators by targeting the
29 apoptosis-inducing factor (AIF). Moreover, our data revealed that AIF did not only
30 translocate to the nucleus to induce DNA fragmentation, but could also competitively
31 bind to HSP70 to disintegrate the HSP70-Bax (Bcl-2-associated X protein) complex,
32 which eventually activated the mitochondria apoptosis pathway via free Bax.
33 Therefore, our findings provides a novel mechanism underlying the crosstalk between
34 exosomal miRNAs and apoptosis pathway in innate immunity in invertebrates.

35

36 **Keywords:** *Scally paramamosain*; WSSV; apoptosis; exosomal miRNA; AIF; Bax

38 **Introduction**

39 Exosomes, measuring 30-120 nm in diameter, are extracellular vesicles of
40 endocytic origin that are released into the extracellular environment under
41 physiological and pathological conditions [1, 2]. Exosomes can be produced by
42 various types of donor cells and then transferred to target cells, which serve as
43 mediators during intercellular communications by transporting information cargo,
44 including lipids, proteins, mRNAs and microRNAs (miRNAs) [3, 4]. Specific
45 proteins highly enriched in exosomes are usually used as markers to identify
46 exosomes, such as TSG101, CD9, CD63 and CD81 [5, 6]. As a form of intercellular
47 vesicular transport, exosomes are involved in the regulation of a variety of
48 pathological processes [7]. Recently, exosomes have been implicated in viral
49 pathogenesis and immune responses [8, 9]. During virus infection, the infected host
50 cells can excrete exosomes containing viral or host genetic elements to neighboring
51 cells to help modulate host immune response [10, 11], which suggest a crucial role of
52 exosomes during virus infection. However, very little is known about how exosomes
53 regulate host immune response and impact on viral infection.

54 miRNAs are small non-coding RNAs of 18-25 nucleotides in length that can
55 bind to the 3'-untranslated region (UTR) of target genes in most cell types [12, 13].
56 Binding of the miRNAs can lead to recruitment of the target mRNAs to RNA-induced
57 silencing complex (RISC), which result in translational arrest or mRNA degradation
58 and decreased protein expression of the target genes [14, 15]. Apart from their
59 endogenous actions, miRNAs can be secreted into the extracellular space within

60 exosomes, with these miRNA-containing exosomes being taken up into neighboring
61 or distant cells to modulate the expression of multiple target genes in the recipient
62 cells [16, 17]. RNA sequencing analysis has shown that miRNAs are the most
63 abundant among the exosomal RNA species [18]. Recent evidences indicate that the
64 alteration of miRNA composition can significantly affect the biological activities of
65 exosomes that have been taken-up during virus infection [19, 20]. Importantly, it has
66 been demonstrated that package of miRNAs into exosomes is selective and can also
67 reflect the dysregulated miRNA composition in donor cells [21]. It is conceivable that
68 exosome-mediated intercellular transfer of miRNAs contributes to immune defense of
69 the recipient cells and regulate viral spread.

70 White spot syndrome virus (WSSV) is a large enveloped double-stranded DNA
71 virus that causes huge economic losses in aquaculture [22]. In recent years, studies
72 have shown the widespread pathogenicity of WSSV among many marine crustaceans,
73 including shrimp, crayfish and crabs [23]. Generally, innate immune responses
74 (humoral and cellular), are used by invertebrates to recognize and protect themselves
75 against pathogenic microbes [24]. Apoptosis is one type of cellular immune response
76 that plays an essential role in host antiviral immunity [25], with viral infection capable
77 of inducing apoptosis in infected cells in both vertebrates and invertebrates [26].
78 Since exosomes are widely thought to be effective defense tools for host resistance to
79 viral infection [27], while marine crustaceans possess an open circulatory system,
80 makes this an ideal carrier for exosomes to perform their immune functions. However,
81 the role of exosomes during antiviral immune response in marine crustaceans is unclear,

82 while whether there is the involvement of apoptosis remains unknown.

83 In an attempt to explore the involvement of exosomes in apoptosis during

84 antiviral immunoregulation of marine crustaceans, the interactions between exosomal

85 miRNAs and WSSV infection were characterized in mud crab *Scally paramamosain*.

86 The results revealed that exosomes released from WSSV-injected mud crabs could

87 suppress viral invasion by inducing hemocytes apoptosis. Moreover, it was found that

88 miR-137 and miR-7847 were less packaged in exosomes after WSSV challenge,

89 resulting in the activation of AIF, which eventually caused apoptosis and suppressed

90 viral infection of the recipient hemocytes.

92 **Results**

93 **The involvement of exosomes in antiviral regulation of mud crab**

94 To characterize exosomes from mud crab during WSSV infection, exosomes (i.e.,
95 exosome-PBS and exosome-WSSV), isolated from hemolymph of healthy
96 (PBS-injected) and WSSV-injected mud crabs, respectively were used. The
97 cup-shaped structure and size of the isolated exosomes were detected by electron
98 microscopy (Fig. 1A) and Nanosight particle tracking analysis (Fig. 1B). In addition,
99 Western blot analysis of exosome markers (CD9 and TSG101) and cytoplasmic
100 marker (calnexin) were further used to ascertain that the isolated particles were
101 exosomes (Fig. 1C). Furthermore, to analyze the capacity of the isolated exosomes to
102 be internalized by hemocytes, mud crabs were injected with exosomes labeled with
103 DiO (green), and hemocytes then isolated and labeled with Dil (red). Confocal
104 microscopic observation showed that the isolated exosomes (from PBS and WSSV
105 injected mud crabs) were successfully internalized in hemocytes (Fig. 1D). Besides,
106 the effects of the obtained exosomes on WSSV proliferation was investigated using
107 real-time PCR analysis. It was observed that mud crabs injected with exosome-PBS
108 had a significantly higher WSSV copy number than those injected with
109 exosome-WSSV (Fig. 1E). These results suggest that the secreted exosomes could be
110 internalized in hemocytes, which might play an important role in the immune
111 response of hemocytes in mud crab against virus infection.

112 **Exosome-mediated viral suppression is relevant to apoptosis activation**

113 To investigate the involvement of apoptosis during exosome-mediated virus
114 suppression in mud crab, exosome-PBS or exosome-WSSV and WSSV were
115 co-injected into mud crabs. The number of apoptotic hemocytes (at 48 hpi) were

116 evaluated by Annexin V/PI staining. The results showed higher apoptosis in the
117 exosome-WSSV and WSSV co-injected group compared with the other groups
118 (control and exosome-PBS groups) (Fig. 2A). Caspase 3/7 activity was found to
119 significantly increase in the exosome-WSSV and WSSV co-injected group compared
120 to the control group (Fig. 2B). To better understand the role of exosomes in mediating
121 mitochondrial membrane potential, mud crabs were co-injected with either
122 exosome-PBS or exosome-WSSV and WSSV, and hemocytes analyzed using
123 confocal microscopy. The confocal microscopic observation revealed that the
124 mitochondrial membrane potential showed weak red fluorescence (based on JC-1
125 aggregates) and strong green fluorescence (JC-1 monomers) in both
126 exosome-injected groups, compared with the controls (Fig. 2C). Moreover, the
127 proapoptotic protein, BAX, was upregulated, while prosurvival Bcl-2 was
128 downregulated in hemocytes of exosome co-injected mud crabs compared with
129 controls (Fig. 2D). To reveal the interactions between apoptosis and virus infection in
130 mud crab, the apoptosis inducer cycloheximide and apoptosis inhibitor Z-VAD-FMK
131 were used to evaluate their effects on WSSV proliferation in hemocytes of mud crab.
132 The results showed significantly lower WSSV copy number in the cycloheximide and
133 WSSV-injected group, but significantly higher WSSV copy number in the
134 Z-VAD-FMK and WSSV-injected group, compared with the WSSV-injected group
135 (Fig. 2E), which suggest a negative role of apoptosis during virus infection. To further
136 investigate the effect of apoptosis on exosome-mediated virus suppression, mud crabs
137 were co-injected with WSSV and either exosome-PBS, exosome-WSSV, or
138 exosome-WSSV and Z-VAD-FMK. It was found that the exosome-WSSV-mediated
139 virus suppression was significantly weaken when apoptosis was inhibited by
140 Z-VAD-FMK (Fig. 2F). These results revealed that exosomes isolated from WSSV

141 challenged mud crabs suppressed viral infection through activation of apoptosis.

142 **Functional miRNA screening in exosomes**

143 Microarray analysis of exosomal miRNAs was carried out with a 1.5-fold change
144 and $P < 0.01$ used as threshold cut-off. The results showed that 124 miRNAs were
145 found to be differentially expressed in isolated exosomes released from the
146 exosome-WSSV group compared with the exosome-PBS group. Among the
147 differentially expressed miRNAs, 84 were upregulated and 40 were downregulated
148 (see heatmap in Fig. 3A). The top 10 differentially expressed miRNAs, including
149 miR-137, miR-60, miR-373, miR-7847, miR-87a, miR-513, miR-353, miR-81,
150 miR-508, and miR-387, are shown in Fig. 3A. To investigate whether these miRNAs
151 affect WSSV proliferation, miRNA mimics (miR-137 mimic or miR-7847 mimic) or
152 anti-miRNA oligonucleotides (AMOs) (AMO-miR-137 or AMO-miR-7847) were
153 co-injected with WSSV into mud crabs for 48 hours. The results revealed an increase
154 in WSSV copy number in mud crabs after miRNA mimics injection and a decrease in
155 WSSV copy number in mud crabs after AMO injection (Fig. 3B and 3C). The
156 expression levels of miR-137 and miR-7847, normalized to U6, were investigated in
157 exosome-PBS and exosome-WSSV injected mud crabs. It was found that both
158 miR-137 and miR-7847 were significantly downregulated in the exosome-WSSV
159 injected group, compared to the exosome-PBS injected group (Fig. 3D).

160 In an attempt to reveal the roles of miR-137 and miR-7847 in apoptosis
161 regulation, mud crabs were injected with AMO-miR-137 and AMO-miR-7847. Flow
162 cytometry analysis revealed that both AMO-miR-137 and AMO-miR-7847 induced
163 higher apoptosis (in terms of percentage of apoptotic cells), compared with the
164 controls (WT and AMO-NC) (Fig. 3E). Similarly, caspase 3/7 activity was
165 significantly increased in AMO-miR-137 or AMO-miR-7847 injected groups,

166 compared to the controls (Fig. 3F). To examine the participation of miR-137 and
167 miR-7847 in exosome-mediated virus suppression, mud crabs were co-injected with
168 either exosome-PBS, exosome-WSSV, exosome-WSSV and miR-137-mimic, or
169 exosome-WSSV and miR-7847-mimic and WSSV. The results showed that WSSV
170 copy number was significantly lower in the exosome-WSSV and WSSV co-injected
171 group, compared with the other groups ($P<0.05$) (Fig. 3G). These data indicate that
172 both miR-137 and miR-7847 might be controlled by the exosomes derived from
173 WSSV infection, to promote replication of WSSV in hemocytes of mud crabs.

174 **Interactions between miR-137 and miR-7847 and their targeted genes**

175 To reveal the pathways mediated by miR-137 and miR-7847, their target genes
176 were predicted using the Targetscan and miRanda software. It was found that the
177 apoptosis-inducing factor (AIF) was the target gene of both miR-137 and miR-7847
178 (Fig. 4A). To confirm this result, synthesized miR-137 and miR-7847 as well as
179 EGFP-AIF-3'UTR-miR-137/-miR-7847 or mutant plasmids
180 (EGFP- Δ AIF-3'UTR-miR-137/-miR-7847 were co-transfected into *Drosophila* S2
181 cells (Fig. 4B). The results showed that the fluorescence intensity in cells
182 co-transfected with EGFP-AIF-3'UTR-miR-137 or EGFP-AIF-3'UTR-miR-7847 was
183 significantly decreased compared with cells co-transfected
184 EGFP- Δ AIF-3'UTR-miR-137 or EGFP- Δ AIF-3'UTR-miR-7847, respectively (Fig.
185 4C). This suggest that miR-137 or miR-7847 could interact with AIF.

186 In order to confirm the role of miRNAs in the expression of AIF mRNA, the
187 expression of miR-137 and miR-7847 were silenced using AMOs or miRNA mimics
188 and analyzed by qPCR. The qPCR results showed that AIF transcripts were
189 significantly increased in following AMO-miR-137 or AMO-miR-7847 treatment, but
190 was significantly decreased in the miR-137-mimic-scrambled or

191 miR-7847-mimic-scrambled groups, respectively, compared with control (Fig. 4D and
192 4E). On the other hand, AMO-miR-137-scrambled or AMO-miR-7847-scrambled and
193 miR-137-mimic or miR-7847-mimic had no significant effect on the expression of
194 AIF mRNA (Fig. 4D and 4E).

195 To investigate the targeting of AIF by miR-137 and miR-7847 in hemocytes of
196 mud crab, co-localization of miR-137/miR-7847 and AIF mRNA was examined.
197 Hemocytes were treated with FAM-labeled AIF mRNA probe (green), Cy3-labeled
198 miRNA probe (red) and DAPI (blue) before been observed under a fluorescence
199 microscope. The results showed that miR-137/miR-7847 and AIF mRNA were
200 co-localized in the cytoplasm of cells (Fig. 4F).

201 **Effects of AIF on WSSV proliferation and apoptosis**

202 To ascertain whether AIF is involved in the immune response of mud crab, the
203 expression profile of AIF was determined after WSSV challenge. The results
204 (Western blot and qPCR analyses) revealed that AIF was significantly elevated at 24
205 and 48 hours post-WSSV challenge (Fig. 5A). In order to determine the effects of AIF
206 on the proliferation of WSSV, viral copy number was examined in AIF depleted mud
207 crabs challenged with WSSV. The results showed that WSSV copy number was
208 significantly higher in AIF knockdown (siAIF-injected) mud crabs, compared with
209 the control groups (GFP-siRNA and WSSV group) (Fig. 5B).

210 In an attempt to unravel the roles of AIF in miR-137 and miR-7847-mediated
211 apoptosis regulation, AIF-depleted mud crabs were injected with AMO-miR-137 or
212 AMO-miR-7847. The results showed that the apoptotic rate and percentage of
213 apoptotic cells were significantly higher in normal mud crabs injected with
214 AMO-miR-137 or AMO-miR-7847 compared with AIF-depleted mud crabs injected
215 with AMO-miR-137 or AMO-miR-7847, respectively (Fig. 5C). Similar results were

216 obtained for caspase 3/7 activity analysis (Fig. 5D). Moreover, AIF was found to
217 participate in exosome-mediated virus suppression. As shown in Fig. 5E,
218 AIF-depleted mud crabs co-injected with exosome-WSSV and WSSV had
219 significantly higher WSSV copy number compared with normal mud crabs
220 co-injected with either exosome-WSSV or exosome-PBS and WSSV ($P<0.05$).

221 **Nuclear translocation of AIF induces DNA fragmentation**

222 It has previously been reported that AIF is able to translocate into the nuclear of
223 hemocytes [28]. Thus, we performed Western blot analysis to determine whether AIF
224 was present in the nuclear extract of hemocytes from mud crabs injected with either
225 WT (control), WSSV, AMO-miR-137 or AMO-miR-7847. The results revealed that
226 AIF was found in the nucleus of hemocytes in all groups (except WT) at 6 and 24
227 hours post-injection (Fig. 6A). To further confirm the localization of AIF in the
228 hemocytes of mud crabs, an immunofluorescent assay was carried out (Fig. 6B). The
229 results indicated that AIF (detected using mouse anti-AIF antibody) was
230 predominantly co-stained with DAPI in the nucleus of mud crab hemocytes. To
231 explore the effect of AIF translocation to the nucleus, DNA fragmentation was
232 analyzed using 3% agarose gel electrophoresis and genomic DNA isolated from
233 hemocytes of mud crabs injected with WT (control), WSSV, AMO-miR-137 or
234 AMO-miR-7847. The results revealed that WSSV, AMO-miR-137 and
235 AMO-miR-7847 induced more DNA fragments compared with the control group (Fig.
236 6C).

237 **Role of AIF in mitochondrial apoptosis**

238 After observing that AIF was involved in hemocytes apoptosis,
239 co-immunoprecipitation analysis was carried out, with the results (SDS-PAGE and
240 Western blot) indicating that AIF could bind to HSP70 (Fig. 7A and 7B). To confirm

241 the role of HSP70 in the regulation of apoptosis in hemocytes, mud crabs were
242 depleted of HSP70 and the level of hemocytes apoptosis determined. It was observed
243 that in hemocytes of HSP70 silenced (HSP70-siRNA) mud crabs, the apoptotic rate
244 and percentage of apoptotic cells were significantly increased, compared with the
245 control groups (WT and GFP-siRNA) (Fig. 7C). Knockdown of HSP70 also
246 significantly decreased the WSSV copy number in hemocytes of mud crabs
247 challenged with WSSV, compared with the control groups (Fig. 7D). This indicates
248 the involvement of HSP70 in the proliferation of WSSV in mud crabs. Moreover,
249 co-immunoprecipitation analysis revealed that HSP70 could bind to Bax (Fig. 7E and
250 7F). The interaction between HSP70 and Bax is shown in Fig. 7G. These results
251 shows that the HSP70-Bax complex in hemocytes was disrupted when mud crabs
252 were injected with either AMO-miR-137, AMO-miR-7847 or WSSV compared with
253 control (WT group) (Fig. 7G).

254 In the mitochondria of HSP70-siRNA treated mud crabs, the expression of Bax
255 was increased, but that of Cyt C decreased (Fig. 7H), which suggest a role of HSP70
256 in regulating the functions of Bax and Cyt C in the mitochondria. To further
257 investigate whether silencing of HSP70 could affect mitochondrial mediated
258 apoptosis, the mitochondrial membrane potential of hemocytes from HSP70-siRNA
259 treated mud crabs was determined using confocal microscopy in terms of JC-1
260 aggregates (red fluorescence) and JC-1 monomers (green fluorescence) (Fig. 7I). The
261 results (Fig. 7I) revealed weak red fluorescence and strong green fluorescence in the
262 HSP70-siRNA treated group, compared with the GFP-siRNA control group, which
263 indicates high apoptosis rate in HSP70 depleted mud crabs. To detect the presence of
264 both Bax and Cyt C in mitochondria, mud crabs were injected with either WT
265 (control), AMO-miR-137, AMO-miR-7847 or WSSV. The results (Western blot)

266 revealed an increased level of Bax and a decreased level of Cyt C in mitochondria of
267 the AMO-miR-137, AMO-miR-7847 or WSSV treated groups, compared with control
268 (WT) (Fig. 7J).

269 Taken together, our findings revealed that during WSSV infection, both miR-137
270 and miR-7847 were less packaged in mud crab exosomes, then the decreased uptake
271 of exosomal miR-137 and miR-7847 resulted in the activation of AIF in the recipient
272 hemocytes. AIF could translocated to nucleus to induce DNA fragmentation, on the
273 other hand, AIF competitively bind to HSP70 and led to the disintegration of
274 HSP70-Bax complex, then the free Bax was transferred to mitochondria, which
275 eventually caused mitochondrial apoptosis and suppressed virus infection in the
276 recipient hemocytes (Fig. 8).

278 **Discussion**

279 Exosomes are small membrane-enclosed vesicles actively released by cells into
280 the extracellular environment, with the molecular cargo carried by exosomes
281 reflecting the physiological or pathological state of donor cells [29]. In recent years,
282 the involvement of exosomes in viral pathogenesis and immune responses has been
283 widely investigated [8]. For instance, exosomes can protect viral contents from
284 immune recognition, with studies showing that exosomes secreted by HCV-infected
285 cells contain full-length viral RNA, which can be delivered to dendritic cells to
286 establish infection [30, 31]. Meanwhile, VSV (vesicular stomatitis virus) infection can
287 mediate the recruitment of TRAMP-like complex to exosomes to recognize and
288 induce degradation of viral mRNAs [32]. In addition, exosomes released from
289 HIV-infected cells contain regulatory factors required for apoptosis activation, which
290 inhibit virus invasion by inducing apoptosis of uninfected cells [33]. Although there
291 has been an increasing number of studies on exosomes and viral infection, most are
292 focused on higher organisms, while the role of exosomes in antiviral immune
293 response of invertebrates largely unexplored. In the current study, we revealed for the
294 first time that, exosomes isolated from mud crab have typical characteristics as those
295 in higher organisms. Furthermore, our data shows that exosomes released from
296 WSSV-injected mud crabs could suppress virus invasion by inducing hemocytes
297 apoptosis, which demonstrates a novel role of exosomes in invertebrates.

298 A distinct feature of exosomes is that a large number of nucleic acids are
299 packaged in it, including miRNA, mRNA, mtDNA, piRNA, 1ncRNA, rRNA, snRNA,

300 snoRNA and tRNA [34]. As the most abundant RNA in exosomes, studies have
301 repeatedly demonstrated the essential roles of exosomal miRNAs during host-virus
302 interactions [35]. Besides, the miRNA cargo carried by exosomes can be affected by
303 external signals such as oxidative stress and pathogens infection [36], which possess
304 completely different molecular composition to deal with these stimulations. For
305 instance, EV71 infection cause differential packaging of miR-146a to exosomes,
306 which suppresses type I interferon expression in the recipient cells, thus facilitating
307 viral replication [37]. miR-483-3p is highly presented in mice exosomes during
308 influenza virus infection, which potentiates the expression of type I interferon and
309 proinflammatory cytokine genes [35]. Exosomal miR-145, miR-199a, miR-221 and
310 Let-7f secreted by umbilical cord mesenchymal stem cells can directly bind to the
311 genomic RNA of HCV and effectively inhibit viral replication [38]. In addition,
312 studies have found that exosomal miRNAs are endowed with other functions apart
313 from regulation of gene expression. Exosomal miR-21 and miR-29a secreted by
314 HEK293 cells can serve as ligands and bind with toll-like receptors (TLRs), thus
315 activating relevant immune pathways in the recipient cells [39]. Due to the diversity
316 of their mode of regulation and functions, exosomal miRNAs are crucial regulators in
317 response to virus infection, although no relevant research has been carried out in
318 invertebrates. In the current study, we found that miR-137 and miR-7847 were less
319 packaged in mud crab exosomes after WSSV challenge. Both miR-137 and miR-7847
320 are negative apoptosis regulators by targeting AIF, and thus decreased uptake of
321 exosomal miR-137 and miR-7847 resulting in the activation of AIF, which eventually

322 caused apoptosis and suppressed viral infection in the recipient hemocytes in mud
323 crab. The present study thus reveals a novel molecular mechanism underlying the
324 crosstalk between exosomal miRNAs and innate immunity in invertebrates.

325 The function of miR-7847 has not been reported previously, while miR-137 is
326 regarded as an important regulator during tumorigenesis. It has been reported that
327 miR-137 can inhibit the proliferation of lung cancer cells by targeting Cdc42 and
328 Cdk6 [40]. Beside, miR-137 can also regulate the tumorigenicity of colon cancer stem
329 cells through the inhibition of DCLK1 [41]. Thus far, the roles of miR-137 and
330 miR-7847 in invertebrates had remained unclear, while our present study revealed that
331 miR-137 and miR-7847 could suppress viral infection by promoting apoptosis. In
332 addition, the present data revealed that AIF was co-targeted by both miR-137 and
333 miR-7847 in mud crab. AIF is a mitochondrial FAD-dependent oxidoreductase
334 protein that is involved in the regulation of oxidative phosphorylation [42]. Besides,
335 AIF is the first identified caspase-independent protein important in mitochondrial
336 pathway mediated apoptosis [43]. During the early process of the apoptosis, AIF is
337 released from mitochondria and translocates to the nucleus [44], where it induces
338 nuclear chromatin condensation, DNA fragmentation and cell death [45, 46]. It has
339 been reported that when human alveolar epithelial cells (A549 cells) are challenged
340 with influenza virus, AIF could translocate from mitochondria to nucleus, resulting in
341 apoptosis in response to the virus infection [47]. At present, the function of AIF in the
342 immunoregulation of invertebrate has not been addressed. Here, we found that AIF
343 could inhibit WSSV infection by activating apoptosis of hemocytes in mud crabs.

344 Moreover, AIF did not only translocate to the nucleus to induce DNA fragmentation,
345 but was found to also competitively bind to HSP70 thereby disintegrating the
346 HSP70-Bax complex, and freeing Bax, which transfers to the mitochondria to activate
347 mitochondrial apoptosis pathway. The present study therefore provides some novel
348 insight into the invertebrate innate immune system and highlights potential preventive
349 and therapeutic strategies for viral diseases.

350 In summary, our findings revealed the evolutionary conservation of exosomal
351 regulatory pathway in animals. As a topical research area, studies relevant to
352 exosomes have largely focused on higher organisms [48]. In invertebrates, exosomes
353 have been reported only in drosophila, and shown to be involved in the regulation of
354 viral infection [49, 50] and miRNA biogenesis [51]. Thus, there is no enough
355 evidence to conclude that exosome is a general regulatory approach in animals. In
356 addition, exosomal miRNAs are also still unexplored in invertebrates, which means
357 that there is an urgent need to characterize the existence and role of exosomal
358 miRNAs. The current study was therefore the first to reveal the involvement of
359 exosomal miRNAs in antiviral immune response of mud crabs, which shows a novel
360 molecular mechanism of how invertebrates resist pathogenic microbial infection.

361

362

363

364

365

366 **Materials and Methods**

367 **Mud crab culture and WSSV challenge**

368 Healthy mud crabs, approximately 50 g each, were acclimated in the tanks
369 filled with seawater at 25 °C for 3 days before WSSV challenge. To ensure that the
370 crabs were virus-free before the experiments, PCR analysis were performed via
371 WSSV-specific primer (5'-TATTGTCTCTCCTGACGTAC-3' and
372 5'-CACATTCTTC
373 ACGAGTCTAC-3'). Then, 200 µL WSSV (1×10^6 cfu/ml) was injected into the base
374 of the fourth leg of each crab. At different time post-infection, hemolymph was
375 collected from three randomly chosen crabs per group for further investigation.

376 **Ethics statement**

377 The mud crabs used in this study were taken from a local crab farm (Niutianyang,
378 Shantou, Guangdong, China). No specific permits were required for the described
379 field studies, as the sampling locations were not privately owned or protected in any
380 way. Furthermore these field studies did not involve endangered or protected species.
381 The animals were processed according to "the Regulations for the Administration of
382 Affairs Concerning Experimental Animals" established by the Guangdong Provincial
383 Department of Science and Technology on the Use and Care of Animals.

384 **Isolation and analysis of exosomes**

385 For exosomes isolation, the hemolymph of mud crabs was separated, after
386 centrifuged at $300 \times g$ for 5 min, the sediment was removed. Subsequently, the
387 supernatant was subjected to ultracentrifugation, followed by sucrose density-gradient

388 centrifugation and filtrated through 0.22 μ m filters. Then the obtained exosomes were
389 observed by Philips CM120 BioTwin transmission electron microscope (FEI
390 Company, USA) and quantified by Nano-Sight NS300 (Malvern Instruments Ltd,
391 UK).

392 **Exosomes tracing**

393 For exosome-tracing experiments, the isolated exosomes were pre-treated by
394 DiO (Beyotime, China) and injected into mud crabs for 2 h. Then, the hemocytes
395 were isolated and treated with DiI (Beyotime), followed by observation with confocal
396 laser scanning microscopy TCS SP8 (Leica, Germany).

397 **Microarray analysis of exosomal miRNAs**

398 Exosomal miRNAs microarray analysis was performed at Biomarker
399 Technologies (Beijing, China), using Agilent Human miRNA 8*60 K V21.0
400 microarray (Agilent Technologies, USA). The Gene Expression Omnibus accession
401 number is PRJNA600674. Gene Spring Software 12.6 (Agilent Technologies) was
402 used for quantile normalization and data processing. Besides, Pearson's correlation
403 analysis through Cluster 3.0 and TreeView software was used for Hierarchical
404 clustering analysis of the differential expression of miRNAs.

405 **RNA interference assay**

406 Based on the sequence of *Sp*-AIF (GenBank accession number MH393923.1)
407 and *Sp*-HSP70 (GenBank accession number EU754021.1), the siRNA specifically
408 targeted *Sp*-AIF or *Sp*-HSP70 gene was designed, generating AIF-siRNA (5'-
409 UCUAAUUCUGCAUUGACUCUGUU -3') and HSP70-siRNA (5'- UCUUCAUAA

410 GCACCAUAGAGGAGUU-3'). The siRNAs were synthesized using *in vitro*
411 Transcription T7 Kit (TaKaRa, Dalian, China) according to the user's instructions.
412 Then, 50 µg AIF-siRNA or HSP70-siRNA was injected into each mud crab
413 respectively. At different time post siRNA injection, three mud crabs were randomly
414 selected for each treatment and stored for further use.

415 **Quantification of mRNA with real-time PCR**

416 The real-time quantitative PCR was conducted with the Premix Ex Taq (Takara,
417 Japan) to quantify the mRNA level. Total RNA was extracted from hemocytes,
418 followed by first-strand cDNA synthesis using PrimeScript™ RT Reagent Kit (Takara,
419 Japan). Primers AIF-F (5'-AGCCATTGCCAGTCTTGAT-3') and AIF-R
420 (5'-GAACCCAGAAATCCTCCACC-3') was used to quantify the AIF mRNA
421 transcript, while primers β-actin (β-actin-F, 5'-GCGGCAGTGGTCATCTCCT-3' and
422 β-actin-R, 5'-GCCCTTCCTCACGCTATCCT-3') was used to quantify the internal
423 control β-actin. Relative fold change of mRNA expression level of AIF was
424 determined using the $2^{-\Delta\Delta Ct}$ algorithm [52].

425 **Quantification of miRNA with real-time PCR**

426 Total RNA was extracted using MagMAX™ mirVana™ Total RNA Isolation
427 Kit (Thermo Fisher Scientific, USA), followed by first-strand cDNA synthesis via
428 PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara, Japan) using miR-137-
429 primer(5'-GTCGTATCCAGTGCAGGGTCCGAGGTCACTGGATACGACACGTG
430 TAT-3') and miR-7847-primer (5'-
431 GTCGTATCCAGTGCAGGGTCCGAGGTCACTG

432 GATACGACAATCCTCC-3'). Real-time PCR was carried out with the Premix Ex
433 Taq (Takara, Japan) to quantify the expression level of miR-137 and miR-7847, U6
434 was used as control, the primers used were listed below. miR-137-F (5'-
435 CGCCGTTATTGCTTGAGA-3') and miR-137-R (5'- TGCAGGGTCCGAGGTCAC
436 TG-3'), miR-7847-F (5'-CGCCGCTGGAGGAGTAGG-3') and miR-7847-R (5'-
437 TGCAGGGTCCGAGGTCACTG-3'), U6-F (5'-CTCGCTTCGGCAGCACA-3') and
438 U6-R (5'-AACGCTTCACGAATTGCGT-3').

439 **Analysis of WSSV copies by real-time PCR**

440 The genomic DNA of WSSV-infected mud crab was extracted using a SQ tissue
441 DNA (Omega Bio-tek, Norcross, GA, USA) according to the manufacturer's
442 instruction. To detect WSSV copies in mud crab, real-time PCR analysis was carried
443 out using Premix Ex Taq (probe qPCR) (Takara, Dalian, China). Real-time PCR was
444 performed with WSSV-specific primers WSSV-RT1
445 (5'-TTGGTTTCATGCCCGAGA
446 TT-3') and WSSV-RT2 (5'-CCTTGGTCAGCCCCTTGA-3') and a TaqMan probe
447 (5'-FAM-TGCTGCCGTCTCCAA-TAMRA-3') according to previous study [53].
448 The internal standard of real-time PCR was a DNA fragment of 1400 bp from the
449 WSSV genome [54].

450 **Detection of apoptotic activity**

451 In order to evaluate the apoptotic activity of mud crab, the Caspase 3/7 activity
452 of hemocytes was determined with the Caspase-Glo 3/7 assay (Promega, USA).
453 While the apoptosis rate was evaluated using FITC Annexin V Apoptosis Detection

454 Kit I (BD Pharmingen™, USA) according to the manufacturer's instruction. And flow
455 cytometry (AccuriTM C6 Plus, BD biosciences, USA) was used to analyze the
456 apoptosis rate. Besides, the mitochondrial membrane potential, an indicator of the
457 apoptotic activity in hemocytes, which were measured by Mitochondrial membrane
458 potential assay kit with JC-1 (Beyotime, China) following the protocols and finally
459 analyzed by confocal microscope(ZEISS, Germany).

460 **Western blot analysis**

461 The hemocytes of mud crab were homogenized with RIPA buffer (Beyotime
462 Biotechnology, China) containing 1 mM phenylmethanesulfonyl fluoride (PMSF) and
463 then centrifuged at 13,000×g for 5 min at 4 °C. Then the cell extracts mixed with 5 ×
464 SDS sample buffer were separated by 12 % SDS-polyacrylamide gel electrophoresis
465 and transferred onto a nitrocellulose membrane (Millipore, USA). Subsequently, the
466 membrane was incubated in blocking buffer (Tris-buffered saline containing 0.1%
467 Tween 20 (TBST) and 5% (W/V) nonfat dry milk) and further incubated with
468 appropriate primary antibody at 4 °C. After washed with TBST, the membrane was
469 incubated with horseradish peroxidase-conjugated secondary antibody (Bio-Rad, USA)
470 for subsequent detection by ECL substrate (Thermo Scientific, USA).

471 **The target gene prediction of miRNA**

472 TargetsCan (<http://www.targetscan.org>) and miRanda (<http://www.microrna.org/>)
473 were used to predict the target genes of miR-137 and miR-7847 by a commercial
474 company (BioMarker, Beijing, China). And the overlapped target gene predicted by
475 the two algorithms were the candidate target gene.

476 **Cell culture, transfection, and fluorescence assays**

477 The *Drosophila* Schneider 2 (S2) cells were cultured in Express Five serum-free
478 medium (SFM) (Invitrogen, USA) at 27 °C. The EGFP-AIF-3'UTR or the mutant
479 plasmids (100 ng/well) and the synthesized miR-137 or miR-7847 (50 nM/well) were
480 co-transfected into S2 cells using with Cellfectin II Reagent (Invitrogen, USA)
481 according to the manufacturer's protocol. At 48 h after co-transfection, the EGFP
482 fluorescence in S2 cells was measured by a Flex Station II microplate reader
483 (Molecular Devices, USA) at 490/ 510 nm of excitation/emission (Ex/Em).

484 **The silencing or overexpression of miR-137 and miR-7847 in mud crab**

485 Anti-microRNA oligonucleotide (AMOs) or miRNA mimic was injected at 30
486 µg/crab to knockdown or overexpress miRNAs in mud crab, AMO-miR-137 (5'-
487 ACGTGTATTCTCAAGCAATAA-3'), AMO-miR-7847
488 (5'-AATCCTCCTACTCCT
489 CCAG-3'), miR-137 mimic (5'-TTATTGCTTGAGAATA**CACGT**-3') and miR-7847
490 mimic (5'-CTGGAGGAGTAGGAGGATT-3') were modified with 2'-O-methyl
491 (OME) (bold letters) and phosphorothioate (the remaining nucleotides). All
492 oligonucleotides were synthesized by Sangon Biotech (Shanghai, China). At different
493 time points after the last injection, three mud crabs per treatment were collected for
494 subsequent use.

495 **Fluorescence *in situ* hybridization**

496 The hemocytes of mud crab were seeded onto the polysine-coated cover slips,
497 fixed with 4% polyformaldehyde for 15 min at room temperature. After that, the

498 cover slips were dehydrated in 70% ethanol overnight at 4°C, followed by incubation
499 with hybridization buffer [1× SSC (15 mM sodium citrate, 150 mM sodium chloride,
500 pH 7.5), 10% (w/v) dextran sulfate, 25% (w/v) formamide, 1× Denhardt's solution]
501 containing 100 nM probe for 5 h at 37°C. The miR-137 probe (5'-FAM-
502 ACGTGTATTCTCAAGCAATAA-3'), miR-7847 probe (5'-FAM-
503 AATCCTCCTACT
504 CCTCCAG-3') and AIF probe (5'-Cy3-TCCATCTTCTGTACTCTGACT-3') were
505 used. Then the slips were washed with PBS for three times, and after that the
506 hemocytes were stained with DAPI (4', 6-diamidino-2-phenylindole) (50 ng/ml)
507 (Sigma, USA) for 5 min [55]. The images were captured using a CarlZeiss LSM710
508 system (Carl Zeiss, Germany).

509 **Statistical analysis**

510 All data were subjected to one-way ANOVA analysis using Origin Pro8.0, with
511 $P < 0.01$ considered statistically significant. All assays were biologically repeated for
512 three times.

513

514

515

516

517

518

519

520

521

522

523

524

525 **Acknowledgements**

526 This study was financially supported by the National Natural Science Foundation
527 of China (31802341, 41876152), Natural Science Foundation of Guangdong Province,
528 China (2018A030307044), Department of Education of Guangdong Province, China
529 (2017KQNCX072), STU Scientific Research Foundation for Talents (NTF18001),
530 and Guangdong Provincial Special Fund for Modern Agriculture Industry Technology
531 Innovation Teams (2019KJ141).

532

533 **Author contributions**

534 YG and TTK performed the experiments and analyzed the data. SKL and YG
535 wrote the manuscript. All authors read and approved the contents of the manuscript
536 and its publication.

537

538 **Conflict of interest**

539 The authors declare no conflicts of interest.

541 **References**

542 1. Théry, C., Zitvogel, L. & Amigorena S. Exosomes: composition, biogenesis
543 and function. *Nat Rev Immunol* **2**, 569-579 (2002).

544 2. Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and
545 characterization of exosomes from cell culture supernatants and biological
546 fluids. *Curr Protoc in Cell Biol* **3** (2006).

547 3. Milane, L., Singh, A., Mattheolabakis, G., Suresh, M. & Amiji, M.M.
548 Exosome mediated communication within the tumor microenvironment.
549 *Journal Control Release* **219**, 278-294 (2015).

550 4. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a
551 novel mechanism of genetic exchange between cells. *Nat Cell Biol* **9**, 654-659
552 (2007).

553 5. Bobrie, A., Colombo, M., Krumeich, S., Raposo, Ga. & Théry, C. Diverse
554 subpopulations of vesicles secreted by different intracellular mechanisms are
555 present in exosome preparations obtained by differential ultracentrifugation. *J
556 Extracell Vesicles* **1**, 18397 (2012).

557 6. Bobrie, A. & Théry, C. Exosomes and communication between tumours and
558 the immune system: are all exosomes equal? *Biochem Soc Trans* **41**, 263-267
559 (2013).

560 7. Vlassov, AV., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: Current
561 knowledge of their composition, biological functions, and diagnostic and
562 therapeutic potentials. *Biochim Biophys Acta* **1820**, 940-948 (2012).

563 8. Marta, A. & Maria, A. Exosome Biogenesis, Regulation, and Function in Viral
564 Infection. *Viruses* **7**, 5066-5083 (2015).

565 9. Harendra, C., Xiaoyong, B. & Antonella, C. Exosomes and Their Role in the
566 Life Cycle and Pathogenesis of RNA Viruses. *Viruses* **7**, 3204-3225 (2015).

567 10. Marisa, M. & Chioma, O. Exosomes: Implications in HIV-1 Pathogenesis.
568 *Viruses* **7**, 4093-4118 (2015).

569 11. Zhu, X. et al. Ifitm3-containing exosome as a novel mediator for anti-viral
570 response in dengue virus infection. *Cell Microbiol* **17**, 105-118 (2015).

571 12. Victor, A. The functions of animal microRNAs. *Nature* **431**, 350-355 (2004).

572 13. Tang, G. siRNA and miRNA: an insight into RISCs. *Trends Biochem Sci* **30**,
573 106-114 (2005).

574 14. Ameres, S.L., Martinez, J. & Schroeder, R. Molecular Basis for Target RNA
575 Recognition and Cleavage by Human RISC. *Cell* **130**, 101-112 (2007).

576 15. Mallory, A.C. et al. MicroRNA control of PHABULOSA in leaf development:
577 importance of pairing to the microRNA 5 \bar{A} region. *Embo J* **23**, 3356-3364
578 (2014).

579 16. Bang, C. et al. Cardiac fibroblast-derived microRNA passenger
580 strand-enriched exosomes mediate cardiomyocyte hypertrophy. *J Clin Invest*
581 **124**, 2136-2146 (2014).

582 17. Fong, M.Y., Zhou, W., Liu, L., Alontaga, A.Y. & Wang, S.E.
583 Breast-cancer-secreted miR-122 reprograms glucose metabolism in
584 premetastatic niche to promote metastasis. *Nat Cell Biol* **17**, 183-193 (2015).

585 18. Huang, X., Yuan, T., Tschannen, M., Sun, Z. & Wang, L. Characterization of
586 human plasma-derived exosomal RNAs by deep sequencing. *Bmc Genomics*
587 **14**, 319-333 (2013).

588 19. Gurwitz. & David. Exosomal MicroRNAs in Tissue Crosstalk. *Drug Dev Res*
589 **76**, 259-262 (2015).

590 20. Zhang, J. et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and
591 Function. *Genomics Proteomics & Bioinformatics* **13**, 17-24 (2015).

592 21. Mario, Leonardo. et al. Endogenous RNAs Modulate MicroRNA Sorting to
593 Exosomes and Transfer to Acceptor Cells. *Cell Rep* **8**, 1432-1446 (2014).

594 22. Zhang, X., Huang, C., Tang, X., Ying, Z. & Hew, C.L. Identification of
595 Structural Proteins from Shrimp White Spot Syndrome Virus (WSSV) by
596 2DE-MS. *Proteins* **55**, 229-235 (2004).

597 23. Corbel, V., Zuprizal, Z., Shi, C. & Bonami, J.R. Experimental infection of
598 European crustaceans with white spot syndrome virus (WSSV). *J Fish Dis* **24**,
599 377-382 (2001).

600 24. Rowley, A.F. & Powell, A. Invertebrate Immune Systems-Specific,
601 Quasi-Specific, or Nonspecific? *J Immunol* **179**, 7209-7214 (2007).

602 25. Zhou, X., Wenbo, J., Zhongshun, L., Shuai, L. & Xiaozhen, L. Virus Infection
603 and Death Receptor-Mediated Apoptosis. *Viruses* **9**, 316-335 (2017).

604 26. Clarke, P. & Tyler, K.L. Apoptosis in animal models of virus-induced disease.
605 *Nat Rev Microbiol* **7**, 144-155 (2009).

606 27. Anderson, M.R, Kashanchi, F. & Jacobson, S. Exosomes in Viral Disease.

607 28. *Neurotherapeutics* **13**, 535-546 (2016).

608 28. Bajt, M.L., Cover, C., Lemasters, J.J. & Jaeschke H. Nuclear translocation of
609 endonuclease G and apoptosis-inducing factor during acetaminophen-induced
610 liver cell injury. *Toxicol Sci* **94**, 217-225 (2006).

611 29. Simons, M. & Raposo, G. Exosomes-vesicular carriers for intercellular
612 communication. *Curr Opin Cell Biol* **21**, 575-581 (2009).

613 30. Liu, Z., Zhang, X., Yu, Q. & He, J.J. Exosome-associated hepatitis C virus in
614 cell cultures and patient plasma. *Biochem Biophys Res Co* **455**, 218-222 (2014).

615 31. Cosset, FOLC. & Dreux, M. HCV transmission by hepatic exosomes
616 establishes a productive infection. *J Hepatol* **60**, 674-675 (2014).

617 32. Molleston, J.M. et al. A conserved virus-induced cytoplasmic TRAMP-like
618 complex recruits the exosome to target viral RNA for degradation. *Genes Dev*
619 **30**, 1658-1670 (2016).

620 33. Lenassi, M. et al. HIV Nef is Secreted in Exosomes and Triggers Apoptosis in
621 Bystander CD4+ T Cells. *Traffic* **11**, 110-122 (2010).

622 34. Boorn, JGVD., Daßler, J., Coch, C., Schlee, M. & Hartmann, G. Exosomes as
623 nucleic acid nanocarriers. *Adv Drug Deliv Rev* **65**, 331-335 (2012).

624 35. Maemura, T. et al. Lung-derived exosomal miR-483-3p regulates the innate
625 immune response to influenza virus infection. *J Infect Dis* **217**, 1372-1382
626 (2018).

627 36. Eldh, M. et al. Exosomes Communicate Protective Messages during Oxidative
628 Stress; Possible Role of Exosomal Shuttle RNA. *Plos One* **5**, e15353 (2010).

629 37. Wu, Z. Exosome-mediated miR-146a transfer suppresses type I interferon
630 response and facilitates EV71 infection. *Plos Pathogens* **13**, e1006611 (2017).

631 38. Qian, X. et al. Exosomal MicroRNAs Derived From Umbilical Mesenchymal
632 Stem Cells Inhibit Hepatitis C Virus Infection. *Stem Cell Transl Med* **5**,
633 1190-1203 (2016).

634 39. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce
635 prometastatic inflammatory response. *Proc Natl Acad Sci USA*, **109**,
636 12278-12279 (2012).

637 40. Zhu, X. et al. miR-137 inhibits the proliferation of lung cancer cells by
638 targeting Cdc42 and Cdk6. *Febs Lett* **587**, 73-81 (2013).

639 41. Guo, J., Xia, B., Meng, F. & Lou, G. miR-137 suppresses cell growth in
640 ovarian cancer by targeting AEG-1. *Biochem Biophys Res Commun* **441**,
641 357-363 (2013).

642 42. Daugas, E. et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial
643 oxidoreductase involved in apoptosis. *Febs Lett* **476**, 118-123 (2000).

644 43. Susin, S.A. et al. Molecular characterization of mitochondrial
645 apoptosis-inducing factor. *Nature* **397**, 441-446 (1999).

646 44. Yu, C., Meng, Y., Wang, C. & Yang, A. AIF is One of the Critical
647 Mitochondrial Proteins to Mediate Nuclear Apoptosis. *Prog Biochem Biophys*
648 **29**, 177-179 (2002).

649 45. Lorenzo, H.K. & Susin, S.A., Therapeutic potential of AIF-mediated
650 caspase-independent programmed cell death. *Drug Resist Updat* **10**, 235-255

651 (2007).

652 46. Nicola, V. et al. AIF deficiency compromises oxidative phosphorylation.

653 *EMBO J* **23**, 4679-4689 (2014).

654 47. Qu, X. et al. Influenza virus infection induces translocation of

655 apoptosis-inducing factor (AIF) in A549 cells: role of AIF in apoptosis and

656 viral propagation. *Arch Virol* **162**, 669-675 (2017).

657 48. Schorey, J.S. & Bhatnagar, S. Exosome Function: From Tumor Immunology

658 to Pathogen Biology. *Traffic* **9**, 871-881 (2010).

659 49. Tassetto, M., Kunitomi, M. & Andino, R. Circulating Immune Cells Mediate a

660 Systemic RNAi-Based Adaptive Antiviral Response in Drosophila. *Cell* **169**,

661 314-325 (2017).

662 50. Brasset, E. et al. Viral particles of the endogenous retrovirus ZAM

663 from *Drosophila melanogaster* use a pre-existing endosome/exosome pathway

664 for transfer to the oocyte. *Retrovirology* **3**, 25-34 (2006).

665 51. Flynt, A.S., Greimann, J.C., Chung, W.J., Lima, C.D. & Lai, E.C. MicroRNA

666 Biogenesis via Splicing and Exosome-Mediated Trimming in Drosophila. *Mol*

667 *Cell* **38**, 900-907 (2010).

668 52. Arocho, A., Chen, B.Y., Ladanyi, M. & Pan, Q.L. Validation of the 2(-Delta

669 Delta Ct) calculation as an alternate method of data analysis for quantitative

670 PCR of BCR-ABL P210 transcripts. *Diagn Mol Pathol* **15**, 56-61 (2006).

671 53. Gong, Y., Ju, C. & Zhang, X. The miR-1000-p53 pathway regulates apoptosis

672 and virus infection in shrimp. *Fish Shellfish Immun* **46**, 516-522 (2015).

673 54. Liu, W., Han, F. & Zhang, X. Ran GTPase Regulates Hemocytic Phagocytosis

674 of Shrimp by Interaction with Myosin. *J Proteome Res* **8**, 1198-1206 (2009).

675 55. Le, S. & Zhang, X. Shrimp miR-12 Suppresses White Spot Syndrome Virus

676 Infection by Synchronously Triggering Antiviral Phagocytosis and Apoptosis

677 Pathways. *Front Immuno* **8**, 855 (2017).

678

680 **Figure legends**

681 **Fig 1. Exosomes secreted from WSSV-infected mud crab participate in antiviral**
682 **regulation. (A-B)** Exosomes isolated from mud crab with different treatments were
683 detected by electron microscopy **(A)** and Nanosight particle tracking analysis **(B)**.
684 Scale bar, 200 nm. **(C)** Western blotting assay of exosomal marker proteins (CD9 and
685 TSG101) and cytoplasmic marker protein Calnexin in cell lysate and exosomes. **(D)**
686 Confocal imaging showed the delivery of Dio-labeled exosomes (green) to
687 Dil-labeled mud crab hemocytes (red). Scale bar, 20 μ m. The indicated exosomes
688 were injected into mud crab for 6 h, then the hemocytes were isolated and subjected to
689 confocal imaging analysis. **(E)** The involvement of exosomes during WSSV infection,
690 mud crabs were co-injected with the indicated exosomes and WSSV for 48 h,
691 followed by the detection of WSSV copies. All data represented were the mean \pm s.d.
692 of three independent experiments (**, $p < 0.01$).

693 **Fig 2. Exosomes isolated from mud crab challenged with WSSV suppressed virus**
694 **infection through activation of apoptosis. (A-D)** The influence of the indicated
695 exosomes on apoptosis of mud crab hemocytes. The isolated exosomes from mud
696 crab with different treatments (including PBS and WSSV) were co-injected with
697 WSSV into mud crab for 48 h, then, the apoptotic levels of the hemocytes were
698 examined through annexin V assay **(A)**, caspase 3/7 activity analysis **(B)**,
699 mitochondrial membrane potential measurement **(C)** and apoptosis-associated protein
700 detection **(D)**. **(E)** The role of apoptosis regulation during virus invasion, apoptosis
701 inducer cycloheximide or apoptosis inhibitor Z-VAD-FMK were co-injected into mud

702 crab with WSSV for 48 h, followed by the detection of WSSV copies. **(F)** The
703 involvement of apoptosis regulation during exosome-mediated virus suppression, mud
704 crabs were co-injected with the indicated exosomes, WSSV and apoptosis inhibitor
705 Z-VAD-FMK, then WSSV copy numbers were detected. All the data were the
706 average from at least three independent experiments, mean \pm s.d. (**, $p < 0.01$).

707 **Fig 3. Exosomal miR-137 and miR-7847 were characteristically secreted to**
708 **mediate apoptosis and virus invasion in mud crab. (A)** Microarray analysis of
709 exosomal miRNAs were presented in a heatmap, the top5 up/down regulated miRNAs
710 in the indicated exosomes were listed in detail. **(B-C)** The effects of the indicated
711 miRNAs on virus infection, mimics or anti-miRNA oligonucleotides (AMOs) of the
712 indicated miRNAs were co-injected with WSSV into mud crab for 48 h, then WSSV
713 copy numbers were evaluated via qPCR. **(D)** The expression levels of miR-137 and
714 miR-7847 in mud crab challenged with different exosomes. **(E-F)** The functions of
715 miR-137 and miR-7847 on apoptosis regulation, AMO-miR-137 and AMO-miR-7847
716 were injected into mud crab separately, then the hemocytes were subjected to annexin
717 V assay **(E)** and caspase 3/7 activity analysis **(F)**. **(G)** The participation of miR-137
718 and miR-7847 during exosome-mediated virus suppression, the indicated exosomes,
719 WSSV and AMOs were co-injected into mud crabs, followed by the detection of
720 WSSV copies. Experiments were performed at least in triplicate and the data
721 represented were the mean \pm s.d. (**, $p < 0.01$).

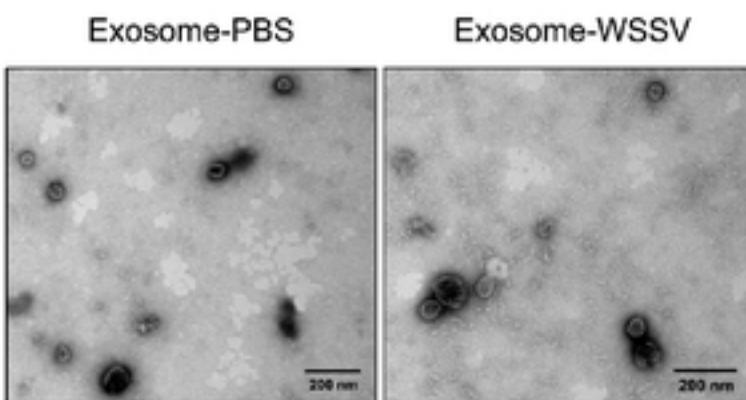
722 **Fig 4. AIF is a direct downstream target for both miR-137 and miR-7847 in mud**
723 **crab. (A)** Target gene prediction of miR-137 and miR-7847 with two bioinformatics

724 tools, as predicted, the 3'UTR of AIF could be simultaneously targeted by miR-137
725 and miR-7847. **(B)** The construction of the wild-type and mutated 3'UTRs of AIF.
726 The sequences targeted by miR-137 and miR-7847 were underlined. **(C)** The direct
727 interactions between miR-137, miR-7847 and AIF in insect cells, S2 cells were
728 co-transfected with miR-137, miR-7847 and the indicated constructed plasmids for 48
729 h, then the relative fluorescence intensities were evaluated. **(D)** The effects of
730 miR-137 and miR-7847 silencing on the expression levels of AIF in mud crab,
731 AMO-miR-137 and AMO-miR-7847 were injected into mud crab separately, 48 h
732 later, the mRNA and protein expression levels were examined. **(E)** The effects of
733 miR-137 and miR-7847 overexpression on the mRNA and protein expression levels
734 in mud crab. **(F)** The co-localization of miR-137, miR-7847 and AIF mRNA in mud
735 crab hemocytes, miR-137, miR-7847, AIF mRNA and nucleus of hemocytes were
736 respectively detected with FAM-labeled AIF mRNA probe (green), Cy3-labeled
737 miR-137 and miR-7847 probe (red) and DAPI (blue). Each experiment was
738 performed in triplicate and data are presented as mean \pm s.d. (**, $p < 0.01$)

739 **Fig 5. Exosomal miR-137 and miR-7847 regulate apoptosis and virus invasion**
740 **through targeting AIF in mud crab.** **(A)** The expression levels of AIF during
741 WSSV infection, mud crabs treated with PBS or WSSV were subjected to western
742 blot and qPCR analysis to detect the mRNA and protein levels of AIF. **(B)** The
743 influence of AIF silencing on WSSV infection in mud crab. WSSV and AIF-siRNA
744 were co-injected into mud crab for 48 h, followed by the detection of WSSV copy
745 numbers, GFP-siRNA was used as control. **(C-D)** The involvement of AIF during

746 miR-137 and miR-7847-mediated apoptosis regulation in mud crab. AMO-miR-137
747 and AMO-miR-7847 were co-injected with AIF -siRNA separately, then the
748 hemocytes were subjected to annexin V assay **(C)** and caspase 3/7 activity analysis
749 **(D)**. **(E)** The participation of AIF during exosome-mediated virus suppression, the
750 indicated exosomes, WSSV and AIF-siRNA were co-injected into mud crabs,
751 followed by the detection of WSSV copies. Data presented were representatives of
752 three independent experiments (**, $p<0.01$).

753 **Fig 6. AIF translocated into nucleus to mediate DNA fragmentation.** **(A)** The
754 protein level of AIF in the nucleus, mud crabs were treated with WSSV,
755 AMO-miR-137 and AMO-miR-7847 separately, at 0, 6 and 24 h after the treatments,
756 the nucleus of hemocytes were isolated and subjected to western blot analysis.
757 Tubulin and Histone H3 were used to evaluate the purity of the isolated nucleus. **(B)**
758 Immunofluorescent assay was performed to detect the localization of AIF in mud crab
759 hemocytes after specific treatment, including AMO-miR-137, AMO-miR-7847 and
760 WSSV. Scale bar, 10 μ m. **(C)** DNA Ladder detection of mud crab treated with
761 AMO-miR-137, AMO-miR-7847 and WSSV separately, then the genomic DNA was
762 isolated and subjected to agarose gel electrophoresis.


763 **Fig 7. Underlying mechanisms of AIF-mediated mitochondrial apoptosis process.**
764 **(A)** Identification of proteins bound to AIF. The cell lysates of mud crab hemocytes
765 were subjected to Co-IP assay using anti-AIF IgG, then the IP products were
766 separated with SDS-PAGE and identified by mass spectrometry. **(B)** The interactions
767 between AIF and HSP70 in mud crab, the cell lysates were subjected to Co-IP assay

768 with anti-AIF IgG, then the IP products were subjected to Western blot analysis to
769 detect HSP70. **(C)** The effects of HSP70 silencing on apoptosis regulation,
770 HSP70-siRNA or GFP-siRNA were injected into mud crab for 48 h, then the
771 hemocytes were subjected to annexin V assay. **(D)** The influence of HSP70 silencing
772 on WSSV infection in mud crab. **(E)** Identification of proteins bound to HSP70, the
773 proteins identified were indicated with arrows. **(F)** The interactions between HSP70
774 and Bax in mud crab, the cell lysates were subjected to Co-IP assay with anti-HSP70
775 IgG, then the IP products were subjected to Western blot analysis to detect Bax. **(G)**
776 The interactions between HSP70 and Bax in mud crab with the indicated treatments.
777 **(H)** The influence of HSP70 silencing on the protein levels of Bax and Cyt c in
778 mitochondria. **(I)** The effects of HSP70 silencing on mitochondrial apoptosis,
779 HSP70-siRNA or GFP-siRNA were injected into mud crab for 48 h, then the
780 hemocytes were subjected to mitochondrial membrane potential measurement. **(J)**
781 The detections of Bax and Cyt c in mitochondria of mud crab with the indicated
782 treatments. All the numeral data represented the mean \pm s.d. of triplicate assays (**,
783 $p < 0.01$).

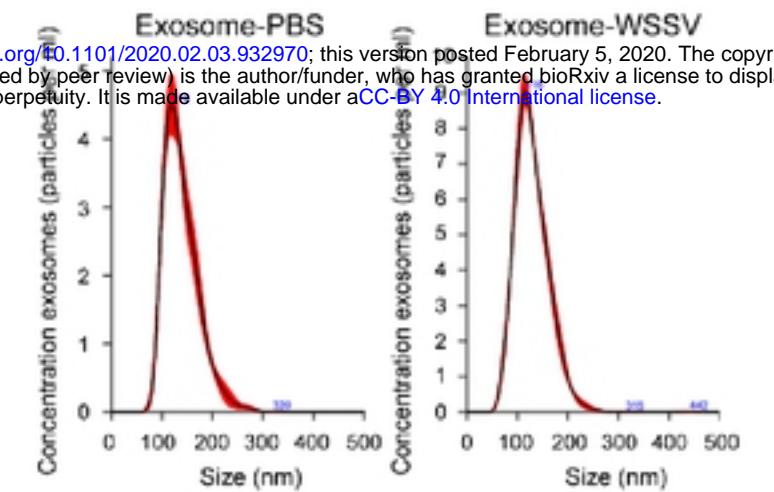
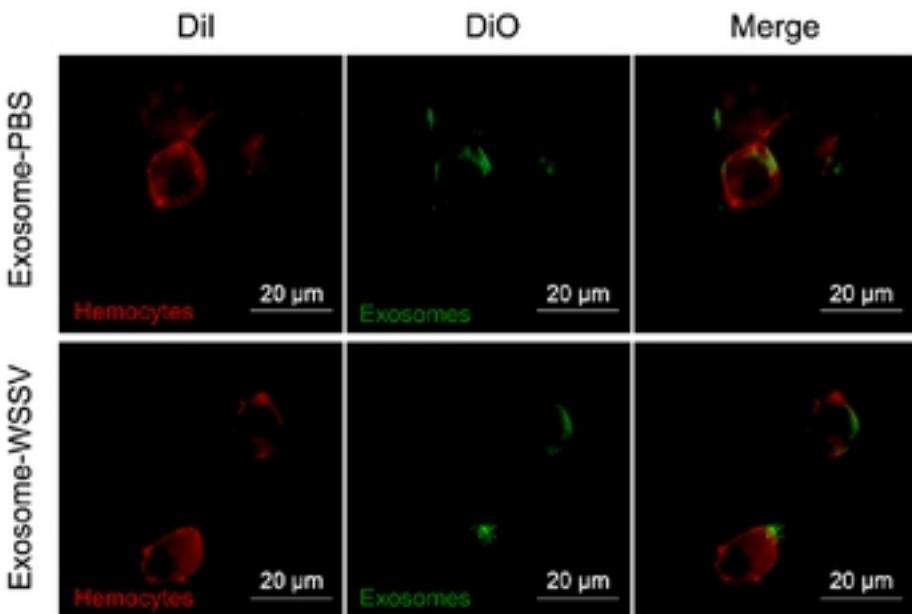
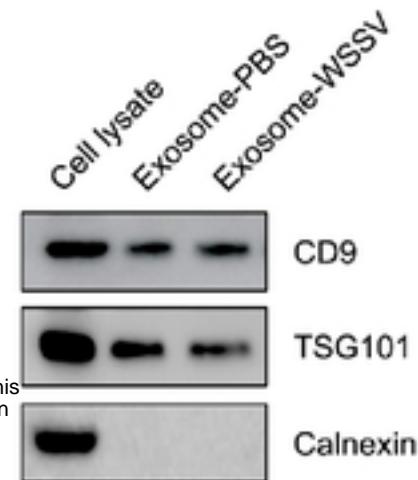
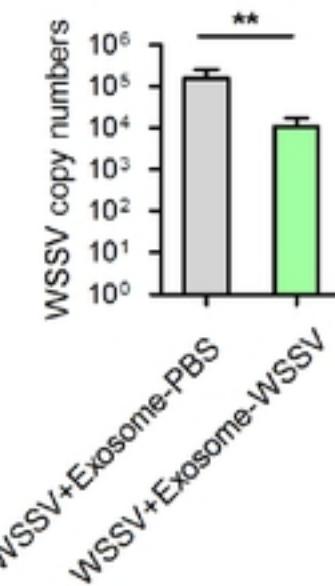

784 **Fig 8. Proposed schematic diagram for the exosomal miR-137 and**
785 **miR-7847-mediated apoptosis and virus invasion regulation in mud crab.**

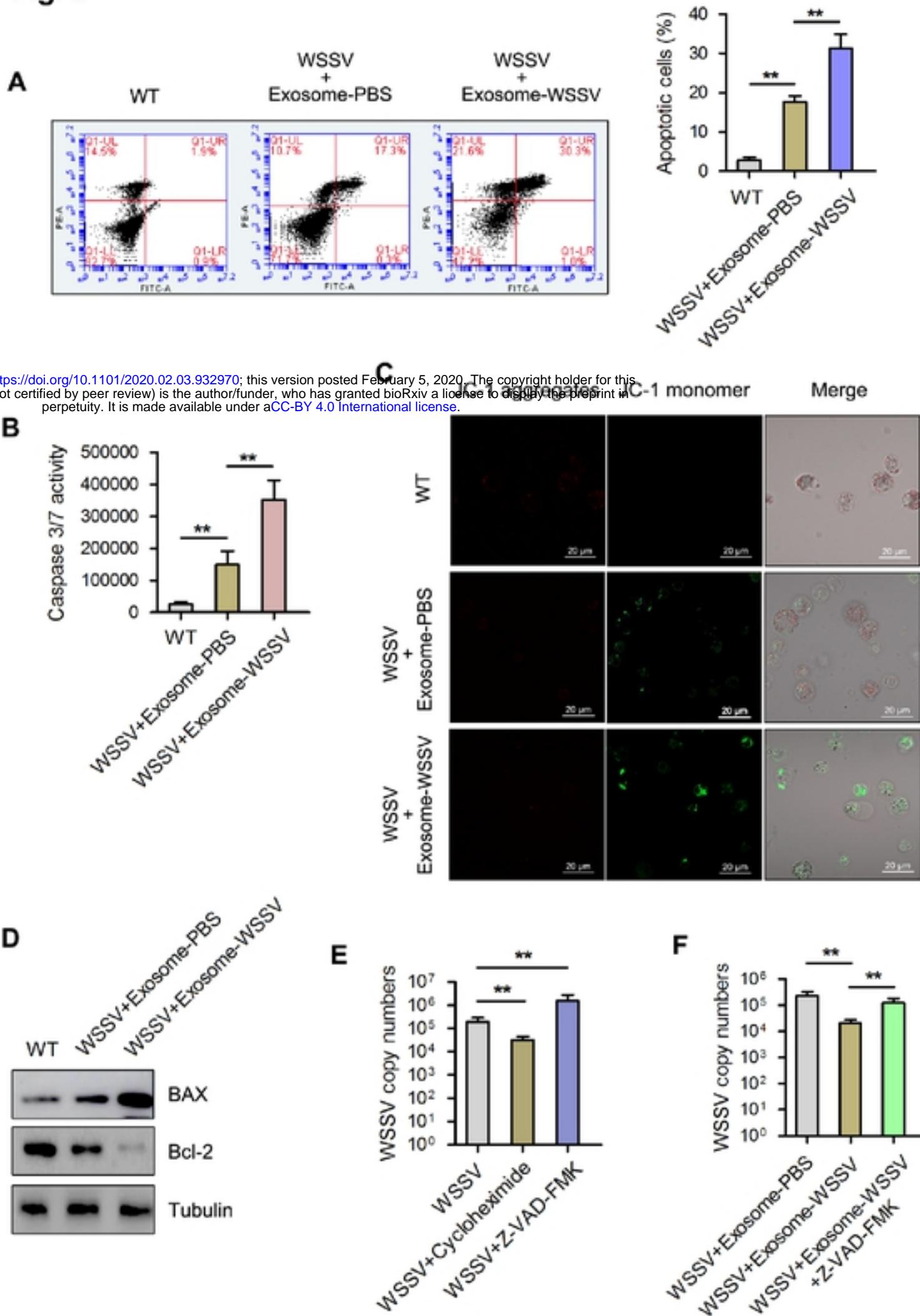
Fig. 1


A

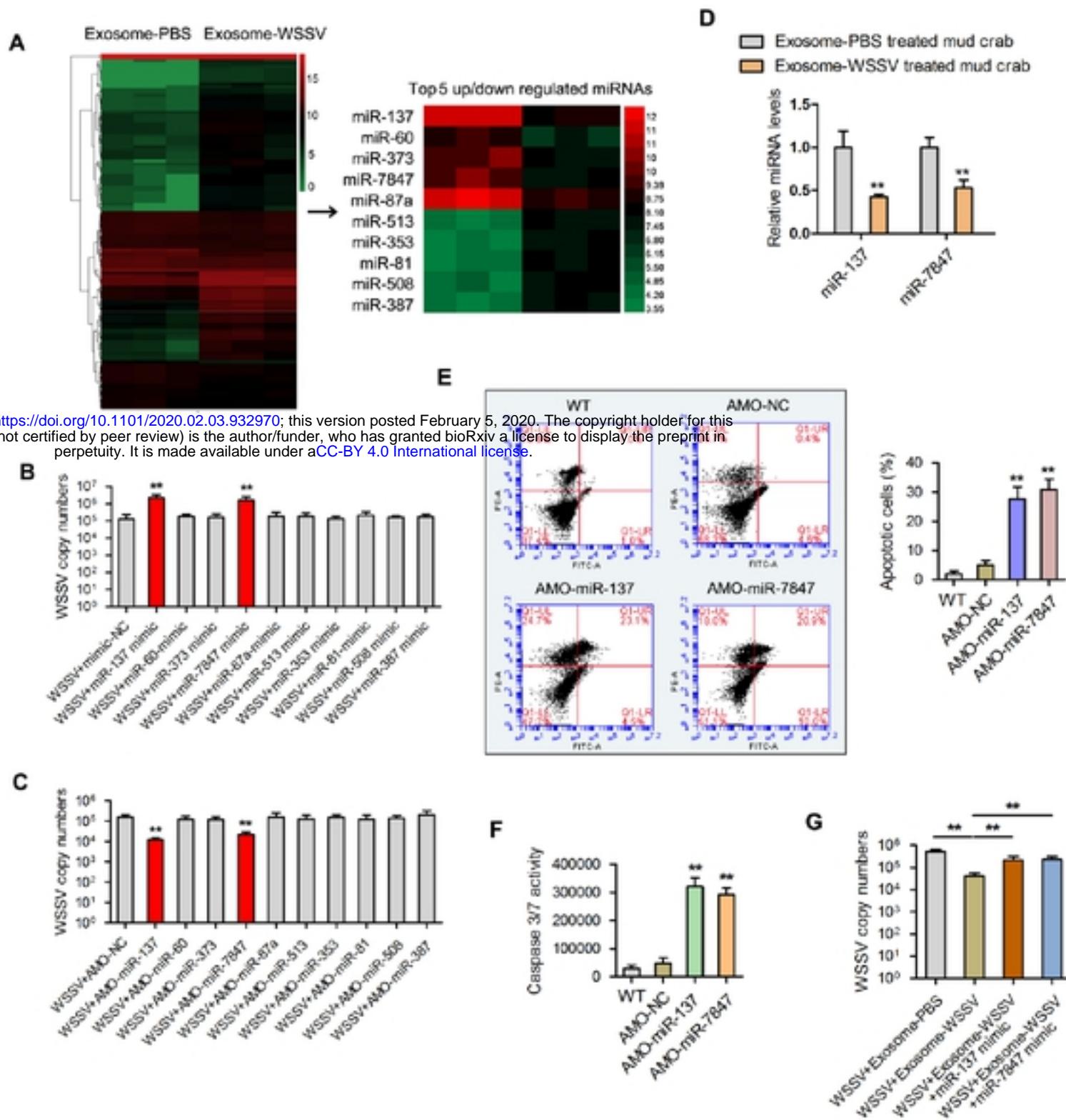

B


D

C

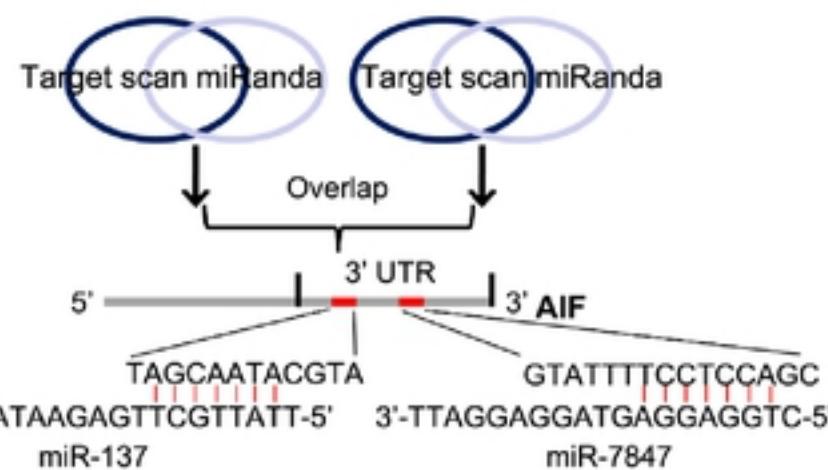


E



bioRxiv preprint doi: <https://doi.org/10.1101/2020.02.03.932970>; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Fig. 2


Fig. 3

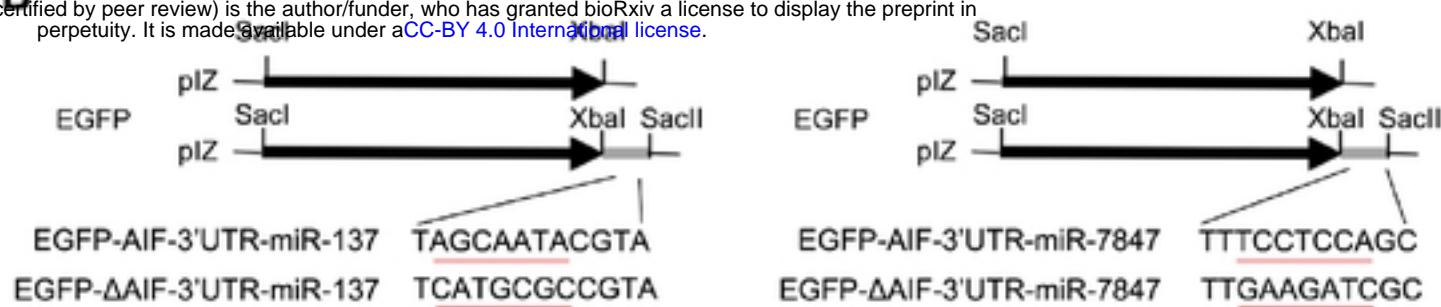
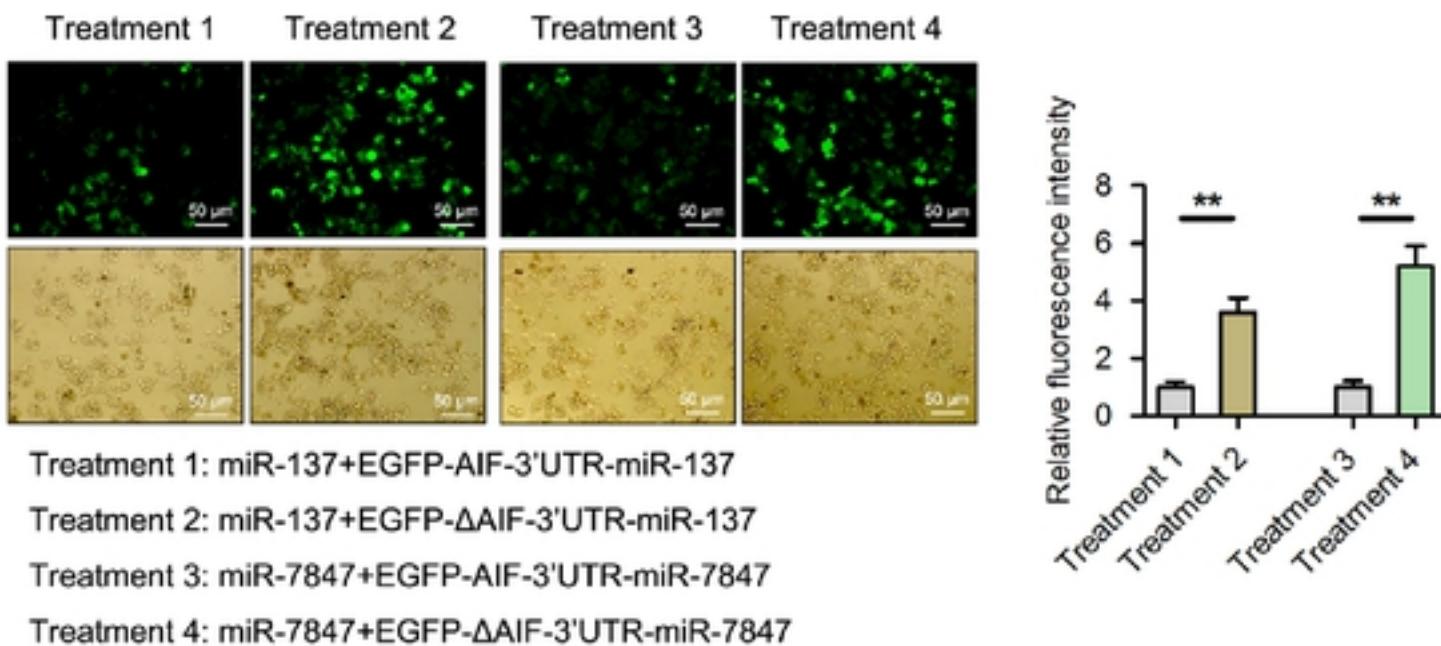
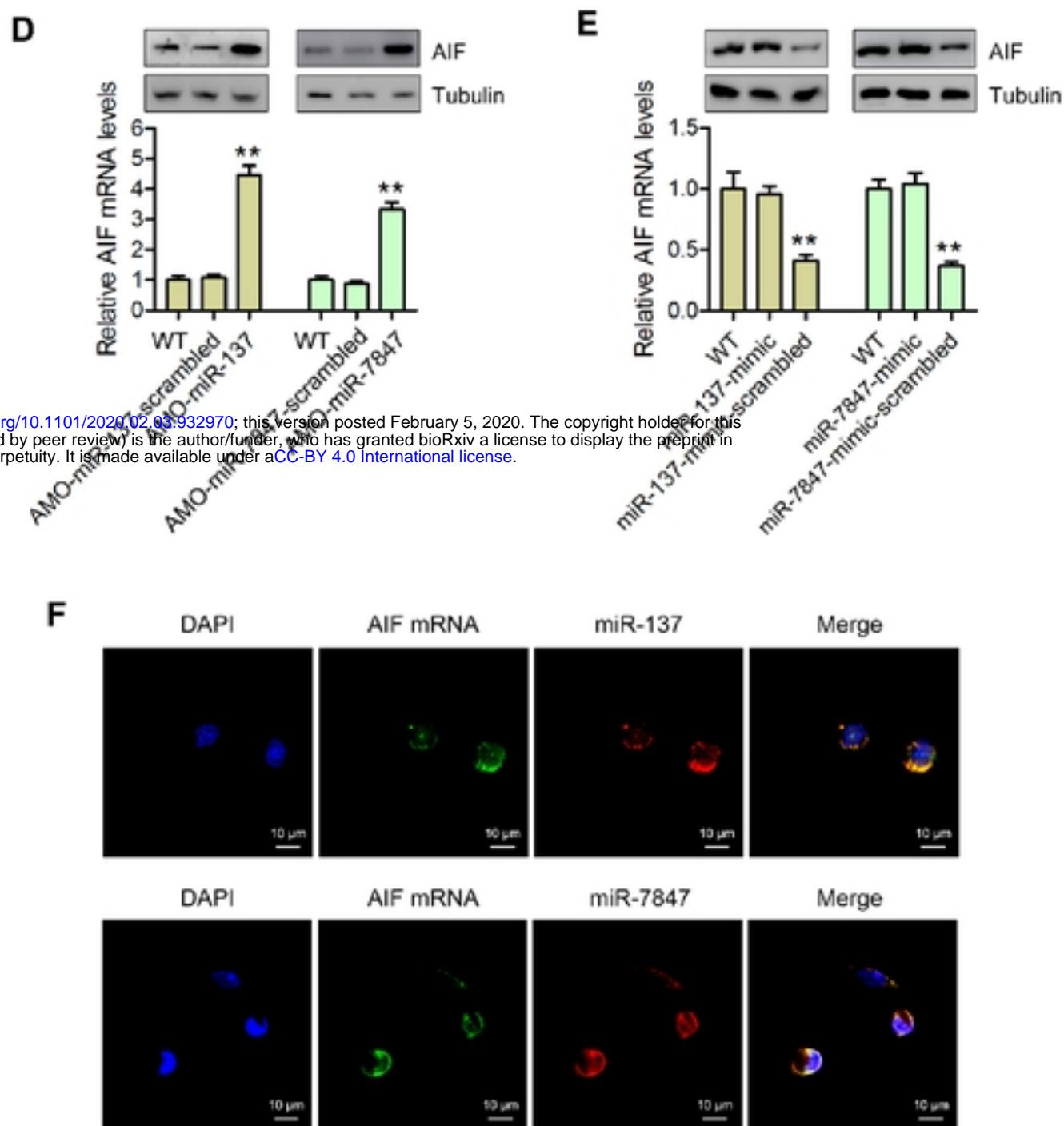

bioRxiv preprint doi: <https://doi.org/10.1101/2020.02.03.932970>; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Fig. 4-1


A miR-137 miR-7847


bioRxiv preprint doi: <https://doi.org/10.1101/2020.02.03.932970>; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C

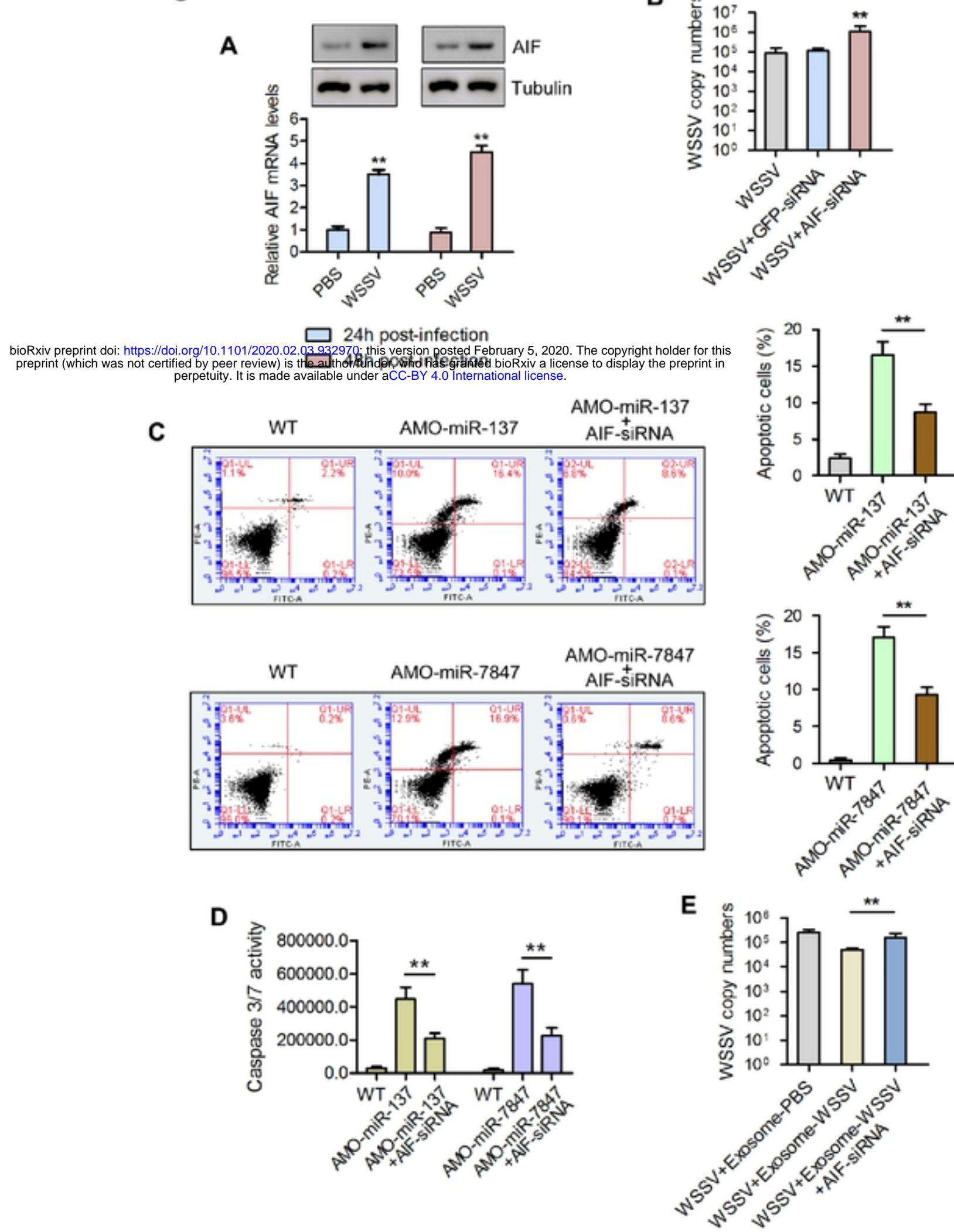
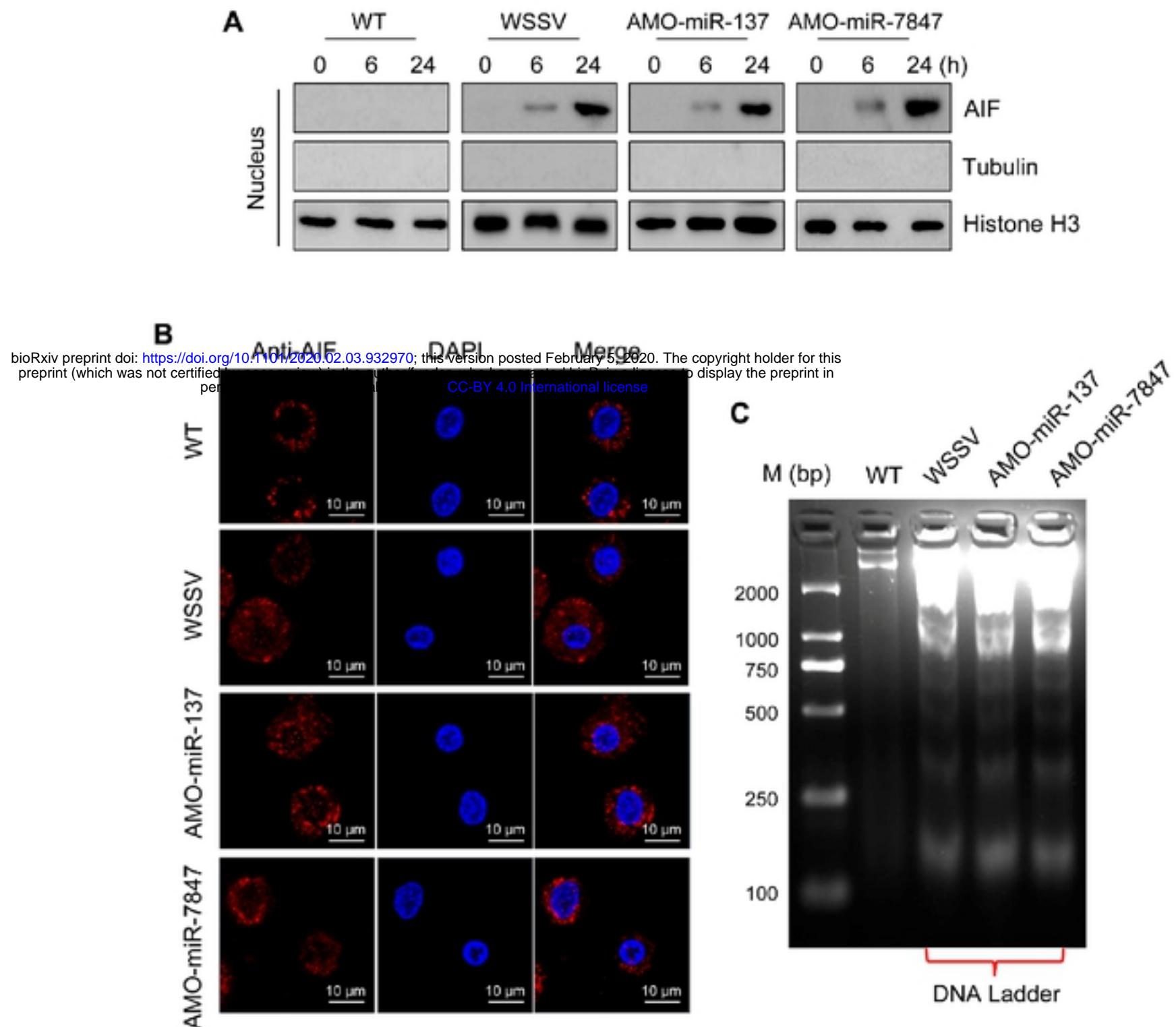
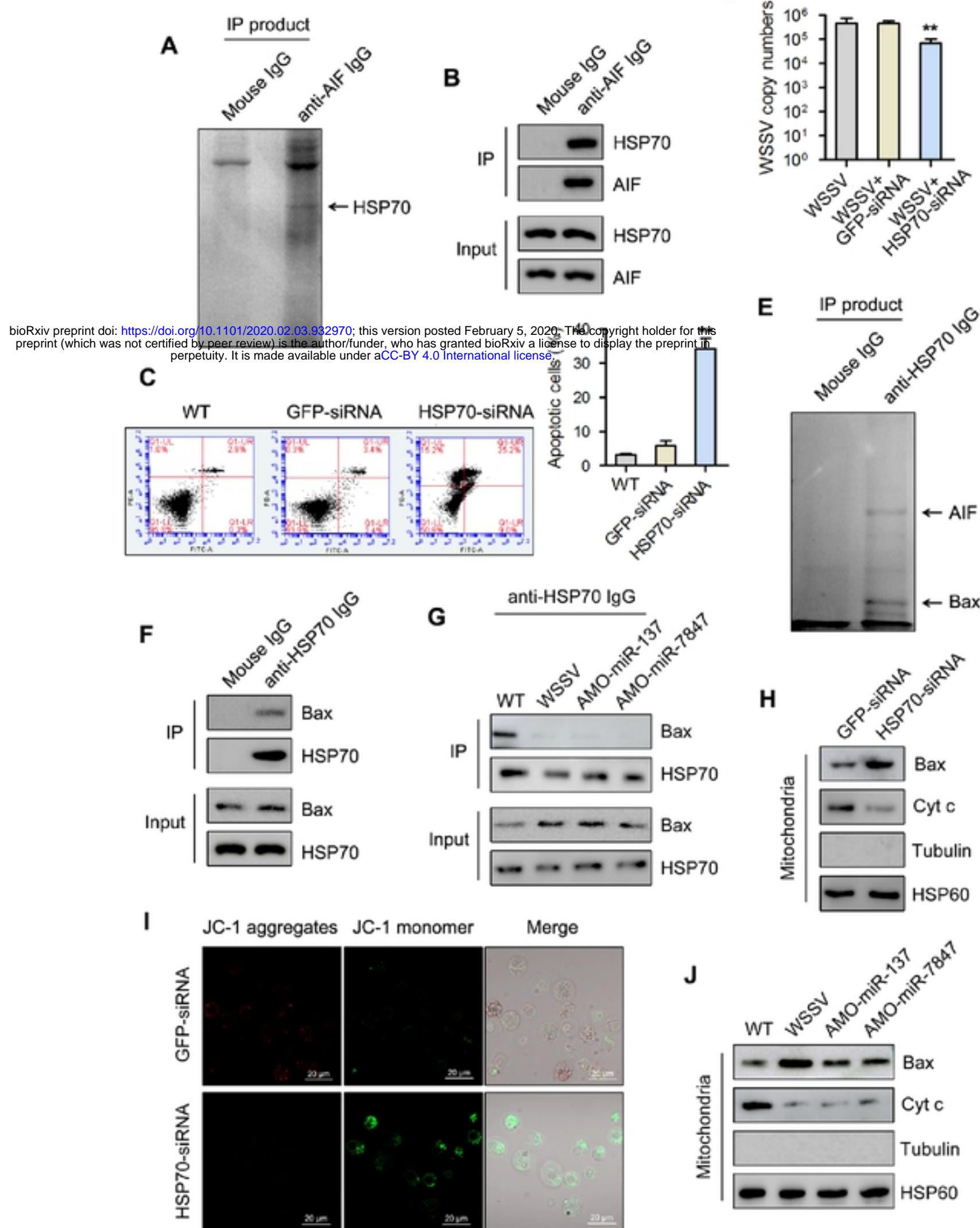


Fig. 4-2



bioRxiv preprint doi: <https://doi.org/10.1101/2020.02.03.932970>; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Fig. 5

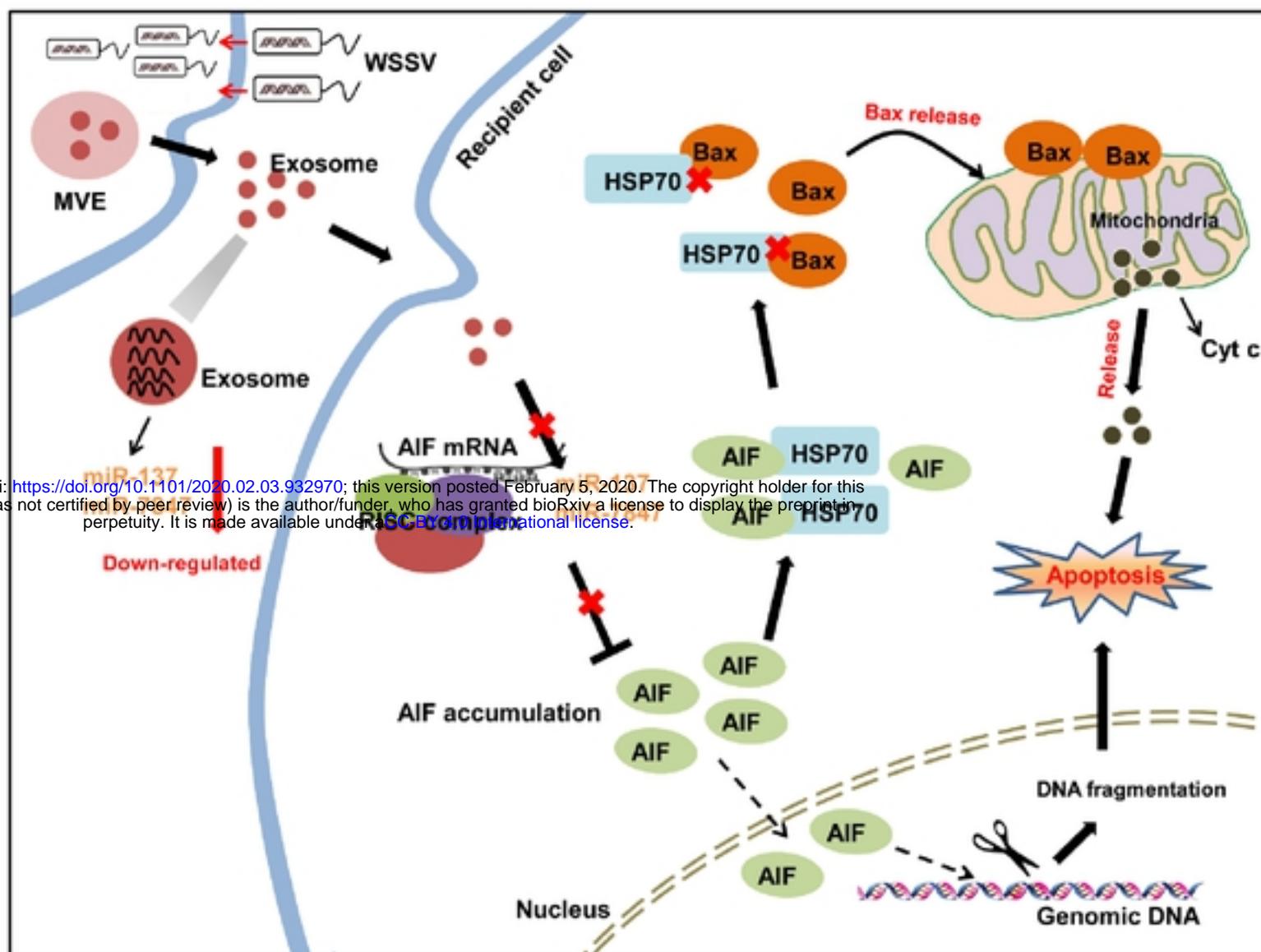

Fig. 6

Fig. 7

Fig. 8

