

1 **High MHC gene copy number maintains diversity despite
2 homozygosity in a Critically Endangered single-island
3 endemic bird, but no evidence of MHC-based mate choice**

4 *Running title: High MHC diversity in a bottlenecked species*

5 Martin Stervander ^{1,2*} | Elisa G. Dierickx ^{3,4*} | Jack Thorley ^{3*} | M. de L. Brooke ³ | Helena
6 Westerdahl ¹

7 * These authors contributed equally

8 ¹ Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden

9 ² Institute of Ecology and Evolution, University of Oregon, Eugene OR 97403-5289, USA

10 ³ Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

11 ⁴ Fauna & Flora International, The David Attenborough Building, Pembroke Street, Cambridge

12 CB2 3QZ, UK

13 **Corresponding authors:** Martin Stervander (martin@stervander.com), Helena Westerdahl
14 (helena.westerdahl@biol.lu.se)

15 ORCID

16 Martin Stervander [0000-0002-6139-7828](https://orcid.org/0000-0002-6139-7828)

17 Elisa G. Dierickx [0000-0002-4124-586X](https://orcid.org/0000-0002-4124-586X)

18 Jack Thorley [0000-0002-8426-610X](https://orcid.org/0000-0002-8426-610X)

19 Helena Westerdahl [0000-0001-7167-9805](https://orcid.org/0000-0001-7167-9805)

20 ABSTRACT

21 Small population sizes can, over time, put species at risk due to the loss of genetic variation and
22 the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex
23 (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess
24 MHC class I (MHC-I) diversity and its effects on mate choice and survival in the Critically
25 Endangered Raso lark *Alauda razae*, a species restricted to the 7 km² islet of Raso (Cape Verde)
26 since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122
27 individuals, we find no effect of MHC-I genotype/diversity on mate choice or survival. However,
28 we demonstrate that MHC-I diversity has been maintained through extreme bottlenecks by
29 retention of a high number of gene copies (at least 14), aided by co-segregation of multiple
30 haplotypes comprising 2–8 linked MHC-I loci. Within-locus homozygosity is high, contributing
31 to comparably low population-wide diversity. Conversely, each individual had comparably many
32 alleles, 6–16 (average 11), and the large and divergent haplotypes occur at high frequency in the
33 population, resulting in high within-individual MHC-I diversity. This functional immune gene
34 diversity will be of critical importance for this highly threatened species' adaptive potential.

35 **Keywords:** MHC class I, immune gene, bottleneck, conservation, Raso lark, *Alauda razae*

36 1 | Introduction

37 Islands have intrinsic geographic characteristics (isolation, small area) that underlie the
38 exacerbated genetic threats to insular species. Isolation can make gene exchange difficult, which,
39 coupled to the often small size of island populations, can increase these risks (Ferreira et al., 2016;
40 Richard Frankham, 1998). One striking example of the genetic threats to insular species is that of
41 the last woolly mammoth *Mammuthus primigenius* population, where 300 individuals surviving
42 on Wrangel Island are thought to have ultimately disappeared because of an accumulation of
43 deleterious mutations that led to “genomic meltdown” (Rogers & Slatkin, 2017) (even flying
44 animals like birds and bats can exhibit strong philopatry and limited dispersal abilities (e.g.
45 Chaverri & Kunz, 2011; R. Frankham, 1997)). Indeed, the maintenance of genetic diversity is
46 crucial for fitness and survival, at the individual, population and species level (Richard Frankham,
47 Ballou, & Briscoe, 2002). Genetic diversity increases the viability of recently translocated
48 populations and helps species respond to environmental changes (Hughes, Inouye, Johnson,
49 Underwood, & Vellend, 2008; Johnson et al., 2010; Keller & Waller, 2002; Nair, 2014; Reusch,
50 Ehlers, Haemmerli, & Worm, 2005; Romiguier et al., 2014; Tollington et al., 2013; Wright,
51 Gillman, Ross, & Keeling, 2009). The maintenance of genetic diversity in an island population is
52 therefore particularly important. There is evidence that species on smaller landmasses (islands)
53 have lower rates of molecular evolution than species on larger landmasses (Tollington et al., 2013;
54 Wright et al., 2009). This suggests that confining species to small refugia reduces the rate of
55 microevolution, which could limit the species’ ability to adapt to environmental changes
56 (Tollington et al., 2013; Wright et al., 2009).

57 It is on one of these small island refugia, the uninhabited 7 km² islet of Raso (16° N 24° W),
58 that the Critically Endangered Raso lark *Alauda razae* survives. There the population was counted
59 intermittently during the 20th century, and fluctuated, rising after higher rainfall (Donald, De
60 Ponte, Pitta Groz, & Taylor, 2003). Since 2001, the population has been monitored annually in

61 October–December. During this period, the lark has shown dramatic variation in population size,
62 from a low of about 57 individuals in 2004, to a high of 1,500–1,550 individuals in 2011, 2012
63 and 2017 (Brooke, 2019). The Raso lark is a sexually dimorphic species (the males are larger than
64 the females) that breeds irregularly, following the similarly irregular rainfalls (Donald & de L.
65 Brooke, 2006). When breeding is possible, most individuals live and forage in socially
66 monogamous pairs on the plains of Raso (Donald & de L. Brooke, 2006). Only once, among
67 several hundred breeding pairs observed, have we seen a breeding male consorting with two
68 females. When not breeding, the birds are mainly found foraging in large flocks both on the plains
69 and the plateaus of the island.

70 Potentially detrimental to the Raso lark’s persistence are the population bottlenecks through
71 which the species has passed. A species with a small effective population size is subject to three
72 types of genetic risk. The first is inbreeding depression, which is reduced fitness due to the
73 increase in homozygotes caused by mating between relatives (Edmands, 2007; O’Grady et al.,
74 2006). Dierickx, Sin, et al. (2019) found three closely related (sibling or parent–offspring) pairs of
75 Raso larks out of 26 sampled, suggesting that the species might indeed be at risk of inbreeding.
76 The second type of genetic risk is the loss of potentially adaptive genetic variation which limits
77 the species’ ability to adapt in response to environmental changes (O’Grady et al., 2006; Reed,
78 2005; Tollington et al., 2013; Wright et al., 2009) such as, for example, climate change, to which
79 Cape Verde – as an arid country in the Sahel region and a small island state – is doubly at risk
80 (Dierickx, Robinson, & Brooke, 2019; Ministry of Environment Housing and Territory Planning
81 of Cape Verde, 2011). The third is deleterious allele accumulation, also called “mutational
82 meltdown”, due to the fact that selection is weaker in small populations than in large populations
83 (O’Grady et al., 2006; Reed, 2005).

84 In the context of a Critically Endangered species potentially exposed to genetic risk,
85 characterizing the species’ Major Histocompatibility Complex (MHC) is of theoretical interest, as

86 well as of use for conservation. Indeed, the MHC is a very diverse part of the genome that
87 typically contains multiple gene copies, and therefore is likely to maintain at least some genetic
88 diversity, even if variation at the rest of the genome is heavily depleted. Furthermore, an
89 organism's immune system is crucial to its fitness and hence to survival. One final reason is our
90 interest in investigating MHC-based mate choice in this species. We hypothesize that, given the
91 high risk of inbreeding that Raso larks face (Dierickx, Sin, et al., 2019), individuals are under
92 strong selective pressure to develop a mating strategy that maximizes the genetic diversity of their
93 future offspring. Basing mate choice on MHC genotype could be advantageous for the two
94 reasons mentioned above: it might be one of the few indicators of genetic diversity left in the
95 genome, and it plays a key role in the immune system.

96 In the present study we characterize MHC class I (MHC-I) in Raso larks and measure MHC-I
97 genetic diversity. We then test if there is an assortative MHC-I based mate choice and investigate
98 whether MHC-I genetic diversity is associated with survival.

99 2 | Material and Methods

100 2.1 | Sample collection and blood sampling

101 Each year since 2004 a two-person team has spent two to three weeks on Raso in November or
102 early December, catching and ringing new flying birds, and also ringing nestlings and juveniles
103 (<3 months old), the latter recognized by their browner plumage with broader pale feather
104 edgings. Captured birds, readily sexed thanks to sexual size dimorphism (Donald et al., 2003),
105 received an individually-numbered metal ring and a unique combination of three Darvic colour
106 rings which allow individual identification in later years (assuming the bird survives). In addition,
107 at the time of first capture, a blood sample was taken by pricking the brachial vein and collected
108 onto EDTA-moistened filter paper. After air drying, the blood-stained paper was stored at ambient

109 temperature in the field and then at -80°C after return to the UK. The blood samples were
110 obtained by a licensed bird ringer (M. de L. Brooks: British Trust for Ornithology permit A 1871
111 MP) without damaging the health of the birds and with permission from the Cape Verdean
112 authorities (Direcção Nacional do Ambiente).

113 The proportion of the population that was ringed varied from roughly 30–60 percent, tending
114 to be lower when the population was higher. Two colour-ringed birds were considered to be
115 breeding together when they jointly attended a nest with eggs and/or young, or when they were
116 both seen feeding a recently-fledged juvenile. A male and female socially consorting but without
117 evidence of breeding together are not considered paired for the purposes of the present paper.

118 *2.2 | Primer design and initial evaluation*

119 We initially designed new primers to amplify exon three of MHC class I, based on aligning
120 available passerine MHC class I and genomic sequences. We aimed at anchoring primers in
121 relatively conserved regions and added degenerated bases to account for sequence variation. We
122 furthermore attempted to amplify as much of the exon as possible by anchoring the primers in
123 flanking intron sequence. We evaluated three new forward and four new reverse primers in twelve
124 possible primer combinations, as well as the primer combination HNalla (O'Connor, Strandh,
125 Hasselquist, Nilsson, & Westerdahl, 2016) and HN46 (Westerdahl, Wittzell, von Schantz, &
126 Bensch, 2004). For primer sequences, see Table S1.

127 The initial evaluation was performed in 10 μl PCR reactions on samples of great reed
128 warbler, Raso lark, blue tit *Cyanistes caeruleus*, and zebra finch *Taeniopygia guttata*, using the
129 Qiagen Multiplex PCR Kit (Qiagen Inc., Hilden, Germany). We included 5 μl Qiagen Multiplex
130 PCR Master Mix, 0.2 μl each of 10 μM forward and reverse primer, 2 μl template DNA (5–10
131 ng/ μl) and 2.6 μl water. The PCRs were run with an activation at 95°C for 15 min; 35 three step
132 cycles with denaturation at 94°C for 30 s, annealing at varying temperatures for 90 s (Table S2),
133 and extension at 72°C for 90 s; with a final extension at 72°C for 10 min. The PCR products were

134 the run on a 2% agarose gel stained with GelRed (Biotium, Fremont, CA, USA), and visually
135 inspected in UV lighting (Table S2, Figure S1).

136 Based on the above, three combinations of the new primers (3F_us30-us4 + 3R_ds24-ex2,
137 3F_us35-us8 + 3R_ds20-ex6, and 3F_us35-us8 + 3R_ds24-ex2) and HNalla + HN46 were
138 selected for further evaluation by producing sequences for six Raso larks in a shared amplicon
139 library sequenced on an Illumina Miseq, after which the results were evaluated (see below) and a
140 final primer combination was selected for creating a new amplicon library in which 130 samples
141 were included.

142 *2.3 / Library preparation*

143 We prepared two amplicon libraries for Illumina sequencing using a two-step amplification. First,
144 six (first library) and 130 (second library) individual samples were amplified using four primer
145 pairs (first library; see above) and 3F_us30-us4 + 3R_ds24-ex2 (second library) modified with 5'-
146 overhangs designed to match the Illumina sequencing adapters and molecular identifiers (MIDs)
147 of the Nextera® XT v2 Index Kit (Illumina Inc., San Diego, CA, USA). The second library
148 included eight technical duplicates, four of which were independent extractions from different
149 blood samples from different trapping occasions of the same individual, and four of which the
150 same sample was used twice. The reactions comprised 25 µl and used 25 ng template DNA, 0.5
151 µM of each primer, and 12.5 µl 2X Phusion High-Fidelity PCR Master Mix (ThermoFisher
152 Scientific, Waltham, USA). The PCR was initiated with a 30 s denaturation step at 98°C followed
153 by 25 cycles of 10 s denaturation at 98°C, 10 s annealing at 66.8°C, and 15 s elongation at 72°C.
154 A 10 min final extension 72°C completed the program.

155 The PCR product was cleaned with Agencourt AMPure XP-PCR Purification Kit (Beckman
156 Coulter, Indianapolis, USA), following the manufacturer's instruction with some modifications:
157 The ratio of PCR product to beads was 1:0.8, 80% ethanol was used in the bead cleaning steps,
158 and the elution was made with 43 µl double-distilled water, which incubated at room temperature

159 for two minutes. An aliquot of the clean PCR product was run on a 2% agarose gel, to verify
160 fragment length and to roughly estimate concentration of the PCR product based on band
161 intensity. The individual PCR products were then differentially evaporated at room temperature,
162 to achieve even concentrations.

163 In the second PCR, MIDs were added to each of the samples, as well as 360 (first library) and
164 254 (second library) unrelated samples prepared with various primer combinations. We used
165 unique combinations of forward and reverse Illumina indices for each sample, using the Nextera
166 XT v2 Index Kit (Illumina Inc., San Diego, CA, USA). PCRs were run in 50 μ l reactions and
167 contained 25 μ l 2X Phusion High-Fidelity PCR Master Mix (ThermoFisher Scientific, Waltham,
168 USA), 5 μ l of each index primer, and—depending on estimated concentration—5, 7.5, 10, or 15
169 μ l cleaned PCR product. The PCR was initiated with a 30 s denaturation step at 98°C followed by
170 eight cycles of 10 s denaturation at 98°C, 15 s annealing at 62°C, and 15 s elongation at 72°C. A
171 10 min final extension at 72°C completed the program.

172 The indexed amplicons were cleaned with Agencourt AMPure XP-PCR Purification Kit
173 (Beckman Coulter, Indianapolis, USA) as specified above, but with a ratio of PCR product to
174 beads at 1:1.12. The cleaned PCR products were checked on a 2% agarose gel, and quantified
175 using a Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher Scientific/Invitrogen, Waltham,
176 USA) modified for a 96-well plate, measured on a plate reader.

177 We pooled an equimolar quantity of each of 384 samples into four pools (for the first library,
178 including the four primer combinations and six individuals) or six pools (for the second library,
179 including the final sequencing), depending on amplicon length, concentration, and primer
180 combination. These pools were then quantified with Qubit Broad Range and High Sensitivity kits
181 (ThermoFisher Scientific, Waltham, USA), after which we ran them on a Bioanalyzer DNA 2100
182 chip (Agilent, Santa Clara, CA, USA) for validation of quality and size. In a final step, equimolar
183 quantities of all pools were combined in a 20 nM library, which was sequenced with 300 bp

184 paired-end Illumina MiSeq sequencing (Illumina Inc., San Diego, CA, USA) at the DNA
185 sequencing facility of the Department of Biology, Lund University.

186 *2.4 / Bioinformatic pipeline*

187 The sequence output of each sample was first trimmed using Cutadapt (Martin, 2011), based on
188 base quality of the 3'-end (-q 15) followed by linked adapter validation and removal of the paired
189 reads (-a, -A). Trimmed paired reads were then imported to DADA2 v. 1.0.3 (Callahan et al.,
190 2016) in R v 3.5.0 (R Core Team, 2018) where we filtered with fastqPairedFilter, adjusting the
191 criterion for expected error rate for reverse reads from 2 to 5 (maxEE=c(2,5)); dereplicated with
192 derepFastq; learned error rates with the learnErrors function called through dada; and merged read
193 pairs with mergePairs. Thereafter, a sequence table was created with makeSequenceTable, after
194 which sequence length distributions were checked and any spurious sequences of very deviating
195 lengths were excluded, and the remaining sequences were filtered for sequence chimeras using
196 removeBimeraDenovo.

197 *2.5 / Evaluation and selection of primers*

198 The output from dada2 based on the six individuals amplified with four primer pairs in the first
199 library was scrutinized and cross referenced. HNalla + HN46 rendered significantly fewer alleles,
200 whereas most alleles were recovered by the three other primer combinations, some with
201 drastically varying coverage, however. For library 2, we selected the primer pair 3Fus35us8 +
202 3Rds20ex6, which generated >500 reads in ≥ 1 of 6 test samples for alleles A–V (see Figure 1,
203 Table S3) with the exceptions of alleles L, S, and T (all of which did not occur in those samples).
204 Further, additional allele 1 occurred with 179–240 reads and additional allele 2 with only 65–102
205 reads (see Figure S2), whereas they (and allele V) occurred in high frequency (>1000 reads) with
206 two other primer combinations (which, in turn, did not amplify other alleles well). Finally,

207 another seven alleles (additional putative alleles 3–9; Figure S2) were amplified at very low
208 frequency.

209 *2.6 | Further filtering and allele calls*

210 The combined output of library 1+2 from dada2 comprised 136 samples with an effective
211 coverage (number of reads used by dada2) between 0 (one failed sample) and 119,942, with 50%
212 of samples having 20,044–26,070 (median 22,322) reads. It was further filtered as follows: (1)
213 Five samples with less than 5,000 reads were excluded. (2) Alleles for which the exon contained
214 an uninterrupted open reading frame were accepted if the average read count for individuals in
215 which they were called exceeded 500. In addition, there were 11 alleles with very low read
216 counts, which were not included since the call whether present in an individual would not be
217 reliable. We made an exception for two of those 11 low-frequency alleles (R, V), because (a) they
218 had considerably higher read counts in the six samples from the first library, using the final primer
219 pair; (b) these two alleles were called consistently between multiple primer pairs in library 1, with
220 some primer pairs producing high read counts; and (c) there was concordance between technical
221 duplicates, with the exception of a single allele call in one duplicate with few total reads. (3) For
222 an allele to be called in an individual, its effective coverage had to meet either (a) a threshold
223 value of 10% of the average coverage for that allele for samples in which it was present, or (b) a
224 threshold value of within-individual read frequency of 5% (i.e. >5% of all reads in that individual
225 had to belong to that allele).

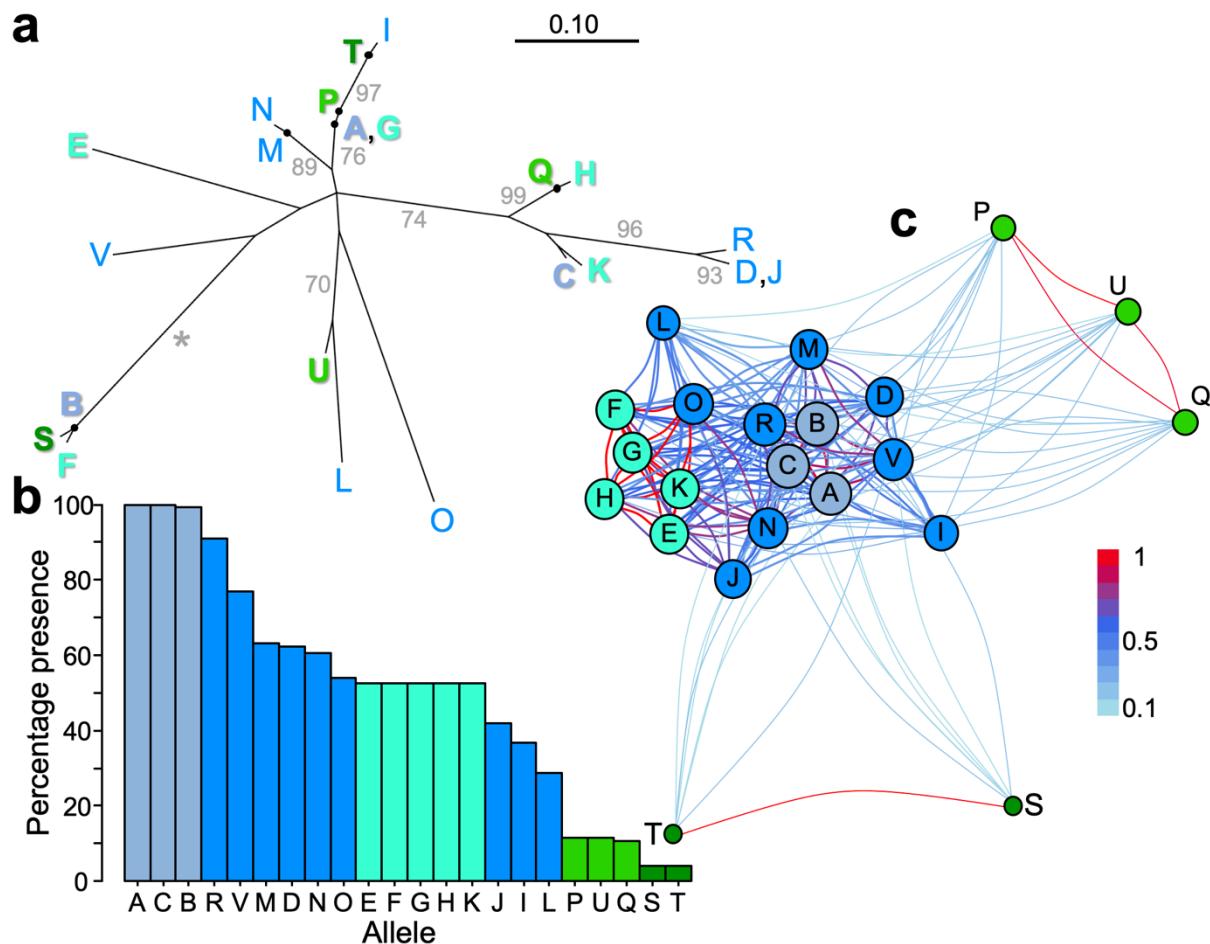
226 Allele calls were compared between the eight pairs of technical replicates, and repeatability
227 calculated as $2 \times \text{shared allele calls} / (\text{allele calls of replicate A} + \text{allele calls of replicate B})$.
228 Among the remaining 122 unique samples used for analyses, there was no effect of coverage on
229 number of alleles ($F_{1,120} = 0.010$, $r^2 = 0$, $p = 0.76$; Figure S3). We lacked individual data (sex, age,
230 morphometric) for eight samples, which were included in overall diversity analyses, but excluded
231 from analyses of survival and mate choice.

232 2.7 | *MHC-I diversity and test of trends over time or sex effects*

233 MHC-I diversity was computed with PhyML (Guindon & Gascuel, 2003) as the total length of a
234 phylogenetic tree of the amino acid sequences of an individual's alleles, using the LG substitution
235 model (Le & Gascuel, 2008). The relationship between number of alleles and MHC-I diversity
236 was explored by linear models.

237 Because few individuals were ringed as nestlings or recently-fledged juveniles, and because
238 Raso larks cannot be aged accurately from plumage after their complete post-juvenile moult
239 around three months of age, we instead approximated the age of individuals when first captured
240 using information on claw damage. Previous data from the population indicates that, while birds
241 less than two years old have undamaged feet, approximately one third of all birds known to be at
242 least two years of age show clear signs of toe or claw damage. We therefore assumed that birds
243 with claw damage on their first capture were two years old, whereas any birds with no toe damage
244 were in their first year of life (Age 1). This is most likely to be strictly true after a year of strong
245 population growth (e.g. 125% increase from 2009 to 2010). The data on the 114 individuals is
246 compiled in Supporting Information 2.

247 Temporal trends were tested with a linear regression (MHC-I diversity ~ inferred birth year)
248 and differences between males and females with a two-tailed t-test.


249 2.8 | *Randomisation tests of (dis-)assortative mating*

250 We used randomisation tests to determine whether Raso larks mate (dis-)assortatively. Of the 114
251 birds with individual data that were genotyped, there were 46 pairings where both the male and
252 female bird in a pair were genotyped. For each pairing ($n = 46$), we calculated the proportion of
253 shared MHC-I alleles and the pairwise mean amino acid distance. The preliminary analyses
254 identified two alleles that were fixed in the population, another allele present in all but one
255 sample, and three co-segregating blocks of alleles (see Results; Figure 1b–c). Because of the
256 potential influence of these co-segregating alleles on estimates of allele sharing we calculated

257 shared allelic diversity in two ways; treating the co-segregating blocks as separate alleles (termed
258 ‘allele sharing α ’), and as single allelic blocks (‘allele sharing β ’). The empirical values for each
259 of the metrics were then compared to frequency distributions of the mean values generated from
260 9,999 permutations of 46 randomly selected parent pairs (including the observed value generates a
261 distribution of 10,000 values). For each randomised mating within a permutation, we assumed
262 that females could mate with any genotyped male present in the population in the year of mating,
263 sampling with replacement. We set the year of mating as the first year in which a pair were
264 observed together, and, because Raso larks are socially monogamous and pairs frequently mate
265 together in successive years, we did not allow females to mate with males that were present in the
266 population but which were known to have been paired to a female with whom they had mated
267 previously (i.e. removing the confounding effect of breeding history; see Table S4 for breakdown
268 of birds in each year). Observed values falling outside the 2.5–97.5% confidence intervals of the
269 frequency distribution for each metric would indicate significant departures from random mating
270 at an alpha level of 0.05.

271 *2.9 / Survivorship*

272 We used a Cox proportional hazards analysis to investigate the effect of MHC-1 diversity on age-
273 related survivorship, where MHC-1 diversity represents the total tree length per genotype. Age
274 categorisation was carried out using information on claw damage and plumage (juveniles) as
275 described above. The Cox analysis fitted the time at death as the response term, with the age
276 category, sex, and MHC-1 diversity specified as fixed effects. Birds that were last seen in 2017
277 and 2018 were right censored to account for uncertainty in re-sighting, though annual re-sighting
278 rate is high for this population (c. 88%; own data). All statistical tests were performed in R v.
279 3.6.1 (R Core Team, 2019).

280

Figure 1 MHC-I allele characteristics in the Raso lark *Alauda razae*, based on 122 genotyped individuals. Colours other than medium blue indicate fixed alleles (*ABC* in grey-blue) or co-segregating allele blocks (*EFGHK*, *PQU*, and *ST* in different shades of green) and correspond to Table S3 and Figure S4. **(a)** Unrooted MHC-I amino acid allele tree, computed with the LG substitution model. Allele names are placed at tips or internal terminal nodes (marked with black circles). Two pairs (AG and DJ) do not differ by any non-synonymous mutations (see Figure S4). Fixed or almost fixed alleles, as well as alleles in co-segregating clusters, labelled in bold. Bootstrap values >70%, based on 1,000 replicates, are written with grey font (at the branch upstream of supported node), with 100% indicated by an asterisk. See Figure S2 for a corresponding tree, including an additional nine alleles that are certainly (1–2) or likely (3–9) functional, but yielded too few reads with our primer pairs to enable confident allele calls (see Material and Methods). **(b)** Allele frequency (% of 122 birds) in the populations. **(c)** Network graph illustrating the allele co-occurrence. Nodes display each allele, sized according to its frequency in the sampled population. Edges indicate alleles that are present together within individuals, coloured according to the proportion of allele sharing; for example, S and T are present in relatively few individuals, but when present they co-occur within individuals at high rates (> 0.9).

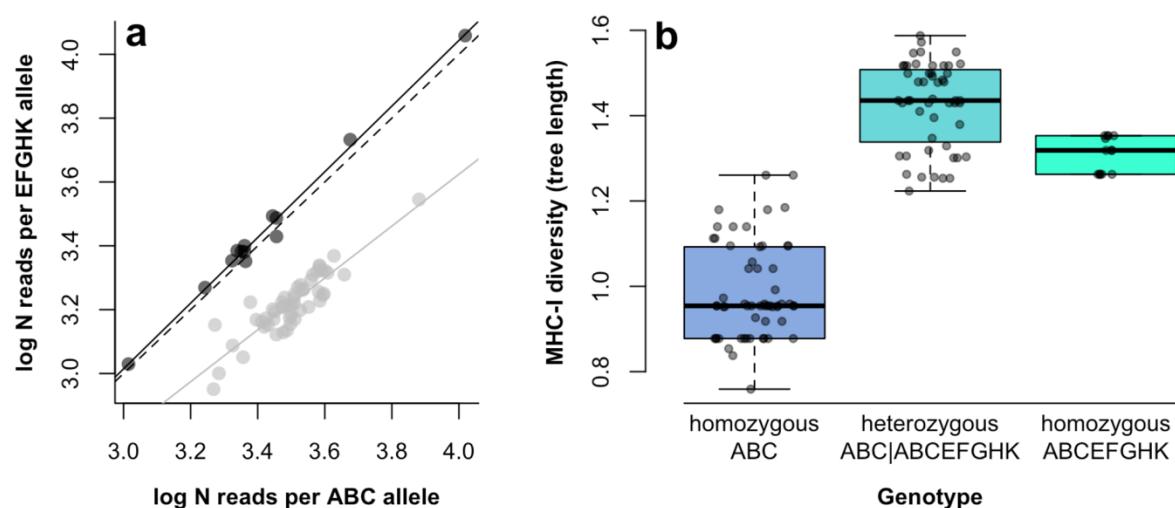
297 **3 | Results**

298 *3.1 | MHC-I diversity*

299 From a total of 130 samples, including eight technical replicates, we identified 22 MHC-I alleles
300 (Figure 1; Table S3; Supporting Information 3), many of which were present at high levels in the
301 sampled population (Figure 1b), and several of which co-occurred within individuals (Figure 1c).
302 Of the 22 alleles, which we named alphabetically following decreasing across-population allele
303 read depth in the second library, 20 (alleles A–Q, S–U) occur with higher within-individual (or
304 within-sample) frequency (read depth) whereas two (alleles R, V) occur with markedly lower
305 within-individual frequency (Table S3). We consider these two alleles valid, but under-amplified
306 by our primers, which means that we risk false negatives, when fewer than sufficient reads qualify
307 for allele calls in certain individuals (see Methods). The repeatability among 75 pairwise allele
308 comparisons in eight replicated samples was high, 99%: there was a single difference when the
309 low within-individual frequency allele R was not called in a replicate that had the sixth lowest
310 coverage (13,105 \times) out of all 130 samples.

311 Among the 122 individuals, the number of different MHC-I alleles per individual varied
312 between six and 16 alleles, with an average of 11.2 alleles (excluding *RV* alleles: 4–15, average
313 9.6). Three alleles (A, B, C) occurred in almost all individuals (100%, 99%, 100%), and a co-
314 segregating block of five alleles (E–H and K) occurred in 52% of the individuals (Figure 1b–c).
315 To evaluate the genomic architecture of the two common co-segregating allele blocks *ABC* and
316 *EFGHK*, we calculated the ratio of the average number of sequence reads for *EFGHK* alleles over
317 the average number of sequence reads for *ABC* alleles in individuals possessing both blocks, and
318 found a clearly bimodal distribution with averages 0.52 (standard deviation = 0.06, n = 51) and
319 1.06 (standard deviation = 0.06, n = 13; Figure 2a), indicative of copy number variation (one or
320 two sets) of the *EFGHK* alleles, consistent with two main haplotypes comprising *ABC* and

321 *ABCEFGHK* and three genotypes: homozygous for *ABC*, heterozygous for *ABCEFGHK|ABC*, and
322 homozygous for *ABCEFGHK*.


323 We also found another co-segregating block composed of two rarer alleles (S, T), occurring
324 in five individuals (Figure 1b–c; one individual run as a technical replicate). Finally, there was an
325 intermediately rare block of alleles (P, Q, U) that co-segregated in 11 out of 12 individuals (Q not
326 detected in one of the samples; Figure 1b–c).

327 Out of the 11 alleles or co-segregating blocks other than *ABC* and *EFGHK*, six deviated
328 significantly from expected random association to *ABCEFGHK|ABC* genotypes (Table S5). Five
329 alleles/blocks (three significantly so) associated with the *ABC* haplotype and were never observed
330 in *ABCEFGHK* homozygotes, whereas two (both significantly) associated with the *ABCEFGHK*
331 haplotype and was under-represented in *ABC* homozygotes (Table S5). Allele O co-segregated
332 with *EFGHK* in all 64 *ABCEFGHK|ABC* heterozygotes and *ABCEFGHK* homozygotes, but was
333 also observed in 2 of 58 *ABC* homozygotes (Table S5).

334 The raw distances between alleles ranged 1–42 nucleotides or 0–26 amino acids (Figure S4).
335 However, since the differences between biochemical properties of amino acids vary greatly in
336 magnitude, we defined amino acid *divergence* as the patristic distances (branch length distance)
337 computed with the LG substitution model (Le & Gascuel, 2008): the average divergence between
338 all alleles was 0.337 ± 0.009 . The fixed (or almost fixed) A, B and C alleles were found in
339 different parts of the allele tree (Figure 1a), with an average divergence of 0.364 ± 0.068 . This
340 was true also for the co-segregating blocks *EFGHK* (0.356 ± 0.039), *PQU* (0.257 ± 0.034), and *ST*
341 (0.420).

342 MHC-I *diversity* in an individual is determined by the number of alleles and their degree of
343 dissimilarity, a metric that we defined as the total branch length of a phylogenetic tree comprising
344 an individual's alleles (computed with the LG substitution model (Le & Gascuel, 2008)). Using
345 this definition, the average within-individual MHC-I diversity was 1.205 ± 0.021 , but number of

346 alleles was a good proxy for diversity, explaining 90% of the variation (adjusted r^2) in a simple
347 linear model (diversity \sim N alleles; $b = 0.075$, $F_{1,120} = 1,086$, $p < 2.2 \times 10^{-16}$). Individuals with the
348 five co-segregating *EFGHK* alleles had on average $14.2 \text{ alleles} \pm \text{standard error (SE)} 0.8$, which is
349 5.9 alleles (71%) more than individuals without the five *EFGHK* alleles (average 8.3 ± 0.2
350 alleles). When separating *EFGHK* bearers into homozygotes for *ABCEFGHK* and heterozygotes
351 for *ABCEFGHK|ABC*, heterozygotes had higher diversity than *ABCEFGHK* homozygotes, both of
352 which had higher diversity than *ABC* homozygotes (diversity \sim N alleles + *ABCEFGHK|ABC*
353 genotype; $F_{3,118} = 373.1$, $p < 2.2 \times 10^{-16}$; Figure 2b). There was no effect of sex ($t_{1,112} = 0.38$, $r^2 = 0$,
354 $p = 0.70$) on MHC-I diversity, neither was there any temporal trend based on inferred year of birth
355 ($t_{1,112} = -0.89$, $r^2 = 0$, $p = 0.37$; Figure S5).

356
357 **Figure 2 (a)** Relationship between allele read depth of *ABC* alleles (log number of reads, x-axis)
358 and *EFGHK* alleles (log number of reads, y-axis) in individuals with *EFGHK* alleles. The
359 individuals are grouped according to a bimodal distribution of the ratio of average allele read
360 depth for *EFGHK* alleles over *ABC* alleles, with individuals interpreted as heterozygous for
361 *ABCEFGHK|ABC* coloured grey (ratio 0.44–0.76, average 0.52, standard deviation 0.06; all but
362 two individuals ≤ 0.60). and individuals interpreted as homozygous for *ABCEFGHK* coloured black
363 (ratio 0.94–1.14, average 1.06, standard deviation 0.06; all but two individuals ≥ 1.0). Solid lines
364 correspond to linear regression slopes within each genotype, dashed line indicates a 1:1 ratio. **(b)**
365 Distributions of MHC-I diversity (measured as total allele tree length) depending on genotype for
366 the *ABCEFGHK|ABC* loci. All three genotypes significantly differ in MHC-I diversity, with
367 heterozygotes on average most diverse.

368 3.2 | No MHC-I based mate choice

369 There was no difference in the total allele number of males and females, irrespective of whether

370 the *RV* alleles were included (male mean = 11.30, SD = 3.06; female mean = 10.95, SD = 2.90;

371 Welch's t-test $t_{109.2} = -0.62$, $p = 0.54$), or excluded (male mean = 9.67, SD = 3.20; female mean =

372 9.25, SD = 3.04; Welch's t-test $t_{109.5} = -0.71$, $p = 0.48$).

373 Raso lark pairs typically shared a high proportion of alleles (mean = 0.67, SD = 0.2), but this

374 was not any more or less than that expected under random mating, irrespective of how we handled

375 the co-segregating blocks (Table 1; Figure 3a–b), or treated the *RV* alleles (Table S6).

376 Randomisation tests likewise found no evidence for assortative or disassortative mating according

377 to divergence (mean amino acid distance; Table 1; Figure 3c; Table S6). Though our sample size

378 was modest, in all cases, the empirical mean of the different complementarity metrics sat far from

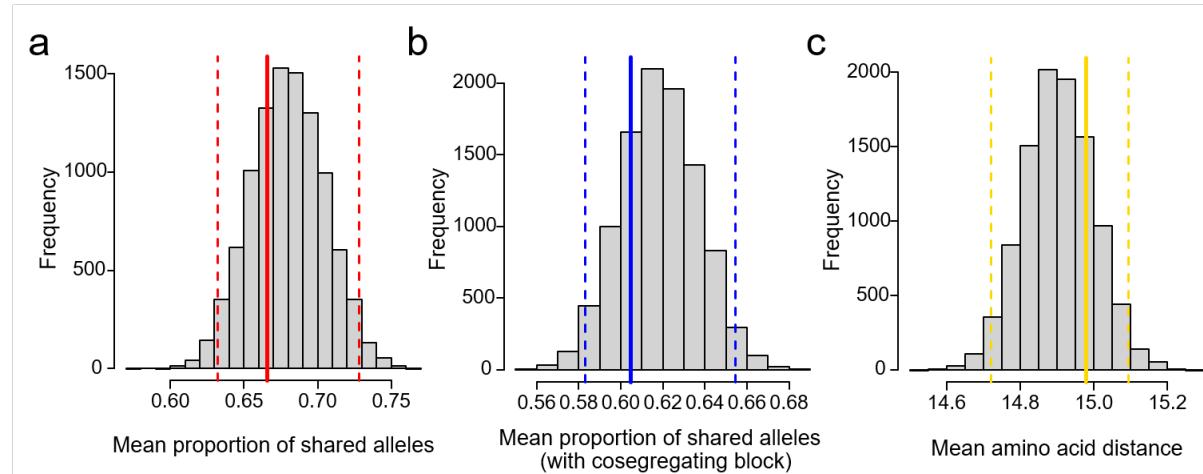
379 the 2.5% tails of the distribution of means generated under random mating ($0.23 < p < 0.79$).

380 **Table 1** Randomisation testing of (dis-)assortative mating in Raso larks based on allelic variation

381 in MHC-I. The empirical means calculated from observed pairings were compared to randomly

382 assigned pairings generated from 9,999 permutations; significant departures from random mating

383 would fall outside the 95% confidence intervals (CI). α and β refer to the whether the co-


384 segregating block of five alleles were treated as five separate alleles (α), or a single allelic block

385 (β). p is the ranked position of the observed mean in the distribution. Note that here, all results to

386 randomisations that included the *RV* alleles; for results excluding *RV* alleles, see Table S3.

Variable	Empirical mean	2.5% CI	97.5% CI	p
Including <i>RV</i> alleles				
Proportion allele sharing α	0.665	0.632	0.728	0.285
Proportion allele sharing β	0.632	0.583	0.654	0.225
Mean amino acid distance	14.98	14.72	15.09	0.778

387

388

389 **Figure 3** Randomisation testing of (dis-)assortative mating based on allelic variation. (a) Mean
390 proportion of shared alleles. (b) Mean proportion of shared alleles, treating co-segregating blocks
391 as single units. (c) Mean amino acid distance. Solid lines show empirical means from observed
392 pairings. Frequency distributions show mean values generated from 9,999 permutations of
393 random pairing (including the empirical data = 10,000). The two-tailed 95% confidence intervals
394 (dashed lines) display cut-offs for significant departures from random mating. N = 46 pairings. For
395 corresponding analyses excluding the *RV* alleles, see Figure S7.

396 3.3 / No MHC-I based fitness effects

397 Raso larks display high survivorship (Figure S6; Dierickx, Robinson, et al. (2019)). Nevertheless,
398 the categorisation of individuals into general age groupings on the basis of claw damage and
399 information on whether the individual was ringed as a *pullus* (in the nest) provided support for a
400 graded effect of age on survival ($\chi^2_2 = 7.54$, $p = 0.029$; Table 2), where birds ringed as a *pullus*
401 survived longer than adult birds without claw damage on first capture, which in turn tended to
402 survive longer than adult birds with claw damage on first capture (Figure S6). After accounting
403 for this age pattern, we found no effect of the MHC-I diversity on survival in either sex (Table 2).

404

405 **Table 2** Survivorship of Raso larks according to MHC-I diversity. A hazard ratio of 1.04 implies
406 that 1 standardised unit increase in MHC-I diversity, measured as total tree length of a genotype,
407 increases the risk of hazard by 4%, but note that only age-related variables were significant or
408 near-significant. Age category refers to a general age categorisation according to claw damage
409 (older birds are more likely to have claw damage) and information on whether a bird was ringed
410 as a *pullus* (in the nest). Reference levels for the sex and age category covariates are 'female'
411 and 'ringed as a *pullus*', respectively.

Variable	Coefficient	Hazard	Standard	<i>p</i>
		ratio	error	
MHC-I diversity	0.039	1.041	0.149	0.789
Sex – male	–0.122	0.885	0.214	0.568
MHC-I diversity : Sex	–0.026	0.974	0.213	0.902
Age – no claw damage	1.200	3.320	0.720	0.096
Age – claw damage	1.636	5.136	0.751	0.029

412

413 4 | Discussion

414 Raso larks have low population-wide MHC-I genetic diversity and a small number of MHC-I
415 alleles compared to outbred mainland populations. However, each individual Raso lark had a
416 rather large number of MHC-I alleles and these alleles were highly divergent. The explanation for
417 the discrepancy between population and within-individual estimates is that the within-locus
418 genetic diversity is low, as shown by a high degree of homozygosity, whereas the gene copy
419 number is high. Overall the immune gene diversity in the genome of Raso larks is surprisingly
420 high, which is promising for this threatened species.

421 4.1 | Inheritance and genomic architecture of MHC-I loci

422 The three fixed or near fixed alleles (A, B, C) most likely represent three core MHC-I loci, not
423 only due to their commonness but also because of their relatively high divergence (average amino
424 acid distance 0.364 ± 0.068 ; Figure 1a; Figure S4,). The co-segregating block of five alleles
425 (*EFGHK*) occurring in 52% of the individuals contributed an increased MHC-I diversity by 50%
426 compared to individuals without this co-segregating block. The co-segregating *EFGHK* block had
427 high within-block divergence (average amino acid distance 0.356 ± 0.039), though as expected the
428 individual alleles within the co-segregating block had low divergence when compared pairwise
429 with the alleles A, B and C: amino acid distance A–G 0 (1 synonymous substitution; and A–P
430 0.012 with 1 non-synonymous substitution), B–F (and B–S) 0.012 (1 non-synonymous
431 substitution), and C–K 0.037 (three non-synonymous and two synonymous substitutions; Figure
432 S4). We therefore find it likely that the three loci A, B and C have been duplicated and that the
433 corresponding alleles found in the co-segregating *EFGHK* block are the alleles G, F and K (Figure
434 1a). The two rarer co-segregating blocks *PQU* and *ST* (Figure 1b–c), as well as several single
435 alleles, may also have resulted from duplications (Figure 1a; Table S3).

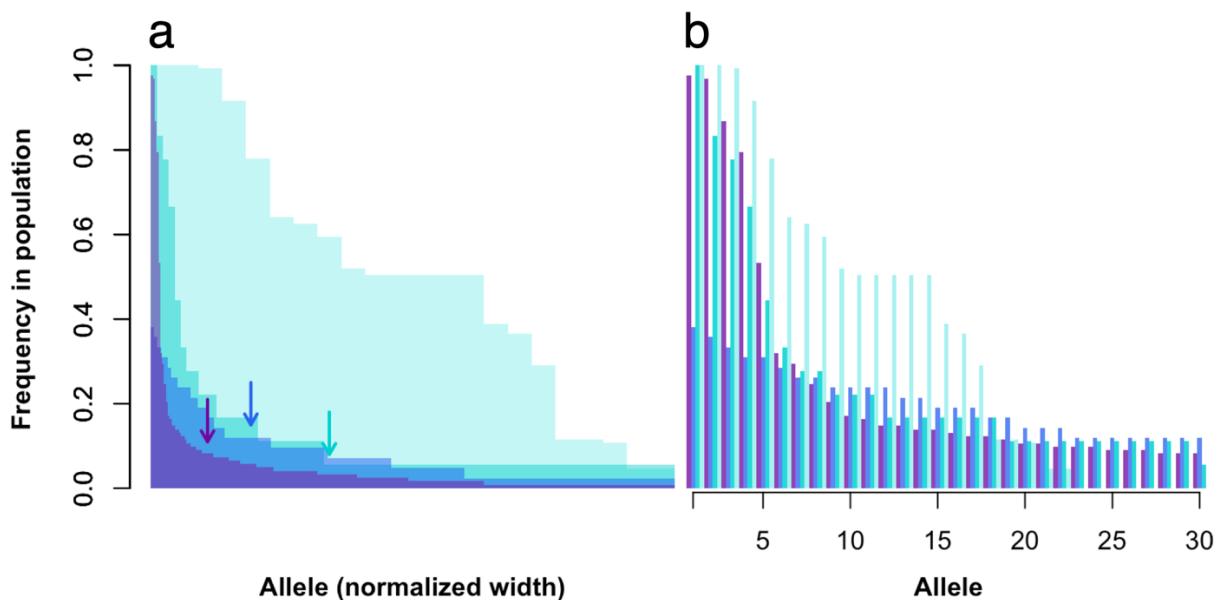
436 For the (near) fixed *ABC* alleles and the frequent co-segregating allele block *EFGHK*, the
437 most likely evolutionary scenario is that the A, B and C alleles correspond to loci that have been
438 duplicated and formed the G, F and K loci (Figure 1a; Table S3, Figure S4) – after which further
439 gene duplications have occurred resulting in the E and H loci within the co-segregating block –
440 and that there are two main haplotypes in the population: *ABC* (three loci) and *ABCEFGHK* (eight
441 loci). This is concordant with the observed bimodal ratios of average allele read depth for *EFGHK*
442 over *ABC* alleles in individuals with *EFGHK* alleles, corresponding to two genotypes:
443 heterozygous for *ABCEFGHK|ABC* (low ratio, as *EFGHK* occurs with one copy) and
444 homozygous for *ABCEFGHK* (doubled ratio, as *EFGHK* occurs with two copies; Figure 2a). In a
445 linear model, genotype and number of reads for *ABC* alleles explains 93% of the variation in

446 number of reads for *EFGHK* alleles ($F_{2,56} = 367$, $p < 0.001$). Further, the observed genotype
447 frequencies are concordant with Hardy-Weinberg equilibrium (58 homozygous for *ABC*, 51
448 heterozygous for *ABCEFGHK|ABC*, 13 homozygous for *ABCEFGHK*; $\chi^2 = 0.13$, $p = 0.72$). The
449 alternative interpretation – that the two main haplotypes would be *ABC* and *EFGHK* (where the
450 alleles G, F, and K could be alternative alleles of the A, B, and C loci) – would strongly violate
451 Hardy-Weinberg equilibrium ($\chi^2 = 15.42$, $p < 0.001$). This would either imply that we had failed
452 to detect eight *EFGHK* homozygotes or that strong selection led to this deviation from expected
453 genotype frequencies, but neither explanation is consistent with a bimodal distribution of ratios of
454 read depth for *EFGHK* over *ABC* in individuals with *EFGHK* alleles.

455 Several alleles or co-segregating blocks appear associated with the *ABC* haplotype, whereas
456 allele O co-segregates completely with the *ABCEFGHK* haplotype, save for two occurrences with
457 *ABC* homozygotes (Table S5), which may represent a post-bottleneck recombination event.
458 Consequentially, *ABCEFGHK|ABC* heterozygotes have the highest number of alleles and MHC-I
459 diversity (Figure 2b).

460 The maximum number of MHC-I alleles was 16 (three individuals), which in one individual
461 included the haplotype *ABCEGFHK* (eight loci), the co-segregating block *PQU* (three loci), and
462 five additional alleles (J, N, O, R, V). Given the patterns of co-segregation, this means that the
463 Raso lark genome contains at least 14 (8+3+6/2) different functional MHC-I loci.

464 4.2 | Maintenance of high within-individual MHC-I diversity in a severely bottlenecked
465 population


466 We identified 22 MHC-I alleles in the Raso lark, many of which were present at high frequency in
467 the sampled population, and often co-occurred within individuals at high levels, corresponding to
468 at least 14 MHC-I loci. Further, based on our evaluation of multiple primer pairs (see Material and
469 Methods), we are certain that other primer pairs recovered one more allele with high frequency
470 and coverage (additional allele 1; not clustering closely with any of the present alleles), as well as

471 seven other functional alleles at low to very low coverage (alleles 2–8; none of which clustering
472 closely with any of the present alleles, but three of which clustering tightly together), see Figure
473 S2. It is thus possible that there are as many as 31 MHC-I alleles in the Raso lark. Including such
474 low-coverage alleles would also increase the minimum number of MHC-I loci to 15 (additional
475 alleles 1 and 2 detected in one of the individuals with 16 main alleles).

476 Minias, Pikus, Whittingham, Dunn, and Niimura (2019) recently reviewed copy number
477 variation of MHC loci across the avian tree, and among 35 characterized species, only in four
478 cases were more loci established than in the Raso lark. Even when restricting that dataset to
479 species in which >100 individual have been genotyped, a higher number of loci had only been
480 established in two: (1) Based on genotyping of 857 individuals, the great tit *Parus major*
481 displayed no less than 862 functional alleles, and Sepil, Moghadam, Huchard, and Sheldon (2012)
482 could establish at least 16 functional MHC-I loci. (2) The sedge warbler *Acrocephalus*
483 *schoenobaenus* holds the record so far, with an astounding >3,500 MHC class I alleles detected in
484 863 individuals, with a within-individual diversity of 65 alleles and thus at least 33 loci
485 (Biedrzycka et al., 2017). In addition, (3) in a recent study Roved, Hansson, Stervander,
486 Hasselquist, and Westerdahl (in prep) not only characterized a high allelic diversity of 390 alleles
487 in 548 great reed warblers, but also inferred haplotypes – the largest of which comprised 17 loci.
488 In contrast, in the widespread blue tit 50 alleles were detected in 918 individuals, with a maximum
489 within-individual diversity of 19 alleles, indicating a minimum of 10 loci (Wutzler, Foerster, &
490 Kempenaers, 2012).

491 Further, comparing 12 (O'Connor et al., 2016) and 32 (O'Connor, Cornwallis, Hasselquist,
492 Nilsson, & Westerdahl, 2018) species, but sequencing only three and four individuals of each,
493 O'Connor et al. could demonstrate a strong phylogenetic signal in individual allele count, with
494 large differences between different passerine lineages ranging from single digits to around 40.
495 While resident sub-Saharan African species generally had higher MHC-I diversity than their

496 resident Palaearctic or trans-continental migratory relatives (O'Connor et al., 2018), there is no
497 evolution towards a global diversity optimum; instead the evolution of diversity is concordant
498 with fluctuating selection or genetic drift (O'Connor et al., 2016). While it is remarkable that the
499 severely bottlenecked Raso lark has preserved a number of MHC-I loci that equals or exceeds that
500 of several other widespread species of much larger contemporary populations, the Raso lark is
501 part of the superfamily Sylvioidea (including, e.g., many warbler families, swallows, white-eyes,
502 and larks), which displays the highest MHC-I allele counts among birds (Minias, Pikus,
503 Whittingham, et al., 2019). Regrettably, we know of no study of MHC-I diversity in the
504 widespread congeners Eurasian skylark *A. arvensis* or Oriental skylark *A. gulgula*, or for that
505 matter any other lark (family Alaudidae). Although the number of MHC-I loci is high in the Raso
506 lark, the total number of alleles is low, and the degree of allele sharing is high. We compared the
507 frequency in a population for the Raso lark alleles with alleles of three outbred species: Eurasian
508 siskin *Spinus spinus* (Drews & Westerdahl, 2019), house sparrow, and great reed warbler
509 *Acrocephalus arundinaceus* (Roved, Hansson, Tarka, Hasselquist, & Westerdahl, 2018). These
510 three species all have rather few high-frequency alleles and long tails of many low-frequency
511 alleles, whereas the pattern is the opposite for the Raso lark (Figure 4). Interestingly, an
512 intermediate distribution was found by Gonzalez-Quevedo, Phillips, Spurgin, and Richardson
513 (2015) in another island endemic, the Berthelot's pipit *Anthus berthelotii*. However, while this
514 species has passed through an initial bottleneck during colonization from the mainland, and
515 subsequent ones during between-island colonisations around 75 thousand years ago (Spurgin et
516 al., 2011), it is now widespread with a large population over 13 islands in three archipelagos.

517

518 **Figure 4** Allele frequency distribution in the Raso lark *Alauda razae* (light turquoise; 22 alleles in
519 122 individuals; this study), compared to populations of Eurasian siskin *Spinus spinus* (dark
520 turquoise; 88 alleles in 18 individuals; Drews and Westerdahl (2019)), house sparrow *Passer*
521 *domesticus* (blue; 157 alleles in 42 individuals; unpublished data), and great reed warbler
522 *Acrocephalus arundinaceus* (purple; 271 alleles in 122 individuals—the same number as Raso
523 larks—randomly selected from Roved et al. (2018)). Alleles are ordered along the x-axis following
524 decreasing frequency in the populations. (a) The width of individual allele bars has been
525 normalized based on total number of alleles. Thus, while the number of alleles differ between the
526 species, the distributions are directly comparable. (b) Frequency of the 30 most frequent alleles
527 displayed, grouped by species. Arrows in (a) indicates the position of the 30th allele, except for
528 the Raso lark that only has 22 alleles.

529 In comparison with other bottlenecked populations, the Raso lark displays high diversity. The
530 only passerine where there is data to draw comparison is the Seychelles warbler (also within the
531 superfamily Sylvioidea), which went through a population bottleneck of less than 30 individuals
532 in the 1960s but has since recovered to a current estimate of 3,000 individuals. This species only
533 has 10 alleles over at least four loci (Richardson & Westerdahl, 2003). Among bottlenecked non-
534 passersines, the white-tailed eagle *Haliaeetus albicilla* (1,000 pairs in the 1970s) has only 10
535 MHC-I alleles over at least three loci (Minias, Pikus, & Anderwald, 2019), the vulnerable Chinese
536 egret *Egretta eulophotes* (declining population of 2,600–3,400 individuals) has 14 alleles but
537 shows little polymorphism in presumably only two loci (Chiang et al., 2017), and 16 alleles over 6

538 loci were found in the Endangered red-crowned crane *Grus japonica* (declining population of
539 1,830 individuals) (Akiyama et al., 2017). However, it is important to note that, in general, non-
540 passerine birds have fewer MHC loci (Minias, Pikus, Whittingham, et al., 2019). For example,
541 both in falcons *Falco* spp. (Gangoso et al., 2012) and prairie-chickens *Tympanuchus* spp.
542 (Bateson, Whittingham, Johnson, & Dunn, 2015; Minias et al., 2016), species listed either as
543 Threatened or as Least Concern all displayed a single MHC-I locus. Furthermore, one should
544 acknowledge that it is difficult to design primers that amplify all potential alleles in a
545 hypervariable part of the genome, as we could demonstrate with our evaluation of newly designed
546 primer pairs, and the number of alleles reported for various species may therefore be
547 underestimated.

548 Recent results from Dierickx, Sin, et al. (2019) provide a possible explanation for the
549 relatively high level of MHC-I diversity in the Raso lark. They found that, while the Raso lark did
550 indeed have reduced genetic diversity compared to its widespread, continental, closest relatives,
551 this difference was smaller than expected. Their results show that this can be largely explained by
552 the recency of a population contraction from a much larger ancestral size, an explanation that
553 could also be valid for MHC-I diversity.

554 However, despite the considerable genetic diversity in Raso larks relative to their population
555 size, Dierickx, Sin, et al. (2019) point out that the species is still in a precarious situation:
556 continued existence at this small population size will unavoidably increase their genetic risks,
557 including inbreeding.

558 4.3 / Effects of MHC-I diversity on mate choice and fitness

559 Based on the above, we hypothesised that female Raso larks would choose males with MHC
560 genotypes complementary to theirs, in order to maximise the genetic diversity of their offspring.
561 However, we found no evidence for this phenomenon. One explanation for the absence of effect
562 of MHC complementarity on mate choice is that, given that the levels of genetic diversity are still

563 relatively high in the population (Dierickx, Sin, et al., 2019), and that the population contraction
564 around 550 years ago, coinciding with human settlement, was recent from an evolutionary point
565 of view (Dierickx, Sin, et al., 2019), maybe there has been no strong selection yet to maximise
566 diversity through mate choice; maybe not enough time has passed yet for that behaviour to evolve.

567 It is also possible that other mating criteria override the importance of MHC in mate choice.

568 For example, males occupy and defend territories, and these could play a role in the females'
569 choice (e.g. Alatalo, Lundberg, & Glynn, 1986; Bensch & Hasselquist, 1992; Buchanan &
570 Catchpole, 1997). Indeed, in mating systems where there are many indirect benefits to mating,
571 females might care less about the genetic make-up of the male (Zelano & Edwards, 2002).

572 Richardson and Komdeur (2005) did not find any influence of MHC on social partner choice in
573 female Seychelles warblers (Richardson, Komdeur, Burke, & von Schantz, 2005). The social
574 partner probably provides enough indirect benefits (e.g. nest building, feeding of the chicks) to the
575 female for her not to take MHC diversity into account when choosing him. However, Richardson
576 and Komdeur (2005) found that, when the social partner had a low level of MHC diversity, the
577 female was more likely to engage in extra-pair copulations, with a male that had a higher level of
578 MHC diversity than the partner (Richardson et al., 2005). We do not know enough about the
579 details of the Raso lark's socially monogamous mating system to be able to hypothesize whether a
580 similar phenomenon might be at play in our study system. Our results are based on social
581 pairings. It is possible that female Raso larks engage in extra-pair matings, and indeed the
582 frequency of extrapair offspring is 20 percent in a close relative of the Raso lark, the Eurasian
583 skylark (Hutchinson & Griffith, 2008).

584 A final functional explanation for the absence of MHC-based mate choice might be due to the
585 fact that larks in arid environments generally have very few parasites (Horrocks et al., 2012). This
586 would reduce the importance of the immune system for survival and reproductive fitness and
587 thereby reduce selection for MHC-based mate choice. Our analyses did not find any effect of

588 MHC-I diversity on survivorship. That this is the case though does then beg the question of why
589 the Raso lark has such high levels of MHC-I diversity, if not to fight a wide array of diseases. The
590 high diversity may reflect past selection, as the Raso lark probably diverged from the ancestor of
591 two currently widespread continental species, the skylark and the oriental skylark *A. gulgula*,
592 about six million years ago (Alström et al., 2013), and nothing is known about MHC-I diversity in
593 the congeneric species. Further, based on our results, it seems as though while within-locus
594 diversity may be low (i.e. there seems to be a single allele for many loci), between-locus diversity
595 is high, and overall functional MHC-I diversity has been maintained through population
596 bottlenecks at a high level by the co-segregation of large blocks of linked loci (e.g. the haplotype
597 *ABCEFGHK*).

598 *4.4 / Conclusions*

599 This study shows that it is possible for a population to maintain relatively high levels of MHC
600 diversity even in the face of extremely severe bottlenecks, facilitated by the co-segregation of
601 large numbers of linked divergent loci (gene copies), despite a low number of total alleles. This
602 remaining diversity will likely serve the Raso lark well when adapting to future environmental
603 change (cf. de Villemereuil et al., 2019), especially in the context of the ongoing reintroduction of
604 the species to nearby Santa Luzia Island and of Cape Verde's vulnerability in the face of climate
605 change.

606 ACKNOWLEDGEMENTS

607 Anna Drews offered invaluable help with amplicon library preparations. Thanks to the field
608 assistants on Raso: Mark Bolton, Ewan Campbell, Simon Davies, Mike Finnie, Tom Flower, Lee
609 Gregory, Sabine Hille, Mark Mainwaring, Jason Moss and Justin Welbergen. This work has been
610 generously supported by the Sir Peter Scott Studentship and the Rouse Ball Eddington Fund of
611 Trinity College, Cambridge (to EGD), the VOCATIO Award (to EGD), the European Research

612 Council (ERC) under the European Union's Horizon 2020 research and innovation programme
613 with grants 679799 (to HW), and Julian Francis, RSPB, CEPF and BirdLife International's
614 Preventing Extinctions Initiative.

615 **AUTHOR CONTRIBUTIONS**

616 EGD devised the research questions and hypotheses, EGD, MS and HW designed the study, MLB
617 and EGD collected the Raso lark samples, MS did the laboratory work, bioinformatics, and MHC
618 characterization analyses, JT carried out the mate choice and survivorship statistics, HW provided
619 laboratory resources, and all authors participated in the writing of the paper.

620 **DATA ACCESSIBILITY**

621 The raw sequence data for 136 samples from two libraries has been submitted to Zenodo,
622 accessible at <https://doi.org/10.5281/zenodo.3630877>. The 22 alleles A–V and additional alleles
623 1–2 have been deposited at GenBank with accession numbers MT010367–MT010390.

624 **References**

625 Akiyama, T., Kohyama, T. I., Nishida, C., Onuma, M., Momose, K., & Masuda, R. (2017). Genetic
626 variation of major histocompatibility complex genes in the endangered red-crowned crane.
627 *Immunogenetics*, 69(7), 451–462. doi:10.1007/s00251-017-0994-6

628 Alatalo, R. V., Lundberg, A., & Glynn, C. (1986). Female Pied Flycatchers *Ficedula-Hypoleuca* Choose
629 Territory Quality and Not Male Characteristics. *Nature (London)*, 323(6084), 152–153.

630 Alström, P., Barnes, K. N., Olsson, U., Barker, F. K., Bloomer, P., Khan, A. A., . . . Ryan, P. G. (2013).
631 Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological
632 evolution, non-monophyletic genera and hidden species diversity. *Molecular Phylogenetics
633 and Evolution*, 69(3), 1043–1056. doi:10.1016/j.ympev.2013.06.005

634 Bateson, Z. W., Whittingham, L. A., Johnson, J. A., & Dunn, P. O. (2015). Contrasting patterns of
635 selection and drift between two categories of immune genes in prairie-chickens. *Molecular
636 Ecology*, 24(24), 6095–6106. doi:10.1111/mec.13459

637 Bensch, S., & Hasselquist, D. (1992). Evidence for Active Female Choice in a Polygynous Warbler.
638 *Animal Behaviour*, 44(2), 301–311.

639 Biedrzycka, A., O'Connor, E. A., Sebastian, A., Migalska, M., Radwan, J., Zajac, T., . . . Westerdahl, H.
640 (2017). Extreme MHC class I diversity in the sedge warbler (*Acrocephalus schoenobaenus*);

641 selection patterns and allelic divergence suggest that different genes have different functions.
642 *BMC Evolutionary Biology*, 17, Article No.: 159. doi:doi:10.1186/s12862-017-0997-9

643 Brooke, M. d. L. (2019). Extreme rainfall-related clutch size variation in the Critically Endangered Raso
644 Lark *Alauda razae* of the arid Cape Verde islands. *Bird Conservation International*, 29(2), 321–
645 326. doi:10.1017/S0959270918000163

646 Buchanan, K. L., & Catchpole, C. K. (1997). Female choice in the sedge warbler, *Acrocephalus*
647 *schoenobaenus*: Multiple cues from song and territory quality. *Proceedings of the Royal Society*
648 *of London Series B Biological Sciences*, 264(1381), 521–526.

649 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016).
650 DADA2: High-resolution sample inference from Illumina amplicon data. *Nature Methods*,
651 13(7), 581–583. doi:doi:10.1038/NMETH.3869

652 Chaverri, G., & Kunz, T. H. (2011). All-offspring natal philopatry in a Neotropical bat. *Animal Behaviour*,
653 82(5), 1127–1133. doi:doi:10.1016/j.anbehav.2011.08.007

654 Chiang, T.-Y., Wang, Z., Zhou, X., Lin, Q., Fang, W., & Chen, X. (2017). Diversity and selection of MHC
655 class I genes in the vulnerable Chinese egret (*Egretta eulophotes*). *PLoS ONE*, 12(5).
656 doi:10.1371/journal.pone.0176671

657 de Villemereuil, P., Rutschmann, A., Lee, K. D., Ewen, J. G., Brekke, P., & Santure, A. W. (2019). Little
658 Adaptive Potential in a Threatened Passerine Bird. *Current Biology*, 29(5), 889–894.
659 doi:doi:10.1016/j.cub.2019.01.072

660 Dierickx, E. G., Robinson, R. A., & Brooke, M. d. L. (2019). Survival of a long-lived single island endemic,
661 the Raso lark *Alauda razae*, in relation to age, fluctuating population and rainfall. *Scientific*
662 *Reports*, 9, 19557. doi:10.1038/s41598-019-55782-8

663 Dierickx, E. G., Sin, S., van Veelen, P., Brooke, M. d. L., Liu, Y., Edwards, S., & Martin, S. (2019). Neo-sex
664 chromosomes, genetic diversity and demographic history in the Critically Endangered Raso
665 lark. *bioRxiv*. doi:10.1101/617563

666 Donald, P. F., & de L. Brooke, M. (2006). An unlikely survivor: the peculiar natural history of the Raso
667 Lark. *British Birds*, 99(8), 420–430.

668 Donald, P. F., De Ponte, M., Pitta Groz, M. J., & Taylor, R. (2003). Status, ecology, behaviour and
669 conservation of Raso Lark *Alauda razae*. *Bird Conservation International*, 13(1), 13–28.
670 doi:10.1017/s0959270903003022

671 Drews, A., & Westerdahl, H. (2019). Not all birds have a single dominantly expressed MHC-I gene:
672 Transcription suggests that siskins have many highly expressed MHC-I genes. *Scientific Reports*,
673 9(1). doi:10.1038/s41598-019-55800-9

674 Edmands, S. (2007). Between a rock and a hard place: evaluating the relative risks of inbreeding and
675 outbreeding for conservation and management. *Molecular Ecology*, 16(3), 463–475.
676 doi:doi:10.1111/j.1365-294X.2006.03148.x

677 Ferreira, M. T., Cardoso, P., Borges, P. A. V., Gabriel, R., de Azevedo, E. B., Reis, F., . . . Elias, R. B. (2016).
678 Effects of climate change on the distribution of indigenous species in oceanic islands (Azores).
679 *Climatic Change*, 138(3-4), 603–615. doi:doi:10.1007/s10584-016-1754-6

680 Frankham, R. (1997). Do island populations have less genetic variation than mainland populations?
681 *Heredity*, 78(3), 311–327. doi:10.1038/hdy.1997.46

682 Frankham, R. (1998). Inbreeding and extinction: Island populations. *Conservation Biology*, 12(3), 665–
683 675.

684 Frankham, R., Ballou, J. D., & Briscoe, D. A. (2002). Introduction to Conservation Genetics. i–xxi, 1–617.

685 Gangoso, L., Alcaide, M., Grande, J. M., MuÑOz, J., Talbot, S. L., Sonsthagen, S. A., . . . Figuerola, J.
686 (2012). Colonizing the world in spite of reduced MHC variation. *Journal of Evolutionary Biology*,
687 25(7), 1438–1447. doi:10.1111/j.1420-9101.2012.02529.x

688 Gonzalez-Quevedo, C., Phillips, K. P., Spurgin, L. G., & Richardson, D. S. (2015). 454 screening of
689 individual MHC variation in an endemic island passerine. *Immunogenetics*, 67(3), 149–162.
690 doi:doi:10.1007/s00251-014-0822-1

691 Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies
692 by maximum likelihood. *Systematic Biology*, 52(5), 696–704. doi:doi:
693 10.1080/10635150390235520

694 Horrocks, N. P. C., Hegemann, A., Matson, K. D., Hine, K., Jaquier, S., Shobrak, M., . . . Tielemans, B. I.
695 (2012). Immune Indexes of Larks from Desert and Temperate Regions Show Weak Associations
696 with Life History but Stronger Links to Environmental Variation in Microbial Abundance.
697 *Physiological and Biochemical Zoology*, 85(5), 504–515. doi:doi:10.1086/666988

698 Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N., & Vellend, M. (2008). Ecological
699 consequences of genetic diversity. *Ecology Letters*, 11(6), 609–623. doi:doi:10.1111/j.1461-
700 0248.2008.01179.x

701 Hutchinson, J. M. C., & Griffith, S. C. (2008). Extra-pair paternity in the Skylark *Alauda arvensis*. *Ibis*,
702 150(1), 90–97. doi:doi:10.1111/j.1474-919X.2007.00744.x

703 Johnson, W. E., Onorato, D. P., Roelke, M. E., Land, E. D., Cunningham, M., Belden, R. C., . . . O'Brien,
704 S. J. (2010). Genetic Restoration of the Florida Panther. *Science (Washington D C)*, 329(5999),
705 1641–1645. doi:doi:10.1126/science.1192891

706 Keller, L. F., & Waller, D. M. (2002). Inbreeding effects in wild populations. *Trends in Ecology and
707 Evolution*, 17(5), 230–241.

708 Le, S. Q., & Gascuel, O. (2008). An improved general amino acid replacement matrix. *Molecular Biology
709 and Evolution*, 25(7), 1307–1320. doi:doi:10.1093/molbev/msn067

710 Martin, M. (2011). Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads.
711 *EMBnet.journal*, 17(1), 10–12. doi:10.14806/ej.17.1.200

712 Minias, P., Bateson, Z. W., Whittingham, L. A., Johnson, J. A., Oyler-McCance, S., & Dunn, P. O. (2016).
713 Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection
714 and gene conversion. *Heredity*, 116(5), 466–476. doi:10.1038/hdy.2016.6

715 Minias, P., Pikus, E., & Anderwald, D. (2019). Allelic diversity and selection at the MHC class I and class
716 II in a bottlenosed bird of prey, the White-tailed Eagle. *BMC Evolutionary Biology*, 19, Article
717 No.: 2. doi:doi:10.1186/s12862-018-1338-3

718 Minias, P., Pikus, E., Whittingham, L. A., Dunn, P. O., & Niimura, Y. (2019). Evolution of Copy Number
719 at the MHC Varies across the Avian Tree of Life. *Genome Biology and Evolution*, 11(1), 17–28.
720 doi:10.1093/gbe/evy253

721 Ministry of Environment Housing and Territory Planning of Cape Verde. (2011). *Climate Change
722 Vulnerability Assessment of Cape Verde – Summary for Policy Makers*. Retrieved from Praia:
723 <http://tiny.cc/jqf2dz>

724 Nair, P. (2014). Conservation genomics. *Proceedings of the National Academy of Sciences of the United
725 States of America*, 111(2), 569. doi:doi:10.1073/pnas.1323086111

726 O'Connor, E. A., Cornwallis, C. K., Hasselquist, D., Nilsson, J.-Å., & Westerdahl, H. (2018). The evolution
727 of immunity in relation to colonization and migration. *Nature Ecology & Evolution*, 2(5), 841–
728 849. doi:10.1038/s41559-018-0509-3

729 O'Connor, E. A., Strandh, M., Hasselquist, D., Nilsson, J. Å., & Westerdahl, H. (2016). The evolution of
730 highly variable immunity genes across a passerine bird radiation. *Molecular Ecology*, 25(4),
731 977–989. doi:10.1111/mec.13530

732 O'Grady, J. J., Brook, B. W., Reed, D. H., Ballou, J. D., Tonkyn, D. W., & Frankham, R. (2006). Realistic
733 levels of inbreeding depression strongly affect extinction risk in wild populations. *Biological
734 Conservation*, 133(1), 42–51. doi:doi:10.1016/j.biocon.2006.05.016

735 R Core Team. (2018). R: A Language and Environment for Statistical Computing.

736 R Core Team. (2019). R: A Language and Environment for Statistical Computing.

737 Reed, D. H. (2005). Relationship between population size and fitness. *Conservation Biology*, 19(2), 563–
738 568.

739 Reusch, T. B. H., Ehlers, A., Haemmerli, A., & Worm, B. (2005). Ecosystem recovery after climatic
740 extremes enhanced by genotypic diversity. *Proceedings of the National Academy of Sciences
741 of the United States of America*, 102(8), 2826–2831.

742 Richardson, D. S., Komdeur, J., Burke, T., & von Schantz, T. (2005). MHC-based patterns of social and
743 extra-pair mate choice in the Seychelles warbler. *Proceedings of the Royal Society Biological
744 Sciences Series B*, 272(1564), 759–767. doi:doi:10.1098/rspb.2004.3028

745 Richardson, D. S., & Westerdahl, H. (2003). MHC diversity in two *Acrocephalus* species: the outbred
746 Great reed warbler and the inbred Seychelles warbler. *Molecular Ecology*, 12(12), 3523–3529.
747 doi:10.1046/j.1365-294X.2003.02005.x

748 Rogers, R. L., & Slatkin, M. (2017). Excess of genomic defects in a woolly mammoth on Wrangel island.
749 *PLoS Genetics*, 13(3), Article No.: e1006601. doi:doi:10.1371/journal.pgen.1006601

750 Romiguier, J., Gayral, P., Ballenghien, M., Bernard, A., Cahais, V., Chenuil, A., . . . Galtier, N. (2014).
751 Comparative population genomics in animals uncovers the determinants of genetic diversity.
752 *Nature (London)*, 515(7526), 261. doi:doi:10.1038/nature13685

753 Roved, J., Hansson, B., Stervander, M., Hasselquist, D., & Westerdahl, H. (in prep). Non-random
754 association of MHC-I alleles favouring high diversity haplotypes in wild songbirds revealed by
755 computer-assisted MHC haplotype inference using the R package MHCtools.

756 Roved, J., Hansson, B., Tarka, M., Hasselquist, D., & Westerdahl, H. (2018). Evidence for sexual conflict
757 over major histocompatibility complex diversity in a wild songbird. *Proceedings of the Royal
758 Society B: Biological Sciences*, 285(1884). doi:10.1098/rspb.2018.0841

759 Sepil, I., Moghadam, H. K., Huchard, E., & Sheldon, B. C. (2012). Characterization and 454
760 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal
761 complexity in a passerine system. *BMC Evolutionary Biology*, 12(1). doi:10.1186/1471-2148-
762 12-68

763 Spurgin, L. G., van Oosterhout, C., Illera, J. C., Bridgett, S., Gharbi, K., Emerson, B. C., & Richardson, D.
764 S. (2011). Gene conversion rapidly generates major histocompatibility complex diversity in
765 recently founded bird populations. *Molecular Ecology*, 20(24), 5213–5225.
766 doi:doi:10.1111/j.1365-294X.2011.05367.x

767 Tollington, S., Jones, C. G., Greenwood, A., Tatayah, V., Raisin, C., Burke, T., . . . Groombridge, J. J.
768 (2013). Long-term, fine-scale temporal patterns of genetic diversity in the restored Mauritius
769 parakeet reveal genetic impacts of management and associated demographic effects on
770 reintroduction programmes. *Biological Conservation*, 161, 28–38.
771 doi:doi:10.1016/j.biocon.2013.02.013

772 Westerdahl, H., Witzell, H., von Schantz, T., & Bensch, S. (2004). MHC class I typing in a songbird with
773 numerous loci and high polymorphism using motif-specific PCR and DGGE. *Heredity*, 92(6),
774 534–542.

775 Wright, S. D., Gillman, L. N., Ross, H. A., & Keeling, D. J. (2009). Slower Tempo of Microevolution in
776 Island Birds: Implications for Conservation Biology. *Evolution*, 63(9), 2275–2287.
777 doi:doi:10.1111/j.1558-5646.2009.00717.x

778 Wutzler, R., Foerster, K., & Kempenaers, B. (2012). MHC class I variation in a natural blue tit population
779 (*Cyanistes caeruleus*). *Genetica*, 140(7-9), 349–364. doi:10.1007/s10709-012-9679-0

780 Zelano, B., & Edwards, S. V. (2002). An Mhc component to kin recognition and mate choice in birds:
781 Predictions, progress, and prospects. *American Naturalist*, 160(6 Supplement), S225–S237.
782

783

784 SUPPORTING INFORMATION

785 *Supporting Information 1 (PDF): Supplementary tables and figures*

786 **Table S1:** Sequence, melting temperature, and other details for primers. **Table S2:** PCR
787 conditions and amplification success in four species for 13 primer pairs evaluated in this study.

788 **Table S3:** Properties, such as read counts and presumed parental allele, for alleles A–V and
789 excluded additional alleles 1 and 2. **Table S4:** Genotyped Male Raso larks present in the
790 population in each year of the study. **Table S5:** Association of alleles and co-segregating blocks
791 to *ABCEFGHK|ABC* genotypes. **Table S6:** Randomisation testing of (dis-)assortative mating
792 based on allelic variation in MHC-I; corresponds to Table 1, but excludes *RV* alleles. **Figure S1:**
793 Evaluation of amplification success by electrophoresis in four species for 13 primer pairs
794 evaluated in this study. **Figure S2:** Unrooted MHC-I amino acid allele tree, including the alleles
795 called and used for analyses (A–V) and additional alleles that are certainly (alleles 1 & 2) or
796 possibly (alleles 3–9) functional, but yielded too few reads with our primer pairs to enable
797 confident allele calls. **Figure S3:** No relationship between coverage (number of reads) and
798 number of alleles called among the 114 individuals included in the analyses. **Figure S4:** Amino
799 acid and nucleotide distance matrix for the MHC-I exon 3 alleles A–V. **Figure S5:** MHC-I
800 diversity over time, based on inferred birth year. **Figure S6:** Survival probability from time of
801 ringing for nestlings, and adult birds with and without claw damage. **Figure S7:** Randomisation
802 testing of (dis-)assortative mating in Raso larks based on allelic variation in MHC-I; corresponds
803 to Figure 2, but excludes *RV* alleles.

804 *Supporting Information 2 (XLS)*

805 Data file used for analyses, containing information for 114 individuals on genotype, MHC-I
806 diversity, sex, mate, years observed, years breeding, assumed birth year etc.

807 *Supporting Information 3 (FA)*

808 Fasta file comprising the 24 MHC class I alleles (A–V, additional alleles 1–2).