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ABSTRACT

Whole genome sequence (WGS) data could transform our ability to attribute individuals to source populations. However,
methods that effectively mine these data are yet to be developed. We present a minimal multilocus distance (MMD) method
which rapidly deals with these large data sets as well as methods for optimally selecting loci. This was applied on WGS
data to determine the source of human campylobacteriosis, the geographical origin of diverse biological species including
humans and proteomic data to classify breast cancer tumours. The MMD method provides a highly accurate attribution which
is computationally efficient for extended genotypes. These methods are generic, easy to implement for WGS and proteomic
data and have wide application.

Introduction

Attributing or assigning individuals to a source population is important within many disciplines including ecology, anthropology,
infectious diseases and forensics!*?. For instance, assignment tests have been applied to identify the origin of individuals
in ecosystems>~’, infectious diseases®~!°, animals used for trade’ or the geographical origin of humans®>-2? or plants>>. A
common strategy to attribute individuals to populations consists in comparing the genotype of the individual with the genetic
profiles of defined source populations (e.g. the infectious disease example depicted in Fig. 1). The genotype usually comprises
a set of genetic markers selected to highlight the differences between individuals (Fig. 1). For instance, highly variable genetic
markers such as microsatellites®~ or genes® !'=1%2% and more recently single nucleotide polymorphisms (SNPs)> have been
used for source attribution. The question is to decide which approach is most appropriate for the particular problem in terms of
computation time and assignment accuracy.

With the advent of next-generation sequencing technology, whole genome sequences are becoming available across all the
6 kingdoms of life ranging in size from for example viruses (kBases) to humans (3.2 GBases)?*=". In principle, this should
enable discovery of large numbers of markers (e.g. SNPs) which have the potential to achieve unprecedented source attribution
accuracy®' 3. The challenge lies in efficiently mining large data sets for source attribution. Existing source attribution methods
(e.g. STRUCTURE?"-38 that has been widely applied in population genetics) operate on relatively short genotypes consisting
of a few to tens or hundreds of loci. However, their computation time increases at least linearly with the number of loci and
using extended genotypes (e.g. > 1000 loci) is impractical. This is a particularly important drawback in situations where rapid
source attribution is crucial (e.g. for infectious diseases). To deal with extended genotypes, one either needs to develop efficient
methods for source attribution and/or select sets of markers with high assignment power to keep the size of genotypes at a
manageable level.

The limited effort to optimise source attribution algorithms to use extended genotypes contrasts with the effort made to
address another important challenge in population structure, namely the use of extended genotypes to clustering individuals
into groups. For instance, FRAPPE*, ADMIXTURE®, fastStructure*', fineStructure*?, sNMF*?, snapclust**, principal
components analysis (PCA)* or Discriminant analysis of principal components (DAPC)*® are well-known methods that can
identify clusters using extended genotypes. In the language of machine learning®’, these programs use unsupervised learning
algorithms to infer clusters in the data without using any prior information about the characteristics of such clusters. Hence,
such algorithms are not suitable for source attribution which requires supervised learning algorithms to classify individuals to a
set of predefined sources whose characteristics are defined in terms of genotypes of known origin (i.e. in terms of a training
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set). ADMIXTURE was originally proposed as a method for unsupervised model-based estimation of ancestry of unrelated
individuals*’. This is the most widely used version of ADMIXTURE but, in fact, it was extended*® for supervised learning
in such a way that it can use prior knowledge on the population of origin of some individuals to infer the ancestry of other
individuals. The supervised learning version of ADMIXTURE, however, was not designed to estimate the probability that
individuals were sampled from a certain source, i.e., it was not designed to attribute individuals to sources but rather to infer
their ancestry. In spite of that, one would expect some relationship between ancestry and source of individuals and it makes
sense to explore the capability of ADMIXTURE as an attribution method (with applicability restricted to datasets consisting of
SNP genotypes). GLOBETROTTER, another package to infer the ancestry of individuals, also has potential as a method for
source attribution with extended SNP datasets*’.

Besides developing efficient methods for source attribution, selection of loci with high discriminatory power can also help
deal with the computational challenge posed by extended genotypes. Several methods have been proposed to rank markers
according to their importance for source attribution based on the intuitive idea that highly polymorphic markers should allow
for higher genetic differentiation®’. This can be achieved by measuring the importance of loci with diversity indices (e.g.
expected heterozygosity, fixation index Fsr or informativeness>’-21-31:32) Other approaches propose focusing on the joint
performance of sets of loci rather than considering performance of loci individually>*=>°. One would expect these approaches
to be more appropriate than diversity-based methods when dealing with correlated markers (i.e. when linkage disequilibrium is
important>®). However, they are computationally intensive and impractical to deal with extended genotypes and do not always
improve on diversity-based methods’.

Here, we address two of the challenges posed by extended genotypes for source attribution. First, we propose a fast method
for source attribution which can deal with genotypes comprising thousands of loci with minimal computational effort. Second,
we propose the use of information theory>’ for the optimal selection of markers from extended genotypes. We demonstrate
this through several examples. The first is in the field of infectious diseases and involves Campylobacter, the largest cause of
human bacterial gastroenteritis in the developed world>®>°. Here we attribute human cases to source reservoirs (e.g. chicken,
cattle, sheep etc.). The second is in the area of human evolution and involves attributing humans to 7 reference regions (e.g.
Africa, Europe, etc.) or 53 populations (e.g. Bedouin, Maya, etc.) 2>6%-61 The third example studies attribution of the giant
Californian sea cucumber (Parastichopus californicus) to north/south subregions within the northeastern Pacific coastal region®.
In the fourth example, we assign breast cancer tumours to three different subtypes (ERPR, Her2 and TN)®3. The first three
examples use genomic data and the breast cancer example uses proteomic data. The performance of our method for source
attribution is compared to the current state of the art method STRUCTURE?"-33, For extended human genotypes which are too
computationally intensive for STRUCTURE, a comparison is made with the supervised learning ADMIXTURE method*® by
assuming that the probability of attribution to a source can be identified using the ancestry coefficient corresponding to such a
source.

Results

Source attribution with the MMD method
We propose the Minimal Multilocus Distance (MMD) method to estimate the probability p,, s that an individual u is attributed
to a population source s based on the similarity between the genotype of the individual to be attributed and genotypes from the
sources. The similarity between pairs of genotypes is quantified by the Hamming distance which simply gives the number of
loci at which the genotypes differ®. The smaller the distance between genotypes, the larger the probability that they originate
from the same source (see Methods). To test the accuracy of the MMD method, we studied self-attribution, a cross-validation
method®% which consists in removing individuals from the source population and estimating the probability that they are
correctly attributed to their source based on the remainder> > 1331 (Fig. 2).

The source attribution results corresponding to a set of I, individuals (e.g. I, = 500 Campylobacter isolates from humans)
are summarised by the probability distribution p; that any of the individuals is attributed to source s (see an example in Fig. 1(b)
and more details in Methods). Self-attribution results are summarised by a similar probability distribution, assuming that
the individuals that were removed from a population represent a set of /,, individuals of unknown origin (see Fig. 2). In
the following, we describe the results obtained for the Campylobacter and human examples. Self-attribution results for P,
californicus genotypes and breast cancer proteomic data are described in Additional files 4 and 5, respectively.

Campylobacter. Self-attribution was carried out for isolates from food and animal sources by removing 50% of the isolates
for blind attribution (Fig. 2(a)). Human clinical isolates are not considered for self-attribution since their source is unknown.
The MMD method correctly assigned most isolates (> 70%) from pig, chicken and wild bird based on 25937 core genome SNP
(cgSNP) genotypes. Self-attribution of Campylobacter isolates from cattle and sheep is less precise (57% and 45%). Wrongly
self-attributed cattle isolates are mostly assigned to sheep and chicken sources, whilst sheep isolates tend to be erroneously
attributed to cattle and chicken sources. When combining the self-attribution results across all source populations, an overall
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attribution accuracy of 73% was obtained.

Source attribution was then carried out to predict the origin of the Campylobacter that resulted in human infection. As
shown in Fig. 1, MMD estimated that most cases (61%) were associated with chicken whilst wild birds and pigs were
relatively unimportant (< 8% for both sources). This is in line with a number of previous source attribution studies for human
campylobacteriosis' =17

Human. MMD self-attribution accuracy, based on removal of 50% of individuals genotyped at 659 276 SNPs®’, was 100%
accurate for all regions except for C/S Asia (90%) and Middle-East (91%). An overall self-attribution accuracy of 97% was
obtained in this case (Fig. 2(b)).

Self-attribution based on 659 276 SNP genotypes was also studied at the level of the 53 populations available in the dataset®.
In this case, an overall self-attribution accuracy of 73% was obtained. More explicitly, self-attribution accuracy was > 64%
for 38 populations (see Fig. 3). Accuracy was poor for several populations from C/S Asia, E. Asia and Europe. For instance,
individuals from the Uygur population (C/S Asia) were attributed to three populations in East Asia: Orogen (40%), Hezhen
(40%) and Japanese (20%). The attribution of individuals from some populations in East Asia (e.g. Mongola, Xibo, Cambodian,
Han-NChina) was spread over other populations from East Asia. For the European region, individuals from French, Italian and
Tuscan populations were often attributed to other geographically close populations. For instance, 17% of French individuals
were correctly self-attributed, 39% were attributed to the Basque population, 17% to Orcadian, 13% to Sardinian, 10% to
Italian and 4% to Tuscan.

Comparison with STRUCTURE and ADMIXTURE

The MMD method was compared with the current state of the art method STRUCTURE?"38 both in terms of attribution
accuracy and computational speed. We used the Campylobacter and human genotypes for the comparison. Assuming that
each source corresponds to a genetically-distinct population, STRUCTURE uses Bayesian inference to estimate the source
attribution probability p, s (see details on the implementation of STRUCTURE in Methods).

Campylobacter. Self-attribution tests for Campylobacter genotypes suggests that the probability of correct assignment
calculated with the MMD method is higher than that obtained with STRUCTURE for all the reservoirs (overall 73% for MMD
and 56% for STRUCTURE, see Fig. 2(a)). Both MMD and STRUCTURE have poorer self-attribution accuracy for cattle and
sheep; the largest difference between MMD and STRUCTURE is observed for sheep isolates which are poorly attributed by
STRUCTURE. In terms of source attribution of human Campylobacter isolates, both methods gave similar results with chicken
being the most and pigs being the least important (Fig. 1(b)).

Human. A comparison of STRUCTURE and the MMD method based on extended 659276 SNP human genotypes is
not practical due to the long running time for STRUCTURE. In order to compare with STRUCTURE for humans, we
considered smaller genotypes comprising 645 microsatellites>> and 2 810 SNPs®!. For the microsatellite genotypes, MMD and
STRUCTURE give similar overall self-attribution (87% compared with 84%, see Additional file 2: Fig. S1). Both MMD and
STRUCTURE find it more difficult to differentiate between the European and Middle Eastern populations (Additional file 2:
Fig. S1), due to a proportion of individuals in the European region being classified as Middle Eastern and vice-versa. When
using the 2 810 SNP data set, STRUCTURE performed better with an overall attribution of 91% compared with 79% for MMD.
The largest difference between MMD and STRUCTURE is observed for individuals from C/S Asia which are poorly attributed
by the MMD method (Additional file 2: Fig. S2).

In order to compare the MMD method with existing methods for extended human genotypes comprising 659 276 SNPs, we
run supervised analyses of ancestry using ADMIXTURE*® (see Methods for a more detailed description of ADMIXTURE
implementation). The overall self-attribution accuracy achieved with ADMIXTURE is quite high (90%) but it is lower than for
MMD (97%), see Fig. 2(b). In fact, self-attribution based on ADMIXTURE is less accurate than that obtained with MMD for
all the regions. The largest differences between the self-attribution accuracy of the two methods were obtained for European
individuals (100% with MMD and 87% with ADMIXTURE). This is mainly due to a significant contribution of C/S Asia and
Middle East to the ancestry of Adygei individuals (see Additional file 2: Fig. S3). The self-attribution differences between the
two methods are < 10% for all regions except Europe. In particular, the smallest difference was observed for individuals from
C/S Asia (90% with MMD and 89% with ADMIXTURE). In this case, MMD predicts a small probability of attribution to
East Asia. ADMIXTURE predicts small probabilities of attribution to East Asia, Europe and Middle East (see Fig. 2(b) and
Additional file 2: Fig. S3).

Our application of ADMIXTURE gives particularly low accuracies for attribution of individuals from Europe (49% correctly
attributed), Africa (51%) and East Asia (67%). For several of the individuals selected from Europe, ADMIXTURE predicts a
rather mixed ancestry from several regions other than Europe (see Additional file 2: Fig. S3). For instance, East Asian ancestry
is inferred for some Italian, Tuscan and Adygei individuals. Middle Eastern ancestry is predicted for some Sardinian and
Basque individuals. C/S Asian ancestry is predicted for some Basque and Russian individuals and African ancestry is predicted
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for Adygei, Russian and Sardinian individuals. For African individuals, ADMIXTURE predicts ancestry from Africa and, to a
lower extent, from all the other regions except Oceania (Additional file 2: Fig. S3). In the case of individuals from East Asia,
ADMIXTURE predicts significant ancestry from East Asia, Middle East and Europe.

Computational time. The computational time for MMD is much shorter than STRUCTURE. Fig. 4(c) shows a comparison
of runtimes for self-attribution of Campylobacter isolates as a function of the number of SNP loci describing the genotypes.
The MMD is between 100 and 10’ times faster than STRUCTURE for every run from 1 to ~ 2 x 10* SNPs. Since the running
time of MMD increases slowly with the number of loci compared to that of STRUCTURE, the efficiency of MMD improves
relative to that of STRUCTURE for extended genotypes. For instance, STRUCTURE takes ~ 40h to assign a 25 937 cgSNP
genotype whereas MMD completes the task in ~ 0.57 seconds (MMD implementation in R®’, Processor: Intel® Core™
i7-3770 3.40GHz).

The MMD method is around twice as fast as ADMIXTURE when considering the 659276 SNP dataset. More explicitly,
MMD takes ~ 15 seconds to assign an individual whereas ADMIXTURE takes ~ 38 seconds to infer the ancestry of one
individual (times based on an Intel® Core™ i7-3770 3.40GHz processor for both algorithms).

For a given number of loci, the running time of MMD for attribution of a Campylobacter isolate is systematically smaller
than the running time for attribution of a human individual from the 659 276 SNP dataset (see Fig. 4(c)). This is mostly due to
the longer initial start-up time needed to deal with the human dataset which is significantly longer than that of Campylobacter.
The running time remains essentially constant for runs with less than 10’ loci since the start-up time dominates over the MMD
algorithm computational time which increases with the Hamming distance itself, not the number of loci (see Methods).

Selecting informative markers for source attribution

In general, one would expect that the assignment power of a set of n markers will be subject to the following two conditions:
(C1) Markers should allow us to capture the genetic differences between sources, i.e. the allele distribution of selected loci
should significantly differ between sources. (C2) The n markers should contain complementary genetic information relevant to
the source attribution process and ideally no redundant information. For example, the discriminatory power achieved with a
set of markers will not increase significantly if a marker is added which brings redundant information compared to those that
were already selected. Information theory offers a natural framework to account for allele diversity (relevant to C1) and loci
redundancy (relevant to C2). Within this framework, allele diversity was quantified by the Shannon entropy and loci redundancy
by the mutual information between pairs of loci (see Methods).

Inspired by these conditions, we propose three strategies to build sets of markers with high assignment power. Strategy S1
ranks loci in order of decreasing allele diversity within sources. Strategy S2 ranks loci in order of decreasing allele diversity
between sources. Strategy S3 uses a greedy procedure®* that rearranges the loci obtained with S1 and S2 to reduce the
redundancy. More explicitly, the list of selected loci in S3 is built by adding loci one by one making sure that the locus selected
at the n-th step brings the smallest possible redundancy compared to the n — 1 previously selected loci. See the Methods section
for an explicit definition of the redundancy R,, of the n-th locus. Due to its greedy nature, strategy S3 is computationally
more demanding than S1 and S2 and was applied to a limited number of loci to fine tune the selection of S1 or S2 (we only
present the results of applying S3 to reorder the ranking given by the better performing strategy S1 or S2). The self-attribution
performance of the three strategies as well as random selection of loci is illustrated in Fig. 4(a) for Campylobacter. As the
number of selected SNPs increases, all of the targeted strategies (S1 to S3) saturated more quickly than random selection. The
strategy that requires the fewest SNPs (approximately 10) to obtain optimal self-attribution is S1.

This is repeated for the human population examples. For the human 659 276 SNPs dataset, S2 does better than S1 for
small numbers of loci but the difference becomes undistinguishable for n > 100 SNPs (see Fig. 4(b)). Strategy S3 brings
some improvement over S2 for selections of n < 10 loci but does worse when selecting more loci. All tested strategies lead to
saturation of the self-attribution accuracy when ~ 10* SNPs are selected. For the microsatellite data set, strategy S2 also does
better than S1 and strategy S3 does not improve on S2. Irrespective of the loci selection strategy, no sign of saturation of the
total self-attribution is observed for the available loci (Additional file 2: Fig. S4). For the human 2 810 SNP genotypes, S2 does
significantly better than S1 and S3 fractionally improves on S2 for selections of less than ~ 10 loci (Additional file 2: Fig. S5).
However, the fraction of correctly self-attributed individuals increases slowly with the number of selected loci and using S3
does not represent a real advantage.

Discussion

The source attribution problems studied here belong to a wider class of population structure challenges that also include
classifying individuals in clusters of common features without assuming the population structure a priori. Significant effort
has been made to optimise clustering algorithms to address the later challenge®°—#6-4%-68 Tn contrast, optimisation of source
attribution algorithms to use extended genotypes has received limited attention. The MMD method proposed here aims at filling
this crucial gap.
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The self-attribution accuracy of the MMD method is better than that of STRUCTURE for the Campylobacter example using
SNPs (73% v 56%), approximately the same for the human origin from 7 geographical regions using microsatellites (87% v
84%) and slightly poorer than the human origin example using 2810 SNPs (79% v 91%). These results indicate its potential as
an alternative to STRUCTURE. The MMD self-attribution accuracy of humans to 7 geographical regions increased to 97%
when using 659276 SNPs. This is significantly better than the 71% self-attribution accuracy achieved by using the ancestry
inferred by ADMIXTURE for the same dataset. A comparison with STRUCTURE was impractical for this dataset. The MMD
method also gave a high self-attribution accuracy (73%) when using 659276 SNPs to assign humans to 53 populations.

Self-attribution of Campylobacter isolates from cattle and sheep reservoirs is poor compared to other reservoirs for both
MMD and STRUCTURE methods. Similar trends have been reported in previous studies on Campylobacter self-attribution
(see, e..%). This is likely due to the similarity of niche in cattle and sheep as both are ruminants. Also, geographical proximity
offers frequent opportunities of transmission between the populations and this would explain the high genetic proximity
between Campylobacter isolates from the cattle and sheep reservoirs (see Additional file 3: Table S1 where the allele-frequency
divergence® has been used as a measure of the genetic differentiation between sources).

Self-attribution of humans to 7 geographical regions based on microsatellites yielded lower accuracy for the European and
Middle Eastern populations. This can be again explained in terms of the proximity of these regions, both geographically and
genetically (see Additional file 3: Table S2 and®?). The Central/South Asian population is also genetically close to the European
and Middle Eastern populations but both the MMD and STRUCTURE methods provided a reasonably accurate self-attribution
for individuals from C/S Asia. The human 2 810 SNP genotypes data set predicts a similar pattern for the allele-frequency
divergence between populations (Additional file 3: Table S3); Europe, Middle East and C/S Asia are the genetically closest
populations. Self-attribution of C/S Asian individuals based on the MMC method is, however, poorer for the 2 810 SNP data
set than for microsatellites (compare Additional file 2: Figs. S1 and S2). Self-attribution accuracy increased when using the
659276 SNP dataset. In this case, self-attribution was very accurate (> 90%) for all 7 regions with only a 10% chance that
individuals from C/S Asia and Middle East are wrongly attributed. This can again be ascribed to the relatively high genetic and
geographical proximity between individuals from these regions (see Additional file 3: Table S4). Self-attribution of humans to
53 populations using the 659276 SNP dataset was highly accurate for most populations (overall accuracy of 73%). Populations
that were poorly self-attributed are again genetically and geographically close to those populations to which they were wrongly
attributed.

The self-attribution accuracy achieved for P. californicus with the MMD method is, within statistical error, comparable to
that obtained in Ref.%> (see Additional file 4). The self-attribution accuracy of breast cancer tumours is relatively low (63%
overall correct self-attribution, see Additional file 5). The fact that wrongly attributed samples are evenly attributed to the two
wrong subtypes is likely due to the similarity between subtypes (see Additional file 3: Table S5). Our hypothesis is that the
self-attribution accuracy could significantly improve by extending the dataset with more samples to describe the subtypes.

The fact that the MMD method uses the Hamming distance between genotypes contrasts with many other assignment
methods that rely on allele frequencies’:>: 14-15-19.37.38,50,51,70-73 "Thig includes a range of methods that use frequency-based
genetic distances that differ from the Hamming distance®'-7#. Using the Hamming distance makes the MMD method intrinsically
faster than frequency-based methods. Indeed, the runtime complexity of frequency-based methods increases linearly with the
number of loci in the multilocus genotypes. In contrast, the computational complexity of the MMD method increases with the
Hamming distance (see Methods). Since the Hamming distance is typically smaller than the number of loci (see some examples
in Additional file 2: Fig. S13), this represents a significant speed improvement.

Frequency-based assignment methods (including those using genetic distances) traditionally quantify the similarity between
the individuals and sources in terms of a scalar quantity (e.g. a genetic distance or the value of a likelihood function, see
Methods). In contrast, the MMD describes the similarity between individuals and sources in terms of the probability distribution
of the distance (more explicitly, it uses the cumulative distribution function F, ;(1) of the Hamming distance, as described in the
Methods). Measures of similarity used in traditional methods could be regarded as summary statistics of the distribution function.
For instance, for unlinked loci, the likelihood function used by some frequency-based methods®37-31-70:74.75 corresponds to the
probability that the Hamming distance between an individual and a source is zero (see Additional file 6). In general, the distance
probability distribution gives a more complete description of the similarity between individuals and sources than specific
characteristics of the distribution. The Campylobacter dataset is an interesting example in which using the whole distribution is
convenient since it is often bimodal and a description in terms of a single statistical measure might not be appropriate (see
Additional file 2: Fig. S13).

The MMD method assumes that the genetic profile of populations is defined by the genotypes of the individuals sampled
from each source. In this respect, it is similar to some distance and frequency-based methods that determine the allele
frequencies straight from the observed genotypes™ %:3%31.72-74 ' The frequency-based methods show a certain arbitrariness
when an allele is present in the individual to be assigned but it was not observed in any of the sources. In order to make sure
that the individual is assigned to a source, some methods set the frequency of the missing allele in the sources to a small value’®
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or to a value given by the inverse of a beta distribution®. In the MMD method, a missing allele will simply contribute one unit
to the Hamming distance between the individual and all sources. The MMD method implicitly assumes that those alleles that
are missing in all sources do not bring any relevant information for source attribution.

Strictly speaking, the allele probabilities of a population cannot be fully determined from the observed allele frequencies in
a sample (i.e. the sample will typically not cover the whole population and observed allele frequencies only give an approximate
representation of the genetic profile of the population). To circumvent this problem, several frequency-based assignment
methods use Bayesian approaches to model the allele probability distributions of the populations™: 1419:37.38,51.70.71 "It hag been
reported that source attribution based on Bayesian methods often outperforms plain frequency-based methods>!. Extending the
MMD method by using Bayesian methods to infer genotypes within sources is a possibility that could be explored in the future.
However, since we are now immersed in the big data era, to take advantage of this it is likely that a better strategy to ensure
high assignment accuracy can be achieved exploiting non-Bayesian techniques such as the MMD method.

The largest differences between MMD and STRUCTURE self-attribution results were observed for sheep Campylobacter
isolates (STRUCTURE does poorly, see Fig. 2(a)) and humans from C/S Asia based on 2 810 SNPs (MMD does poorly, see
Fig. S2). We hypothesise that these differences could be associated with two factors. On the one hand, STRUCTURE uses
sophisticated methods to infer the allele probabilities of sources. In principle, such probabilities could give a more precise
characterisation of sources than those used in the MMD method which is just based on observed genotypes. On the other hand,
even small errors in the estimate of the allele probabilities for STRUCTURE lead to an attribution error that increases faster
with the number of loci than that of the MMD method (according to our arguments in Additional file 6, this is expected for
any method using a likelihood function to measure the similarity between individuals and sources™> 14 15-19,37,38,48,51,70-74y
Based on these considerations, one would expect a lower accuracy for the MMD method when using genotypes with a relatively
small number of loci (e.g. for our 2 810 human SNPs example). In contrast, for extended genotypes, the error of the likelihood
function used by STRUCTURE can become large and this may result in a poor attribution accuracy compared to that of the
MMD method.

ADMIXTURE also uses a likelihood function to estimate the ancestry and allele frequencies and this might explain its
lower self-attribution accuracy compared to MMD for the human 659 276 SNP dataset. In spite of that, ADMIXTURE gave
a rather accurate self-attribution for this dataset and deviations from a perfect self-attribution can be explained in terms of
geographic and genetic proximity between regions (e.g. the probabilities for attribution of European individuals to C/S Asia
and Middle East).

In general, the performance of any method might depend on specific details of data sets (e.g. distribution of populations
within the genotype space and the level of intermixing). Identifying the specificities of data sets that would favour one source
attribution method over another in terms of accuracy can be achieved on a case by case basis employing training datasets as we
have done here for self-attribution. However, this might require laborious analysis of genotypes to find specific features.

A central assumption of assignment methods is that the set of sampled sources includes the true population of the individual
to be assigned. Accordingly, individuals are assigned to at least one source even if there is a big difference between the
individual and all sources. The MMD method is not different in this respect. In order to assess the likelihood that the
true population of origin of an individual has been sampled, one should use an exclusion test’!. We applied the threshold
exclusion method proposed in Ref.> for STRUCTURE to the MMD attribution for human genotypes with 659276 SNPs and
Campylobacter genotypes with 25937 SNPs (see Additional file 7). The method only assigns an individual to a source if the
attribution probability p, s is above a threshold 7. We found low exclusion rates for regions in the human dataset but exclusion
was significant for the Campylobacter example even for self-attribution tests in which sources were definitely sampled. To
understand the high exclusion rate for Campylobacter isolates, one should bear in mind that exclusion based on the threshold
method does not necessarily imply that the source of the individual to be assigned has not been sampled. Instead, it might
be a signature of a low genetic differentiation between sources. Consider, for instance, two genetically similar sources. The
probability that an individual from one of the sources is attributed to any of the two sources will be around 1/2. Despite the fact
that the source of the individual was definitely sampled, a threshold method will exclude both sources unless the threshold is
very low (i.e. T < 1/2). When sources are not completely different to each other, it makes sense to assign individuals to several
sources with certain probability rather than excluding sources with low assignment probability. For instance, the probabilistic
assignment to several sources done by the MMD method should be the best way to capture the uncertainty in inference of
source of infections (e.g. when investigating the source of campylobacteriosis). In contrast, assignment to a single source may
be required in other applications such as parentage assignment’’.

The optimal strategy for selecting loci for humans using either SNPs or microsatellites is S2 (targeting loci with high
between-sources allele diversity) while for Campylobacter using cgSNPs is S1 (high within-source allele diversity). This
difference is due to features within each of the datasets. Based on condition C1 given above that requires high allele diversity
between sources, one would naively expect a more accurate attribution when loci with high between-source diversity are
targeted (i.e. when using strategy S2). This is indeed the case for source attribution of humans. In contrast, strategy S1
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performs marginally better for source attribution of Campylobacter isolates. In fact, loci with high within-source diversity in
Campylobacter genotypes also have high between-source diversity (see Additional file 2: Fig. S6) and are less redundant than
those with high between-source diversity (Additional file 2: Fig. S7). For this data set, a high diversity within sources combined
with high diversity between sources seems to be a key factor for source attribution. This suggests that a high between-source
diversity is necessary in general to distinguish different sources but it is not sufficient to ensure a high-quality source attribution.
Based on this and given the formal similarity of the entropy within sources and informativeness®! explained in Methods, our
results suggest that targeting loci with high informativeness (similar to S2) will not always be optimal compared to S1.

Strategy S3 (reordering loci targeted by strategies S1 and S2) did not bring a significant improvement on S1 or S2 for any
of the examples considered here. This suggests that the redundancy of the loci targeted with strategies S1 and S2 does not play
an important role in source attribution for these examples. We expect that the relative performance of S3 compared to S1 and
S2 will depend on the data set. For instance, S3 could improve on S1 and S2 for data sets with high linkage disequilibrium.
For cases in which linkage disequilibrium plays a crucial role, one could devise selection strategies with lower computational
complexity than strategy S3. For instance, one could filter out one of the two loci in a pair when such a pair is in high linkage
disequilibrium’’. Strategies focusing on pairs of loci (e.g.””) should be computationally faster to apply than S3 but they are
expected to be less accurate than S3 in datasets with high linkage disequilibrium.

For Campylobacter isolates, we have shown that it is sufficient to use the 10 cgSNPs with the highest within-source entropy
to achieve a self-attribution accuracy of ~ 70% that is comparable to that obtained with 25 937 cgSNPs (Fig. 4(a)). In contrast,
a much slower increase of the self-attribution accuracy was observed for the human data sets (based on the 659276 SNPs
dataset, one needs more than 1 000 SNPs for the attribution accuracy to saturate). The reason for the slow increase is unclear. It
appears there is a lack of loci with high discriminatory power in the human data sets. In fact, loci with high between-source
diversity are scarce compared to the Campylobacter dataset even in the 659 276 SNPs dataset (compare panels (a) and (b) in
Additional file 2: Fig. S6). This difference between human and Campylobacter genotypes might be because human SNPs are
inherently less diverse than Campylobacter SNPs. Another possibility is that 659 276 human SNPs represent a small fraction
of the human genome (3.2 GBases) that is perhaps not representative enough in terms of loci diversity (compared to 25937
cgSNPs which is a larger fraction of the Campylobacter genome consisting of 1.8 Mbases). In any case, using 659 276 SNPs is
sufficient to achieve highly accurate attribution for humans with the MMD method.

The increase of the self-attribution accuracy with the number of selected loci is also slower for the P. californicus and
breast cancer examples compared to the Campylobacter example (see Additional files 4 and 5). For P. californicus, this can be
explained by the extremely low between-source diversity of SNPs (Additional file 2: Fig. S6(c)). Due to this, individual SNPs
do not efficiently distinguish between the north and south regions in this case even if there is a relatively high within-source
diversity (i.e. condition C1 for accurate source attribution is not well satisfied). An accurate distinction between individuals
from the north and south regions can only be achieved by combining ~ 100 SNPs; the particular strategy used to select these
SNPs does not seem to play a crucial role. Loci diversity is also limited in the breast-cancer proteotypes but the fraction of
loci with high between-source diversity is promising. Including more samples in the dataset could potentially enhance the loci
diversity in such a way that high attribution accuracy could be achieved by targeting few informative loci. Irrespective of this, it
is interesting that even with a limited number of samples, the MMD method already achieves a relatively high self-attribution
accuracy using ~ 500 proteomic loci.

The genetic profile of individuals and sources can be represented with a wide range of genetic markers including microsatel-
lites, gene-based markers or SNPs’®. Data consisting of genotypes which contain large enough sets of highly polymorphic
markers will typically offer high discriminatory power. Following this, one can achieve similar attribution accuracies using
relatively short multilocus genotypes containing highly polymorphic markers (e.g. microsatellites) or extended genotypes
containing less diverse markers (e.g. SNPs). With the current genomic technologies it is becoming increasingly feasible to
obtain large sets of SNPs from genomes of many individuals. Combining extended SNP genotypes and fast methods for
source attribution such as the MMD provides a significant opportunity for the future of source attribution approaches. Similar
arguments apply to other OMIC datasets which are becoming increasingly available, as illustrated in our cancer example.

Conclusions

The MMD method is very fast, easy to use, suitable for a range of types of loci (e.g. SNP, cgMLST, microsatellite, proteomics
loci, etc.) and provides similar assignment accuracies to other methods. The best method for determining the minimum set of
loci for optimal attribution varies between datasets. It is therefore prudent to employ a number of methods on each dataset
to decide which set of loci are optimal. Some of the locus selection methods can be very computationally intensive (greedy
strategies such as S3) and may not be practical to be used in conjunction with current attribution methodologies which are
relatively slow. In contrast, the performance of different locus selection strategies can be tested relatively fast with the MMD
method. The methods described in this paper are relevant for multiple applications in the life sciences and although they have
only been applied to DNA- and proteomics-based methods here, could potentially also be used on other OMIC datasets (e.g.
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metabolomics) to characterise populations.

Methods

Campylobacter infectious disease example

Whole genome sequenced Campylobacter isolates comprising 500 clinical isolates from human patients and 673 isolates from
five food and animal sources were obtained : cattle (150), chicken (150), pig (130), sheep (150) and wild bird (93) (Suppl data
file S1). PanSeq’® was used to construct a non-redundant pan-genome from all of the 1173 genomes, using a seed genome and
identifying regions of > 1000 base pairs (bp) not found in the seed, but present in any other genome at 87% sequence identity
cut-off. Loci present in all genomes underwent multiple sequence alignment and were concatenated. This aligned sequence was
used to identify SNPs (n = 25937 in the core genome of all isolates (Suppl data file S1)).

Human evolution example

Assignment of human individuals was illustrated for three data sets with individuals from 7 different geographic regions of
the world. The first dataset comprised 5 795 human individuals from 7 different regions (Africa, America, Central/South
Asia, East Asia, Europe, Middle East and Oceania). The genotype of each individual was described by 645 microsatellite
markers®” (Additional file 1: Suppl data file S2). The second dataset comprised 1107 Individuals from the same 7 regions of
the microsatellite data set and their genotypes were described by 2 810 SNPs®! (Additional file 1: Suppl data file S3). The third
dataset comprised 938 humans from the same geographic regions available from the Human Genome Diversity Panel (HGDP).
The genotype of each individual was described by 659276 SNPs® (Additional file 1: Suppl data file S4).

Attribution Methodology

The aim of source attribution is to estimate the probability p, s that an individual of unknown origin, u, originates from a source
s from a set .7 of sources. For haploid genotypes, the unknown individual is characterised by a set of L loci, u = {ul}lel.
Here, u; denotes the allele of the individual u at locus /. The set of possible values taken by the alleles is denoted as 7. The
genetic information of a source s is represented by I; multilocus genotypes; the genotype of an individual i in the source s is
characterised by a set of L loci, a; ; = {ai7s7l}lL:1. Methods will be described for haploid genotypes but they can be readily
extended to diploid genotypes or descriptions of individuals in terms of feature vectors of any kind. In the diploid case,
genotypes are characterised by a sequence of L loci, each with two alleles: a; s = {(j,,,4is,,)}. This information can be
encoded as a feature vector consisting of 2L elements which can be readily used by the MMD method. Alternatively, one can
encode the information into a vector of L elements by replacing pairs (a; s, ,a;,1,) by a single value, as described in Additional
file 1: Suppl file S3 for the 65 533 SNP human genotypes. A method to extract a feature vector from proteomic data is described
in Additional file 5.

The source attribution probabilities are summarised by the distribution probability p that a randomly chosen individual
from a set of I, isolates of unknown origin (e.g. I, = 500 Campylobacter isolates in Fig. 1) is attributed to the source s on
average. We assume that p; has an inherent uncertainty associated with the fact that the set of [, assigned genotypes is a
sample of a larger population of genotypes. In order to estimate the uncertainty of p,, we estimate its probability distribution by
bootstrapping®-8! based on the source probabilities { pu’s}ﬁ‘: | Tor the I, assigned genotypes. For a given source, s, bootstrapping
was implemented as follows: (i) Draw a random sample with replacement of I, elements from the set { Pu,s},lj‘: 1~ (i) Calculate
the sample mean, p;, of the selected values of p, ;. (iii) Repeat steps (i) and (ii) ny, times (1, = 10* in our calculations). This
results in ny, values of p that define our estimate for the distribution of p,. The error bars in Figs. 1, 2, S1 and S2 correspond to
2.5™ and 97.5™ percentiles of the py distribution.

A Monte-Carlo cross-validation strategy®-%° was used for self-attribution. More explicitly, 7, individuals were randomly
removed from each source population (testing or validation set) and they were attributed to the sources described by the
remaining genotypes (learning or training set). The origing of the removed I, individuals is assumed to be unknown and the
probability ps that any of them is attributed to source s (see Figs. 2, S1 and S2) is calculated by bootstrapping, as explained
above for source attribution. The self-attribution accuracy is summarised in Figs. 4(a,b) in terms of the total self-attribution
probability p** defined as the mean over sources of the probability p that individuals from each source are attributed to their
source. The confidence interval of p*? is estimated by the mean over sources of the 2.5 and 97.5" percentiles of the correct
self-attribution probability p, for each source.

For the Campylobacter and humans examples, 50% of the samples were removed from the source to be tested for self-
attribution (i.e. I, = I;/2). Details on the self-attribution analysis for P. californicus and breast cancer samples are given in
Additional files 4 and 5, respectively.

The MMD method
The MMD method uses the multilocus genotypes a, and a; ; to determine the probability p, s as follows:

8/20


https://doi.org/10.1101/2020.02.03.932343
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932343; this version posted February 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

(i) Calculate the Himming distance®*, du(u,a; ), between the genotype of unknown origin and genotypes i in source s.

(ii) Obtain a score 0, s which quantifies the proximity of u to source s. The calculation of o, is based on the cumulative
distribution function F;, ((A) that gives the probability that the Hamming distance between u and any genotype of source
s is smaller than A (see Additional file 2: Fig. S8). The proximity between u and each of the sources s is measured by the
g-quantile A, ;(g) corresponding to the distribution F;, ;(A). For a given probability g, the closest source to u is the one
with the smallest value of 2, 4(g):

2'min :Insin{lu,s((fn}' (1)

Once Anyin has been obtained, the score is calculated as 6, s = Fy s(Amin), i.¢. it is the probability that the Hamming
distance of u to any source s is Ay, or smaller. This ensures that sources with high probability to be close to u are given
a high score (see a graphical representation of the procedure in Additional file 2: Fig. S8).

(iii) Estimate the probability that u is attributed to source s as p, s = Oy,s/ Lyec.» Oy - Note that an individual u is necessarily
attributed to at least one source by the methodology.

The Hamming distance can be calculated in times proportional to the Hamming distance itself>. Accordingly, the time
complexity for attribution of an individual with MMD is O(dmaxItot), Where dpmax is the maximum Hamming distance between
the genotype of unknown origin and the genotypes used to describe sources and Ity = ) ¢ o I is the total number of genotypes
used to describe sources.

The probability g is a parameter of the model. In self-attribution tests, the optimal value of this probability was obtained
for each source s as the value ¢, that maximises the probability p, that individuals are correctly attributed to their source (in
some cases, g, can be defined as an interval of ¢ where the maximum self-attribution probability is observed). Results of the
correct self-attribution probability as a function of g are shown in Additional file 2: Figs. S9-S11. The optimal value/interval
g+« depends on the particular set of individuals set as unknown for self-attribution but it is relatively small in all the examples
studied here (in most cases, g, < 0.1). This makes sense since one would expect that large differences in o, s for different
sources would be mainly dictated by few genotypes that are closer to the individual u in its source. In particular, setting ¢ = 0
defines an extreme version of our algorithm with Ay, = min; ({du(u,a;)}. In this case, the score o, is the proportion of
genotypes in source s that are a distance dp,;, from the individual to be assigned, u. We checked that self-attribution accuracy is
already high when we set ¢ = 0 in our examples. In general, however, 0, ; obeys the extremal value statistics of the Hamming
distance for ¢ = 0 and might not be reliable enough if the number of genotypes, I;, used to describe each source, s, is not large
enough. When I; is not large enough and extended genotypes are used, individuals of unknown origin tend to be attributed to a
single source s with probability p, s = 1 (i.e. the condition dy(u,a; ;) = dmin is only satisfied for one genotype).

For source attribution, g cannot be obtained through optimisation since the actual origin of individuals to be attributed is
genuinely unknown. In this respect, it can be useful to do self-attribution with genotypes from source populations to estimate a
suitable value of g. For instance, the source attribution results for human Campylobacter isolates shown in Fig. 1(b) correspond
to g = 0.05 which is the mean of the optimal self-attribution values, g,, weighted by the number of isolates in each source (see
Additional file 2: Fig. S9). In fact, source attribution is not very sensitive to the specific value of g, provided it is within the
range in which self-attribution probability is high. Compare, for instance, the results for ¢ = O illustrated in Additional file 2:
Fig. S12 with those for g = 0.05 in Fig. 1(b).

The STRUCTURE method

STRUCTURE is a Bayesian clustering model proposed to infer population structure and assign individuals to populations.
Following previous works® !1=13-83 STRUCTURE was used to estimate Du,s by setting the number of clusters to be equal to the
number of sources (e.g. K = 5 for the Campylobacter example or K = 7 for the humans attribution example). The population
structure of the sources was assumed to be know (i.e. we set USEPOPINFO=1 and POPFLAG=1 for the source isolates). In
contrast, the population structure of the 7, isolates to be attributed was set as unknown with POPFLAG=0. The results presented
are based on runs of 10* MCMC steps following a burn-in period of 10* iterations. The statistics of py were obtained from p, s
as explained above for the MMD method.

The ADMIXTURE method

ADMIXTURE uses multilocus genotype data for efficient estimation of ancestry of unrelated individuals*’. ADMIXTURE
infers the ancestry of individuals in terms of the admixture proportion /, s of the genome of individual u that originated from
population s. In the supervised version of ADMIXTURE®, the ancestry of reference populations is determined by the genotypes
of the individuals in the training set (i.e. all individuals except the I, individuals selected for the validation set). The admixture
proportion £, s for individuals in the validation set quantifies the proportion of their genotype originating from the reference
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population s. This can be regarded as a measure of genetic proximity between the individual u and population s, formally
similar to the attribution probability p, , estimated by the MMD method. Following this, our application of ADMIXTURE for
source attribution uses a supervised analysis and assumes that the attribution probability is p,, ; = Ay .

Information theory: Loci diversity and redundancy

We quantify the allele diversity in terms of the Shannon entropy, a measure of the information (in bits) necessary to describe the
uncertainty of random variables®’. The Shannon entropy is increasingly used as a diversity index in ecology®* %> and population
genetics®*-88_ In our application, the random variables are the alleles found in the genotypes of sources at a locus /. More
explicitly, we consider the probability 7, , that an allele takes the value a at the locus / and 77:; | = Yse.# qsTa, s Which gives
the allele probability pooled over sources. Here, g; = I/ Y sc & I; is the proportional weight of each source. The total allele
diversity in a locus [ is quantified by the Shannon entropy of the distribution 717; B

H'=— Z ”;r,llogz”;r,z . )
ace/

For example, the fact that the maximum number of alleles in a SNP is 4 (A, T, C and G) implies that the entropy HlT could take
any value between 0 (the same allele in all genotypes) and 2 bits (maximal diversity when each allele appears in 1/4 of the
genotypes). As expected for any measure of allele diversity, the larger the number of alleles in a locus, the larger the Shannon
entropy. Microsatellites’” or gene-based markers®* are characterised by larger sets .7 of possible alleles and can be more
diverse than SNPs, i.e. they have larger values of H,T which are mostly associated with a larger contribution of the diversity
within-sources, HlW (see Additional file 2: Fig. S6).

The entropy H,T gives the allele diversity for subtypes in all the sources. The condition C1 given above for selection of
informative markers, however, suggests that it is the allele diversity between sources the one that could play a major role on the
assignment power of loci. Accordingly, we split the total entropy H}! in two contributions®*#°: One accounting for the diversity
within sources,

HY ==Y Y ¢ dogmass , 3)
acd s€.S

and another measuring the diversity between sources,
B T w

Basic algebraic manipulations show that HZB is formally similar to the informativeness introduced in”!. Our interpretation of
HlB is, however, slightly different to that proposed in?! since we derived it as an index to distinguish sources rather than as a
measure of the information gained when adding new loci to the selection used for attribution.

Mutual information and redundancy of loci

The source attribution discriminatory power of a set of n loci is typically not n times larger than the discriminatory power of

each isolated locus. This is due to the fact that loci are not statistically independent, i.e. there is some redundant information

when considering several loci. The concept of loci redundancy was used in this work with two aims: To select pairs of loci with

low redundancy in strategy S3 and to assess the extent to which strategies S1 and S2 satisfy the condition C2 of low redundancy.
The elementary quantity in our estimates of loci redundancy is the mutual information between pairs of loci. Given a pair of

loci, (1,1'), it is defined as’’-37-88:

T ld I
ﬂa,lﬂ:u/J/ '

Ly = Z Tt r10gy ©)

a,ded

Here, m,; , p is the joint probability distribution for alleles in locus / and /. Within the context of population genetics,
I,y has been used to quantify the linkage disequilibrium between loci / and /' 87 The mutual information takes values
0y < min{H;, Hy }. In particular, it is null, i.e. I; p = 0, when the allele distributions of the two loci are independent. In
general, I; < I;; meaning that a locus contains as much information about itself as any other locus can provide. In other words,
a locus / is maximally redundant with respect to itself. In the case [ = I, the mutual information coincides with the Shannon
entropy, H; = I;;. Within the context of this work, mutual information is used as a measure of the linkage disequilibrium
between the pairs of loci / and ', In fact, I; y is proportional to the widely-used® measure for linkage disequilibrium, 72, in the
limitof 7, ; o y < 2%’1%,71/87,89_ Despite the similarity with classical measures such as 2, the mutual information gives an
intuitive interpretation of linkage disequilibrium and, as discussed in%”-8%0, has some other advantages over classical measures.
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For our particular application, /; ; allows us to naturally define a measure of loci redundancy relevant to strategy S3. The
redundancy R,, of the n-th locus added to a list of n — 1 previously selected loci is given by the following formula:

R, = max l{sn‘l}. (6)

— syt

Here, s,; = 2}—; is the reduction in uncertainty of a locus / = 1,2,...,n — 1 when the n—th locus is added to the set used for
source attribution. The definition of s,; and the whole redundancy analysis is restricted to loci with H, > 0; loci with H, =0
consist of a single allele and are excluded from the analysis since they have a null discriminatory power. From Eq. (6), R,
can be interpreted as the maximal reduction in uncertainty achieved when adding the n-th locus to the list of selected loci. By
definition, 0 < R, < 1. The case R,, = 0 corresponds to the smallest possible redundancy of locus n and is observed when the
allele distribution at such locus is statistically independent of the allele distribution at any of the previously selected loci /. The
case R, = 1 indicates that s,; = 1 for at least one of the previously selected loci, thus indicating that the allele distribution of
the newly added locus, n, is identical to the allele distribution of at least one of those that were previously selected. In this case,
the locus #n would not contribute to enhance the discriminatory power of the set of selected loci.
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Figure 1. Source attribution. The general aim of source attribution (or assignment tests) is to determine the probability p,,
that an individual of unknown origin, u, originates from a certain source, s. Panel (a) provides the set of source populations
considered in this study for Campylobacter: cattle, chicken, pigs, sheep and wild birds. The genetic profile of a source
population s is represented by the genotypes of a set of I; individuals sampled from the source. Different symbols within
sources schematically depict different genotypes. The genotype is determined from a set of genetic markers (loci) that depends
on the typing method. Panel (b) provides the probability p, that any of the 500 human Campylobacter isolates are attributed to
a source s. Results are shown for both MMD (solid bars) and STRUCTURE (hatched bars) methods, based on 25 937 cgSNP
genotypes.
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Figure 2. Self-attribution to test the accuracy of the source attribution methods. Self-attribution is a cross-validation strategy
that involves removing individuals from the source populations and estimating the probability that they are correctly attributed
to their source based on the remainder. Here 50% are removed. The bar charts provide the probability distribution p; for (a)
Campylobacter (genotypes described by 25938 cgSNPs) and (b) humans (659 276 SNPs) comprising 5 and 7 source
populations respectively. Bars in (a) show results obtained using the MMD method (solid bars) and STRUCTURE (hatched
bars). Bars in (b) show results obtained using the MMD method (solid bars) and ADMIXTURE (hatched bars). Perfect
self-attribution would result in 100% assignment to the appropriate source population. The total self-attribution accuracy when
combining the results across all the source populations was, respectively, 73% and 56% for MMD and STRUCTURE in the
Campylobacter population example. For the human population example, it was 97% and 71% for MMD and ADMIXTURE,

respectively.
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Figure 3. Self-attribution of humans to 53 sampling populations with MMD. Self-attribution for a given population was
performed by randomly removing 50% of the individuals from that population and then attributing them to the populations

characterized by the remaining individuals. (a) Probability of correct self-attribution for individuals selected from each

population. (b) Attribution probability p, s of removed individuals, u, to each of the populations, s. Darker colours correspond
to higher probability, see the colour legend. The horizontal axis gives the population from which individuals were sampled and
the vertical axis gives the inferred attribution probability to each population.
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Figure 4. Selection of markers and computational times. (a) Total self-attribution probability p* that any Campylobacter
isolate from food reservoirs is correctly attributed to its source. The probability is plotted as a function of the number of
cgSNPs selected at random and with strategies S1 (loci ranked in decreasing within-source diversity), S2 (loci ranked in
decreasing between-source diversity) and S3 (reordering the loci ranking corresponding to S1 to reduce loci redundancy). (b)
Similar representation for the total self-attribution probability of human individuals based on 659276 SNPs. Strategy S3
reorders the loci ranking corresponding to S2 to reduce redundancy. (c) Squares and pentagons show the computational time
required for MMD and STRUCTURE, respectively, to assign a Campylobacter genotype with number of cgSNPs ranging
between 1 and 25 937. Triangles show the time required for MMD to assign a human genotype with number of SNPs ranging

between 1 to 659 276.
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The data sets for the six examples studied in this work are available as compressed ZIP files from

https://figshare.com/s/726d493387b501c4b70a

For each example, the corresponding ZIP file contains two text files: A file with extension *.pop
which lists the population corresponding to each genotype and a file with the same name but in
comma-separated values (csv) format which contains the genotypes (or proteotype for the breast
cancer example). Loci must be in integer format for our implementation of the MMD method in R.

Supplementary data file S1, Campylobacter_25937SNP.zip - Campylobacter data

This ZIP file contains the data files Campylobacter_25937SNP.csv and Campylobacter_25937SNP.pop
which give information on 1173 Campylobacter isolates. The Campylobacter_25937SNP.csv file
contains genotypes consisting of 25 937 cgSNPs for the 1173 Campylobacter isolates. Each row in the
file gives the genotype of one isolate with the following format:

SNP3, SNP, ....., SNP2se37

SNPs can take values 1, 2, 3, 4 which correspond to the nucleotides A, T, G and C. Missing loci in the
list of SNPs are coded by a negative number that is different for each row (i.e. different for each
genotype). In this way, missing loci contribute to an increase of the Hamming distance between pairs
of genotypes even if they are missing from both genotypes.

The file Campylobacter_25937SNP.pop consists of 1173 lines specifying the host name for each
Campylobacter isolate. The host names are Human, Cattle, Chicken, Pig, Sheep and WB.

Supplementary data file S2, Human_645microsatellite.zip - Human microsatellite data

This dataset is an adaptation of the data used in Ref. [1] to the format needed for the MMD
software. The ZIP file contains the files Human_645microsatellite.csv and
Human_645microsatellite.pop. The file Human_645microsatellite.csv contains genotypes with 645
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microsatellites for 5795 humarfYABURIUHE RaTP YW gi0&LIRBIGBAUEGHE of one individual with the

following format:
Microsatellite;, Microsatellite,, ...., Microsatelliteess

Different integer numbers codes different microsatellites. As in Suppl. data file S1, missing alleles are
indicated by a different negative number for each row.

The file Human_645microsatellite.pop lists the region of each individual. The names of the regions
are AFRICA, AMERICA, CENTRAL_SOUTH_ASIA, EAST_ASIA, EUROPE, MIDDLE_EAST and OCEANIA.

Supplementary data file S3, Human_2810SNP.zip - Human 2810 SNP data

This dataset is an adaptation of the data used in Ref. [2] to the format needed for the MMD
software. The ZIP file contains two files: Human_2810SNP.csv and Human_2810SNP.pop. The
Human_2810SNP.csv file contains diploid genotypes with 5620 loci for 1107 human individuals. Each
row gives the genotype of one individual with the following format:

locuss, locusy, ...., locusseo

Loci can take values 1, 2, 3, 4 which correspond to the nucleotides A, T, G and C. Each locus gives the
allele of one of the copies in a pair of alleles (therefore, there are twice as many loci as SNPs).
Missing loci are coded by a negative number that is different for each row (i.e. different for each

genotype).

The file Human_2810SNP.pop lists the region of each individual. The names of the regions are
AFRICA, AMERICA, CENTRAL_SOUTH_ASIA, EAST_ASIA, EUROPE, MIDDLE_EAST and OCEANIA.

Supplementary data file S4, Human_659276SNP.zip - Human 659 276 SNP data

This dataset is an adaptation of the data used in Ref. [3] to the format needed for the MMD
software. The ZIP file contains three files: Human_659276SNP.csv and Human_659276SNP.pop and
Population_names_938.pop. The Human_659276SNP.csv file contains genotypes with 659276
diploid SNPs for 938 human individuals. Each row gives the genotype of one individual with the
following format:

locuss, locusy, ...., locusesez7s

Loci take values {1,2,...,10} which represent pairs of alleles. The conversion is given by the following
table:

AA [ AT, TA| AG,GA | ACCCA | TT [ TG,GT [ TC,CT| GG | GC,CG cC

1 8 5 9 3 7 6 2 10 4

Missing loci are coded by a negative integer that is different for each individual. Replacing pairs of
alleles by a single number as indicated in the table leads to genotypes of length equal to the number
of SNPs. We checked that source attribution based on the coding of pairs of alleles is as accurate as
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that achieved by coding each if4NRGIEHEERYA T B8P Byrep2®na! [theSater coding leads to
genotypes of 1 318 552 loci which can also be handled by the MMD program).

The file Human_659276SNP.pop lists the region of each individual. The names of the regions are
AFRICA, AMERICA, CENTRAL_SOUTH_ASIA, EAST_ASIA, EUROPE, MIDDLE_EAST and OCEANIA. The
file Population_names_938.pop lists the population of origin of each individual. There are 53
populations in total.

Supplementary data file S5, Pcalifornicus_3699SNP.zip - Giant Californian sea cucumber
Parastichopus californicus data

This dataset is an adaptation of the data used in Ref. [4] to the format needed for the MMD
software. The ZIP file contains three files: Pcalifornicus_3699SNP.csv and
Pcalifornicus_3699SNP.pop. The Pcalifornicus_3699SNP.csv file contains genotypes with 7398 loci
for 717 human individuals. Each row gives the genotype of one individual with the following format:

locus,, locus,, ...., locuszgs

Loci can take values 1, 2, 3, 4 which correspond to the nucleotides A, T, G and C. Each locus gives the
allele of one of the copies in a pair of alleles (therefore, there are twice as many loci as SNPs).
Missing loci are coded by a negative number that is different for each row (i.e. different for each
genotype). The file Pcalifornicus_3699SNP.pop lists the region (North or South) of each individual.

Supplementary data file S6, Breast_Cancer_proteome.zip — Breast cancer proteomic data

This dataset is an adaptation of the proteomic data used in Ref. [5] to a format suitable for the MMD
software. The ZIP file contains three files: Breast_Cancer_proteome.csv and
Breast_Cancer_proteome.pop. The Breast_Cancer_proteome.csv file contains genotypes with 65533
loci for 40 human individuals. Each row gives the genotype of each of the samples with the following
format:

locuss, locus,, ...., locusessas

Loci can take values 0 or 1, corresponding to zero or positive values for the mass spectrum intensity,
respectively. The Breast_Cancer_proteome.pop file list the cancer subtype of each sample. Subtypes
are ERPR, Her2 and TN.
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Fig S1. Self-attribution of humans characterised by 645 microsatellite genotypes. Bar
charts show the probability distribution ps. For a given source (region) s, ps gives the
probability that any individual from the region indicated in the map is attributed to s. Solid
and hatched bars show the results obtained with the MMD method and STRUCTURE,

respectively.
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Fig S2. Self-attribution of humans characterised by 2 810 SNP genotypes. Bar charts show the
probability distribution ps. For a given source (region) s, ps gives the probability that any individual
from the region indicated in the map is attributed to s. Solid and hatched bars show the results
obtained with the MMD method and STRUCTURE, respectively.
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Fig S3. Supervised ADMIXTURE analysis of ancestry based on 659 271 SNP genotypes. Each panel
shows the inferred admixture of 50% of individuals u selected from the geographical region
indicated in the title of the panel. Each individual u is indicated by a vertical line, which is partitioned
in segments of different colours that represent the admixture proportion h,, ¢ of the individual from
region s. The correspondence between regions and colours is given by the legend. Vertical white
lines separate individuals from different populations.
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Fig S4. Selection of markers for self-attribution of humans based on 645 microsatellite genotypes.
Symbols show the self-attribution probability p*® that individuals from any of the 7 regions in the
data set are correctly attributed to their region. The probability is plotted as a function of the
number of SNPs selected at random and with strategies S1 (loci ranked in decreasing within-source
diversity), S2 (loci ranked in decreasing between-source diversity) and S3 (reordering the loci ranking
of S2 to reduce loci redundancy).
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Fig S5. Selection of markers for self-attribution of humans based on 2 810 SNP genotypes. Symbols
show the self-attribution probability p** that individuals from any of the 7 regions in the data set are
correctly attributed to their region. The probability is plotted as a function of the number of SNPs
selected at random and with strategies S1 (loci ranked in decreasing within-source diversity), S2 (loci
ranked in decreasing between-source diversity) and S3 (reordering the loci ranking of S2 to reduce

loci redundancy).
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Fig S6. Within- and between-sources allele diversity quantified by entropies. Symbols show the
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(b) Human SNPs and microsatellites, (c) P. californicus SNPs and (d) breast cancer proteotypes. Most
of the data lay on the right of the lineH? = H}", i.e. the diversity within sources is larger than the
entropy between sources for most loci in all the data sets.
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Fig S8. Example of the determination of the minimum g-quantile, 1,,,;,,(q), in the MMD method.
The curves show the cumulative distribution function F, ;(4) which gives the probability that the
Hamming distance between an individual of unknown origin, u, and any genotype from source s is
smaller than A. This example corresponds to 2810 SNP genotypes of humans from three regions: C/S
Asia, Europe and Middle East. For a probability g = 0.1, one obtains the minimum g-
quantiled,,in(q) = Ay purope- The genotype of u is closest to Europe, followed by Middle East and
C/S Asia.
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Fig. S9 Self-attribution probability ps based on 25 938 cgSNP Campylobacter genotypes. Different
curves show the probability ps that a removed individual from a food reservoir s (see legend) is
correctly attributed to s. The circles indicate the point with maximum self-attribution probabilitiy for
each source population. The values g+ (or intervals) of the g-quantile giving the maximum probability
are given in the table.
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Fig. $10 Self-attribution probability ps based on 645 microsatellite human genotypes. Different
curves show the probability ps that a removed individual from region s (see legend) is correctly
attributed to s. The circles indicate the point with maximum self-attribution probabilitiy for each
source population. The values g+ (or intervals) of the g-quantile giving the maximum probability are
given in the table.
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Fig. S11 Self-attribution probability ps based on 2 810 SNP human genotypes. Different curves show
the probability ps that a randomly individual from region s (see legend) is correctly attributed to s.
The circles indicate the point with maximum self-attribution probabilitiy for each source population.
The values g+ (or intervals) of the g-quantile giving the maximum probability are given in the table.
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Fig. $12 Source attribution of human 500 human Campylobacter isolates. The bar chart shows the
source attribution probability distribution ps obtained with MMD (quantile g=0, solid bars) and
STRUCTURE (hatched bars) methods. Results based on 25938 cgSNP genotypes.
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Fig. $13 Hamming distance between and within sources for Campylobacter isolates based on 25
938 cgSNP genotypes. Each panel shows the density histogram for the Hamming distance, d,
between pairs of genotypes from the sources indicated by the row and column labels. The horizontal
axis of each plot ranges between 0 and 1 and shows the Hamming distance normalised to the total
number of loci, L = 25 938, in each genotype.
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Mining Whole Genome Sequence data to efficiently
attribute individuals to source populations

Additional file 3: Supplementary tables

Francisco J. Pérez-Reche, Ovidiu Rotariu, Bruno S. Lopes, Ken J. Forbes and
Norval J.C. Strachan

Table S1. Allele-frequency divergence for Campylobacter sources based on 25 938 cgSNPs. Cells

indicate the value of the allele-frequency divergence and blue bars give a visual representation of
the value in the cell.

Cattle Chicken Pig Sheep

WB I 00645 N 0.0959 N 0.2015 N 0.0828

Sheep 0.0236 0.0583 0.222
Pig 3279 4092

Chicken B o022

Table S2. Allele-frequency divergence for Humans based on 645 microsatellite genotypes. Cells
indicate the value of the allele-frequency divergence and blue bars give a visual representation of
the value in the cell.

Africa America C/S Asia East-Asia Europe Middle-East
Oceania r 0.0412. o.osoeF 0.0264I 0.024sF o0.0349f  0.033
Middle-East 0.0185 0.0423 0.0079 0.024 0.0044
Europe B o021 0.0412] 0.0081F  0.0243
EastAsia [ 003578 0.0316) 0.017
cisasia B 00244 0035
America I 0.0548
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Table S3. Allele-frequency div@BEHERHEF HMER S Was8d 52810 'SRIFgenotypes. Cells indicate the

value of the allele-frequency divergence and blue bars give a visual representation of the value in

the cell.

Africa America C/S Asia East-Asia Europe Middle-East
Oceania B 005400656 0.0404 8 0.039sF 0.0515F  0.044
Middle-East &  0.0306% 0.0438 0.0054fF  0.0306 0.005

Europe 0.047 0.0488 0.0073J 0.0374
East-Asia 0.0482 0.0344 0.0239
cisasia B 003478 0.0377

America -).0663

Table S4. Allele-frequency divergence for Humans based on 659 276 SNP genotypes. Cells indicate
the value of the allele-frequency divergence and blue bars give a visual representation of the value
in the cell.

Africa America C/S Asia East-Asia Europe Middle-East
Oceania 862121636 0.009016460.009537095| 0.00397227 027877831 9.019187964
Middle-East [[ll8675847730.018132307 0.0023100770.012970799| 0.002605231

Europe BIB88160012 19.025433483] 0.00625519[00.020048184
East-Asia 864896711/ 0.00263804[0.005942497

C/S Asia 66470974700.010672819

America 68563026

Table S5. Allele-frequency divergence for breast tumour proteotypes. Cells indicate the value of the
allele-frequency divergence and blue bars give a visual representation of the value in the cell.

ERPR Her2
TN 2210795 0692476
Her2 0.126142554
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Additional file 4: Giant California sea cucumber (Parastichopus
californicus) example

Francisco J. Pérez-Reche, Ovidiu Rotariu, Bruno S. Lopes, Ken J. Forbes and Norval J.C.
Strachan

The dataset used for assignment of the giant California sea cucumber comprised 717 individu-
als from the northeastern Pacific Ocean coast. The genotype of each individual was described by
3699 SNPs [1]. The format of the data file used by the MMD method is described in Additional
file 1: Supplementary data file S5.

In Ref. [1], a leave-one out strategy [2] was used for self-attribution of P. californicus to
the north and south regions of the coast. The leave-one out strategy consists in removing an
individual from the dataset which is attributed to the sources that are described by the remaining
genotypes. As for the rest of examples studied in this work, we used a Monte-Carlo crossvalidation
strategy [2] for self-attribution with the MMD method. In particular, we removed pairs of
individuals (i.e. I, = 2) whose origin was assumed to be unknown. This procedure was repeated
100 times by randomly removing pairs of individuals from each region.

The probability of correct self-attribution p** for a removed pair was estimated for each realisa-
tion. Individuals from the north were correctly attributed with probability p** = 1 in most of the
realisations (see the histogram for p* in Fig. AF4.1(a)). On average, the self-attribution accuracy
for the north region was 92%. This is close to the 90% accuracy reported for the leave-one-out
method in [1]. The probability of correct self-attribution for individuals from the south region
is more widely spread than that for the north. It ranges between ~ 0.6 and 1 (Fig. AF4.1(b))
which is statistically compatible with the 88% correct self-attribution reported in Ref. [1]. The
mean self-attribution accuracy in this case is 71%.

With regards to the selection of informative P. californicus loci, self-attribution is slightly
more accurate with strategy S1 but differences are not significant for selections of more than 100
SNPs (Fig. AF4.2). An overall self-attribution accuracy of 76% was achieved by selecting the
100 most informative loci with strategy S1 (this accuracy is only ~ 8% lower than that obtained
with all loci). This trend is statistically compatible with the findings in [1] which reported a
self-attribution success of ~ 80% when selecting 100 SNPs.

[1] A. Xuereb, L. Benestan, E. Normandeau, R. M. Daigle, J. M. R. Curtis, L. Bernatchez, and M.-J.
Fortin, Molecular Ecology 27, 2347 (2018).
[2] M. Kuhn and K. Johnson, Applied Predictive Modeling (Springer New York, New York, NY, 2013).
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Fig. AF4.1. Correct self-attribution of P. californicus. Histograms show the relative frequency of
the probability of correct self-attribution, p**, of samples from (a) north and (b) south regions obtained
by randomly removing pairs of individuals from each region.
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Fig. AF4.2. Selection of markers for self-attribution of P. californicus marine cucumber
genotypes. Symbols show the probability of correct self-attribution, p*?, for samples from the north
and south regions of the northeastern Pacific Ocean North American coast. The probability is plotted as
a function of the number of SNPs selected at random and with strategies S1 (loci ranked in decreasing
within-source diversity), S2 (loci ranked in decreasing between-source diversity) and S3 (reordering the
loci ranking of S1 to reduce loci redundancy). Results were obtained by removing pairs of samples from
sources to be attributed as if their origin was unknown. The process was repeated 100 times for each

selected pair.
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Additional file 5: Breast cancer proteomic example

Francisco J. Pérez-Reche, Ovidiu Rotariu, Bruno S. Lopes, Ken J. Forbes and Norval J.C.
Strachan

The dataset used in the breast cancer example comprised 40 breast cancer samples of three
subtypes: 14 oestrogen receptor and/or progesterone receptor positive (ERPR positive) cases,
15 epidermal growth factor receptor ErbB2/Her2 positive (Her2 positive) cases and 11 triple
negative (TN) cases [1]. For each sample, the data from Ref. [1] provide the mass spectrum
intensity I5ss detected at 65533 discrete values of m/z (ionic mass per unit charge). In order to
represent these data as a feature vector suitable for MMD), the mass spectrum for each sample
was transformed by replacing positive values of Ip;¢ by 1. This resulted in a feature vector of
65 533 elements with values 0 or 1 which defines a proteotype for each sample (Additional file 1:
Suppl data file S6). The feature vector for each sample defines a multilocus proteotype analogous
to the multilocus genotypes used in the Campylobater, human and P. californicus examples.

Self-attribution was performed by a Monte-Carlo cross-validation strategy [2] similar to that
used for P. californicus, i.e. I, = 2 samples were randomly removed whose cancer subtypes were
assumed to be unknown. This procedure is repeated for 100 different selections of pairs. Since
the number of samples in the proteomic dataset is relatively small (40 samples), removing few
samples is important to make sure that the remaining samples represent the sources as accurately
as possible.

Overall, cancer samples were correctly attributed to their subtype (ERPR, Her2 or TN) in
63% of the cases. The average self-attribution probabilities for ERPR, Her2 and TN tumours
were 0.64, 0.57 and 0.68, respectively (see Fig. AF5.1). Wrong self-attribution of any of the
subtypes was approximately evenly distributed among the two wrong subtypes.

Self-attribution of breast cancer tumours is not significantly affected by the strategy used to
select loci (Fig. AF5.2). Attribution accuracy saturates for selections of more than ~ 500 loci
irrespective of the strategy used for loci selection.

[1] S. Tyanova, R. Albrechtsen, P. Krongvist, J. Cox, M. Mann, and T. Geiger, Nature Communications
7,1 (2016).
[2] M. Kuhn and K. Johnson, Applied Predictive Modeling (Springer New York, New York, NY, 2013).
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Fig. AF5.1. Self-attribution of breast cancer tumours based on proteomic data. FEach

sample (40 in total) is described by a 65533 loci proteotype. Different colours, indicated in the legend,
correspond to different cancer subtypes (ERPR, Her2 and TN). The bars for a given subtype provide
the probability p, s that removed samples, u, from this subtype are attributed to each of the possible
sources, s. The probability indicated by the bars corresponds to the mean assignment probability over
different selections. On average, ERPR, Her2 and TN subtypes are correctly attributed in 64%, 57%
and 68% of the cases, respectively.
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Fig. AF5.2. Selection of markers for self-attribution of breast cancer proteotypes. Symbols
show the self-attribution probability p** that individuals from any of the three cancer subtypes (ERPR,
Her2 or TN) are correctly attributed to their source. The probability is plotted as a function of the
number of SNPs selected at random and with strategies S1 (loci ranked in decreasing within-source
diversity), S2 (loci ranked in decreasing between-source diversity) and S3 (reordering the loci ranking
of S2 to reduce loci redundancy).
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Additional file 6: Comparison of the MMD with other methods -
Analytical considerations

Francisco J. Pérez-Reche, Ovidiu Rotariu, Bruno S. Lopes, Ken J. Forbes and Norval J.C.
Strachan

I. MMD METHOD IN TERMS OF ALLELE PROBABILITIES

Here, we present a description of the MMD method in terms of allele probabilities which is
useful to compare with assignment methods that rely on allele probabilities. Our description
applies to the particular case in which genotypes consist of L wunlinked loci with two alleles
cach. Under this assumption, the Hamming distance dg(u,a;s) is a random variable obeying a
Poisson’s Binomial distribution [1] with success probabilities {1 — m,,; ¢}~ ,. Here, T, is the
probability that the allele u; in the individual to be assigned is observed at locus [ in source s.
In general, 7, s denotes the probability of allele a at locus [ in population s.

The measures of similarity between individuals and sources used in previous work based on
allele frequencies can be viewed as particular characteristics of the Hamming distance distribution
used by the MMD method. For instance, the likelihood function,

L
L s = Hﬂ-ul,l,s 5 (1)
=1

used in many assignment tests [2-7] corresponds to the probability that dg(u,a;s) = 0, i.e. the
probability that the genotype u exists in source s. Genetic distances used in distance-based
assignment tests [4, 5], can also be expressed in terms of the probabilities {m,,;}. For example,
Nei’s D4 distance [8] between the individual to be assigned and source s is

L
Dy=1-L") s

=1

We note that some classical genetic distances [8] such as Nei’s standard genetic distance, Dg,
or Nei’s minimum genetic distance, D,,, depend on the gene identity [9] of the sources, J; =
Lt Zle Y aca Taj,s, in addition to the probabilities {m,,;s}. For example, Nei’s standard ge-
netic distance between u and source s is

Dy = Zl 1 Tug,l,s
N

The gene identity is intrinsic to sources and does not reflect the similarity between the in-
dividual to be attributed and sources. In general, methods based on Dg and D,, will predict
a higher attribution to the source with lower gene identity but this has nothing to do with the
individual to be attributed.
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PROBABILITIES

As mentioned in the main text, errors in the estimates of allele probabilities {m,; s} used to
characterise sources will induce an error in attribution. Here we estimate the dependence of the
attribution error on the number L of loci in the genotypes and the number I of genotypes used
to describe each source.

A. Attribution error for the MMD method

For the MMD method, errors in the estimates of the allele probabilities propagate to the
quantile A\, s(q), score o, and attribution probability p, s defined in the Methods of the main
text. The dependence of the errors of A\, s(¢) and o, s on L and I, can be estimated for a simple
model for unlinked loci in which alleles have the same probability distribution for all loci, i.e. a
model with 7, ;s = 75 independently of /. In this case, the Hamming distance obeys a binomial
distribution for L Bernoulli trials with probability of success 1 — r,. In the limit of large L, the
binomial distribution can be approximated by a normal distribution with mean ps = L(1 — ry)
and variance A2 = Lry(1 — ry). Under these assumptions, the quantile X, ¢(q) satisfies

Aus(q) =+ 27 (q)As (2)

and the score 0, quantifying the proximity of genotype u to source s is

)\min — MUs
= fmin s
UU:S ( As ) (3)

Here, Apin = ming{ A\, s(¢)} and ®~*(z) is the inverse of the cumulative distribution function for
the standard normal distribution.
From Eq. (2), the error of A\, s(¢) in the limit of extended genotypes with large L is given by

O s
Ts
Here, dr, is the error in the allele probabilities. In the MMD method and other methods that

approximate these probabilities by the observed allele frequencies, the error is ory = O(Is 1/ 2).
Therefore,

s = ory ~ Lor, . (4)

OAus = LI7Y? (5)

Since Ay s =~ L (cf. Eq. (2)), we conclude that the relative error of A, is 0\, s/ Aus = 0(151/2),

i.e. it does not increase with the number of loci, L.
Let us denote the closest source to individual u as Scesest (this is the source with A\, s, .., =
Amin)- From Eq. (3), the error in the assignment score o, 5 is given by:

1/2 ,—bL?
00us | 5\ m}{a[//e 07y, for 5 7 Sciosest
min —

171/2
OAmin a' LY%5r, | for s = Scjogest -

(6)

(57’s+’

Here, a, a’ and b are independent of L and we have assumed that dr, is approximately the same
for all sources, including Sciosest- One can show that the error for the attribution probability p,,
is proportional to that of do,, s.

To summarise, our arguments show that the assignment error for the MMD method is O(L'/?).
In the particular case in which the allele probabilities are estimated by frequencies, one has
ors = O(Is_l/Q) and the assignment error is O(L1/2IS,_1/2), i.e. it increases with L and decreases
with the number of genotypes used to define the sources.
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The error for the likelihood function given by Eq. (1) can be easily calculated as a function
of the errors {dm,,; s} for the allele probabilities. Propagation of errors gives

L

5‘Cu,s = Z

=1

L
J ug,l,s
57rul7l,s = [’u,s Z & = L£u7s > (7)

=1 Ty l,s

0Ly s

aﬂ'ul s

where we have assumed d7,, ;s > 0 for all loci.

According to Eq. (7), the relative error of the likelihood function, §£, /L, s, increases with
L unless the errors in the probability estimates, {07, s}, are zero.

The log-likelihood function is more commonly used than the likelihood itself. One can easily
show that the error for the log-likelihood function typically equals the relative error of £, ; and is
therefore O(L). This shows that attribution errors based on a likelihood function increase faster
with L than those for the MMD method.
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Additional file 7: Exclusion method

Francisco J. Pérez-Reche, Ovidiu Rotariu, Bruno S. Lopes, Ken J. Forbes and Norval J.C.
Strachan

Here, we apply the threshold exclusion method proposed in [1] to the MMD source attribution
results. The exclusion method consists in setting a threshold 7" for the probability p, s such that
an individual u is assigned to source s if p, s > T'. Otherwise, if p, s < 7', the individual cannot
be attributed to the source s. When p, ; < T for all the sampled sources, s € S, the individual
is not assigned to any source. The performance of this method was explored to test the MMD
attribution results for human genotypes with 659276 SNPs and Campylobacter genotypes with
25937 SNPs. For the human example, we focused on self-attribution to 7 geographical regions.
In this case, a very small proportion of genotypes are excluded even for very selective values of T’
(see Fig. AF7.1). In fact, only 2% of individuals are excluded from all regions for "= 1. In fact,
for T =1, all individuals are attributed to the correct source except for 10% of individuals that
are excluded from Middle East and 1% that are excluded from C/S Asia. To some extent, the
high accuracy found for this dataset could be expected since we are dealing with self-attribution
and the true region of individuals has been sampled for sure.

Exclusion is more prominent for Campylobacter isolates (see Fig. AF7.2). For T' > 0.9, more
than 60% of isolates from human patients are excluded from all sources. Since the origin of
human isolates is unknown, one could conclude that there is a high percentage of isolates that
originated from sources that were not sampled. However, this is not a solid conclusion since the
method also predicts high exclusion percentages (> 37% on average for T' > 0.9) for isolates from
food and animal sources whose true source is known. The exclusion percentage is particularly
high for sheep (all isolates excluded from all sources for 7' > 0.7) and cattle (52% excluded for
any T' > 0.8). High exclusion rates in this example are likely due to a low genetic differentiation
between sources. In this situation, forcing assignment to a single source is not well justified.

[1] S. Manel, P. Berthier, and G. Luikart, Conservation Biology 16, 650 (2002).
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Fig. AFT7.1. Exclusion test for humans based on 659276 SNP genotypes. For a given
geographical region, the proportion of individuals that are not attributed to any region (i.e. individuals
with p, s < T for all regions, s) is plotted as a function of the exclusion threshold, T". Different symbols
correspond to individuals from different regions, as marked by the legend.
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Fig. AF7.2. Exclusion test for Campylobacter isolates based on 25938 cgSNP genotypes.
For a given Campylobacter reservoir, the proportion of isolates that are not attributed to any source (i.e.
isolates with p, s < T for all sources) is plotted as a function of the exclusion threshold, T'. Different
symbols correspond to isolates from different reservoirs, as marked by the legend.
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