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ABSTRACT

Background

During cellular differentiation, the chromatin landscape changes dynamically and contributes to
the activation of cell-type specific transcriptional programs. Disruptor of telomeric silencing 1-
like (DOTIL) is a histone methyltransferase that mediates mono-, di- and trimethylation of lysine
79 of histone H3 (H3K79mel, 2, 3). Its enzymatic activity is critical for driving cellular
differentiation into cardiomyocytes, chondrocytes and neurons, from embryonic or other type of
stem cells in physiological settings. Ectopic localization of DOT1L in MLL-rearranged leukemias

is causative for leukemogenesis and relapse. Little is known about the causal relevance of DOT1L
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methyltransferase activity in the global chromatin context and how its enzymatic function affects
transcriptional and global chromatin states. Recent reports conducted in leukemia cell models have
suggested that deposition of H3K79me2 may be critical to preserve histone H3K27 acetylation
(ac) and enhancer activity, and to sustain expression of highly transcribed genes. If and to what
extent DOT1L affects chromatin states and enhancer activity during physiological differentiation

processes is currently unknown.

Results

We measure global changes of seven histone modifications during the differentiation process via
high-throughput and quantitative ChIP-seq in an in-vitro neuronal differentiation model of mouse
embryonic stem cells (MmESC). We observe that H3K27ac globally decreases, whereas H3K79me2
globally increases during differentiation, while other modifications remain globally unaltered.
Pharmacological inhibition of DOT1L in mESC and mESC-derived neural progenitors results in
decreased expression of highly transcribed genes and increased expression of normally repressed
genes. Acute DOTI1L inhibition primes neural progenitors towards a mature differentiation state.
Transcriptional downregulation associates with decreased accessibility of enhancers specifically

bound by the master regulator SOX2.

Conclusions

In-vitro neuronal differentiation couples with a genome-wide accumulation of H3K79me2, never
described previously in mammalian cells. Acute inhibition of DOTIL is sufficient to initiate a
defined transcriptional program, which biases the transcriptome of neural progenitor cells towards

neuronal differentiation. H3K79me2 is not generally causative for maintaining transcriptional
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levels at a genome-wide scale. In contrast, DOT1L inactivation reduces the chromatin accessibility
of enhancers bound by SOX2 in-vivo, thereby reducing the expression level of a restricted number
of genes. Our work establishes that DOTIL activity gates differentiation of progenitors by

allowing SOX2-dependent transcription of stemness programs.

INTRODUCTION

In eukaryotes, nuclear DNA is wrapped around histones, which constitute the building blocks of
chromatin. Histones are subject to a variety of covalent and reversible modifications, mostly
affecting lysine, serine and arginine residues (e.g. methylation, acetylation etc.). These post-
translational modifications (PTM) are added and removed by specific epigenetic enzymes known
as “writers” and “erasers” respectively. The combinatorial presence of these modifications on the
chromatin template is thought to add a layer of information, known as the histone code, which

builds on top of the genetic code (1).

During differentiation, eukaryotic cells undergo large changes affecting their structural, functional
and metabolic profiles. The process is accompanied by major rearrangements of the epigenetic and
transcriptional profile, which are driven by the synergistic effects of epigenetic enzymes and

transcription factors (2).

Epigenetic and transcriptional changes driving neuronal differentiation have been characterized
(3,4), but few efforts aimed towards a comprehensive description of global histone modification

dynamics that affect the chromatin of neural committed cells (5). Previous investigations were
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limited by the use of semi-quantitative and low-throughput methods (e.g. immunoblotting and
imaging). Recent developments in quantitative chromatin immunoprecipitation followed by
sequencing (ChIP-seq) have overcome these technical limitations and they now allow to detect
genome-wide global changes in histone modifications across conditions in a high-throughput

manner (6-8).

Various epigenetic enzymes are important for the orchestration of neuronal differentiation (3,9).
Among these, Disruptor of Telomeric silencing 1 Like (DOT1L) has been recently identified as a
critical player in the differentiation process (10-13). DOTIL is a highly conserved histone
methyltransferase that catalyzes the mono-, di- and trimethylation of lysine 79 of histone H3
(H3K79mel, 2, 3) (14). Since its first characterization in yeast as a disruptor of telomeric silencing
upon gain or loss of function (15,16), the protein has been recognized to be involved in a variety
of biological processes, such as cell cycle control (17), DNA repair (14), gene expression (18),
differentiation and reprogramming (19). DOTIL regulates cardiomyocyte differentiation and
maturation (20,21) and chondrocyte differentiation (22), while the modulation of its enzymatic
activity was shown to be critical for cellular reprogramming efficiency (10). Within the neural
lineage, DOTI1L prevents premature cell cycle exit and depletion of the neural progenitor pool and

it is necessary for proper neuronal differentiation (13,23,24).

DOTIL plays a prominent role in certain forms of leukemia. Interestingly, some studies in this
field identified specific perturbations of the chromatin context that manifest upon blocking of
DOTIL and indicate crosstalk between H3K79me2 and histone acetylation. Chen et al. show that

Dotll knock-down results in the establishment of repressive chromatin states around MLL target
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94  genes. This evidence suggests that the presence of H3K79 methylation may be critical to prevent
95  deacetylation through e.g. activity of SIRT1-complexes (25). Loss of DOTI1L activity also results
96  in decreased acetylation and reduced frequency of promoter-enhancer interactions at H3K79me2-
97  marked enhancers (26). Currently, it is not clear whether the molecular perturbations described in
98 leukemia are relevant for the differentiation phenotypes described in other model systems, and
99  whether DOTIL activity targets enhancers in physiological developmental settings.

100

101 Inthis work, we use mouse embryonic stem cells (mESC) and their in-vitro derived neural progeny

102  (NPC48h) to systematically characterize the global dynamics of the epigenetic landscape during

103  neuronal differentiation (27). For both mESC and NPC48h, we further investigate whether the

104  competitive inhibition of DOTIL with Pinometostat (EPZ5676) affects the establishment of

105  chromatin states and cell-type specific transcriptional programs.

106

107  We show that the global levels of H3K79me2 increases genome-wide during the differentiation

108  process. Our data indicate that DOT1L inactivation causes the onset of a transcriptional program

109  which primes mESC-derived NPC towards neuronal differentiation. We further show that acute

110  DOTIL inhibition is associated with reduced accessibility of intronic and intergenic enhancers that

111 are bound in-vivo by the stemness-conferring transcription factor SOX2.

112

113

114

115

116
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117  RESULTS

118

119  Multi-omics dataset reveals consistent epigenetic and transcriptional dynamics during ES-
120  derived neuronal differentiation

121 To characterize the epigenetic and transcriptional changes during neuronal differentiation and to
122 study the cell-type specific causal contribution of DOTIL to the neuronal differentiation process,
123  we generate and integrate a multi-omics dataset encompassing comprehensive epigenomes of
124  seven histone modifications (H3K4mel, H3K4me3, H3K9me3, H3K27ac, H3K27me3,
125  H3K36me3, and H3K79me2) (in duplicates) and transcriptomes (triplicates) of mESC and
126  NPC48h treated with dimethyl sulfoxide (DMSO) or Pinometostat (EPZ5676, EPZ). For NPC48h,
127  we also generate chromatin accessibility profiles for each treatment regime in duplicates. To allow
128  for a quantitative assessment of epigenetic changes, we use RELACS, a chromatin barcoding
129  strategy for multiplexed and quantitative ChIP-seq (6) (Fig 1a).

130

131 We first assess the biological coherence of the generated multi-omics datasets. As expected, the
132  transcriptome clearly segregates mESC and NPC48h into two distinct groups (Fig 1b, upper panel).
133 A clear separation between mESC and NPC48h is also obtained from dimensionality reduction of
134  the epigenome (Fig 1b, lower panel). The chromatin-based separation between cell types is most
135  strongly determined by active histone modifications (Fig Sla). Differential gene expression
136  analysis shows dynamic genes (abs(log2 fold-change) > 1, adjusted p-value < 0.01) to be
137  prevalently upregulated in NPC48h compared to mESC (Fig S1b). Consistently, protein coding
138  genes show higher coverage of the co-transcriptionally regulated marks H3K79me2 and

139  H3K36me3 on the 5’end and 3’end of the gene body respectively, in NPC48h compared to mESC
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140  (Fig S1c). GO term enrichment analysis of differentially expressed genes (DEG) between NPC48h
141 and mESC shows a clear neuronal signature in the upregulated set, providing evidence for the
142 neuronal transcriptional identity of the differentiated cells (Fig 1c).

143

144  Next, we model the relationship between transcriptional dynamics and changes in histone
145  modifications around transcriptional start sites (TSS) and transcriptional termination sites (TTS).
146  As expected, chromatin changes correlate with transcriptional changes (Fig S1d), but the
147  epigenetic features are collinear and thus redundant. To decrease this redundancy, we rank histone
148 PTM dynamics based on their relevance for predicting transcriptional changes by fitting a
149  regularized linear model to our dataset. We find that H3K27ac, H3K36me3 and H3K79me2 are
150  selected as the most relevant predictive features for transcriptional dynamics, followed by an
151  interaction term between H3K79me2 and H3K27ac (H3K79me2:H3K27ac) (Fig 1d). Our model
152 (model 1, m_1) successfully captures the observed expression trends (R = 0.44) (Fig le, left panel)
153  and results in a better fit compared to previous attempts with more complex models (28).

154

155  To confirm that the interaction H3K79me2:H3K27ac does not lead to overfitting, we compare
156  model 1 to five alternative linear models and evaluate their performance based on the Bayesian
157  information criterion (BIC) (Fig Sle). The inclusion of the interaction term does not lead to
158  overfitting and increases the accuracy of log2 fold-change prediction for genes that are strongly
159  upregulated during the differentiation process. Interestingly, many of the genes that are most
160  affected by the interaction term are known targets of retinoic acid (RA) mediated in-vitro neuronal
161  differentiation (e.g Hoxa and Hoxb clusters, Ascll, Zicl, Zic4, Pou3f2, Pou3f3, Nhlh2, LhxI)

162  (29,30) (Fig le, right panel).
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163

164  Together, these data provide evidence for the coherence of the generated multi-omics dataset and
165  show that in-vitro neuronal differentiation correlates with relative epigenetic and transcriptional
166  activation. We show that gene expression changes can be predicted using a linear combination of
167 a subset of histone modification changes (H3K27ac, H3K36me3, H3K79me2) and that the
168  interaction between H3K27ac and H3K79me2 plays an important role to account for expression
169  changes in RA target genes driving neuronal differentiation.

170

171 H3K27ac and H3K79me2 undergo opposite global changes during in-vitro neuronal
172  differentiation

173  The computation of histone modification changes in a classic ChIP-seq experiment imposes a per-
174  sample normalization that prevents the detection of global shifts. In contrast, the RELACS
175  barcoding strategy we employed allows for quantitative estimations of genome-wide global
176  histone modification changes between samples. To assess the global dynamics of each histone
177  PTM during the differentiation process, we estimate global scaling factors from sequencing data
178 by computing pairwise ratios of input normalized read counts allocated to each sample after
179  demultiplexing (6).

180  We observe that in NPC48h H3K4me3, H3K4mel and H3K27me3 do not show detectable global
181  deviations from the mESC reference level. H3K36me3 and H3K9me3 show a mild global increase.
182  Strong global changes are instead observed for H3K27ac and H3K79me2 during neuronal
183  differentiation, with the former decreasing by a factor of ~ 2 (2.3 + 0.12) and the latter increasing
184 by a factor of ~ 4 (3.9 + 0.05) (Fig 2a).

185
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186  Global shifts of histone PTM levels can be caused by two possible mechanisms. 1) Histone marks
187  can accumulate on specific loci, resulting in local enrichment compared to flanking regions (so
188  called “peaks”). A global shift can occur if the number and magnitude of histone PTM local
189  enrichment changes across conditions. In this work, we refer to this mechanism as a locally driven
190  global change (Fig 2b, left panel). 2) Alternatively, histone PTM can accumulate or be removed
191  homogeneously over the whole genome, causing a base-level global gain/loss of the signal.
192  Traditional ChIP-seq methods are unable to detect these global shifts. In this work, we refer to this
193  mechanism as a genome-wide driven global change (Fig 2b, right panel). Eventually, global
194  changes may result from a combination of 1) and 2).

195

196  To understand if the measured global changes are genome-wide or locally driven, we visualize
197  locus-specific changes of H3K4me3, H3K27ac, H3K36me3 and H3K79me2 levels between
198  NPC48h and mESC, on annotated genomic features (H3K4me3 and H3K27ac: transcription start
199  site (TSS) + 2kb; H3K79me2: TSS + 3kb; H3K36me3: transcription termination site (TTS) - 3kb).
200  The results indicate that H3K4me3 levels are unaffected upon differentiation in both background
201  and locally enriched regions. H3K36me3 levels do not change globally in background regions, but
202  show a mild increase in locally enriched regions. This indicates that H3K36me3 global change is
203  mostly locally driven. In contrast, loss of H3K27ac and gain of H3K79me2 affects background
204  and locally enriched loci to an almost equal extent. This indicates that the global changes measured
205  for these two marks are genome-wide driven (Fig 2c¢).

206

207  To provide a fully comprehensive picture of global histone modifications trends genome-wide, we

208  perform chromatin segmentation, a method that reduces the high dimensionality of the epigenomic
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209 dataset by assigning a unique chromatin state attribute to each genomic bin based on the
210  combination of histone modification enrichment (31,32). For each histone mark, we compute log2
211 fold-changes between NPC48h and mESC over each of the 15 chromatin-state segments (E1 -
212 E15). Extending our analyses to the whole genome and all chromatin states, the results confirm
213  the trends computed over annotated gene bodies (Fig S2a), showing strong global changes only
214 for H3K27ac and H3K79me?2 during neuronal differentiation.

215

216 To explore candidate mechanisms accounting for global histone modification changes, we
217  investigate the transcriptional dynamics of genes coding for epigenetic enzymes involved in the
218  regulation of H3K27ac and H3K79me2. During differentiation, 4 of 13 expressed genes coding
219  for proteins with histone deacetylase (HDAC) functions significantly increase their expression
220 level (Hdac9, Hdacll, Sirt2, Hdac?2) (log2 fold-change > 1, adjusted p-value < 0.01), while only
221 2 of 10 expressed genes coding for histone acetyltransferases (HAT) show significant changes in
222 expression without consistent trend (Kat6a, Hatl) (Fig S1b). Assuming a proportional protein
223  product, this observation suggests that the global decrease in acetylation may be partially driven
224 by increased HDAC expression.

225

226  Dotll, on the other hand, does not change its expression during the differentiation process. In yeast,
227  Vos et al. (33) have shown that the grade (mel, me2, me3) and total level of methyl-H3K79
228  correlates with cell-cycle length and proliferation rate. To test whether global H3K79me2
229  differences estimated in our system are consistent with this model, we measure the proliferation
230 rate of mESC and NPC48h. We find that mESC proliferate about 25 times faster compared to

231 NPC48h (Fig S2b). The difference in proliferation rate between cell types qualitatively agree with

10
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232 the model advocated in Vos et al., but fails to account for the magnitude (4-fold increase) of the
233  measured H3K79me? difference.

234

235  In summary, we show that both H3K27ac and H3K79me2 levels change globally during in-vitro
236  neuronal differentiation, with opposite trends. Both histone marks change through genome-wide
237 acting mechanisms. The mechanism responsible for H3K79me2 global increase during
238  differentiation still remains obscure, but we show that the proliferation rate alone does not suffice
239  to account for the measured effect size.

240

241 Local changes in H3K79me2 correlate with transcriptional activation

242  TIthasbeen reported that H3K79me?2 local enrichment is the best linear predictor of gene expression
243  levels (34), but the functional relevance of the global H3K79me?2 increase during neuronal
244  differentiation remains to be clarified, particularly in the context of transcription. Therefore, we
245  ask whether differential H3K79me?2 local enrichment, and/or the global H3K79me?2 increase,
246  associates with transcriptional dynamics.

247

248  To address this question, we stratify protein coding genes in 5 clusters using standard log2-ratio
249  scores between sequencing-depth normalized H3K79me2 and input, individually for each cell
250 type. Notice that this approach corresponds to a traditional normalization that absorbs all global
251  changes. We quantify scores on a 3kb window downstream of TSS of mESC and NPC48h (Fig
252  2d). We observe that genes included in cluster 1 and 2 are locally enriched in both cell types and
253  despite the global gain in H3K79me?2, their expression levels do not change during differentiation

254  (Fig 2e). Cluster 3, on the other hand, identifies a group of genes that gains H3K79me2 locally in

11
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255  addition to the global increase during development. These genes present a clear axonogenic
256  signature (Fig S2c¢) and their expression level significantly increases during differentiation (Fig
257  2d,2e). A mild reduction of H3K79me?2 local enrichment is detected on genes belonging to cluster
258 4, but no major effect is observed at the transcriptional level. Eventually, cluster 5 identifies genes
259  with neither H3K79me2 enrichment nor dynamic expression.

260

261  Together, these data show that, in our system, dynamic local enrichment of H3K79me?2 associates
262  with transcriptional activation (cluster 3) of genes critical for neuronal development. Global
263  accumulation of H3K79me?2 does not associate with transcriptional changes.

264

265 Acute DOTI1L inactivation is sufficient to bias the transcriptional state of NPC48h towards
266 neuronal differentiation

267  H3K79me2 has been generally associated with transcriptional activity in yeast, fly, mouse and
268  human. The mark is found in euchromatic regions and its enrichment strongly correlates with gene
269  expression level (14). Yet, little is known about the causal relevance of DOT1L methyltransferase
270  activity for the transcriptional process. To investigate the cell-type specific causal contribution of
271 DOTIL enzymatic function for the genome-wide transcriptional activity and for the overall
272 epigenetic context, we inhibit the enzyme in mESC and NPC by treating cells for 48 hours with
273  the S-adenosyl methionine (SAM) competitor Pinometostat (EPZ5676, EPZ). Subsequently, we
274  quantify transcriptional and epigenetic changes compared to cells treated with dimethyl sulfoxide
275 (DMSO) as control.

276

12
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277  To assess whether EPZ treatment successfully inhibited DOT1L methyltransferase activity, we
278  compare H3K79me?2 signal between treatment groups. Quantification after immunoblotting shows
279  that the total H3K79me?2 signal equals to 47.8% + 5.7% and 59.6% + 4.7% of the reference DMSO
280 level in mESC and NPC48h respectively (Fig 3a). Quantification based on RELACS ChIP-seq
281  confirms this trend and indicates that the total H3K79me?2 signal is equal to 44.9% + 2.4 % and
282  64.2% + 5.8% of the reference DMSO level in mESC and NPC48h respectively (Fig 3a). In
283 agreement with immunoblotting estimates, we observe that mESC lose more H3K79me2
284  compared to NPC48h. Cell-type specific differences are expected to occur as a consequence of
285  unequal replication-dependent and independent histone turnover rate (Fig S2b) (35). To test if we
286  could resolve signal loss at single-locus resolution, we compute locus specific changes of
287  H3K79me2 over the previously defined five clusters (clustering analysis from Fig 2d). Results
288 indicate that signal loss can be read as a function of H3K79me?2 local enrichment (Fig 3b), where
289  weakly marked loci (cluster 5) loose comparably less H3K79me2 signal than strongly marked loci
290  (cluster 1).

291

292  To study the effects of DOTIL inhibition on the transcriptome, we first identify differentially
293  expressed genes (DEG) across treatment groups. EPZ treatment causes a mild alteration of the
294  transcriptome in both mESC and NPC48h, as indicated by principal component analysis and
295  sample clustering on normalized count data (Fig S3a), where the main variability is from biological
296  replicates rather than treatment. As a result, differentially expressed genes show only moderate
297  log2 fold-changes (Fig 3c). Transcriptional alteration is more pronounced in mESC than NPC48h.

298 58 genes are differentially expressed in both cell types (adjusted p-value < 0.05). They follow a

13
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299  consistent fold-change trend, which may suggest a common underlying regulatory mechanism (Fig
300  S3b).

301

302 Next, we identify annotated pathways and Gene Ontology (GO) terms associated with the
303 transcriptional deregulation. For mESC, gene set enrichment analysis (GSEA) identifies
304  significant pathways sharing an immunological and stress-induced pro-apoptotic molecular
305 signature (Fig 3d, left panel). Among overrepresented gene ontology (GO) terms, we find
306 increased expression of genes involved in actin cytoskeleton organization, and decreased
307  expression of genes relevant for lipid and carbohydrate biosynthetic processes (Fig S3c, left panel).
308 For NPC48h, GSEA shows deregulation of Wnt-mediated pluripotency pathways, neuronal
309 differentiation and cell-cycle (Fig 3d, right panel), while among over-represented GO terms we
310 find decreased expression of genes involved in embryonic organ development (e.g. Hox genes)
311 and increased expression of genes coding for cation channels as well as genes involved in
312  neuropeptides signaling pathway (Fig S3c, right panel).

313

314  DOTIL has been shown to prevent premature differentiation of the PAX6-positive neural
315  progenitor pool in the developing cortex in-vivo (13). The functional signature observed in
316  NPC48h suggests that acute DOTIL inhibition may be sufficient to induce a switch from a
317  stemness-mediating to a differentiation-mediating transcriptional program. In line with this
318  observation, we see a consistent decreased expression of a variety of neural stem cell markers in
319  EPZ treated NPC48h (Fig 3e) (36,37). To further substantiate this interpretation, we intersect our
320 DEG set in NPC48h (EPZ vs DMSO treatment) with markers of neurogenic and neuronal cortical

321  cell populations defined in two recent reports (36,37). We find that differentially expressed
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322  markers of neurogenic cell populations, for the most part decrease in expression in our dataset,
323  while differentially expressed markers expressed by fully differentiated neurons transcriptionally
324  increase (Fig 3f).

325

326  Together, these results indicate that acute DOT1L inhibition for 48 hours is sufficient to deplete
327  H3K79me2 on enriched loci genome-wide and to bring about mild yet functionally coherent
328 transcriptional changes. Interpretation of the transcriptional response from a functional perspective
329  suggests that DOTIL inhibition primes the transcriptome of NPC towards a neuronal
330 differentiation stage.

331

332 Acute DOTIL inhibition induces local epigenetic alterations linked to transciptional
333  deregulation

334  Therole of DOTIL as a chromatin writer demands a thorough analysis of the association between
335 transcriptional and chromatin alterations. In mESC and NPC48h, quantitative ChIP-seq reveals
336 that DOTIL inactivation does not consistently affect the global levels of histone modifications
337  other than H3K79me2 (Fig 4a, S4a). Although EPZ treatment causes a decrease in H3K79me?2
338  signal on every gene positively marked with this histone modification, the linear association of
339 H3K79me2 depletion with transcriptional deregulation is weak in mESC (B = 0.027), and
340  vanishingly small in NPC48h (B = 0.004) (Fig S4b). This indicates that acute DOT1L inhibition
341  and subsequent reduction of H3K79me?2 are not critical for immediate expression of most genes.
342

343  We observe, however, a difference in the mean expression level of genes that are transcriptionally

344  affected upon EPZ treatment. Specifically, upregulated genes tend to be lowly expressed, while
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345  downregulated genes tend to be highly expressed (Fig S4c). H3K27ac correlates with expression
346 level and recent studies suggested that H3K79me2 is important for maintaining H3K27ac
347  enrichment on gene promoters and enhancers (25,26). To verify whether H3K27ac signal is
348  affected as a consequence of EPZ treatment, we perform differential analysis of H3K27ac peaks.
349  Overall, we observe few significant changes in the profile of H3K27ac peaks upon EPZ treatment
350 compared to the reference DMSO-treated samples, for both mESC and NPC48h. Log?2 fold-change
351  estimates of H3K27ac peaks overlapping the promoter of DEG show a weak trend consistent with
352  expression changes, i.e. genes with increased expression tend to have higher levels of H3K27ac in
353  promoter regions and vice versa (Fig 4b, upper panel). Notably, the effect size is stronger in
354  NPC48h compared to mESC, despite a smaller number of genes being transcriptionally affected
355  in the former cell type compared to the latter. A similar trend can also be observed for H3K4me3
356  (Fig 4b, lower panel).

357

358  Annotation of H3K27ac peaks to overlapping/proximal genes reveals a weak genome-wide
359  correlation between acetylation and transcriptional changes (Pearson correlation coefficient = 0.19
360 and 0.16 in mESC and NPC48h respectively) (Fig 4c). We observe a more evident loss of H3K27ac
361  signal in a subset of genes with decreased expression upon DOTIL inhibition in NPC48h (Fig 4c,
362 right panel). Detailed genomic annotation of differential H3K27ac peaks overlapping
363 transcriptionally downregulated genes in NPC48h upon EPZ treatment, shows a preferential
364  distribution on intronic and promoter regions (Fig 4d).

365

366  Together, these data show that the genome-wide depletion of H3K79me2 does not result in a

367  comparable global or local loss of H3K27ac, which argues against the hypothesis that H3K79me?2
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368 is generally critical to preserve H3K27ac from being targeted by deacetylase complexes in our
369 model (25). Instead, our data show that local epigenetic changes of active marks (e.g. H3K27ac,
370  H3K4me3) are directly linked to transcriptional changes, as indicated by the small effect size and
371 the specific association with deregulated genes.

372

373  Transcriptional alteration caused by DOTI1L inhibition is associated with chromatin state
374  signature of protein coding genes

375  To systematically investigate whether the altered transcriptional state is related to chromatin states,
376  we use the chromatin segmentations of the control samples from mESC and NPC48h to measure
377  the fraction of each chromatin state overlapping the promoter and the gene body of protein coding
378  genes genome-wide. We apply t-distributed stochastic neighbour embedding (tSNE) to visualize
379  the distribution of genes in a reduced 2-D space (38). Mapping of the DEG set reveals a clear
380 separation between upregulated and downregulated genes, which is consistent across cell types
381  (Fig 5a). Specifically, we observe that upon DOTIL inhibition, genes with a null, Polycomb
382  repressed (H3K27me3) or bivalent (copresence of H3K4me3 and H3K27me3) promoter state are
383  predominantly upregulated, while genes marked with an active promoter state (copresence of
384  H3K4me3 and H3K27ac) tend to be downregulated (Fig 5a).

385

386  To quantify the strength of association between chromatin states and transcriptional deregulation,
387  we fit a varying intercept model to estimate the expected transcriptional changes in each group of
388  genes identified by the most represented chromatin state present in the promoter region. Results

389  show that the estimated mean expression log2 fold-change in each gene group mildly deviates
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390 from 0, which suggests that the presence of any given chromatin state is not sufficient, per se, to
391  induce transcriptional deregulation (Fig 5b).

392

393  Together, this evidence suggests that acute DOTIL inhibition results in derepression of silent
394  genes and suppression of highly transcribed genes. Although the genes that are transcriptionally
395  affected upon EPZ treatment are cell-type specific (Fig 3d, S3b), our analysis shows that they share
396 a common epigenetic signature (Fig 5a), which hints towards a common underlying chromatin
397  mechanism that could be shared across cell types. Despite there being an association between
398 transcriptional deregulation and chromatin states, only a small subset of genes are affected by
399  DOTIL inhibition. This prompts us to exclude that any specific combination of histone marks may
400 be causally linked to the observed transcriptional phenotype. Instead, we hypothesize that the
401  targeted transcriptional changes may be mediated by mistargeting of transcription factors (TF)
402  regulating the subset of transcriptionally affected genes.

403

404  DOTI1L inhibition associates with decreased accessibility of a subset of intronic enhancers in
405 NPC48h

406  To explore the hypothesis that DOT1L inactivation may affect specific DNA-binding TF, resulting
407 in targeted gene expression changes, we focus on NPC48h, where the mild depletion of
408 H3K79me2 allows to dissect the early response to H3K79me?2 loss. To gain high resolution on
409  putative transcription factor binding sites, we profile chromatin accessibility via ATAC-seq in
410  NPC48h treated with DMSO or EPZ. We interrogate our data by taking a two-fold approach: on

411  the one hand we identify associations between TF binding motifs and accessible promoter regions
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412  of DEG, and on the other we study how the accessibility profile is affected on enhancer regions
413  genome-wide as a consequence of EPZ treatment (26).

414

415  To identify candidate TF associated with transcriptional alterations upon DOTIL inhibition in
416  NPC48h, we identify motifs associated with accessible regions overlapping DEG promoters.
417  Accessible promoter regions of genes that are upregulated upon EPZ treatment show high
418  association with motifs bound by deacetylase complexes (i.e. SIN3A, HDAC2, REST) and basic
419  Helix-Loop-Helix (bHLH) family members (i.e. ASCL1, NEURODI, TCF21, TCF3) (Fig 6a, left
420 panel). The enrichment of repressive complexes is consistent with the results of our chromatin-
421  state analysis, which shows that promoters of upregulated genes are associated with null,
422  Polycomb repressed (H3K27me3) or bivalent (H3K4me3 and H3K27me3) promoter states.
423  Members of the bHLH family of TF are pivotal drivers of neuronal differentiation. In particular
424  the proneural factor ASCL has been shown to direct neuronal cell fate specification by targeting
425  repressed chromatin, acting as a pioneer factor, and to control the timing of neuronal differentiation
426  (39,40). Thus, these results support the hypothesis that acute DOT1L inhibition may be sufficient
427  to initiate a specific transcriptional program towards neuronal differentiation.

428

429  Open promoter regions of downregulated genes show enrichment for paired box (i.e PAX4) and
430  SOX motifs, together with general GC rich motifs (Fig 6a, left panel). Our previous analyses have
431  shown that downregulated genes upon DOTIL inhibition tend to be highly expressed and are
432  associated with active promoter states (Fig S4c, 4d). Because highly expressed genes are often
433 regulated by cell-type specific enhancers (41), we investigate the association between EPZ-

434  induced transcriptional deregulation and enhancer activity.
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435

436  Active enhancers are identified by the co-occurence of H3K27ac and H3K4mel peaks and absence
437  orlow H3K4me3 coverage (2). Godfrey et al. have shown that accessibility of H3K79me2-marked
438  enhancer and enhancer-associated H3K27ac decrease as a consequence of DOTI1L inhibition (26).
439  To study if accessibility of enhancer regions is perturbed in NPC48h upon DOTIL inhibition, we
440  perform differential analysis of open chromatin regions between treatment groups. Similar to
441  previous assays, we observe minor alterations of the accessibility landscape upon EPZ treatment,
442  with very few regions reaching statistical significance as determined by DESeq2. Nevertheless,
443  PCA identifies treatment regimes as the highest source of variance in the data (Fig S5a, left panel).
444  To determine open chromatin regions with high contribution to the first principal component
445  (PC1), we select 2000 peaks with the highest PC1 loadings, ranked on absolute value (Fig S5a,
446  right panel), and we visualize the fold-change distribution of enhancer regions (Fig 6b, upper
447  panel). The results show that intergenic and intronic enhancers tend to lose accessibility upon EPZ
448  treatment. When we correlate dynamic accessible regions with expression changes of overlapping
449  or proximal genes, we observe that loci with decreased accessibility are mostly associated with
450 downregulated genes, regardless of enhancer status (Fig 6b, lower panel). Notably, this unbiased
451  approach identifies 10 of only 39 genes that are commonly downregulated in both mESC and
452  NPC48h upon DOTIL inhibition (Jarid2, Fgfr2, Lgr4, Msi2, Bahccl, Zfp462, Tcf4, Tmem?2,
453  Sox2ot, Nhsll), (3.15-fold enrichment, hypergeometric p-value = 0.00167) (Fig 6b, framed gene
454  names, Fig S3b). Together, these observations suggest that decreased chromatin accessibility on
455  enhancer regions in response to DOTIL inactivation, may contribute to the observed
456  transcriptional downregulation.

457
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458 Intronic enhancer with decreased accessibility upon DOT1L inhibition are bound by SOX2
459  in brain-derived NPC in-vivo

460 To investigate whether decreased accessibility is specifically associated with the presence of
461  H3K79me2, we measure H3K79me2 density on dynamic open chromatin regions (ATAC-Down,
462 ATAC-Up) and on 1000 random open regions showing no change in accessibility as background
463  (background-ATAC). Results show a clear association between H3K79me?2 density and intronic
464  open chromatin loci on ATAC-Down and background-ATAC regions compared to the other

465  groups (two sided Mann-Whitney U test, p-value = 4.99-107) but no significant difference

466  between intronic ATAC-Down and background-ATAC regions (two sided Mann-Whitney U test,
467  p-value = 0.113) (Fig S5b). When we limit our study to open chromatin regions located over
468 introns only, we see that 62% of protein coding genes having at least one ATAC peak with
469  decreased accessibility are marked with H3K79me2, while only 25% and 34% of protein coding
470  genes associated with ATAC-Up and background-ATAC regions are marked with H3K79me2
471  (Fig S5c¢).

472

473  Together, these data indicate that reduced chromatin accessibility upon DOTI1L acute inhibition
474  mostly, but not exclusively, affects regions marked with H3K79me?2 in intronic loci. However, the
475  presence of H3K79me?2 alone - and its consequent loss upon EPZ treatment - is not a discriminant
476  factor for decreased accessibility.

477

478  To study whether acetylation is altered as a consequence of EPZ treatment on dynamic ATAC
479  regions, we visualize H3K27ac metaprofiles over ATAC-Down, ATAC-Up and background-

480 ATAC regions, regardless of annotation class. On average, dynamic ATAC regions do not show
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481  any difference in H3K27ac levels (data not shown). To verify whether H3K27ac is affected on
482  enhancers ATAC-Down depending on H3K79me?2 presence (26), we visualize H3K27ac coverage
483 on ATAC-Down enhancers high in H3K79me2 (H3K79me2 density > 45), on dynamic ATAC
484  enhancers low in H3K79me2 (H3K79me2 density < 45) and on background-ATAC regions.
485  Results indicate that H3K27ac is not selectively decreased on enhancers in ATAC-Down regions
486  as a consequence of H3K79me?2 presence (Fig S5d).

487

488  To evaluate whether regions with reduced accessibility are associated with a specific class of TF
489  binding motif, we identify motifs associated with dynamic accessible regions. The analysis
490 indicate that ATAC-Down regions present enrichment of POU/SOX core motifs (Fig 6¢). This
491  result is particularly interesting as SOX TF are critical regulators of neural progenitor pool
492  maintenance and cell-fate specification (42—44). To verify that these loci are actually bound by
493  SOX TF in neural progenitors in-vivo, we intersect the dynamic and background open chromatin
494  regions identified in NPC48h upon EPZ treatment with publically available SOX2 ChIP-seq data
495  generated on brain-derived neural progenitors (45). Metaprofile of SOX2 signal on dynamic
496  ATAC-peaks and random background regions shows specific binding on open regions with
497  decreased accessibility upon DOTIL inhibition (Fig 6d). Two exemplary loci, Msi2 and Jarid2,
498  show that decreased chromatin accessibility upon DOTIL inhibition coincide with regions bound
499 by SOX2, local enrichment of H3K4me1/H3K27ac and presence of H3K79me2 (Fig 6e).

500

501  Together, these data indicate that, in our system, DOTIL inhibition results in decreased

502  accessibility of a specific enhancer set s that is bound by SOX2 in-vivo. Loss of chromatin
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503 accessibility does neither associate with depletion of H3K27ac nor is it strictly correlated to co-
504  occurence of H3K79me2.

505

506 DISCUSSION

507

508 Here we report on a comprehensive multi-omics study of in-vitro neuronal differentiation and on
509 the consequences of DOTIL inhibition for the differentiation process. This includes the study of
510 the quantitative dynamics of chromatin modifications during in-vitro neuronal differentiation by
511  use of a quantitative and high-throughput ChIP-seq method. This is, to our knowledge, the first
512  application of a quantitative strategy to a physiological differentiation setting, and it reveals that
513  the epigenome of neuronal committed cells undergoes global histone modification changes with
514  respect to the pluripotent precursor.

515

516  Various studies have documented a progressive chromatin condensation during mESC
517  differentiation (5,46,47), but contrasting evidence has been collected regarding the extent and
518 relevance of global histone modification changes for cellular differentiation. For example, Ugarte
519 et al. describe a progressive decrease in nuclease sensitivity during hematopoietic differentiation
520 but fail to detect any significant global changes in histone modifications levels through
521 immunoblotting assessing H3K4me3, H3K27ac, H3K16ac, H4K20mel, H3K36me3, H3K27me3,
522  H3K9me2 and H3K9me3 (46). Efroni et al. characterize global transcriptional and epigenetic
523  changes during mESC-derived NPC differentiation. Their evidence, based on immunoblotting and
524  imaging, suggests that both global RNA levels and active histone modification abundances (e.g

525 H3K4me3) are decreased in differentiated cells compared to the embryonic precursor (5).
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526

527  In contrast to these previous studies, here we use a quantitative ChIP-seq protocol (RELACS) to
528  estimate global histone modification changes during in-vitro neuronal differentiation. We find that
529  only H3K27ac and H3K79me2 levels change globally, in opposite directions, during in-vitro
530  neuronal differentiation, through genome-wide acting mechanisms.

531

532  Biologically, these results are notable in various respects. First, they suggest that the progressive
533  chromatin condensation observed during in-vitro neuronal differentiation mostly follows from a
534  genome-wide deacetylation process, while a smaller contribution may come from the global
535 accumulation of repressive histone modifications (e.g H3K9me3) (48). Loss of H3K27ac is
536  consistent with chromatin condensation (2), as H3K27ac is a mark associated with loose chromatin
537  packaging and is known to be highly abundant in mESC (48,49).

538

539  Secondly, our data show that H3K79me?2 increases globally during neuronal differentiation in-
540  vitro. We show that developmental gain of local enrichment of H3K79me2 associates with
541  transcriptional activation of genes critical for neuronal differentiation. In contrast, global
542  accumulation of H3K79me2 does not generally correlate with transcriptional activity. Our data
543  suggest that global differences in H3K79me2, as measured during differentiation and as a
544  consequence to pharmacological inhibition of DOTI1L, may be partly caused by the different
545  proliferation rates of mMESC and NPC48h, in accordance with previous reports (33).

546

547  As a consequence of H3K79me2 global increase during in-vitro neuronal differentiation, we

548  investigate the relevance of DOT1L methyltransferase activity for the establishment of chromatin
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549  and transcriptional states genome-wide in mESC and their differentiated progeny, NPC48h. The
550  third main result of this study shows that DOT1L inactivation affects gene expression in a targeted
551  manner, despite the genome-wide depletion of H3K79me2. Our results clearly indicate that the
552  presence of H3K79me2 is neither generally critical for the deposition of other histone
553  modifications, nor is it necessary for sustaining the expression levels of most genes. We observe
554  depletion of H3K27ac upon EPZ treatment, which does not follow the global decrease in
555  H3K79me2. Locally, however, loss of H3K27ac on enhancers and promoters alike correlates with
556  transcriptional downregulation, and it is mirrored by a corresponding decrease in H3K4me3 on
557  promoters.

558

559  Most importantly, we show that upon DOTIL inactivation, transcriptionally deregulated genes
560 present a coherent chromatin signature in their promoter. Our data indicate that DOTIL
561  inactivation associates with upregulation of genes with a repressed, poised or null promoter state,
562  and downregulation of highly expressed genes marked with active histone modifications. Based
563  on the data presented in this work, it is tempting to hypothesize that the transcriptional upregulation
564  upon DOTIL inhibition observed in the mammalian system may result from impaired targeting of
565  the chromatin by repressive complexes. The cause of this may either reside in the altered H3K79me
566  distribution, as in the yeast model, or it may indirectly follow from the selective downregulation
567  of highly transcribed genes coding for repressive proteins (e.g Jarid2, Zfp462) (50-53).

568

569  Finally, our study supports the view that the targeted transcriptional response to DOTIL
570  inactivation may in part be explained by decreased accessibility of active enhancers bound by

571  critical TF. Whereas in NPC48h, DOTI1L inhibition results in decreased accessibility at chromatin
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572  regions bound by SOX2 in-vivo, the reduced chromatin accessibility is not accompanied by
573  depletion of H3K27ac. In this light, our data partly contrasts with the model advocated by Godfrey
574  atal. (26), which establishes a causal link between presence of H3K79me domains, preservation
575  of H3K79me-rich enhancer activity and H3K27ac levels. Godfrey et al. have recently identified a
576 class of enhancers dependent on H3K79 methylation, where the frequency of enhancer-promoter
577  interaction is disrupted upon DOT1L pharmacological inhibition (26). Consistent with this report,
578  we observe that EPZ treatment induces a loss in accessibility of a subset of intronic and intergenic
579  enhancers. Although we find that decreased accessibility is associated with H3K79me2 enrichment
580 in intronic open loci, our data also suggest that H3K79me?2 enrichment is generically present over
581  intronic ATAC peaks and does not discriminate between dynamic and non-dynamic open regions.
582  Moreover, around 40% of intronic enhancers with decreased accessibility upon DOT1L inhibition
583  are not strongly marked by H3K79me2. Together, our data indicate that DOTI1L inhibition may
584  alter the cellular transcriptional state by affecting only a subclass of H3K79me2-positive
585  enhancers.

586

587  In conclusion, our findings agree with the model proposed by Godfrey et al. in that DOTIL
588  inhibition results in decreased accessibility of H3K79me2-positive enhancers. In our system,
589  though, we observe a specific response that pertains only to a subset of regulatory regions bound
590 by sequence-specific transcription factors (e.g. SOX/POU). The closure of these cis-acting
591  enhancers may be responsible for the transcriptional decrease of highly expressed, cell-type
592  specific genes conferring stemness to progenitors. In addition, we here present first evidence
593  explaining transcriptional increase upon DOTIL inhibition. We hypothesize that decreased

594  expression of cell-type specific transcripts coding for proteins with repressive functions (e.g
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595  Jarid2, Zfp462), together with altered accessibility for deacetylation complexes, may result in

596  derepression of silent genes localized on facultative heterochromatic regions.

597
598 MATERIALS and METHODS

599

600 mESC culture and in-vitro neuronal differentiation

601 mESC were cultured on inactivated MEF for 3 passages (p3) and from p4 onward on gelatin-
602 coated plates (medium: 82% DMEM (Thermo Fisher, US), 15% FBS (Thermo Fisher), 1%
603  Glutamax (Thermo Fisher), 1% PSN (Thermo Fisher), 1% NEAA (Thermo Fisher) + LIF (Sigma)
604  (dilution = 1/1000) + B-Mercapto-EtOH (Thermo Fisher) (dilution = 1/500)). Feeder-free mESC
605  were treated with either EPZ5676 (Hycultec) (10 nM), or DMSO (Thermo Fisher) (dilution =
606  1/1000) for 48h.

607 mESC were differentiated in-vitro towards NPC48h according to Bibel et al. (27). Briefly, feeder-
608 free mESC were trypsinized and dissociated to create a single cell suspension. Cells were used to

609  form cell aggregates (CA) on non-adherent (Grunier) plate (4- 10° single cells per plate; medium:

610 87% DMEM, 10% FBS, 1% Glutamax, 1% PSN, 1% NEAA + B-Mercapto-EtOH (1/500)). 4 days
611  after CA formation, CA were exposed to retinoic acid (7.5 uM) for 4 days. CA were dissociated
612  into single cells and seeded on PORN/LAMININ coated 6 well plates and grown in N2 medium
613  for neuronal differentiation. At this stage, cells were treated either with EPZ5676 (10 nM) or
614 DMSO (1/1000) for 48h. At treatment completion, NPC48h were collected for downstream
615  processing.

616

617

27


https://doi.org/10.1101/2020.02.03.931741
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.931741; this version posted February 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

618 RELACS ChIP-seq

619 RELACS protocol was carried out according to Arrigoni et al. (6). Cells were fixed in 1%
620 formaldehyde for 15 minutes. Reaction was quenched with 125 mM glycine for 5 minutes,
621  followed by 2 washings with DPBS + proteinase inhibitor cocktail. Cell nuclei were isolated
622  following Nexson protocol (54) and permeabilized with 0.5% SDS. Chromatin was digested in
623  situ using restriction enzyme CviKI-1 (NEB, R0710L) and barcoded using RELACS custom
624  barcodes (4bp UMI + 8bp RELACS barcode, see Table 1 for details). Nuclei from each sample
625  were burst via sonication to extract the barcoded chromatin fragments and pooled into a unique
626  tube. A single immunoprecipitation (IP) reaction for all samples included in this study was carried
627  out on IP-star according to (6) (see Table 2 for antibodies details). Immunoprecipitated chromatin
628 was used for Illumina library preparation (NEBNext Ultra II DNA Library Prep Kit) and
629  sequenced on HiSeq 3000 Illumina machine (paired-end, read length 75 bp) .

630 Table 1: RELACS custom barcodes

Sample RELACS barcode

mESC DMSO repl TTCGCTCT

mESC DMSO rep2 ACGTGTAC

mESC EPZ repl TACCGATG

mESC EPZ rep2 TTGGTTGG

NPC48h DMSO repl | CCTCTCAA

NPC48h DMSO rep2 | TTGTGGCT

NPC48h EPZ repl CCGAATAC

NPC48h_EPZ rep2 TGTGATCG
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Table 2: Antibody details
Histone modification Ab details (company, product ID, lot)
H3K?27ac Diagenode, C1541096, lot A1723-041D
H3K27me3 Diagenode, C15410195, lot A1811-001P
H3K36me3 Diagenode, C15410192, lot A1847-001P
H3K4mel Diagenode, C15410194, lot A1863-001D
H3K4me3 Diagenode, C15410003, lot A5051-001P
H3K79me2 Abcam, ab3594
H3K9me3 Diagenode, C15410193, lot A1671-001P
RNA-seq

RNA was extracted using RNAeasy Mini Kit (Qiagen). Libraries were generated using the
NEBNext Ultra RNA Library Prep Kit, following manual’s instructions. Libraries were sequenced

on a HiSeq 3000 Illumina machine (paired-end, read length 150 bp).

ATAC-seq

ATAC-seq libraries were generated according to (55). Briefly, ~ 50.000 cells were washed in ice-
cold PBS and incubated in transposition reaction mix (Nextera DNA Sample Preparation Kit).
Transposed DNA was purified (MiniElute Kit, Qiagen) and PCR amplified for 5 cycles. We
determined the number of additional PCR cycles via qPCR according to (55). Libraries were

sequenced on a HiSeq 3000 Illumina machine (paired-end, read length 75 bp)
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647  Proliferation assay

648  Proliferation assay was performed using Click-iT® EdU Alexa Fluor 488 Flow Cytometry Assay
649  Kits (C10425), following the manufacturer's instructions. Intact nuclei were further stained with
650 DAPI and analyzed on a BD LSRFortessa cell analyzer using BD FACSDiva software.

651

652 Immunoblotting

653 mESC or NPC48h were lysed in RIPA buffer (1% NP-40, 1% SDS, 0.5% sodium deoxycholate
654  diluted in Phosphate Buffered Saline, PBS). Cells were centrifuged (10 min, 13000 rpm) and the
655  supernatant collected. Protein concentrations were determined with Bradford reagent (Bio-Rad).
656 15 pg of protein extract were loaded with 5x Laemmli buffer on Mini Protean TGX gels (Bio-Rad)
657 and run at 100V for 1.5 h. Proteins were transferred to PVDF membranes (Trans-blot Turbo
658  Transfer Pack) using the Trans-blot Turbo Transfer System (both from Bio-Rad) following
659 manufacturer’s instructions. Membranes were blocked with 5% BSA in TBS-T (blocking buffer)
660 for 1 h and incubated overnight with primary antibodies (diluted in blocking buffer). Membranes
661  were washed, incubated with secondary antibodies for 1 h and detected using ECL or Femto
662  substrates (Thermo Scientific) and LAS ImageQuant System (GE Healthcare, Little Chalfont,
663 UK). The following antibodies were used: anti-H3K79me2 (1:1000 dilution, see Table 1 for

664  details). For densitometric analyses, ImageJ software was used (56).

665

666  Bioinformatics analysis

667  All sequencing data were processed with snakePipes (v. 1.1.1) (57). Relevant parameters used for
668 each experiment and summary QC are available at

669  https://github.com/FrancescoFerrari88/code DOTI1L paper/tree/master/multiQC ConfigParamet
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670 ers. Mapping was performed on mouse genome build mm10 (GRCm38). For ChIP-Seq and
671  ATAC-seq, high quality and uniquely mapping reads were retained (mapq > 5). RELACS custom
672  barcodes were designed with integrated UMI, so duplicate removal was performed using
673  UMITools (58), while a standard deduplication was applied for ATAC-seq reads. We use gencode
674 MI8 as reference gene model throughout all analysis. For ChIP-seq and ATAC-seq data,
675  snakePipes also provided candidate peak regions using MACS2 (default parameters).

676  Differential analysis for RNA-seq was carried out using DESeq2 (v. 1.22.1) (59) on count matrices
677  output from snakePipes (featureCounts, v. 1.6.4). We used a linear model controlling for batch
678  effects (e.g. ~ batch + treatment ) and we applied apeglm log2 fold-change shrinkage (60).
679  We estimate fold-changes for each histone modification on annotated genomic features known to
680  associate with local histone PTM enrichment (H3K4me3, H3K27ac, H3K4mel: narrow promoter
681 (TSS =#1kb); H3K79me2, H3K27me3, H3K9me3: extended promoter (TSS -1kb,+3kb);
682  H3K36me3: transcription termination site (TTS - 3kb,+0.5kb)).

683  Global differential ChIP-seq analysis was carried out after applying RELACS specific
684 normalization by computing empirical log-fold changes across conditions (see “RELACS
685 normalization and estimation of global histone modification changes™). Traditional differential
686  ChIP-seq and ATAC analysis was performed on consensus peak sets, coverage was computed
687  using deepTools’ multiBamSummary (61) and differential regions identified via DESeq2. We
688  eventually applied normal log2 fold-change shrinkage. Peaks were annotated using Homer (v.
689 4.10) (62) and UROPA (v. 3.1.0) (63). We use GimmeMotifs (v. 0.13.1) for motif enrichment and
690 differential motif analysis (64). Metaprofile of ChIP-seq and ATAC-seq signals were generated

691  with deeptools (61) and deepStats (65).
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692  Multiple factor analysis was done using FactoMineR (v. 1.41) (66). The algorithm was run on a
693 matrix of shape 4 (samples) x 3500 (features). As features, we included the top 500 most variable
694  2kb loci for each of the seven histone modifications (feature groups), selected after applying
695  variance stabilizing transformation to the counts matrix. We used scikit-learn (Python module) (v.
696  0.19.1) for principal component analysis and tSNE, while linear modeling was performed using
697  sklearn and statsmodels (v. 0.9.0). GO enrichment analysis and pathway analysis were performed
698  using clusterProfiler (v. 3.10.1) (67).

699 We used ChromHMM (31) with default parameters for chromatin segmentation. We trained two
700  independent models for each cell type on the DMSO treated samples. We then used these models
701  to perform the segmentation in the respective cell types for both treatments (EPZ and DMSO).
702  We compute the chromatin state signature of protein coding genes in mESC and NPC48h
703  according to (38). For each gene, we identify potentially used transcripts by intersecting annotated
704  TSS with H3K4me3 peaks. If a gene does not overlap with any H3K4me3 peak, we consider the
705  full gene annotation. For each candidate gene, we then compute the fraction of overlap between
706  each chromatin state segment in the control sample with the promoter region (TSS -1kb, +500 bp)
707  and with the full gene body. In this way, each gene is identified by a vector of length 30 (15 states
708  for the promoter + 15 states for the gene body). A matrix of shape g (number of genes per cell) x
709 30 is eventually used for dimensionality reduction by applying tSNE (68).

710  To compute the enrichment for the frequency of transition of each chromatin state in DMSO to
711 each chromatin state in EPZ (Fig S4a), we first flatten the chromatin state segmentation across all
712 samples. Next, we compute the frequency of transition across chromatin states from DMSO to
713  EPZ. A transition is identified if it is concordant across replicates (foreground transition matrix).

714 The background frequency (transition noise) is computed as the frequency of transition across
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chromatin states from DMSO _repl to DMSO _rep2 and from EPZ repl to EPZ_rep2 (background
transition matrix). The ratio between the foreground and background transition matrix results in
the enrichment score.

Bayesian linear modeling was performed using pyme3 (v. 3.6) (69). The expected log2 fold-
change for each group of genes (i) identified by the most represented chromatin state present in

the promoter regions was identified by fitting the following hierarchical linear model:

Log2FC ~ N(mu,sigma)
mu ~ alphali]
sigma ~ Exp (lam = 1)
alphali] ~ N(mu',sigma’)
mu' ~ N(0,1)

sigma’ ~ Exp(lam = 1)

All visualizations were generated in Python (v. 3.6) and R (v. 3.5).

RELACS normalization and estimation of global histone modification changes

To estimate global histone modification changes, first we demultiplexed fastq files on RELACS
custom barcodes. Then, for each sample, we divided the number of uniquely and high-quality
mapped read-pairs (mapq > 5) coming from a ChIP of interest by the total number of read-pairs
coming from the respective input. For estimating global histone modification changes, we

considered either the total number of mapped reads genome-wide. Pairwise quantitative
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737  comparisons between samples were computed as log2 ratio between input-normalized total
738  mapped read counts.

739  Local changes were estimated in the same way, by repeating this procedure for each individual bin
740  of interest.

741

742  Data and code availability

743  The fully reproducible and documented analysis is available on github at

744  github.com/FrancescoFerrari88/code DOTI1L paper, as Jupyter notebooks and R scripts. Raw

745  data and normalized bigWig tracks were deposited to GEO and are available for download using
746  the following accession number: GSE135318.
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759  FIGURES LEGENDS

760

761 Figure 1

762  Multi-omics mapping and modelling of in-vitro neuronal differentiation

763  a) Experimental design of this study. We differentiate mESC towards neural progenitors (NPC48h)
764  in-vitro. We treat mESC and NPC for 48h either with the DOT1L inhibitor EPZ5676 (10 nM) or
765  with DMSO (1/1000) as control. For each sample, we generate transcriptomics data via RNA-seq
766  and comprehensive epigenomes using quantitative ChIP-seq. We further map the accessible
767  chromatin landscape for NPC48h using ATAC-seq.

768  b) Upper panel: principal component analysis of the transcriptome of mESC and NPC48h on the
769  top 500 most variable genes (rlog transformed counts) shows a separation between the two cell
770  types on the first principal component. Lower panel: multiple factor analysis of the epigenome of
771 mESC and NPC48h computed over the top 500 most variable 2kb windows for each histone
772  modification yield similar results. Biological replicates are denoted by the same color.

773 ¢) Top 10 most significant over-represented GO terms (adjusted p-value < 0.05) based on
774  significantly upregulated (left) and downregulated (right) genes (abs(log2 fold-change) > 1,
775  adjusted p-value < 0.01) in the comparison between ES-derived NPC48h and mESC. Genes
776  increasing their expression in NPC48h are enriched for neuronal differentiation terms.

777  d) Lasso regression coefficients are used to rank all input features. We retain a sparse model to
778  predict transcriptional changes with three histone marks (H3K27ac, H3K36me3, H3K79me?2) and
779  an interaction term H3K79me2:H3K27ac.

780 ) Fit of the multiple linear regression model. Observed vs predicted log2 fold-changes of gene

781 expression (NPC48h vs mESC) as predicted through the linear combination of log2 fold-changes
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782  of H3K27ac, H3K36me3, H3K79me2 and H3K27ac:H3K79me2 (R>=0.44) (left panel).
783  Predictions for different genes are differently affected by the interaction term (right panel). The
784  biggest improvement in predictive accuracy is achieved for genes that are known targets of retinoic
785  acid mediated neuronal differentiation (Hoxa, Hoxb cluster genes, Ascll, Zicl, Zic4, Pou3f2,
786  Pou3f3, Nhlh2, LhxI).

787

788  Figure 2

789 H3K27ac and H3K79me2 undergo opposite global changes that are independent of
790 transcriptional changes, during in-vitro neuronal differentiation

791  a) Representation of the global scaling factors (log2 transformed) estimated in NPC48h using
792  quantitative ChIP-seq with respect to the reference mESC level, for the seven histone
793  modifications included in this study (n=2). Error bars denote one standard deviation from the
794  mean.

795  b) Model to illustrate that global histone modification changes can result from two different
796  scenarios. Left panel: locally driven global changes may follow from increased number and/or
797  magnitude of histone PTM local enrichment. Right panel: genome-wide driven global changes
798 may follow from a genome-wide accumulation of a mark on both locally enriched regions
799  (“peaks”) and on background regions.

800 c¢) MA plots showing the mean coverage (x-axis) and log2 fold-change (y-axis) of four histone
801 marks computed on bins overlapping annotated genomic features for the contrast NPC48h vs
802 mESC (H3K4me3 and H3K27ac: transcription start site (TSS) £+ 2kb; H3K79me2: TSS + 3kb;

803 H3K36me3: transcription termination site (TTS) - 3kb). Next to each MA plot, we show a

36


https://doi.org/10.1101/2020.02.03.931741
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.931741; this version posted February 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

804  summary plot showing the global fold-change distribution (y-axis) for each quartile of mean
805  coverage (x-axis).

806  d) k-mean clustering (k=5) of H3K79me2 enrichment 3kb downstream of TSS of protein coding
807  genes. A standard scaling method (by sequencing depth) and normalization (by input-control) was
808  used. This highlights changes with respect to local background. The last column shows the log2
809 fold-changes in expression of the respective genes in each cluster for the contrast NPC48h vs
810 mESC. Genes gaining local H3K79me?2 enrichment tend to be upregulated during in-vitro neuronal
811  differentiation.

812  e) Left panel: MA plot showing the mean coverage (x-axis) and the global change in H3K79me?2
813  (y-axis) computed on a window 3kb downstream of TSS of protein coding genes, next to a violin
814  plot showing the global H3K79me2 changes for each of the 5 clusters previously identified in d).
815  The scheme on the right helps interpretation of the global and local H3K79me2 changes. Right
816 panel: MA plot of gene expression changes for the contrast NPC48h vs mESC, next to a violin
817  plot showing the expression changes of genes clustered according to d).

818

819  Figure3

820 DOTIL inhibition for 48h alters the transcriptome of NPC towards neuronal differentiation
821  a) EPZ5676 treatment for 48h reduces the level of H3K79me2 in mESC and NPC48h. Left panel:
822  immunoblotting of H3K79me2 and H3 (loading control) of EPZ-treated and DMSO-treated mESC
823  (upper panel, green) and NPC48h (lower panel, blue). Right panel: barplot showing the global
824  H3K79me2 signal for immunoblotting and RELACS ChIP-seq in EPZ treated mESC and NPC48h,

825 represented as a fraction of the respective H3K79me2 level in DMSO treated cells. For RELACS
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826  data, we calculated the ratios of uniquely and high quality mapped reads (mapq > 5) and divided
827 by the ratio for the respective inputs.

828  b) Global fold-change of H3K79me?2 in EPZ treated cells compared to DMSO, over the 5 clusters
829 identified in the differentiation analysis of Figure 2d. High H3K79me2 local enrichment results in
830  high loss upon EPZ treatment.

831  ¢) EPZ treatment alters the transcriptome in mESC and NPC48h. Volcano plots showing log2 fold-
832  change (x-axis) and -log10(p-value) (y-axis) of all genes tested for differential expression for the
833  contrast EPZ vs DMSO treated mESC (left panel) and NPC48h (right panel). Genes are color-
834  coded according to the respective adjusted p-value. Shade of blue is used for genes with decreased
835  expression, while shade of red is used for genes with increased expression. The top most significant
836  gene names are shown.

837  d) Transcriptional deregulation induced by EPZ treatment affects groups of genes that are
838 functionally coherent. Ridgeplot representing the expression log2 fold-change (EPZ vs DMSO)
839  distribution (x-axis) of the leading edge genes from the top 15 most significant pathways (ranked
840  on adjusted p-value), identified by running GSEA against the wikiPathways database, in mESC
841  (left panel) and NPC48h (right panel). Each distribution is shaded according to adjusted p-value
842  of the associated pathway. Pathways are grouped and color-coded according to functional
843  similarity.

844  e) EPZ treatment decreases expression of neural progenitor marker genes. Heatmap showing the
845  z-score of batch corrected expression of various neuronal stem cell markers in DMSO and EPZ
846  treated samples. Triplicates for each treatment group are shown. Expression values are normalized
847  using transcripts per million (TPM). Positive z-scores are in shades of red, while negative ones are

848  in shades of blue.
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849  f) Barplot showing the proportion of marker genes of three neurogenic cell types (NB, NSC, TAP)
850 and two fully differentiated neuronal types (MSN D1, MSN D2) (36) that are differentially
851  expressed in NPC48h following EPZ treatment (gene ratio, x-axis). Neurogenic marker genes are
852  preferentially downregulated (blue), while marker genes of fully differentiated neurons are
853  preferentially upregulated (red) upon EPZ treatment. Next to each bar, the gene ratio is explicitated
854  as the number of marker genes that are differentially expressed in our dataset (numerator) over the
855  total number of marker genes for each cell-type (denumerator).

856

857  Figure 4

858 DOTIL inactivation results in local epigenetic changes that associate with transcriptional
859  deregulation in NPC48h

860  a) Representation of log2 fold-changes of global scaling factors estimated via quantitative ChIP-
861 seq in EPZ-treated cells with respect to the reference DMSO level, for the seven histone
862  modifications included in this study. Left panel: global changes estimated in mESC. Right panel:
863  global changes estimated in NPC48h.

864 b) Promoter-associated active marks change consistently with EPZ-induced transcriptional
865  dynamics. Upper panel: empirical cumulative density function (ECDF) of log2 fold-change of
866  H3K27ac peaks overlapping promoter (TSS -1000bp, +500 bp) of differentially expressed genes
867 (EPZ vs DMSO, adjusted p-value < 0.05) in mESC (top-left) and NPC48h (top-right). The red line
868  shows the ECDF of log2 fold-change of H3K27ac peaks overlapping promoters of upregulated
869  genes upon EPZ treatment, while the blue and black line depicts the same information for
870  downregulated genes and all annotated genes respectively. Lower panel: Empirical cumulative

871  density function (ECDF) of log2 fold-change of H3K4me3 peaks overlapping promoter of
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872  differentially expressed genes (EPZ vs DMSO, adjusted p-value < 0.05) in mESC (bottom-left)
873  and NPC48h (bottom-right). The red line shows the ECDF of log2 fold-change of H3K4me3 peaks
874  overlapping promoters of upregulated genes, while the blue and black line depicts the same
875 information for downregulated genes and all annotated genes respectively. Genes that are
876  transcriptionally affected as a consequence of EPZ treatment show a corresponding gain/loss of
877  H3K27ac and H3K4me3 in their promoters. The epigenetic response is evident in NPC48h, while
878 it is almost absent in mESC.

879 ¢) H3K27ac peaks are depleted in a targeted set of genes in NPC48h upon DOTIL inhibition.
880  Scatterplot showing the association between log2 fold-change of H3K27ac peaks (x-axis) and the
881  expression log2 fold-change of annotated genes (y-axis) upon EPZ treatment for mESC (left,
882  green) and NPC48h (right, blue). A peak is annotated to a gene if the peak overlaps any feature of
883  the gene (promoter-TSS, introns, exons, TTS) or if it is proximal to the TSS/TTS (+ 1kb). Each
884  dot represents a H3K27ac peak. Darker dots represent H3K27ac peaks overlapping differentially
885  expressed genes (adjusted p-value < 0.05) upon DOTIL inhibition. Peaks showing a significant
886 loss of H3K27ac in NPC48h upon EPZ treatment are annotated with the gene symbol of the
887  corresponding overlapping gene.

888  d) Differential H3K27ac peaks annotated to differentially expressed genes upon DOT1L inhibition
889 are preferentially found on intronic and promoter regions. Log2 fold-change of differential
890 H3K27ac peaks (y-axis) overlapping or proximal to differentially expressed genes in NPC48h
891 upon EPZ treatment. Each dot represents a H3K27ac peak. Peaks are colored based on the
892  overlapping genomic feature (blue: TTS, green: exon, yellow: intron, black:promoter-TSS).

893

894
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895 Figure S

896  Transcriptional response to DOT1L inhibition associates with the chromatin state signature
897  of protein coding genes

898 a) Dimensionality reduction (tSNE, perplexity = 30) of the chromatin state signature of protein
899  coding genes for mESC (left, under the green stripe) and NPC48h (right, under the blue stripe).
900 Genes are represented as dots; genes proximal to each other in the tSNE map have similar
901  chromatin states fractions in their promoter and gene body. For each cell type, color-code is based
902  on the most abundant chromatin state present in the promoter region on the left map, while on the
903  right map, color-code is a gradient showing the expression level of each gene (Log TPM). Here, a
904 2D kernel density plot was over-imposed to show the distribution of differentially expressed genes
905 (adjusted p-value < 0.05) on the tSNE map.

906  b) Promoter chromatin state signature is weakly associated with transcriptional deregulation. For
907 mESC (on the left, in green) and NPC48h (on the right, in blue) we show a heatmap summarizing
908 the emission probability of the learned hidden markov model that was used to perform the
909 chromatin segmentation, next to a histogram showing the proportion of differentially expressed
910  genes (adjusted p-value < 0.05) classified according the the most abundant chromatin state present
911  in their promoter region. Next to it, a plot showing the expected log2 fold-change posterior
912  distribution (95% credible interval) of each group of genes sharing the same most represented
913  chromatin state in the promoter, predicted via hierarchical bayesian modelling. Log2 fold-change
914  posterior distributions of states that are not promoter-associated are shaded. For each group of
915  genes sharing the same chromatin state in the promoter region, the expected mean log2 fold-
916  changes in expression is estimated to be quite close to 0, suggesting that a small fraction of genes

917  in each group is transcriptionally affected.
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918

919  Figure 6

920 DOTIL inhibition decreases accessibility of SOX2 target loci in NPC48h

921  a) Left panel: differential motif analysis on ATAC peaks overlapping the promoter of differentially
922  expressed genes upon EPZ treatment in NPC48h. Right panel: differential motif analysis on
923  differentially accessible ATAC peaks upon EPZ treatment in NPC48h (right panel, under the red
924  header). Size and color of each dot is proportional to -log10(p-value) associate with the motif.
925 b) Characterization of dynamic ATAC peaks. Left panel: stacked barplot summarizing the
926  genomic distribution of the 2000 most dynamic ATAC peaks (blue: TTS, green: exon, yellow:
927  intron, black:promoter-TSS). Central panel: scatterplot showing the association between the log2
928  fold-change of dynamic ATAC peaks (x-axis) and the log2 fold-change of genes overlapping or
929  proximal to at least one dynamic ATAC peak (y-axis) upon EPZ treatment in NPC48h. ATAC
930 peaks overlapping enhancer regions are shown in purple. Gene symbols are shown for
931 differentially expressed genes upon DOTIL inhibition. Genes that are associated with dynamic
932  ATAC peaks and are downregulated in both mESC and NPC48h are highlighted in boxes. Top
933  panel: density plot of the accessibility log2 fold-change of ATAC peaks overlapping enhancer
934 upon EPZ treatment, stratified according to genomic annotation. Dynamic ATAC peaks
935 overlapping enhancers tend to lose accessibility upon EPZ treatment and are found on intergenic
936  and intronic regions.

937  ¢) ATAC peaks with reduced accessibility upon DOTIL inhibition are associated with SOX/POU
938  core motif. Left panel: logos of SOX and POU motifs showing highest association with ATAC
939  peaks with reduced accessibility upon EPZ treatment in NPC48h. Right panel: metaprofile of

940 ATAC-seq signal over ATAC peaks with reduced accessibility upon EPZ treatment (ATAC-
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941  Down, left subplot) and over random ATAC regions (background-ATAC, right subplot) for
942  biological duplicates of DMSO and EPZ treated NPC48h. The prediction bands around the mean
943  line show the 95% confidence interval.

944  d) SOX2 preferentially binds in-vivo to regions with reduced accessibility upon EPZ treatment.
945  Metaprofil and heatmap of SOX2 binding profile in brain-derived NPC (45) over open regions
946  losing accessibility (ATAC-Down), gaining accessibility (ATAC-Up) and over unaffected regions
947  (background-ATAC) upon EPZ treatment in NPC48h. Metaprofile and heatmap of the
948  corresponding log2 ratio of EPZ vs DMSO ATAC-seq signal, H3K27ac, H3K4mel and H3K4me3
949  input subtracted coverage of DMSO treated sample.

950 e) Accessible loci with decreased accessibility upon DOTIL inhibition coincide with SOX2
951  binding in Msi2 and Jarid2. Snapshots of Msi2 (top panel) and Jarid2 (bottom panel) loci, showing
952  normalized coverage of H3K79me2, H3K27ac, H3K4mel, ATAC-seq for DMSO and EPZ treated
953  NPC48h, and SOX2 coverage in brain-derived NPC (45). Highlighted regions show the genomic
954  location of SOX2 peaks.

955

956  Supplementary 1

957  Neuronal differentiation correlates with relative transcriptional and epigenetic activation
958 a) Graph showing the contribution of each group of features (most variable 2kb bins for each
959  histone modification) to the first and second dimension of the multiple factor analysis in Figure
960  1b, lower panel.

961  b) Volcano plot summarizing differential expression analysis for the contrast NPC48h vs mESC.
962  Genes are color-coded according to the -logl0(adjusted p-value), genes with decreased expression

963 in blue and with increased expression in red. HDAC: histone deacetylases; HAT: histone
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964  acetyltransferase. The dotted lines denote the thresholds used in this study (abs(log2 fold-
965 change)>1, adjusted p-value<0.01).

966  c¢) Distribution of H3K79me2 and H3K36me3 normalized coverage (relative log expression (RLE)
967  normalization on background regions), computed over 3kb window downstream of TSS of protein
968 coding genes and 3kb upstream of TTS of protein coding genes respectively, in mESC (green) and
969  NPC48h (blue). TSS: transcription start site, TTS: transcription termination site.

970 d) Heatmap showing the log2 fold-change (NPC48h vs mESC) of histone modifications
971  (H3K4me3, H3K27ac, H3K4mel: narrow promoter (TSS +1kb); H3K79me2, H3K27me3,
972  H3K9me3: extended promoter (TSS -1kb,+3kb); H3K36me3: transcription termination site (TTS
973 - 3kb,+0.5kb)) and the log2 fold-change in expression (NPC48h vs mESC) of the corresponding
974  gene. We show the top 1000 genes with increased and decreased expression.

975 e) Model selection. We employ the Bayesian information criteria (BIC) to select the model with
976  minimal BIC score among 5 multiple linear regression models with different complexity (m_0:
977 H3K27ac, H3K36me3, H3K79me2; m 1: H3K27ac, H3K36me3, H3K79me2,
978 H3K79me2:H3K27ac, m 2: H3K27ac, H3K36me3, H3K79me2, H3K9me3, H3K27me3,
979 H3K4mel, H3K4me3, m 3: H3K27ac, H3K36me3, H3K79me2:H3K27ac; m_4: H3K36me3,
980 H3K79me2; m_5: H3K27ac, H3K36me3).

981

982  Supplementary 2

983  Global differences in H3K79me2 may be explained by differences in proliferation rate while
984  local increase of the mark is detected on genes critical for neuronal differentiation

985  a) This plot generalizes the gene-centric analysis of Figure 2c. Locus-specific estimation of global

986 log2 fold-changes of each histone modification over each mESC chromatin state segment (E1 to
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987  EIl5), genome-wide. H3K27ac and H3K79me3 are the only marks to show consistent changes
988  across all chromatin states.
989  b) Proliferation assay of mESC and NPC48h after EAU pulse labeling and subsequent FACS-based
990 quantification. Percentage of EAU positive nuclei over the total number of intact nuclei (y-axis)
991  after 1h, 2h, 3h and 24h incubation (x-axis), for mESC (green) and NPC48h (blue), n=3.
992  ¢) Gene ontology term enrichment analysis for each of the five clusters of genes of Figure 2d. The
993  size of each dot is proportional to the gene ratio for each significant GO term, while the color maps
994  the adjusted p-value for the over-representation test.
995
996  Supplementary 3
997 DOTIL inhibition induces cell-type specific transcriptional changes
998 a) Top panel: hierarchical clustering of mESC (green, left) and NPC48h (blue, right) samples
999  based on the euclidean distance of the rlog transformed transcriptome. Darker shades are used for
1000 closer samples. Lower panel: principal component analysis of mESC (left, green) and NPC48h
1001 (right, blue) samples based on the top 500 most variable genes (rlog transformed counts).
1002  b) Left panel: intersect between EPZ-induced differential expression in mESC and NPC48h (Venn
1003  diagram on the left). Right panel: heatmap showing the log2 fold-change in expression of the 58
1004  common differentially expressed genes in mESC and NPC48h upon DOTI1L inhibition.
1005 c¢) Gene ontology term enrichment analysis for differentially expressed genes in mESC (left panel)
1006  and NPC48h (right panel) induced by EPZ treatment with respect to DMSO control. The number
1007  of genes of the upregulated and downregulated set contributing to the test is shown in parenthesis.

1008  The size of each dot is proportional to the gene ratio for each significant GO term, while the color
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1009 maps the adjusted p-value for the over-representation test. deg up: differentially upregulated
1010  genes; deg_down: differentially downregulated genes.

1011

1012  Supplementary 4

1013  Inhibition of DOT1L does not affect the overall epigenome and transcriptome

1014  a) Top panel: emission probability of the learned hidden markov model for mESC (left), next to a
1015  heatmap showing the enrichment for the transition of each state in the DMSO segmentation
1016  towards each state in the EPZ segmentation (enrichment score >= 1.9 is annotated). Lower panel
1017  shows the same analysis for NPC48h.

1018  b) Simple linear regression of differential expression induced by EPZ treatment compared to
1019  control on differential H3K79me2 (estimation based on RELACS data on a 3kb window
1020  downstream of TSS), for mESC (left panel, green) and NPC48h (right panel, blue). The size of
1021  each dot is proportional to the H3K79me2 density. A darker shade is used for differentially
1022  expressed genes (DEG) upon DOTI1L inactivation.

1023  ¢) MA plot showing log10 of the mean count (x-axis) vs expression log2 fold-change (y-axis) as
1024  computed by DESeq2, for each gene for the contrast EPZ vs DMSO treated cells. Genes
1025  significantly increasing and decreasing in expression (adjusted p-value < 0.05) are shown in red
1026  and blue respectively. Horizontal violin plots show the LoglO0 mean count distribution of
1027  significantly upregulated and downregulated genes. Log2 fold-change are shrunken using apeglm.
1028  MA plot of mESC is shown on the left, while MA plot of NPC48h is shown on the right. Above
1029  each MA plot,

1030

1031
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1032  Supplementary S

1033  Presence of H3K79me?2 is not predictive for decreased accessibility upon EPZ treatment and
1034  altered H3K79me2 do not correlate with altered H3K27ac on enhancer regions

1035 a) Principal component analysis of rlog transformed ATAC peaks coverage (left panel) and
1036  ranking of ATAC peaks based on the absolute value of their PC1 loadings (right panel). The 2000
1037  most dynamic peaks that were selected for further analysis are shown as red dots.

1038  b) Rug plot showing the distribution of H3K79me2 density on intergenic and intronic ATAC peaks
1039  with decreased accessibility upon EPZ treatment (ATAC-Down, blue), with increased accessibility
1040  upon EPZ treatment (ATAC-Up, red), and with no effect by EPZ treatment (background-ATAC,
1041  grey). The mean of each group is represented by the highest spike. To test for significant
1042  differences in the mean, we used the non-parametric Mann-Whitney U-test. N.S : not significant;
1043  *** :p-value <0.001.

1044  ¢) Barplot showing the percentage of H3K79me2 positive protein coding genes over the total
1045 number of protein coding genes annotated with at least one intronic ATAC peak showing
1046  decreased accessibility (ATAC Down introns), increased accessibility (ATAC Up introns) and
1047  non-dynamic accessibility (background-ATAC introns) upon EPZ treatment with respect to
1048  DMSO control in NPC48h.

1049  d) Metaprofiles of H3K27ac over enhancers regions, stratified on H3K79me2 density. From left
1050  to right, we show H3K27ac profile on ATAC Down regions with high H3K79me2 (H3K79me2
1051  density > 45), on ATAC enhancers with low H3K79me2 (H3K79me2 density < 45), and on
1052  random ATAC regions as background. Regions are aligned on the ATAC peak center.

1053

1054
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