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Abstract

SWATH-mass spectrometry (MS) enables accurate and reproducible proteomic profiling in
multiple model organisms including the mouse. Here we present a comprehensive mouse
reference spectral library (MouseRefSWATH) that permits quantification of up to 10,597
proteins (62.2% of the mouse proteome) by SWATH-MS. We exploit MouseRefSWATH to
develop an analytical pipeline for species-specific deconvolution of proteomic alterations in
human tumour xenografts (XenoSWATH). This method overcomes the challenge of high
sequence similarity between mouse and human proteins, facilitating the study of host
microenvironment-tumour interactions from ‘bulk tumour measurements. We apply the
XenoSWATH pipeline to characterise an intraductal xenograft model of breast ductal
carcinoma in-situ and uncover complex regulation of cell migration pathways that are not
restricted to tumour cells but also operate in the mouse stroma upon progression to invasive
disease. MouseRefSWATH and XenoSWATH opens new opportunities for in-depth and
reproducible proteomic assessment to address wide-ranging biological questions involving

this important model organism.
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Introduction

Mass spectrometry (MS) has become an essential tool for contemporary proteomic research
in life sciences. Conventional data-dependent acquisition (DDA) mode, where a fixed number
of the most abundant precursor ions in survey scans are automatically selected for
fragmentation, enables the identification of thousands of proteins in a single MS experiment.
However, the stochastic nature of precursor ion selection in DDA leads to low reproducibility
in peptide identification between experimental runs [1, 2]. Sequential window acquisition of all
theoretical mass spectra (SWATH-MS) or data-independent acquisition mass spectrometry
(DIA-MS) is a next-generation label-free quantification method that enables highly
reproducible peptide identification and more accurate quantification in large-scale proteomic
analyses across multiple experiments [3-5]. This method is based on the periodic
fragmentation of all precursor ions in wide and adjacent isolation windows that cover the entire
mass to charge ratio (m/z) range measured [3]. In this manner, all precursor ions generated
from the sample under investigation are fragmented and their fragmentation spectra acquired
for subsequent in silico analysis. These quantitative digital proteome maps have been shown
to have wide applications in medical research such as the discovery of potential biomarkers
and therapeutic targets [6-10] as well as tumour proteotyping for cancer stratification and

classification [11, 12].

Key to the success of SWATH-MS is the use of retention-time calibrated spectral libraries to
identify and quantify peptides from the complex fragment ion mass spectra encoded within
digital proteome maps [13]. While most published SWATH-MS studies have utilised study-
specific experimentally derived spectral libraries, this approach is time consuming and is prone
to wide variation between laboratories due to the lack of standardisation in DDA data
acquisition and library generation. Such variation results in study-specific bias and poor inter-
laboratory reproducibility. The recent development of the algorithms that control for false
discovery rate (FDR) in SWATH-MS datasets has opened up the possibility of building large
reference spectral libraries that can be readily shared by the community, increasing data

3
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reproducibility across laboratories and accelerating SWATH-MS experiments without the need

to generate study-specific spectral libraries [14, 15].

Several such large reference spectral libraries have been built and deposited into repositories
such as SWATHAtlas (www.SWATHatlas.org) including libraries for human [15], fruit fly [16],
zebrafish [17] and yeast [18]. There is however currently no publically available
comprehensive mouse reference spectral library. The mouse as a model organism has and
continues to be extensively used in developmental biology and medical research due to the
complex genetics and physiological systems that mammals share. The array of innovative
genetic strategies available for engineering mice has revolutionised our understanding of
multiple human diseases including cancer, diabetes, autoimmune disease and heart disease
amongst others. Furthermore, immunocompromised mouse models have been used for more
than a decade as hosts for human tumour (both cell line and patient-derived) xenografts which
have served as an essential tool to investigate the factors that drive carcinogenesis as well as
to evaluate cancer therapeutics [19]. Developing a comprehensive mouse reference spectral
library will facilitate the application of SWATH-MS to address key research questions involving
this widely used model organism. A number of study-specific mouse spectral libraries have
previously been reported [20-23], for instance a spectral library that is comprised of the mouse
immunopeptidome containing 1573 peptides presented by MHC class | molecules [20] and a
spectral library reported by Williams et al. which is comprised of 5152 proteins (30% of mouse
proteome) generated from five organs [21]. Notably, in the aforementioned human tumour
xenograft models, there is currently no established method to deconvolute host (mouse)
versus tumour (human) proteomic alterations from ‘bulk tumour’ proteomes which has limited
our ability to study the role of the tumour microenvironment in driving tumour initiation and

progression.

In this study, we present a comprehensive mouse reference spectral library
(MouseRefSWATH) generated from 15 distinct mouse organs and cellular samples.

4
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MouseRefSWATH was built from 254 individual MS experiments and is composed of
transitions for 167,138 proteotypic peptides from 10,597 proteins representing 62.2% of
manually validated mouse protein-encoding genes (Swissprot database). The performance of
MouseRefSWATH was evaluated in two publicly available SWATH-MS datasets which
showed both qualitative and quantitative reproducibility when compared to published study-
specific spectral libraries. We further report the development of a novel application of
MouseRefSWATH for SWATH-MS-based mapping of species-specific temporal proteomic
alterations in an orthotopic tumour xenograft model of breast ductal carcinoma in situ (DCIS).
Utilising this approach, we reveal for the first time, simultaneous temporal regulation of cell
migration pathways in both the host mouse mammary gland and human tumour cells during
the course of DCIS to invasive breast cancer (IBC) progression. This XenoSWATH pipeline
for species-specific deconvolution of ‘bulk tumour’ proteomics data provides a useful tool with
broad applications for the analysis of host microenvironment-tumour interactions in xenograft
models without the need for prior separation of host and tumour cell populations. The MS raw
data and MouseRefSWATH spectral library for this study is available via ProteomeXchange

with identifier PXD017209.

Results

Proteomic analysis of murine tissue and cells.

To maximize coverage of the mouse proteome in the reference specitral library, we performed
DDA proteomic analysis of a comprehensive range of 7 murine organs comprising heart, brain,
lung, liver, kidney, lymph node and mammary gland (Figure 1 and Table 1). In addition, we
undertook proteomic profiling from primary CD8* T-lymphocytes (non-stimulated and
activated) as well as immortalised murine cell lines including normal (NF1) and cancer-
associated (CAF1) fibroblasts [24] and commercially available cell lines NIH-3T3, C2C12, 4T1
and Ba/F3 of diverse tissue origin (Table 1). As outlined in the workflow shown in Figure 1,
extracted proteins from each sample type were digested by trypsin and the resulting peptide
mixture was subjected to offline fractionation in the first dimension either by strong cation

5
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exchange (SCX) chromatography or reverse phase chromatography in high pH (HpH-RP)
(Table 2). To calibrate the chromatographic retention time for individual DDA runs, prior to
liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis each fraction was
spiked with the iRT calibration standard that contains mixture of 11 synthetic peptides [13, 25].
Peptides from each fraction were subsequently analysed by LC-MS/MS in DDA mode and the
acquired data were processed by SpectroMine [26, 27]. An average of between 3200-6600

proteins were identified across the different samples as shown in Table 2.

Building the MouseRefSWATH spectral library

We built the mouse reference spectral library (MouseRefSWATH) from the datasets listed in
Table 2 by employing the SpectroMine software (Figure 1). Only unique protein-specific
(proteotypic) peptides were used to generate the library which comprise 10,597 proteins
(Figure 2A), representing 62.2% coverage of manually annotated mouse protein-coding genes
(Swissprot, 26/10/2018). Comparative analysis demonstrates a superior proteome coverage
versus published spectral libraries of other higher eukaryotic organisms (human — 51% [15]
and zebrafish — 40.4% [17]) (Figure 2B). Figure 2C shows the distribution of unique peptides
per protein group with 90.6% of proteins represented by >1 unique peptide in the spectral
library and 46.7% of proteins being represented by >10 unique peptides. The contribution plot
(Figure 2D) shows that 1949 proteins (18.4%) in the MouseRefSWATH library were detected
in all analysed sample types used in the generation of the library. The brain contributed the
highest number of proteins (551, 5.2%) to the MouseRefSWATH library, followed by T cells

(165, 1.6%) and lung (127, 1.2%).

Evaluating the performance of the MouseRefSWATH spectral library

To demonstrate the utility of the MouseRefSWATH library and benchmark its performance
against study-specific libraries generated as part of published SWATH-MS studies, we applied
the reference spectral library to 2 publicly available SWATH-MS datasets focused on
mitochondrial [21] and hippocampal [22] proteins (Figure 1). Each dataset was analysed using

6
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either the original study-specific library generated by the authors or the MouseRefSWATH

library.

In a recent mitoproteome study undertaken by Williams et al. [21], a study-specific library
based on DDA analysis of both total tissue lysates and mitochondria-enriched samples was
utilised. We sought to assess the extent to which the MouseRefSWATH library was able to
both qualitatively and quantitatively recapitulate the data generated by the study-specific
library in the published study. The SWATH-MS data of mitochondrial proteins was downloaded
from ProteomeXchange (PXD005044) and analysed using both libraries (Figure 2E & F). The
Williams et al. experimental dataset was generated from mitochondria enriched from 5 distinct
murine tissues (brown adipose tissue (BAT), heart, liver, quadriceps, brain,) from 5-8 animals.
Qualitatively, the MouseRefSWATH library identified 91.1% (640 proteins) of the
mitoproteome (Figure 2E) found using the study-specific library with an additional 26 proteins
identified specifically by the MouseRefSWATH library. An assessment of the quantification of
the 640 overlapping proteins showed a good correlation between both libraries with Pearson’s

correlation coefficient r values ranging between 0.92 — 0.95 (Figure 2F).

We undertook a similar comparative analysis on the study by von Ziegler et al. [22] where the
basal mouse hippocampal proteome was analysed utilising a study-specific spectral library
built from DDA data generated from the mouse hippocampus. For this analysis, the SWATH-
MS experimental data of hippocampal area CA1 and CA3 from 6 different animals were
analysed (Figure 2G & H). The MouseRefSWATH library identified 80.2% (943 proteins) of
hippocampus proteome found using the study-specific spectral library (Figure 2G). The
MouseRefSWATH library further identified 211 more proteins compared to the hippocampus-
specific spectral library. Good correlation in protein quantification between the
MouseRefSWATH and study-specific library for the overlapping 943 proteins was observed
with Pearson’s correlation coefficient r values ranging between 0.78-0.81 across the 6 mice in
the experiment (Figure 2H). Taken together, our analysis demonstrates that applying the

7
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MouseRefSWATH to SWATH-MS datasets is routinely able to identify >80% of proteins
identified using study-specific libraries with comparable quantification, highlighting its broad
utility as a general reference library applicable for use in multiple mouse SWATH-MS datasets

without the need to generate study-specific libraries.

Developing the XenoSWATH analysis pipeline for deconvolution of mouse and human
proteins in tumour xenograft SWATH-MS data

Mouse xenograft studies are one of the cornerstones of modern cancer research where
human tumour cells are typically grafted into a mouse host either subcutaneously or
orthotopically as a means to evaluate oncogene and tumour suppressor gene function or
investigate the therapeutic effects of drugs [28, 29]. In these models, there are complex
interactions between the human tumour cells and the host microenvironment which play
important roles in driving cancer progression and therapy response [30-32]. There is currently
no means to distinguish proteins of human and mouse origin from ‘bulk tumour’ proteomics
data generated by SWATH-MS, which presents a key barrier in our ability to undertake deep
characterisation of mechanisms of tumour-microenvironment interactions in vivo. Previous
studies have attempted to tackle this challenge by separating human tumour and murine host
cells utilising immunoaffinity cell enrichment strategies prior to MS analysis [33]. However,
such methods are labour intensive, introduce sample preparation biases and disrupt the in

situ architecture and cellular interactions important for driving tumour biology.

To address this challenge, we developed a novel pipeline (XenoSWATH) to deconvolute
species-specific proteomic profiles from SWATH-MS data obtained in mouse xenograft
experiments. In this XenoSWATH workflow (Figure 3), both the MouseRefSWATH library as
well as a previously published pan-Human reference library [15] were used in the Spectronaut
software [14]. In the first step of data processing, peptides were identified by searching the
acquired SWATH-MS data against either the MouseRefSWATH or pan-Human library. Both
libraries contain proteotypic peptides which can distinguish individual proteins, however given

8
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that humans and mice share ~70% of protein coding sequences [34], not all of these
proteotypic peptides are also species-discriminating. Therefore to selectively quantify human
and mouse proteins from ‘bulk tumour xenograft’ proteomic datasets, we focused on peptides
that are both protein- and species-discriminating (see Figure 3 for example). To achieve this,
rather than using individual FASTA files comprising in silico digested peptides for either human
or mouse proteins, we instead manually combined both files into a single FASTA file for
peptide quantification. This modification to the data processing pipeline enables Spectronaut
to compare sequences of the identified peptides from either the mouse or human reference
spectral library with the sequences of the in silico digested peptides within the combined
FASTA file; and filter out any peptides that are shared between human and mouse. This leads
to the retention of only peptides that are both proteotypic and species-discriminating for
peptide quantification. The resultant output from this XenoSWATH pipeline is two datasets -

one comprising entirely of murine proteins and the other of human proteins.

SWATH-MS analysis and deconvolution of tumour (human) and host mammary gland (mouse)
proteomic alterations in a xenograft model of DCIS progression.

We applied the XenoSWATH deconvolution pipeline to quantify the species-specific proteomic
alterations associated with DCIS progression to IBC in an orthotopic mouse intraductal breast
DCIS (MIND) xenograft model. The MIND model is based on the injection of human breast
DCIS cells such as the MCF10DCIS.com cell line into the mouse mammary duct (Figure 4A)
[35-37]. Compared to the other breast cancer xenograft models such as mammary fat pad
injection, the MIND model has been shown to better recapitulate the mammary gland
microenvironment [36], a key regulator of breast cancer progression [31, 38], and is therefore
a more clinically relevant model for this disease. In our experiments, MCF10DCIS.com-Luc
cells were injected intraductally into the mammary glands of mice where they form tumours
that faithfully model the process of DCIS progression over the course of 10 weeks (Figure 4B-
D) [35]. Tumours at 4 weeks post injection (referenced as 4w, number of biological replicates
n=7) mimic non-invasive DCIS lesions, while after 6 weeks of growth (6w, n=7), tumours start

9
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microinvading into the surrounding tissue and finally progress to full IBC at 10 weeks (10w,
n=8) post injection (Figure 4D). There is a significant increase in size of the 10w lesions
compared to the 4w (p=0.0012) and 6w (p=0.0059) lesions but no significant difference in
tumour size between 4w and 6w lesions (p=0.317) (Figure 4B-C) when most lesions at 6w

remain within the duct and only a few cells are microinvading out of the ducts.

Whole mammary glands with tumour (n=4) were collected after 4, 6 and 10 weeks post
injection and subjected to SWATH-MS analysis (Figure 4A). When processed through the
XenoSWATH pipeline (Figure 3), we successfully quantified 2,086 murine and 1,177 human
proteins in all samples across the three time-points (Table S1). Our analysis showed no
significant differences in protein expression levels in both human and murine datasets
between the 4w and 6w specimens, indicating that the non-invasive DCIS lesions (4w) and
tumours with microinvasion (6w) harbour similar proteomic profiles at this level of resolution.
Comparing the 4w and 6w data with the 10w lesions led to the identification of 327 murine and

247 human proteins that showed significant changes in protein expression (Table S2).

Gene set enrichment analysis (GSEA) was performed to identify functional ontologies that
were enriched in the murine and human proteomic datasets upon DCIS progression to IBC
(Figure 4E and Table S3). This analysis showed a number of ontology networks that were
almost exclusively enriched in either in the human tumour cells (cell death & apoptosis, protein
localisation to membrane and epithelial cell development) or the mouse stroma (cell adhesion,
actin filament organisation and innate immune response) (Figure 4F). Notably, we identified
16 overlapping ontologies that were upregulated in both species, the majority of which were
associated with increased cell migration (Figure 4E-F). An assessment of the upregulated
proteins in a subset of these overlapping ontologies revealed a complex regulation of protein
networks in both the human and mouse compartments. For instance, within the networks
regulating cell motility and locomotion (Figure 4F), specific proteins were upregulated in the
tumour cells only [e.g macrophage inhibitory factor (MIF) and peptidylprolyl isomerase A

10
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(PP1A)], host cells only [e.g. S100a8 and S100a9]; or in both compartments [e.g. Galectin-3
(LGALS3), Fibronectin (FN1), Ezrin (EZR), CD44 antigen (CD44)]. Employing the
deconvolution pipeline, our analyses demonstrates for the first time that the temporal
upregulation of cell migration pathways consistent with DCIS to IBC progression is not
restricted only to the tumour cells but is found to also operate in the host tumour
microenvironment. This proof-of-principle experiment demonstrates the utility of our
XenoSWATH deconvolution pipeline for the comprehensive mapping of temporal alterations
in the tumour versus host proteome in tumour xenograft models and its ability to capture

relevant tumour biology for subsequent investigation.

Discussion

In this study, we have built the first comprehensive mouse reference spectral library
(MouseRefSWATH) for SWATH-MS applications. The MouseRefSWATH library is generated
from proteomic datasets acquired across wide range of murine tissue samples, primary cells
and cell lines which facilitates versatile use in proteomic profiling of various sample types. We
demonstrate its utility in two publicly available SWATH-MS datasets where the use of
MouseRefSWATH identified and accurately quantified >80% of the proteins compared to
study-specific libraries with a Pearson’s correlation coefficient for protein quantification of at
least 0.78. In both datasets, the MouseRefSWATH library further identified new proteins which
would have otherwise not been possible with study-specific libraries. In addition to removing
the need to generate study-specific libraries for future murine SWATH-MS experiments, the
benefits of utilising the larger MouseRefSWATH library include the fact that individual proteins
are represented by a higher number of precursor ions resulting in better accuracy and higher

confidence in protein quantification.

We have also extended the use of the MouseRefSWATH library and developed a novel
analysis pipeline called XenoSWATH that enables deconvolution of murine and human
proteins from ‘bulk tumour’ xenograft proteomic measurements through the identification of

11
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species-discriminating proteotypic peptides. The lack of tools to perform a deep analysis of
tumour (human) and host (mouse) molecular alterations in situ have limited our ability to study
the role of the tumour microenvironment in driving tumour progression. In silico approaches
have been developed to deconvolute mouse and human reads in next generation DNA and
RNA sequencing data derived from tumour xenografts but such approaches do not yet exist
for proteomic data analysis [39]. The only published application of SWATH-MS in a xenograft
model thus far has focused on measuring the murine stromal component by pre-enrichment
of mouse cells with immunoaffinity chromatography while completely omitting the human
tumour cells [33]. XenoSWATH presents a paradigm shift in the ability to distinguish and
comprehensively map proteomic alterations in both the human and mouse compartments and
provides a new approach to investigating tumour cell-microenvironmental interactions in
cancer initiation, progression and therapy response. With the recent development of human
tumour xenograft models in immunodeficient zebrafish [40], we anticipate that XenoSWATH
can be readily extended to the study of host and tumour cell responses in these models by

similarly utilising the zebrafish reference spectral library available in SWATHAtlas [17].

As proof-of-principle, we undertook a quantitative proteomic analysis in the MIND model and
provide the first characterisation of host stroma and tumour cell proteomic alterations that
occur during DCIS to IBC progression. Our analysis reveal complex network alterations in both
compartments, and while the human tumour cells show an expected upregulation of migration
pathways during progression to invasive disease, we make the unanticipated discovery that
the mouse stroma also displays an enrichment of cell migration and motility networks upon
DCIS progression. In the mouse dataset, the highest observed increase in migration-
associated protein expression levels between early (4w & 6w) versus late (10w) timepoints
were in the S100a8 and S100a9 proteins (Table S2). These two proteins together form the
calprotectin complex and stromal cells secreting calprotectin have been previously observed
in the microenvironment of pancreatic cancer [41]. Additionally S100a8 has been reported to
increase the migration and proliferation of colorectal and pancreatic cancer cells in vitro [41]
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and has also been associated with metastasis formation in breast cancer [42]. MIF was found
to be exclusively upregulated in the human DCIS.com cells at 10 week post-injection but not
in the mouse stromal cells. Increased levels of MIF has been reported in many cancer types
including pancreatic cancer [43], hepatocellular cancer [44] or head and neck cancer [45].
Experiments with murine breast cancer cell line 4T1 have shown that overexpression of MIF
promotes tumour metastasis [46] and protects cancer cells from immunogenic cell death [47].
Finally, we determine that LGALS3, CD44, FN1 and EZR were upregulated in both tumour
and host datasets. These proteins have been extensively shown in published literature to
regulate cytoskeleton remodelling, epithelial-mesenchymal transition and increased cell
motility [48-50], all of which are important in breast cancer progression to invasive disease.
These examples highlight the utility of this deconvolution pipeline in dissecting the individual
roles of the tumour cells and the associated stroma in cancer biology. This dataset serves as
a rich resource of tumour and microenvironmental proteins for future functional investigation,
candidate biomarkers for stratifying DCIS patients with increased risk of progressing to IBC,

as well as targets for drug discovery for delaying DCIS progression.

There are several limitations to the XenoSWATH pipeline. Because the method focuses on
quantifying peptides that are both proteotypic and species-discriminating, a significant number
of proteins with high sequence similarity between mouse and human are filtered out and lost
during the process, resulting in the quantification of a reduced subset of the proteome. Despite
this limitation, we are still able to readily identify key pathways that are operating in both the
human and mouse compartment. Given that the stroma is composed of a number of different
cell types including fibroblasts, endothelial cells and immune cells; as with other population-
level based measurement methodologies, the XenoSWATH pipeline is unable to resolve the
individual contribution of specific stromal cell types to the aggregate proteomic data. Extending
in silico transcriptomic deconvolution strategies that are currently being used to estimate
stromal cell types to proteomic data may provide better resolution and address this
shortcoming in future [51].
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Collectively, our study has generated the MouseRefSWATH comprehensive mouse reference
spectral library as a standardised community resource for use in future mouse SWATH-MS
studies, which will not only remove the need for the generation of study-specific libraries but
will also improve inter-laboratory reproducibility. We further present a new XenoSWATH
analysis pipeline for species-specific deconvolution of xenograft proteomic data which opens
new possibilities for the in-depth assessment of tumour-host interactions in murine xenograft
models. Moving forward, we anticipate that these tools will have broad applications in

addressing key biological research questions involving this widely used model organism.

Methods

Murine organs, primary cells and cell lines

Isolation of T-cells was carried out under Swiss animal experiment regulations. All other animal
work was carried out under UK Home Office project and personal licenses following local
ethical approval from the Institutional Animal Ethics Committee Review Board and in
accordance with local and national guidelines. Mammary gland, liver and lung organs were
dissected from 14-week-old to 18-week-old virgin female SCID Beige mice. Brain, heart and
kidney organs were dissected from 6 months old female NCR nude mice. Lymph nodes were
dissected from 2-4 months old C57BL/6N male and female mice. All tissue specimens were
briefly washed in cold phosphate-buffered saline (PBS) to remove excess blood and

immediately snap frozen in liquid nitrogen and stored at -80 °C.

Primary CD8+ effector T-cells were isolated from splenocytes of OT-I mice and cultured in
Roswell Park Memorial Institute (RPMI) medium with 10% foetal bovine serum (FBS) (Gibco),
1% penicillin-streptomycin and 0.1% B-mercaptoethanol. In order to activate OT-I CD8* T-
cells, OT-I splenocytes were treated with 1 pg/ml OVA257-264 peptides in the presence of 10
ng/ml IL-2 for 3 days while the non-stimulated resting CD8* T-cells were collected after
culturing with IL-2 alone. Immortalized normal (NF 1) and cancer-associated fibroblasts (CAF1)
[24] were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10%
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FBS, 1x GlutaMAX (Gibco), 0.5% penicillin-streptomycin and 1x insulin-transferrin-selenium
A (ITS-A) (Gibco). NIH-3T3 cells were cultured in DMEM supplemented with 10%
FBS/100units/ml penicillin/100mg/ml streptomycin. C2C12 and 4T1 cells were cultured in
RPMI supplemented with 10% FBS/100units/ml penicillin/100mg/ml streptomycin. Ba/F3 cells
were cultured in the same media as 4T1 cells with the addition of 5ng/ml IL-3. All cells were

cultured in 95% air/5% CO2 atmosphere at 37°C.

Tissue and cell sample processing

Tissue samples were cut into small pieces and placed into precooled tubes. High salt
homogenization buffer consisting of 50mM Tris-HCI (pH 7.4), 0.25% 3-[(3-
Cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate (CHAPS, Sigma), 25mM
EDTA, 3M NaCl (Sigma) and 10 KIU/ml aprotinin was added at 4 ml/g of tissue and samples
were homogenized by 2 x 30 s pulses on ice with a LabGEN125 (Cole-Parmer) homogenizer.
Homogenized samples were rotated for 20 min at 4 °C. Proteins in homogenate were acetone
precipitated by mixing with 4 volumes of ice cold acetone, vortexed and incubated 2 h at -
20 °C. Samples were spun for 15 min at 15,000 rpm, 4 °C, supernatant removed and resulting
pellet was resuspended in 0.3 ml of urea buffer consisting of 8M urea (Sigma), 100 mM
ammonium bicarbonate (Sigma). Protein concentration in samples was measured using the
Pierce 660nm Protein assay (Thermo Scientific) as per manufacturer’s instructions and stored

at -80 °C until further processing.

Cells were harvested and lysed in 8 M urea buffer and protein concentration was measured
by Pierce BCA assay (Thermo Scientific) as per manufacturer’s instructions. Cell lysates were

stored at -80 °C until further processing

For each sample lysate, 200 ug of total protein was reduced with 20mM dithiothreitol (Sigma)
at 56 °C for 40 min and alkylated by 30mM iodoacetamide (Sigma) at room temperature for
25 min in the dark. Samples were diluted to a final concentration of 2M urea, 100mM
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ammonium bicarbonate and digested at 37 °C overnight with 4 ug of sequencing grade trypsin
(Promega). Digestion was stopped by acidification to pH<4 with trifluoracetic acid (Sigma) and
resulting peptides were desalted on SepPak C18light (Waters) cartridges as per
manufacturer’s instructions. Desalted peptides were dried in a SpeedVac concentrator and

stored at -20 °C until fractionation.

Fractionation by strong cation exchange (SCX) chromatography

Dried peptides were resuspended in 100 ul of buffer SCX-A consisting of 10mM NH,COOH
(Sigma) in 20% acetonitrile (Thermo Fisher), pH 2.7, vortexed, sonicated for 5 min and spun
at 15,000 rpm for 1 min. The supernatant was loaded on a 2.1 x 100 mm Polysulfoethyl A
column with 5 ym, 200 A particles (PolyLC Inc.) and eluted with buffer SCX-B (500mM
NH4COOH in 20% acetonitrile, pH 2.7) using a gradient of 0-10% of B in 2.5 min, 10-50% of
B in 20 min, 50-100% of B in 7.5 min and 100% of B for 10 min. Twelve fractions were manually
collected over 39 min with fraction 1 collected from 0 to 12 min and fraction 12 from 32 to 39
min. The remaining 10 fractions were collected at 2 min intervals between 12 to 32 min. All

SCX fractions were dried in a SpeedVac concentrator.

Fractionation by high pH reverse phase (HpH RP) chromatography

Dried peptides were resuspended in 100 ul of buffer HpH-A (0.1% NH4OH), vortexed,
sonicated for 5 min and spun at 15,000 rpm for 1 min. The supernatant was loaded on a 2.1
x 150 mm XBridge BEH C18 column with 5 ym, 130 A particles (Waters) and eluted with buffer
HpH-B (0.1% NH4OH in acetonitrile) using a linear gradient of 0-50% B over 60 min. Fractions
were automatically collected between 5 and 50 min every 30 s into 96 well plate and fractions
were pooled into 12 fraction (columns pooled) for 3T3 cells or 8 fractions (rows pooled) for

4T1, BaF3 and C2C12 cells. Pooled fractions were dried in a SpeedVac concentrator.
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DDA MS data acquisition

All fractions were resuspended in 20 ul of buffer A (2% acetonitrile, 0.1% formic acid) and
peptide concentration was measured using the 280 nm NanoDrop assay. 1 ug of total peptide
was analysed in DDA mode on an Agilent 1260 HPLC coupled to a TripleTOF 5600+ mass
spectrometer equipped with NanoSource lll. Each fraction was spiked with 0.1 ul of iRT
calibration mix (Biognosys, AG) and loaded onto a 0.3 x 5 mm ZORBAX C18 (Agilent
Technologies) trap column. Peptides were separated on a 75 pm x 15 cm analytical column
packed with Reprosil Pur C18AQ beads, 3 ym, 120 A (Dr. Maisch, GmbH) with a manually
pulled integrated spraying tip. A linear gradient of 2-40% of buffer B (98% acetonitrile, 0.1%
formic acid) in 90 min and flow rate of 250 nl/min was used for peptide separation. All data
were measured in positive mode. Full profile MS scans were acquired in the m/z mass range
of 340-1500 with 250 ms filling time, MS/MS scans for the 20 most intense ions with charge
state from 2+ to 5+ were acquired in m/z mass range of 280-1500 with 100ms filling time.

Dynamic exclusion of fragmented ions was set to 12 s.

DDA MS data processing and MouseRefSWATH reference spectral library generation

All acquired DDA datasets were searched by SpectroMine (ver 1.0.21621.7 Sapphire)
software (Biognosys AG) against a Swissprot mouse database (downloaded on 26/10/2018)
with added iRT peptide sequences. Carbamidomethylation of cysteines was set as a fixed
modification, oxidation of methionine and proline, deamidation of glutamine and asparagine,
acetylation of protein N-terminus were set as variable modifications. A maximum of 2 missed
cleavage sites were allowed during the search. False discovery threshold on peptide and

protein level was set to 1% to filter search results.

To generate final reference spectral library, retention times in each run were individually
calibrated using iRT calibration peptides. Runs with low result of calibration fit (R?<0.8) were
removed. To avoid inflation of FDR during the library generation from multiple datasets,
Search Archives of all datasets were combined in SpectroMine and the MouseRefSWATH
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reference spectral library was built using following the parameters: minimum 3 and maximum
6 transitions for each precursor, library-wide protein and peptide FDR threshold of 1%. The

MouseRefSWATH libraries is deposited in ProteomeXchange with identifier PXD017209.

Comparative analysis of publically available SWATH-MS data

Publicly available datasets (PXD006382, PXD005044) were downloaded from data repository
via the ProteomeCentral portal [52] and analysed by Spectronaut (version 13.6.190905)
software (Biognosys AG). Either the MouseRefSWATH library or the relevant study-specific
spectral library was uploaded into Spectronaut and all samples were processed using FDR
threshold of 1% on peptide and protein levels. Mitochondrial proteins were identified by
matching the list of quantified proteins with the MitoCarta 2.0 database [53]. It should be noted
in the original published studies, older versions of the Spectronaut software with different
settings were used by the authors which leads to the discrepancies in number of reported
quantified proteins in our study when compared to the original published data. Detailed

Spectronaut settings for this study are shown in Supplementary methods

Mouse intraductal DCIS (MIND) model

The MIND model was utilised in our studies as previously described [35, 54]. Briefly, a
suspension of 5 x 10* MCF10DCIS.com-Luc cells was injected intraductally into mammary
gland ducts of 6-10 week-old SCID-beige female mouse (n=7-8). Luminescence of the lesions
was measured by in-vivo imaging assay (IVIS) on IVIS lllumina Il (Perkin Elmer) to monitor
tumour growth. Whole mammary glands with tumour were collected after 4, 6 or 10 weeks
post injection, washed in cold PBS and freshly frozen. For each condition, 4 biological
replicates were further processed and analysed by SWATH-MS. Haematoxylin and eosin
(H&E) staining was performed on formalin-fixed and paraffin embedded samples and tissue

images were scanned on Nanozoomer XR (Hamamatsu Photonics) automated slide scanner.
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MIND model sample processing and SWATH-MS data acquisition

Whole mammary glands with tumour cells were homogenized in high salt homogenization
buffer, proteins were precipitated with ice-cold acetone at -20 °C, centrifuged and the resulting
pellet was resuspended in 0.3 ml of urea buffer. 20ug of total protein was digested in solution
by trypsin as described above, desalted on OMIX tips as per manufacturer’s instructions and
dried in a SpeedVac concentrator. Dried samples were resuspended in 20ul of buffer A and
analysed in SWATH-MS mode on an Agilent HPLC coupled to TripleTOF 5600+ mass
spectrometer. 1 ug of sample was spiked with 0.1 pl of iRT peptides and loaded onto a 0.3 x
5 mm ZORBAX C18 (Agilent Technologies) trap column. Peptides were separated on a 75
um x 15 cm analytical column packed with Reprosil Pur C18AQ beads, 3 uym, 120 A (Dr.
Maisch, GmbH) with a manually pulled integrated spraying tip. A linear gradient of 2-40% of
buffer B in 120 min and flow rate of 250 nl/min was used for peptide separation. All data were
acquired in positive ion mode in SWATH mode using cycles comprising of one 100ms profile
MS scan over the m/z mass range of 340-1500, followed by 60 SWATH fragmentation
windows with a fixed width of 12 Da over the m/z range of 380-1100 and filling time of 50 ms.

The SWATH-MS data is deposited in ProteomeXchange with identifier PXD017209.

Implementing XenoSWATH species specific deconvolution pipeline and MIND model
SWATH-MS data processing

A combined FASTA file was generated in NotePad text editor from individual FASTA files
containing human (20,316 protein sequences), mouse (16,997 protein sequences) and iRT
peptides. The human and mouse FASTA files were downloaded from SwissProt (downloaded
on 26/10/2018) and the FASTA file with iRT sequences was downloaded from Biognosys

website (https://www.biognosys.com/shop/irt-kit#SupportMaterials). The acquired MIND

model SWATH-MS data were processed in Spectronaut using the MouseRefSWATH
reference spectral library, the published pan-Human reference spectral library [15] and the
combined FASTA file. The SWATH-MS data was first searched using the MouseRefSWATH
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library. Using the combined FASTA file, Spectronaut selects only the mouse species
discriminating proteotypic peptides from the MouseRefSWATH library for the quantification of
murine proteins. The same approach was repeated with pan-Human library for the
quantification of human species discriminating proteotypic peptides. All searches were
performed with 1% FDR threshold on peptide and protein level (detailed Spectronaut settings
are shown in Supplementary methods). In this manner, two separate proteomic datasets were
obtained, one for the tumour component (human) and the other for the host stromal
compartment (mouse). The datasets were separately quantile normalized using proBatch
package [55] in R and statistically analysed by ANOVA in Perseus [56]. Analysis of ontologies
enriched in 10w versus 4w & 6w was performed using GSEA desktop application against
human or mouse MSigDb of biological processes [57, 58]. FDR threshold was set to 0.1 using
genotype permutations due to low number of biological replicates. Protein networks were
visualized in Cytoscape (version 3.7.1) [59] and clustered by the MCL clustering algorithm in

clusterMaker2 Cytoscape plugin[60].
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Figure legends

Figure 1. Overview of the sample types and schematic workflow used to build the
MouseRefSWATH reference spectral library. 15 unique sample types comprising 7 mouse
organs, 2 primary cell types and 6 mouse cell lines were analysed to maximise proteome
coverage. The workflow is comprised of a first step of sample preparation and data acquisition
of each sample by DDA-based LC-MS/MS. In the second step, the resulting proteomic data
was subjected to processing and spectral library generation using the combined Search
Archives approach in the SpectroMine software. The subsequent evaluation of the
performance of the MouseRefSWATH library was undertaken with the Spectronaut software
utilising two publicly available datasets.

Figure 2. Characteristics and performance of the MouseRefSWATH reference spectral
library. A) Detailed characteristics of the generated MouseRefSWATH library. B) Percentage
proteome coverage of MouseRefSWATH library in comparison with published spectral
libraries for other eukaryotic organisms, including human [15], zebrafish [17] and yeast [18].
C) Peptide coverage of the individual proteins in the MouseRefSWATH library. 90.6% of the
proteins are represented by more than one unique peptide. D) Contribution plot of the tissue-
or cell-specific proteins to the overall composition of the MouseRefSWATH library. E) Venn
diagram depicting overlap of mitochondrial proteins detected by the MouseRefSWATH library
and study-specific library based on analysis of the PXD005044 dataset [21]. F) Similarity
matrix showing Pearson’s correlation coefficient of the 640 overlapping mitochondrial proteins
which were quantified by either the MouseRefSWATH library or the study-specific library. 5-8
animals were used for each tissue site. BAT is brown adipocyte tissue and quad is quadriceps.
G) Venn diagram depicting overlap of hippocampal proteins detected by the
MouseRefSWATH library and study-specific library based on analysis of the PXD006382
dataset [22]. H) Similarity matrix showing Pearson’s correlation coefficient of the 943
overlapping hippocampal proteins which were quantified by either the MouseRefSWATH
library or the study-specific library. Two hippocampal areas (CA1 and CA3) from 6 animals (a-
f) were used.

Figure 3. XenoSWATH workflow of the species-specific deconvolution analysis
pipeline. The ‘bulk tumour xenograft’ acquired SWATH-MS data is first subjected to two
separate searches by either the MouseRefSWATH or the pan-Human library in the
Spectronaut software to identify protein-specific (proteotypic) peptides. A combined FASTA
file of human and mouse in silico digested peptides is then generated to enable subsequent
peptide quantification of species-discriminating proteotypic peptides. For peptide
quantification, Spectronaut will compare the sequences of the identified peptides from either
the MouseRefSWATH or pan-Human library searches with the peptides sequences in the
combined FASTA file. Because protein-specific (proteotypic) peptides that are not species-
discriminating (blue) occur more than once in the combined FASTA file, Spectronaut filters
these peptides out. Only peptides which are both protein-specific and species-discriminating
(purple for mouse and green for human) in the combined FASTA file are retained and
subjected to quantification. The output of this pipeline is two quantified datasets, one specific
for mouse proteins and the other for human proteins.
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Figure 4. Quantitative proteomic profiling of DCIS progression to IBC in the mouse
intraductal (MIND) xenograft model. A) Experimental workflow of SWATH-MS analysis of
tumour xenografts. MCF10DCIS.com-Luc cells were injected orthotopically into mouse
mammary gland ducts through the nipple. Whole mammary glands with tumours were
removed at 4, 6 and 10 weeks (w) post-injection and subjected to sample preparation prior to
SWATH-MS data acquisition and analysis by the XenoSWATH pipeline. B) Representative
bioluminescence images as measured by IVIS at 4, 6 and 10w post-injection. C) Total
bioluminescence flux reflecting tumour size in MIND model at 4, 6 and 10w post-injection (n=7-
8). p-value represents statistical significance of the difference between the sample groups
calculated by two-tailed Mann-Whitney test. D) H&E images showing initial DCIS lesion
formation in the MIND model at 4w which progresses to form an invasive tumour at 10w post-
injection. Tumour microinvasion in lesion 10w post-injection is indicated by arrowheads. E)
Venn diagram showing the overlap of enriched ontologies for proteins that are significantly
upregulated in the 10w specimens versus the 4 and 6w specimens as identified by GSEA with
FDR<0.1. Ontologies associated with cell motility, migration and cytoskeleton organization are
highlighted in red. F) Network depicting ontologies enriched in human (purple) and mouse
(green) datasets (10w versus 4w and 6w) and their overlap as identified by GSEA. Detailed
protein networks for two selected ontologies (cell motility and locomotion) are shown. In these
networks, the protein node border colour represents the mouse dataset while the protein node
fill colour represents the human dataset. Proteins that are not detected are represented by

grey.
Table legends

Table 1. List of samples used for MouseRefSWATH reference spectral library generation.
Table 2. Overview of the DDA datasets used for the generation of the MouseRefSWATH

reference spectral library. Protein and peptide FDR threshold of 1% was used on each
individual dataset.
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Supplementary tables

Table S$1: Full proteomic dataset of human and mouse proteins obtained from MIND model
experiment as processed by XenoSWATH deconvolution pipeline. Confidence of the protein
identification is reported as FDR value.

Table S2: List of mouse and human proteins with significantly altered expression in 10w
samples compared to 4w & 6w samples. Log2 fold change for each protein is reported along
with the t-test FDR value.

Table S3:. GSEA normalized enrichment scores and FDR values for mouse and human
overlapping ontologies based on proteins which are upregulated in 10w versus 4w & 6w
samples (Figure 4E).
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Table 1: Overview of the samples used for mouse reference spectra library generation

Sample Sample Mouse_/cell Detailed sample description
type strain
. : SCID-beige  dissected from 14-18 week old female
Liver tissue .
mice mouse
. SCID-beige  dissected from 14-18 week old female
Lung tissue .
mice mouse
: SCID-beige  dissected from 14-18 week old female
Mammary gland tissue .
mice mouse
. : NCR nude dissected from 6 months old female
Brain tissue .
mice mouse
: . NCR nude dissected from 6 months old female
Kidney tissue .
mice mouse
. NCR nude dissected from 6 months old female
Heart tissue .
mice mouse

Axillary and .

. . C57BL/6N dissected from 2-4 months old mouse,

bronchial lymph tissue .

mice males and females
nodes
NIH/3T3 cell line ATCC CCL 92 mouse embryonic fibroblast
. AT RL ithelial cell, I
4T1 cell line cCccC mouse ep.lt . elial cell, mammary gland
2539 tumour origin
Ba/F3 cell line ATCC 300 mouse IL-3 dependent pro-B cell line
. AT RL

C2C12 cell line (1357;: mouse C3H muscle myoblast

Cancer immortalized fibroblast isolated from

associated cell line CAF1 mammary carcinoma tissue of FVB/n

fibroblast (CAF1) mouse
. immortalized fibroblast isolated from
Normal fibroblast .
(NF1) cell line NF1 normal mammary glands of FVB/n
mouse
: : N .

T cells primary OT-l Primary CD8+ effector T cells isolated
cells from splenocytes of OT-I mouse
fimar Primary CD8+ effector T cells isolated

Activated T cells pcellsy OT-l from splenocytes of OT-I mouse and

stimulated by ovalbumin peptides



https://doi.org/10.1101/2020.02.03.930248
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.930248; this version posted February 3, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Table 2: Overview of the DDA datasets used for the generation of the MouseRefSWATH
reference spectral library. Protein and peptide FDR threshold of 1% was used on each
individual dataset.

Total

Sample Sample type Fractionation Number number of

of runs protein IDs*
Liver tissue SCX 12 4471
Lung tissue SCX 24 6295
Brain tissue SCX 24 6366
Kidney tissue SCX 12 5093
Heart tissue SCX 24 3284
Axillary lymph node tissue SCX 12 5643
Bronchial lymph node tissue SCX 12 6358
Mammary gland tissue SCX 24 5433
3T3 cell line SCX, HpH-RP 24 5799
4T1 cell line SCX, HpH-RP 20 6293
Ba/F3 cell line HpH-RP 8 5353
C2C12 cell line SCX, HpH-RP 20 6681
CAF1 cell line SCX 12 5390
NF1 cell line SCX 12 3702
Normal T-cells primary cells SCX 12 6060

Activated T-cells primary cells SCX 12 6018
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