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Cortical neurons exhibit astounding diversity in gene expression as well as in morphological and electrophysiological
properties. Most existing neural taxonomies are based on either transcriptomic or morpho-electric criteria, as it has
been technically challenging to study both aspects of neuronal diversity in the same set of cells. Here we used Patch-
seq to combine patch-clamp recording, biocytin staining, and single-cell RNA sequencing of over 1300 neurons in adult
mouse motor cortex, providing a comprehensive morpho-electric annotation of almost all transcriptomically defined
neural cell types. We found that, although broad families of transcriptomic types (Vip, Pvalb, Sst, etc.) had distinct
and essentially non-overlapping morpho-electric phenotypes, individual transcriptomic types within the same family
were not well-separated in the morpho-electric space. Instead, there was a continuum of variability in morphology and
electrophysiology, with neighbouring transcriptomic cell types showing similar morpho-electric features, often without
clear boundaries between them. Our results suggest that neural types in the neocortex do not always form discrete
entities. Instead, neurons follow a hierarchy consisting of distinct non-overlapping branches at the level of families, but
can form continuous and correlated transcriptomic and morpho-electrical landscapes within families.

Introduction
As animals can be grouped into species and assembled in a
hierarchy of phylogenetic relationships to form the “tree of
life”, neurons in the brain are thought to form discrete cell
types, which in turn can be cast in a hierarchy of neuronal
families and classes. The current view is that a neuronal
cell type is characterized by a common genetic profile, giv-
ing rise to distinct physiological and anatomical properties
including connectivity patterns (Masland, 2004; Zeng and
Sanes, 2017). A comprehensive multi-modal taxonomy of
neurons would resemble a parts list of the brain, helping us
to decipher its bewildering complexity (Ecker et al., 2017;

Mukamel and Ngai, 2019).
For more than a century, neurons have been classified

into types by their anatomical and physiological charac-
teristics, and more recently by molecular markers (Harris
and Shepherd, 2015; Tremblay et al., 2016; Kepecs and
Fishell, 2014; Rudy et al., 2011). In the last years, de-
velopment of high-throughput single-cell sequencing tech-
niques allowed to identify dozens of neural types based
on their transcriptional profiles (Tasic et al., 2016, 2018;
Zeisel et al., 2015, 2018), but linking the transcriptomi-
cally defined cell types to their phenotypes has remained
a major challenge (Huang and Paul, 2019). At the same
time, to understand the role that transcriptomic neural
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Figure 1: Transcriptomic coverage. (a) Number of Patch-seq cells assigned to each of the neural transcriptomic types
(t-types) (Yao et al., in preparation). Colors are taken from the original publication, as well as the order of types. The filled part
of each bar shows the number of morphologically reconstructed neurons. T-types with zero cells are shown with grey labels. Total
number of neurons: 1221. (b) Normalized soma depths of all neurons of each t-type. For t-types with at least 3 cells, medians
are indicated by horizontal lines. Soma depths were normalized by the cortical thickness in each slice (0: pia, 1: white matter).
Grey horizontal lines indicate approximate layer boundaries identified via Nissl staining (L1: 0.07, L2/3: 0.29, L5: 0.73). Total
number of neurons: 1181 (for some cells soma depth could not be measured due to failed staining). (c) T-SNE representation of
CGE-derived interneurons from the single-cell 10x v2 reference dataset (n = 15 511; perplexity 30). T-type names are shortened
by omitting the first word; some are abbreviated. Patch-seq cells from the Vip, Sncg, and Lamp5 families were positioned on this
t-SNE atlas (Kobak and Berens, 2019) and are shown as black symbols. Markers indicate layer, see legend. (d) Like (c), but for
MGE-derived interneurons (n = 12 083; perplexity 30). (e) Like (c), but for excitatory neurons (n = 93 829; perplexity 100). A
single t-SNE embedding with all cells from panels (c–e) is shown in Figure S5.

types play in cortical computations, it is necessary to know
their anatomy, connectivity, and electrophysiology (Zeng
and Sanes, 2017).

The BRAIN initiative cell census network (BICCN)
aims at fully characterizing the cellular taxonomy of neu-
rons in mouse motor cortex (MOp). In parallel work, Yao
et al. perform an integrated transcriptomic analysis of the
MOp, identifying 90 distinct neural types. To provide a
comprehensive account of the anatomy and physiology of
these transcriptomically defined cell types, we used the
recently developed Patch-seq technique (Cadwell et al.,
2016, 2017; Fuzik et al., 2016; Földy et al., 2016) and sam-
pled over 1300 neurons from all cortical layers, combining
single-cell RNA-sequencing, patch-clamp recordings and
biocytin stainings in the same neurons.

Our data set covers all major families of excitatory and

inhibitory cortical neurons and describes morpho-electric
phenotypes for most of the transcriptomic cell types. Our
analysis suggests that transcriptomic families have largely
distinct phenotypes, but uncovers continuous morpho-
electric variation within most major families.

Results
Patch-seq profiling of mouse motor cortex
We used Patch-seq (Cadwell et al., 2016, 2017) to pro-
file neurons transriptomically, electrophysiologically and
anatomically (Figure S1) across all layers of adult mouse
MOp (mostly post-natal day P50+, median age P75, Fig-
ure S2a) using various Cre driver lines (Figure S3) to sam-
ple as diverse a population of neurons as possible. Neurons
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in acute slices were patch-clamped and stimulated with
brief current impulses to record their electrophysiological
activity, filled with biocytin for subsequent morphologi-
cal recovery and reconstruction, and their RNA was ex-
tracted and sequenced using the Smart-Seq2 protocol (Pi-
celli et al., 2013). In total, we performed whole-cell record-
ings from over 2000 cells, of which 1320 cells (from 262
mice) passed initial quality control and their mRNA was
sequenced, yielding on average 1.3 million reads (median;
mean±SD on a log10 scale: 6.0± 0.6) and 6.8± 2.7 thou-
sand (mean±SD) detected genes per cell (Figure S2d). Of
these, 642 neurons had sufficient staining and their mor-
phologies were reconstructed.

Using the gene expression profiles, we mapped all se-
quenced neurons to the transcriptomic cell types (t-types)
identified based on dissociated cells in a parallel work
within the BICCN consortium (Yao et al., in preparation).
To assign cell types, we used a nearest centroid classifier
with Pearson correlation of log-expression across the most
variable genes as a distance metric (Figure S4). Boot-
strapping over genes was used to assess mapping confi-
dence. The mapping was done separately using each of the
seven reference data sets obtained with different sequenc-
ing technologies including single-cell and single-nucleus,
Smart-seq2 and 10x (Yao et al., in preparation). We
found that Patch-seq expression profiles were most sim-
ilar to the single-nucleus Smart-seq2 data (Figure S2g,h).
At the same time, there was good agreement between t-
type assignments based on Smart-seq2 and 10x reference
data (Figure S2i), so consensus t-type assignment over
all seven reference data sets was used for all subsequent
analysis. Cells that showed poor mapping (mostly due
to low read count) or potential RNA contamination were
excluded (Figure S2f), leaving 1221 neurons for further
analysis (814 inhibitory, 407 excitatory; 368 and 267 with
morphological reconstructions respectively).

The resulting data set covered 78 out of the 90 neural t-
types (Figure 1a), with 75 t-types having at least one mor-
phologically reconstructed neuron. The coverage was com-
parably good for CGE- and MGE-derived (caudal and me-
dial ganglionic eminence) interneurons and for excitatory
neurons. Within-type distributions of soma depths (Fig-
ure 1b) were in good agreement with prior literature (Tasic
et al., 2018) and with the layer-specific nomenclature of
excitatory t-types, confirming the validity of our t-type
assignment. Positioning all cells on reference maps made
with t-SNE (Maaten and Hinton, 2008; Kobak and Berens,
2019) also showed good overall coverage (Figure 1c–e, S5)
with only few conspicuously uncovered regions (see Dis-
cussion below).

The observed phenotypes included most of the morpho-
logical and electrophysiological types of cortical neurons
previously described in mice and rats (Jiang et al., 2015;
Markram et al., 2015; Gouwens et al., 2019), allowing us to
link transcriptomic and morpho-electric descriptions of the
neural landscape (Figure 2; see Supplementary File 1 for
all reconstructions and Figure S6 for interneurons mapped
to the t-type taxonomy from Tasic et al. (2018)). To ob-

tain quantitative characterizations of the morpho-electric
phenotypes, we automatically extracted 28 electrophysio-
logical (Figure S7) and ∼100 morphological features for
each cell. In the next section, we provide a detailed de-
scription of all t-types with sufficient coverage.

Morpho-electric phenotypes of transcrip-
tomically defined neuron types
CGE-derived interneuron types The Lamp5 family
mostly consisted of L1 interneurons. The Lamp5 Egln3_1
and Lamp5 Egln3_2 types likely corresponded to pre-
viously described alpha7 and canopy cells respectively
(Schuman et al., 2019) based on the expression of known
marker genes (Ndnf− Chrna7+ and Ndnf+ Npy−; here
and below reported marker gene expression is based on
the data from Yao et el.) and electrophysiology: Lamp5
Egln3_1 was characterized by larger membrane time con-
stant and hyperpolarization sag, stronger bursts, and re-
bound firing. The Lamp5 Pdlim 5_2 type (Ndnf+ Npy+)
corresponded to late-spiking neurogliaform cells (NGCs) in
L1 with wide asymmetric action potentials (APs) and deep
afterhyperpolarization (AHP). NGCs in L2/3, L5, and L6
belonged to the Lamp5 Slc35d3 type (Ndnf−) that showed
layer-adapting axonal morphology. The transcriptomically
isolated Lamp5 Lhx6 type (cf. Figure 1c) consisted of deep
L5/L6 neurogliaform-like cells with NGC morphology and
deep AHP but narrow APs. As the Lamp5 Lhx6 type is
putatively MGE-derived (Tasic et al., 2018), this suggests
that although all deep NGCs belong to the Lamp5 family,
some are CGE- and some are MGE-derived [as is the case
in hippocampus (Tricoire et al., 2010; Pelkey et al., 2017;
Harris et al., 2018)], resolving an open question in the field
(Huang and Paul, 2019).

The Sncg family (mostly Vip− and strongly Cck+)
proved difficult to sample due to the lack of specialized
Cre lines; we only obtained 10 cells with 5 reconstruc-
tions. We found them in all layers from L1 to L6 with
diverse morphologies; they mostly showed irregular burst-
ing firing, sometimes with a strong rebound. Several cells
in the upper L2/3 had large axonal morphologies, likely
corresponding to ‘large Cck basket cells’ (Tremblay et al.,
2016).

The Vip family was most abundant in L2/3, in agree-
ment with the literature (Prönneke et al., 2015). Most
L2/3 neurons from this family belonged to the Vip Sncg,
Vip Mybpc1_2, and Vip Mybpc1_3 types. Vip Sncg
(strong Cck+ expression) neurons had local dendritic
and axonal morphologies, identifying them as ‘small Cck
basket cells’ (Tremblay et al., 2016). The other two
types tended to have more vertically oriented morpholo-
gies, sometimes with bipolar dendritic structure, and
showed diverse firing patterns with some neurons exhibit-
ing large membrane time constant, hyperpolarization sag
and strong rebound firing. All three types were also char-
acterized by high input resistance (Tremblay et al., 2016).

In L5 we found Vip Mybpc1_1 (Calb2+), Vip Chat_1
(Calb2+ Chat+), Vip Gpc3, Vip Htr1f and Vip C1ql1
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Figure 2: Diversity of mouse cortical neurons. Two representative examples per t-type, or one if only one reconstruction
was available. In total 137 neurons in 75 t-types. For interneurons, dendrites are shown in darker colors. For excitatory neurons,
only dendrites are shown. Black dots mark soma locations. Horizontal grey lines show approximate layer boundaries. Three
voltage traces are shown for each neuron: the hyperpolarization trace obtained with the smallest current stimulation, the first
depolarization trace eliciting at least one action potential, and the depolarization trace showing maximal firing rate. Stimulation
length: 600 ms. The length of the shown voltage traces: 900 ms. Electrophysiological recording for one neuron did not pass
quality control and is not shown.
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types. Their axons and dendrites remained mostly lo-
cal (Prönneke et al., 2015), with some cells having deep-
projecting axons (Jiang et al., 2015; Prönneke et al., 2015).
Vip Mybpc1_1 and Vip Chat_1 also contained some bipo-
lar cells in L2/3 and upper L5. Despite Vip neurons tradi-
tionally being characterized by their high input resistance
(Tremblay et al., 2016), some of these L5 types, especially
Vip Gpc3, showed only moderate input resistance values,
comparable to the Sst family. This type also had par-
ticularly low resting membrane potential. The three Vip
Serpinf1 types (Cck+) were found in deep L5 and L6. We
did not obtain any cells from the Vip Igfbp6 types, presum-
ably due to their very weak Vip expression (Tasic et al.,
2018).

MGE-derived interneuron types The Sst family in
L2/3 was mostly represented by the Sst Calb2 type, with
Martinotti morphology and adapting firing pattern (Trem-
blay et al., 2016; Urban-Ciecko and Barth, 2016). In up-
per L5, the cells of this type typically showed ‘fanning-out’
Martinotti morphology (Muñoz et al., 2017; Nigro et al.,
2018). The neighbouring Sst Hpse type also showed as-
cending axons typical of Martinotti cells but with denser
local axons and sparser ‘fanning-out’ projections to L1.
Both types were distinguished from other Sst t-types by
non-zero afterdepolarization (ADP). Between the two, Sst
Hpse had smaller membrane time constant, in agreement
with earlier findings in visual cortex (Scala et al., 2019).
Sst Htr1a appeared very similar to its neighboring Sst
Hpse. In addition, we found Sst Pvalb Calb2 neurons in
L2/3. This t-type is transcriptomically in between the
Sst and the Pvalb families, and we found it to be in be-
tween also in terms of the morpho-electric phenotype (see
also below). These neurons showed lower AP width and
higher firing rate than typical for the Sst family (Scala
et al., 2019). Furthermore, some cells in this type had
Martinotti morphology while some others looked like typ-
ical L2/3 basket cells.

Multiple Sst types were predominantly found in L5,
showing diverse firing patterns and morphologies. Sst
Myh8_1, Sst Etv1, and Sst Pvalb Etv1 showed ‘T-shaped’
Martinotti morphologies (Muñoz et al., 2017; Nigro et al.,
2018) and strong rebound firing. The Sst Pvalb Etv1, to-
gether with Sst Myh8_3 exhibited strong hyperpolariza-
tion sag. The two Sst C1ql3 types showed non-Martinotti
morphology without ascending axons (Tremblay et al.,
2016; Gouwens et al., 2019) and deep AHP. The two Sst
Crhr2 types showed mostly local axonal arbor but with
some sparse ascending axons.

In L6, the Sst family was represented by the Sst Th
types and the Sst Penk type. All of them had mostly local
axonal arborization within L6 (Perrenoud et al., 2012).
Finally, we found cells of the transcriptomically isolated
Sst Chodl type in all layers from upper L2/3 down to the
bottom of L6. This type is thought to have long-range
projections (Tasic et al., 2018; Gouwens et al., 2019) and
for two cells in L6 we could indeed see an axon disappear-
ing into the white matter. The neurons of this type had

low rebound potential and low hyperpolarization sag but
large variability in the membrane time constant.

The Pvalb family is known to consist of fast-spiking (FS)
chandelier cells targeting the axons of excitatory neurons,
and of soma-targeting FS basket cells (Tremblay et al.,
2016). The chandelier cells have an easily recognizable ax-
onal morphology with straight terminal ‘cartridges’ (Trem-
blay et al., 2016). We found chandelier cells exclusively in
the transcriptomically isolated Pvalb Vipr2_2 type, con-
firming its previously postulated identity (Tasic et al.,
2018). They were mostly located in upper L2/3 close to
the L1 boundary, but deep L5 chandelier cells belonged to
the same t-type. In terms of electrophysiology, chandelier
cells had a lower firing rate compared to the basket cells,
and a practically absent hyperpolarization sag.

The rest of the Pvalb family consisted of FS basket cells
with various axonal morphologies and layer distributions
(Jiang et al., 2015; Scala et al., 2019; Gouwens et al., 2019).
In L2/3, most cells were of Pvalb Il1rapl2 type, with clas-
sical L2/3 basket morphology (Jiang et al., 2015). We did
not encounter double-bouquet basket cells, previously de-
scribed in L2/3 of mouse V1 (Jiang et al., 2015). In L5, the
same work distinguished between large basket cells, small
(or shrub) basket cells, and horizontally elongated basket
cells, with differing connectivity. We found them prefer-
entially in Pvalb Il1rapl2, Pvalb Reln, and Pvalb Gpr149
types respectively, but with substantial overlap (see be-
low). Notably, Pvalb Il1rapl2 type showed strongly layer-
adapting morphologies, with L2/3 neurons looking very
different from L5 (Supplementary File 1). Pvalb Calb1_2
and Pvalb Kank4 showed a variety of axonal morphologies,
including some with large local arborization with dense
spherical shape. In L6, FS cells belonged to the Pvalb
Gabrg1, Pvalb Egfem1, Pvalb Calb1_1 and Pvalb Kank4,
and mostly had local axons (Perrenoud et al., 2012) [we
did not encounter L6 FS cells with translaminar axons
reaching up to L1, that were reported in V1 (Bortone
et al., 2014; Gouwens et al., 2019)]. Some of the deep
neurons exhibited a horizontally elongated or downward
projecting axon mostly innervating L6b (Gouwens et al.,
2019). Pvalb Gabrg1 and Pvalb Egfem1 types were char-
acterized by larger hyperpolarization sag and rebound po-
tential compared to the other FS neurons.

Excitatory neuron types Transcriptomically, cortical
excitatory neurons are classified into the well-separated
intertelencephalic (IT), pyramidal tract (PT, also called
ET), corticothalamic (CT), and near-projecting (NP) fam-
ilies (Tasic et al., 2018). Morphologically, they have been
classified into big-tufted, small-tufted, untufted neurons,
depending on the shape of the apical dendrite tuft, stel-
late neurons without an apical dendrite, and horizontal/in-
verted neurons in L6 (Oberlaender et al., 2011; Marx and
Feldmeyer, 2012; Wang et al., 2018; Kanari et al., 2019).

The IT neurons in L2/3 were tufted pyramidal cells with
high rheobase and almost all of them were assigned to the
L2/3 IT_3 type. The L4/5 IT_1 cells were located on
the boundary between L2/3 and L5 and possibly corre-
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sponded to the quasi-L4 neurons described previously in
motor cortex (Yamawaki et al., 2014). Neurons of this
type had diverse morphologies with some pyramidal and
some stellate cells. The L4/5 IT_2 cells mostly had a
thin untufted apical dendrite, while L5 IT_1 and L5 IT_2
types contained deeper and larger tufted pyramidal neu-
rons. L6 IT neurons were short and untufted; L6 IT_1
showed pyramidal morphologies while L6 IT_2 were of-
ten stellate or inverted (Zhang and Deschênes, 1997). The
first type had broader APs than the second.

L5 PT neurons tended to be large big-tufted cells with
the apical dendrite often bifurcating close to the soma, sug-
gesting that these were corticospinal cells (Oswald et al.,
2013; Ramaswamy and Markram, 2015). They had bigger
hyperpolarization sag and higher rebound potential, com-
pared to the L5 IT neurons. We did not observe consistent
morpho-electric differences between the four PT types, but
prior research suggests that they can have different projec-
tion targets (Economo et al., 2018; Tasic et al., 2018).

NP neurons proved very difficult to obtain without a
specialized Cre driver line. The few neurons in our data
set were all untufted, with sparse basal dendrites, in agree-
ment with prior literature (Gouwens et al., 2019).

All CT t-types were preferentially located in L6 and had
mostly untufted apical dendrites (Zhang and Deschênes,
1997). In line with previous literature (Thomson, 2010),
they could be distinguished from L6 IT neurons by a lower
inter-spike interval adaptation index (Figure S7). L6b
types, transcriptomically related to the CT family (Fig-
ure 1e), were all stellate, inverted, or horizontal, located
preferentially in the bottom of L6. The L6b Ror1 type
stood out, having horizontal dendritic morphology and
showing strong rebound firing.

Transcriptomic families have distinct
morpho-electric phenotypes
We next asked to what extent electrophysiological pheno-
type could be predicted by gene expression across the en-
tire data set. We focused on 16 well-behaved electrophys-
iological features and used sparse reduced-rank regression
(Kobak et al., 2019), a technique that predicts the firing
properties based on a low-dimensional latent space repre-
sentation computed from a sparse selection of genes. We
used cross-validation to tune the regularization strength
(Figure S8). The selected model used 25 genes with a
5-dimensional latent space and achieved a cross-validated
R2 of 0.40. To visualize the structure of the latent space,
one can project gene expression and electrophysiological
properties onto the latent dimensions (Figure 3). The
cross-validated correlations between the first three pairs
of projections were 0.90, 0.74, and 0.65 respectively.

These first three components clearly separated five ma-
jor neuron groups: the Pvalb, Sst, Vip, and Lamp5 fam-
ilies, and the excitatory neuron class (Figure 3). These
groups had distinct electrophysiological properties: for ex-
ample, as expected, Pvalb neurons were characterized by
high firing rates while Sst neurons had high values of the

Figure 3: Sparse reduced-rank regression. A sparse RRR
model (Kobak et al., 2019) to predict combined electrophysio-
logical features from the gene expression. Transcriptomic data
are linearly projected to a low-dimensional space that allows to
reconstruct electrophysiological data; here shown are compo-
nents 1 and 2 (a), and 1 and 3 (b), of rank-5 model. Sam-
ple size n = 1213. Color corresponds to the t-type. The
model selected 25 genes, shown on the left. Each panel is a
biplot, showing correlations of original features with both com-
ponents; the circle corresponds to correlation 1. Only features
with average correlation above 0.4 are shown. Abbreviations:
ISI – interspike interval, CV – coefficient of variation, UDR
– upstroke-to-downstroke ratio, AI – adaptation index, AP –
action potential.

hyperpolarization sag and rebound (Figure 3, right). Some
of the genes selected by the model were prominent marker
genes, such as the pan-inhibitory markers Gad1 and
Slc6a1 related to the gamma-aminobutyric acid (GABA)
processing, or more specific inhibitory markers Sst, Vip,
Pvalb, Tac1, or Htr3a. Interestingly, some other selected
genes were more directly related to electrophysiological
properties, such as calcium channel subunits Cacna2d1
and Cacna2d3 or potassium channel-interacting protein
Kcnip2, which may modulate firing properties in individ-
ual families. A reduced-rank regression model restricted
to using only ion channel genes (Figure S9) performed not
much worse compared to the full model (cross-validated
R2 = 0.35 and correlations 0.86, 0.70, and 0.55, with reg-
ularization set to select 25 genes).

Similarly, a 2D t-SNE embedding of Patch-seq cells
based on the same electrophysiological features showed
that major transcriptomic families have distinct electro-
physiological properties (Figure 4a): the Pvalb, Lamp5,
Sst, Vip, CT, IT, and PT families were mostly well-
separated from each other, although there were no truly
isolated clusters. We quantified this separation using a
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Figure 4: Morpho-electric t-SNE embeddings. (a) T-SNE embedding constructed using electrophysiological features.
Color corresponds to the t-type, marker shape corresponds to the cortical layer (see legend). 1311 cells used to construct the
embedding, 1213 cells with t-type labels shown. Perplexity 30. (b) T-SNE embedding constructed using combined morphometric
features and z-profiles. Sample size: 633 cells. Perplexity 30. (c) T-SNE embedding constructed using combined electrophys-
iological and morphological features. Sample size: 625 cells. Perplexity 30. Ellipses show 80% coverage ellipses for the most
prominent t-types, as well as for some groups of related t-types and some layer-restricted families. We chose these groups in
order to reduce the overlap between ellipses. (d) Confusion matrices for classifying cells into seven transcriptomic families using
kNN classifier (k = 10) and three different feature sets. Each row shows what fraction of cells from a given family gets classified
in each of the seven families. The values in each row sum to 100%. Only values above 5% are shown.

confusion matrix for k-nearest neighbors (kNN) classifica-
tion of cells into families: it was mostly diagonal, with
only the PT family strongly overlapping with the IT (Fig-
ure 4d).

We also constructed a 2D t-SNE embedding based on
the morphological features (Figure 4b). We used only
dendritic features for the excitatory cells, but both ax-
onal and dendritic features for the inhibitory cells, leading
to a strong separation between these two major classes.
Within each class, cells were strongly segregated by the
soma depth, with excitatory cells forming a mostly one-
dimensional manifold. The separability between inhibitory
families was weaker than with electrophysiological fea-
tures (Figure 4d). The between-family separability was
the strongest when we combined electrophysiological and
morphological features into a joint representation (Fig-
ure 4c,d), showing that these sets of properties are not
redundant.

Together, these analyses suggest that different transcrip-
tomic families had distinct morpho-electric phenotypes,
in agreement with them being well-separated in the tran-
scriptomic space (Tasic et al., 2018).

Continuous phenotypic variation within
transcriptomic families

Within individual transcriptomic families, morpho-electric
phenotypes rarely formed isolated clusters (Figure 4).
Moreover, we often found that morpho-electric phenotypes
varied continuously from one t-type to another (Figure 5).
For example, electrophysiological properties of the t-types
within the Vip family varied continuously across the tran-
scriptomic landscape, with e.g. the membrane time con-
stant having its largest values close to the Sncg family and
gradually decreasing all the way to the L5 area near Vip
Gpc3 (Figure 5a). For each pair of t-types we computed
the transcriptomic distance (Euclidean distance between
average log-counts in the reference data) and the electro-
physiological distance (Euclidean distance between aver-
age feature vectors), and found that these two measures
were correlated with r = 0.52 (Figure 5a, inset). This cor-
relation was the highest for the input resistance (0.74) and
the membrane time constant (0.61).

The Sst family is known to be transcriptomically (Tasic
et al., 2018) and phenotypically (Muñoz et al., 2017; Ni-
gro et al., 2018; Naka et al., 2019) diverse in L5. Here we
also found that electrophysiological properties varied con-
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Figure 5: Phenotypic variability within transcriptomic families. (a) The Vip family neurons mapped to the reference
t-SNE embedding as in Figure 1, colored by the membrane time constant. Insets show example firing traces. Scatter plot shows
correlation between the transcriptomic distances and electrophysiological distances across all pairs of t-types (for 6 t-types with
at least 10 cells). Transcriptomic distance was computed using the reference 10x data as the correlation between average log-
expression across most variable genes. Electrophysiological distance is Euclidean distance between the average feature vectors.
(b) The Sst family neurons from layer 5 (excluding Sst Chodl t-type), colored by the rebound. Scatter plot was done using 5
types with at least 10 cells. (c) IT neurons, colored by the normalized soma depth. Inset shows examples of IT neurons at
different depths, colored by the t-type. Scatter plot was done using 8 t-types with at least 5 cells and shows correlation between
the transcriptomic distances and the cortical depth distances. Cortical depth distance is Euclidean distance between the average
normalized soma depths. (d) The Pvalb family neurons from layer 5, colored by the axonal width/height log-ratio. Circle area
corresponds to the width·height product. Insets show some example morphologies.

tinuously across the transcriptomic landscape, with neigh-
bouring t-types consistently showing similar rebound val-
ues (Figure 5b). The transcriptomic and electrophysiolog-
ical between-type distances were correlated with r = 0.69
(Figure 5c, inset), and among the individual features the
correlation was the highest for the rebound (0.85), the
AP amplitude (0.69), and the rheobase (0.65). Pooling all
families together, transcriptomic and electrophysiological
between-type within-family distances (n = 77 pairs) were
highly correlated with r = 0.70 (Figure S10).

The IT family provides an example of a similar phe-
nomenon in another data modality (Figure 5c). IT neu-
rons span all layers from L2/3 to L6 and it is known that
IT t-types are largely layer-restricted (Tasic et al., 2018).
We found that L4/5 and L5 IT t-types that were tran-
scriptomically close to the L2/3 IT t-types were located
at the top of L5 close to the border between L2/3 and L5,
whereas L5 IT t-types that were transcriptomically close
to L6 IT t-types were located at the bottom of L5 close
to the border with L6. Across the IT t-types, normal-
ized soma depth varied smoothly with the transcriptome
(r = 0.69; Figure 5c).
The Pvalb family is usually understood as electrophys-

iologically homogenous (all neurons are FS) but has been
described as morphologically diverse, in particular in L5
(Jiang et al., 2015). However, it was previously un-
clear whether different morphologies such as shrub-like or
horizontally elongated corresponded to different t-types.
While we found that different t-types had different pre-

ferred morphologies (see above), they showed substantial
overlap, in agreement with the L5 Pvalb t-types them-
selves not having clear boundaries (Tasic et al., 2018) (Fig-
ure 1d). The shape of the axonal arbor showed continuous
changes across the transcriptomic landscape (Figure 5d):
small shrub-like basket cells, horizontally elongated basket
cells, and vertically elongated classical basket cells were
located in different corners of the t-SNE embedding, with
intermediate morphologies in between.

In summary, we found that within the major tran-
scriptomic families, morpho-electric phenotypes and/or
soma depth often varied smoothly between neighbouring
t-types, indicating that transcriptomic neighbourhood re-
lationships in many cases corresponded to similarities in
other modalities.

Individual t-types can have variable
morpho-electric phenotypes
To study morpho-electric phenotypes of individual t-types,
we measured (a) how consistently they conformed to their
respective transcriptomic families (Figure 6a) and (b) how
variable they were within a t-type (Figure 6b). First, we
used a kNN classifier to classify cells from each t-type with
at least 10 cells into transcriptomic families (the same as
in Figure 4d). For this analysis we used electrophysiolog-
ical, morphological, and combined features. When using
morphological or combined features, we layer-restricted all
t-types, to ignore the high between-layer morphological
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Figure 6: Phenotypic variability of individual t-types. (a) Confusion matrices for classifying cells from each t-type into
seven transcriptomic families, using electrophysiological, morphological, and combined features. Only t-types with at least 10
cells are shown. For morphological and combined features we only took cells from one cortical layer. Values in each column map
to 1. Arrows mark t-types that are classified into wrong families more often than 25% of the time. We used kNN-based classifier
with k = 10. (b) Normalized total variance of features in each t-type. Higher values correspond to t-types with more variable
phenotypes. Horizontal grey band shows the min/max normalized variances of k-means clusters. (c) Exemplary morphologies
of Pvalb Vipr2_2 chandelier neurons and t-SNE overlay colored by the axonal width/height log-ratio as in Figure 5d. (d)
Three exemplary traces of cells from the Vip Mybpc1_2 type (all with confidence above 90%) and t-SNE overlay colored by the
rebound. (e) Three exemplary traces of cells from the Sst Pvalb Calb2 (confidence above 90%) and t-SNE overlay colored by the
maximum firing rate. (f) Exemplary morphologies of L5 cells from the Pvalb Reln type and t-SNE overlay colored by the axonal
width/height log-ratio as in Figure 5d.

variability (see above).
Most t-types could be unambiguously placed into the

correct family (Figure 6a), but some t-types were in be-
tween two families with respect to their electrophysiolog-
ical or morphological features. For example, many Sst
Pvalb Calb2 neurons were classified as belonging to the
Pvalb family based on electrophysiology. Similarly, Vip
Mybpc1 neurons often had Sst-like firing, while L6 IT_2
neurons had CT-like dendritic morphology. Thus, while
overall, transcriptomic family was highly predictive of the
cell phenotype, there were some t-types exhibiting mor-
phological or physiological phenotypes reminiscent of an-
other transcriptomic family.

Next, we measured the normalized total variance of each
t-type using electrophysiological, morphological, or com-
bined features and compared it to the normalized total
variance of phenotype clusters derived by k-means clus-
tering (with k set to the number of t-types). The ratio-
nale here was that the variance of the morpho-electric k-
means clusters would reflect the minimal possible variance

obtainable in our dataset. Values much above the cluster
variances indicate non-trivial phenotypic variability within
a t-type.

We found that many t-types had total variance substan-
tially above the variances of the k-means clusters (Fig-
ure 6b) and an alternative analysis using entropies of
Leiden clustering (Traag et al., 2019) often highlighted
the same t-types as variable (Figure S11). Not all t-
types showed high variability: some of them, such as the
transcriptomically isolated Pvalb Vipr2_2 type (chande-
lier cells), appeared morpho-electrically homogenous (Fig-
ure 6c). In contrast, Vip Mybpc1_2 was marked as having
high electrophysiological variability and indeed had high
variance in input resistance, membrane time constant, and
rebound (Figure S7). Overlaying the rebound values on
the t-SNE embedding (Figure 6d) suggested that cells with
low rebound were located close to the boundary with the
Vip Sncg type that on average had low rebound, suggest-
ing that in some cases, high within-t-type morpho-electric
variability could be partially explained by the within-t-
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type transcriptomic variability. Similarly, Sst Pvalb Calb2
cells had high variability in terms of the maximum firing
rate, but high-firing cells were mostly grouped in one part
of the transcriptomic landscape (Figure 6e).

Some t-types also showed pronounced within-t-type
(and within-layer) morphological variability. For exam-
ple, L5 cells from Pvalb Reln type exhibited a wide variety
of different axonal morphologies (Figure 6f). At the same
time, most of the small shrub-like cells were located in the
upper-left corner of the t-SNE embedding, and those were
the cells with the highest confidence of Pvalb Reln type
assignment (average confidence across the ten cells on the
very left: 0.88; across the other cells: 0.72).

These examples suggest that within-t-type morpho-
electric variability can in some cases be related to the un-
derlying transcriptomic variability. This is in agreement
with the idea that on a fine within-family scale, both tran-
scriptomic and morpho-electric landscapes are continuous
rather than discrete.

Discussion
Using Patch-seq, we simultaneously characterized the
transcriptome, the electrophysiological properties and the
morphologies of neurons from adult mouse motor cortex,
providing the missing link between these modalities. We
used this data set to give a description of the morpho-
electric phenotypes of nearly all neural t-types in this cor-
tical area, including some previously puzzling t-types such
as Lamp5 Lhx6 (Huang and Paul, 2019).

We found that the morpho-electric phenotype of a neu-
ron in MOp was primarily determined by the major fam-
ily of neurons it belonged to, with different families being
transcriptomically as well as morpho-electrically distinct
and mostly well-separated from each other (apart from
some rare intermediate t-types such as Sst Pvalb Calb2 ).
In contrast, within each family, variation in electrophysio-
logical and morphological properties often appeared to be
continuous across the transcriptomic landscape, without
clear-cut boundaries — or gaps — between neighbouring
t-types.

This seems at odds with the notion that cell types are
discrete entities, a notion that is an implicit assumption
behind the widespread use of clustering methods to an-
alyze large-scale transcriptomic data sets. However, in
agreement with our interpretation, several recent tran-
scriptomic studies argued that neurons in hippocampus
and striatum can be better described as forming par-
tially continuous manifolds (Harris et al., 2018; Muñoz-
Manchado et al., 2018; Stanley et al., 2019). In fact, even
studies directly clustering cortical cell types have reported
the prominent existence of intermediate cells with uncer-
tain cluster assignment (Tasic et al., 2016, 2018). The goal
to assemble a complete, exhaustive inventory of neural cell
types might be unattainable if the types, unlike e.g. chem-
ical elements in the periodic table, are not discrete entities.
We believe that there is urgent need for theoretical work
on how to conceptualize and model such a hierarchical dis-

crete/continuous cell variability in a principled way (Zeng
and Sanes, 2017).

We also found non-trivial morpho-electric variability
within multiple t-types. This included variability in prop-
erties that would generally be considered to be type-
defining (Zeng and Sanes, 2017). Although we cannot ex-
clude the possibility that this variability can be attributed
to some non-controlled confounding factors such as the ex-
act spatial location of the cell within motor cortex (Cem-
browski et al., 2016), there are clear cases in our data that
suggest that this within-type variability is related to the
within-type transcriptomic variability, in agreement with
the notion of continuous phenotypic landscapes.

Developmentally, it is thought that neural diversity is
generated through a combination of intrinsic genetic pro-
grams in progenitor cells, and activity-dependent and en-
vironmental factors (García et al., 2011; Dehorter et al.,
2015; Wamsley and Fishell, 2017; Lim et al., 2018; Cadwell
et al., 2019). It remains unclear to what extent this inter-
play between hard-wired genetic programs and extrinsic
cues might explain our observation of discrete between-
family differences, and landscapes of continuous within-
family phenotypic variability.

Our study has several limitations. First, some t-types
were covered only sparsely or even not at all. Additional
experiments with more specific Cre lines could help cover
some of the gaps: e.g. L6 IT Car3 type should be acces-
sible using Gnb4-Cre mice (Wang et al., 2019) while NP
types can be targeted using another strain of the Slc17a8-
Cre mice (Gouwens et al., 2019). Some other t-types (e.g.
Vip Igfbp6 ) might require developing new Cre lines, while
some very rare putative t-types (such as Pvalb Vipr2_1,
Sst Pappa, and Sst Th_2 that together make up only
0.02% of the reference data) might not be amenable to
Patch-seq study at all. Second, we found it very challeng-
ing to recover morphologies of some groups of neurons,
such as e.g. deep L5 Martinotti cells with thin long axons
reaching all the way to L1. This was partially due to the
fact that primary motor cortex in mice is thicker than pri-
mary visual and somatosensory cortices where most stud-
ies providing anatomical descriptions of neural types have
been performed (Jiang et al., 2015; Markram et al., 2015;
Gouwens et al., 2019), and partially due to the RNA ex-
traction process requiring the aspiration of the cell con-
tents and potentially interfering with the biocytin diffu-
sion (Cadwell et al., 2017). As a result, our study might
have missed some morphological variability in this group
of cells.

In parallel work, Gouwens et al. used Patch-seq to per-
form a similar multimodal characterization of inhibitory
neurons in the visual cortex of adult mice. Our data sets
are in good agreement (cf. Figure S6) and together, offer
an unprecedented view at cell type variability in the neo-
cortex. At the same time, this view is still far from com-
plete: future studies will be needed to bring additional
modalities, such as long-range projections, local connec-
tivity, and in vivo functional characterization into this in-
tegrated description.
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Methods

Animals

Experiments on adult male and female mice (n = 262;
median age 75 days, interquartile range 64–100, full range
35–245 days, Figure S2a) were performed on wild-type
(n = 27), Viaat-Cre/Ai9 (vesicular inhibitory amino acid
transporter, encoded by the Slc32a1 gene, n = 24), Sst-
Cre/Ai9 (somatostatin, n = 75), Vip-Cre/Ai9 (vasoactive
intestinal polypeptide, n = 45), Pvalb-Cre/Ai9 (parval-
bumin, n = 76), Npy-Cre/Ai9 (neuropeptide Y, n = 2),
Vipr2-Cre/Ai9 (vasoactive intestinal peptide receptor 2,
n = 7) and Scl17a8-Cre/Ai9 (Vglut3, vesicular gluta-
mate transporter 3, n = 6) mice. Numbers above refer
to mice from which the sequencing data were success-
fully obtained. Procedures for mouse maintenance and
mouse surgeries were performed according to protocols ap-
proved by the Institutional Animal Care and Use Commit-
tee (IACUC) of Baylor College of Medicine.

The Viaat-Cre line was generously donated by Huda
Zoghbi (Baylor College of Medicine). The other Cre and
reporter lines were purchased from the Jackson Labora-
tory: Sst-Cre (stock #013044), Vip-Cre (stock #010908),
Pvalb-Cre (stock #008069), Vipr2-Cre (stock #031332),
Slc17a8-Cre (stock #028534), Npy-Cre (stock #027851),
Ai9 reporter (stock #007909).

Slice preparation

The MOp brain slices were obtained following previously
described protocols (Jiang et al., 2015; Scala et al., 2019).
Briefly, the animals were deeply anesthetized using 3%
isoflurane and decapitated. The brain was rapidly removed
and collected into cold (0–4 °C) oxygenated NMDG (N -
Methyl-D-glucamine) solution containing 93 mM NMDG,
93 mM HCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM
NaHCO3, 20 mM HEPES, 25 mM glucose, 5 mM sodium
ascorbate, 2 mMThiourea, 3 mM sodium pyruvate, 10 mM
MgSO4 and 0.5 mM CaCl2, pH 7.35 (all from SIGMA-
ALDRICH). 300-µm-thick coronal slices were cut using a
Leica VT1200 microtome following coordinates provided
in the Allen Brain Atlas for adult mouse (http://atlas.
brain-map.org). The slices were subsequently incubated
at 34.0± 0.5 °C in oxygenated NMDG solution for 10–
15 minutes before being transferred to the artificial cere-
brospinal fluid solution (ACSF) containing: 125 mMNaCl,
2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 1 mM
MgCl2, 25 mM glucose and 2 mM CaCl2, pH 7.4 (all from
SIGMA-ALDRICH) for about 1 hour. The slices were al-
lowed to recover in ACSF equilibrated with CO2/O2 gas
mixture (5% CO2, 95% O2), at room temperature (20–25
°C) for 1 hour before experiments. During the recordings,
slices were submerged in a customized chamber continu-
ously perfused with oxygenated physiological solution.

Patch-seq recording procedures
In order to simultaneously obtain electrophysiological,
morphological and transcriptomic data from the same neu-
rons, we applied our recently developed Patch-seq proto-
col (Cadwell et al., 2017), with some modifications. In
particular, changes were made to the internal solution to
optimize its osmolarity in order to improve staining qual-
ity. RNase-free intracellular solution was prepared as fol-
lows: we dissolved 111 mM potassium gluconate, 4 mM
KCl, 10 mM HEPES, 0.2 mM EGTA in RNase-free wa-
ter in a 125-ml Erlenmeyer flask. We then covered the
solution with aluminum foil and autoclaved it. After it
cooled down, we added 4 mM MgATP, 0.3 mM Na3GTP,
5 mM sodium phosphocreatine, and 13.4 mM biocytin (all
from SIGMA-ALDRICH). The pH was adjusted to 7.25
with RNase-free 0.5 M KOH using a dedicated pH me-
ter (cleaned with RNase Zap and RNase-free water before
each use). RNase-free water was than added to the solu-
tion in order to obtain the desired volume. After carefully
checking its osmolarity (∼235–240 mOSM) the solution
was stored at −20 °C and used for no longer than 3 weeks.
Before each experiment, we combined 494 µL of inter-

nal solution with 6 µL of recombinant RNase inhibitor
(1 U/µL, Takara) in order to increase RNA yield. The ad-
dition of the inhibitor resulted in the increase of osmolarity
to the desired value of ∼315–320 mOSM without a further
dilution that was described in Cadwell et al. (2017). The
osmolarity of the ACSF was monitored before each exper-
iment and adjusted to be ∼18–20 mOSM lower than the
internal solution by adding sucrose when needed. This os-
molarity difference is important to obtain slight swelling
of the cell during the recording session which improves the
diffusion of biocytin in the neuronal processes. All glass-
ware, spatulas, stir bars, counters, and anything else that
may come into contact with the reagents or solution were
cleaned thoroughly with RNase Zap before use.

Recording pipettes (Suttern B200-116-10) of ∼3–7 MΩ
resistance were filled with 0.1–0.3 µL of RNase-free intra-
cellular solution. The size of the pipette tip was chosen
based on the target neuron size: ∼3–4 MΩ pipettes were
used to record large neurons (e.g. L5 PT excitatory neu-
rons) while ∼6–7 MΩ pipettes were used to record small
cells like L1 or Vip interneurons.
The PatchMaster software (HEKA Elektronik) and cus-

tom Matlab scipts were used to operate the Quadro
EPC 10 amplifiers and to perform online and offline anal-
ysis of the data. We used the following quality con-
trol criteria: (1)the seal resistance value > 1 GΩ before
achieving whole-cell configuration; (2) the access resis-
tance < 30 MΩ. Each neuron was injected with 600-
ms-long current pulse injections starting from −200 pA
and up to 1380 pA with 20 pA increment steps (in some
cases stimulation was stopped before reaching 1380 pA).
There were 1.3 or 1.4 s intervals between successive current
pulses, depending on the used setup. For most neurons
the stimulation was then repeated multiple times from the
beginning. Electrophysiological traces used for the analy-
sis were acquired between 3–5 minutes after achieving the
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whole-cell configuration. All electrophysiological record-
ings were performed at room temperature (20–25 °C).

Typically, excitatory neurons were recorded for 5–20
minutes while interneurons were recorded for 20–50 min-
utes in order to allow biocytin diffusion into distal axonal
segments. During the recording, the access resistance was
checked every three minutes in order to maintain a stable
seal that would ensure successful biocytin diffusion. The
resulting cDNA yield was not correlated with the hold time
(Spearman correlation −0.01).

RNA sequencing of patched cells

At the end of the recording session, cell contents were as-
pirated into the glass pipette by applying a gentle negative
pressure (0.7–1.5 pounds per square inch) for 1–5 minutes
until the size of the cell body was visibly reduced. In most
cases, the cell nucleus was visibly extracted from the cell
body. During the aspiration process, the cell body struc-
ture and the access resistance were constantly monitored.
Special attention was taken to ensure that the seal be-
tween the pipette and the cell membrane remained intact
to avoid possible contamination from the extracellular en-
vironment. After aspiration, the contents of the pipette
were immediately ejected into a 0.2 mL PCR tube con-
taining 4 µL lysis buffer, and RNA was subsequently con-
verted into cDNA using a Smart-seq2-based protocol (Pi-
celli et al., 2013) as described previously (Cadwell et al.,
2017). The resulting cDNA libraries were screened using
an Agilent Bioanalyzer 2100. Samples containing less than
∼1 ng total cDNA (in the 15 µL of the final volume) or
with an average size less than 1500 bp were typically not
sequenced (with some occasional exceptions).

The cDNA libraries derived from each neuron were puri-
fied and 0.2 ng of the purified cDNA was tagmented using
the Illumina Nextera XT Library Preparation with one
fifth of the volumes stated in the manufacturer’s recom-
mendation. Custom 8 bp index primers were used at a final
concentration of 0.1 µM. The resulting cDNA library was
sequenced on an Illumina NextSeq500 instrument with a
sequencing setup of 75 bp single-end reads and 8 bp index
reads. Samples were sequenced in batches of ∼200 cells
each and the investigators were blinded to the cell type of
each sample during library construction and sequencing.

The sequencing data was processed using the zUMIs
pipeline with the default settings (Parekh et al., 2018). Se-
quencing reads were aligned to the mm10 mouse reference
genome using STAR version 2.5.4b (Dobin et al., 2013) and
transcript assignment performed with Gencode transcript
annotations, version M23. Gene expression counts were
calculated using reads mapping to exonic regions. 42 184
genes, including pseudogenes and annotated non-coding
segments, were detected in at least one cell. The resulting
read count data were used for all transcriptomic analyses
presented in this article.

Biocytin staining and morphological recon-
structions
Morphological recovery was carried out as previously de-
scribed (Jiang et al., 2015; Cadwell et al., 2017; Scala
et al., 2019). Briefly, after the recordings, the slices were
immersed in freshly-prepared 2.5% glutaraldehyde, 4%
paraformaldehyde solution in 0.1 M phosphate-buffered
saline at 4 °C for at least 48 hours. The slices were
subsequently processed with the avidin-biotin-peroxidase
method in order to reveal the morphology of the neurons.
As described previously, we took several steps to improve
the staining quality of the fine axonal branches of interneu-
rons (Jiang et al., 2015; Cadwell et al., 2017). First, we
used high biocytin concentration (0.5 g / 100 ml). Second,
we incubated with avidin-biotin complex and detergents
at a high concentration (Triton-X100, 5%) for at least 24
hours before DAB staining.

Recovered cells were manually reconstructed using a
100X oil-immersion lens and a camera lucida system (Mi-
croBrightField, Vermont). We aimed to reconstruct all
cells that had staining of sufficient quality (axons and
dendrites for the inhibitory neurons; only dendrites for
the excitatory neurons), obtaining 642 reconstructions in
total. In addition, we reconstructed the dendrites of 30
neurons from the Vip and Scng families that lacked suffi-
cient axonal staining. Vip neurons are traditionally clas-
sified based on the dendritic morphology, so these recon-
structions can inform t-type characterizations. These ad-
ditional 30 reconstructions are shown, together with the
main 642 reconstructions, in the Supplementary File 1.

45 sequenced cells were mistakenly recorded using a so-
lution with a much smaller concentration of biocytin, and
their morphologies could not be recovered. We made sure
that the measured electrophysiological properties of these
cells were not systematically different from the other se-
quenced cells.

Inevitably, neuronal structures can be severed as a result
of the slicing procedure. We took special care to exclude
reconstructions of all neurons that showed any signs of
damage, lack of contrast, or poor overall staining. Consis-
tently with previous studies, tissue shrinkage due to the
fixation and staining procedures was about 10–20% (Scala
et al., 2019; Jiang et al., 2015; Markram et al., 1997). This
shrinkage was not compensated for in our analysis.

Cortical thickness normalization and layer
assignment
Nissl-stained slices (n = 15 from 2 wild-type adult mice)
were used to measure normalized layer boundaries in MOp.
The Nissl staining protocol was adapted from Paul et al.
(2008). Briefly, mouse brain slices were mounted on slides
and allowed to dry. The sections were then demyelinated,
stained with a 0.1% cresyl violet-acetate (C5042, Sigma)
for 30 minutes at 60 °C and further destained. The sections
were then coverslipped in Cytoseal 60 (Richard Allan Sci-
entific). For each slice we measured its total thickness from
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pia to white matter and the depths of the three between-
layer boundaries (L1 to L2/3, L2/3 to L5, L5 to L6), based
on the cortical cytoarchitecture, using Neurolucida system
with 10x/20x magnification. All measurements were nor-
malized by the respective slice thickness, and the averages
over all n = 15 slices were used as the normalized layer
boundaries (Figure S2b).

For the Patch-seq neurons, we measured soma depth and
the cortical thickness of the slice using Neurolucida sys-
tem. We took their ratio as the normalized soma depth,
and assigned each neuron to a layer (L1, L2/3, L5, or
L6) based on the Nissl-determined layer boundaries (Fig-
ure S2b). We obtained soma depth information for 1275
neurons out of 1320 (45 neurons were mistakenly recorded
using a solution with insufficient biocytin concentration,
and we could only measure soma depths for 2 of those; for
2 other neurons the measurements could not be carried out
because the slices were lost). For the 45 neurons with miss-
ing soma depth measurements, we used the layer targeted
during the recording for all layer-based analyses and visu-
alizations (marker shapes in Figure 1c–e and Figure 4a–c,
layer-restricted analysis in Figure 5 and Figure 6).
All reconstructed morphologies were normalized by the

cortical thickness of the respective slice to make it possible
to display several morphologies next to each other, as in
Figure 2.

T-type assignment
The t-type assignment procedure was done in two rounds.
The first round was for quality control and initial assign-
ment to a transcriptomic ‘order’ (CGE-derived interneu-
rons, MGE-derived interneurons, or excitatory neurons)
that are perfectly separated from each other with no tran-
scriptomically intermediate cells (Tasic et al., 2018). The
second round was done for assigning the cells to specific
t-types.

In the first round, we mapped each Patch-seq cell to a
large annotated Smart-seq2 reference data set from adult
mouse cortex (Tasic et al., 2018), using the same proce-
dure as in Scala et al. (2019). Specifically, using the exon
count matrix of Tasic et al. (2018), we selected 3000 most
variable genes (see below). We then log-transformed all
counts with log2(x + 1) transformation and averaged the
log-transformed counts across all cells in each of the 133
t-types, to obtain reference transcriptomic profiles of each
t-type (133× 3000 matrix). Out of these 3000 genes, 2664
were present in the genome annotation that we used. We
applied the same log2(x + 1) transformation to the read
counts of our cells, and for each cell computed Pearson cor-
relation across the 2686 genes with all 133 t-types. Each
cell was assigned to the t-type to which it had the highest
correlation (Figure S4a).
Cells meeting any of the exclusion criteria described in

the following were declared low quality and did not get a
t-type assignment (Figure S2e): cells with the highest cor-
relation below 0.4 (76 cells); cells that would be assigned
to non-neural t-types, presumably due to RNA contamina-

tion (Tripathy et al., 2018) (12 cells); cells that would be
assigned to the Meis2 t-type that was not adequately rep-
resented in the datasets from Yao et al. (in preparation)
(2 cells); cells with the highest correlation less than 0.02
above the maximal correlation in other transcriptomic or-
ders (2 cells). The remaining 1228 cells passed the quality
control and entered the second round.

In the second round, cells were independently mapped
to the seven transcriptomic datasets from Yao et al. (in
preparation) obtained from mouse MOp (Figure S4b).
The mapping was done only to the t-types from the tran-
scriptomic order identified in the first round, using 500
most variable genes in that dataset for that transcriptomic
order (so using 21 sets of 500 most variable genes). Gene
selection was performed as described below, and t-type
assignment was done exactly as described above. Across
the 21 reference subsets, 472–494 most variable genes were
present in the genomic annotation used here, and were
used for the t-type assignment.

We used bootstrapping over genes to assess the confi-
dence of each t-type assignment. For each cell and for
each reference dataset, we repeatedly selected a bootstrap
sample of genes (i.e. the same number of genes, selected
randomly with repetitions) and repeated the mapping.
This was done 100 times and the fraction of times the cell
mapped to each t-type was taken as the t-type assignment
confidence for that t-type (Figure S4c). The confidences
obtained with seven reference data sets agreed well with
each other (Figure S2i) and were averaged to obtain the
consensus confidence. Finally, the cell was assigned to the
t-type with the highest consensus confidence.

Six cells were assigned to an excitatory t-type, despite
having clearly inhibitory firing, morphology, and/or soma
depth location (such as L1). The most likely cause was
RNA contamination from excitatory cells that are much
more abundant in the mouse cortex. These six cells were
excluded from all analyses and visualizations (as if they did
not pass the transcriptomic quality control). In addition,
one cell was likely located outside of MOp, based on the
slice anatomy, and was excluded as well. The final number
of cells with t-type assignment was 1221.

Selection of most variable genes
Several steps of our analysis required selecting a set of the
most variable genes in a given transcriptomic data set. We
always selected a fixed predefined number of genes (such
as 500, 1000, or 3000).

To select the most variable genes, we found genes that
had, at the same time, high non-zero expression and high
probability of near-zero expression (Andrews and Hem-
berg, 2019). Our procedure is described in more detail
elsewhere (Kobak and Berens, 2019). Specifically, we ex-
cluded all genes that had counts of at least cmin (for Patch-
seq and Smart-seq2: cmin = 32; for 10x: cmin = 1) in fewer
than 10 cells. For each remaining gene we computed the
mean log2 count across all counts that were larger than
cmin (non-zero expression, µ) and the fraction of counts
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that were smaller than cmin (probability of near-zero ex-
pression, τ). Across genes, there was a clear inverse rela-
tionship between µ and τ , that roughly followed exponen-
tial law

τ ≈ exp(−1.5 · µ+ a)

for some horizontal offset a. Using a binary search, we
found a value b of this offset that yielded the desired num-
ber of genes with

τ > exp(−1.5 · µ+ b) + 0.02.

T-SNE visualization of the transcriptomic
data
T-SNE embeddings (Maaten and Hinton, 2008) of the
three subsets of the single-cell 10x v2 data set from Yao et
al. (in preparation) (Figure 1c–e) were constructed using
the same 500 most variable genes that were also used for
t-type assignment (see above). The counts were converted
to counts per million (CPM), log2(x+1)-transformed, and
reduced to 50 principal components. The resulting n× 50
matrix was used as input to t-SNE. We used FIt-SNE
1.1.0 (Linderman et al., 2019) with learning rate n/12 and
scaled PCA initialisation (Kobak and Berens, 2019). Per-
plexity was left at the default value of 30 for both in-
hibitory subsets and increased to 100 for the excitatory
subset. All other parameters were left at default values.

The embedding of the full data set (Figure S5) was con-
structed using the same 3000 most variable genes as were
used for t-type assignment (as above). Counts were con-
verted to CPMs, log2(x+ 1)-transformed, and reduced to
50 PCs. For t-SNE, we used downsampling-based initial-
isation (Kobak and Berens, 2019). Briefly, the data set
was randomly downsampled to 25 000 cells and embedded
using the learning rate n/12, perplexity combination of 30
and n/100, and scaled PCA initialisation. The remaining
cells were positioned in the median embedding location of
their 10 nearest neighbours (based on Euclidean distance
in the high-dimensional space). The resulting embedding,
scaled to have standard deviation 0.0001, was used as ini-
tialization for t-SNE with default perplexity 30 and learn-
ing rate n/12.
To position Patch-seq cells on a reference t-SNE em-

bedding, we used the procedure from Kobak and Berens
(2019). Briefly, each cell was positioned at the median
embedding location of its 10 nearest neighbours, based
on Pearson correlation distance in the high-dimensional
space. All counts were log2(x + 1)-transformed and cor-
relations were computed across the same genes that were
used for t-type assignments (see above).

Extraction of electrophysiological features
28 electrophysiological properties of the neurons were au-
tomatically extracted based on the raw membrane volt-
age traces (Figure S12) using Python scripts from the
Allen Software Development Kit (https://github.com/
AllenInstitute/AllenSDK) with some modifications to

account for our experimental paradigm (https://github.
com/berenslab/EphysExtraction).

For each hyperpolarizing current injection, the resting
membrane potential was computed as the mean membrane
voltage during 100 ms before stimulation onset and the
input resistance as the difference between the steady state
voltage and the resting membrane potential, divided by
the injected current value (we took the average voltage of
the last 100 ms before stimulus offset as steady state). The
median of these values over all hyperpolarizing traces was
taken as the final resting membrane potential and input
resistance respectively.

To estimate the rheobase (the minimum current needed
to elicit any spikes), we used robust regression (ran-
dom sample consensus algorithm, as implemented in
sklearn.linear_model.RANSACRegressor) of the spik-
ing frequency onto the injected current using the five low-
est depolarizing currents with non-zero spike count (if
there were fewer than five, we used those available). The
point where the regression line crossed the x-axis gave the
rheobase estimate (Figure S12). We restricted it to be be-
tween the highest injected current eliciting no spikes and
the lowest injected current eliciting at least one spike. In
case the regression line crossed the x-axis outside of this
interval, the first current step eliciting at least one spike
was used.

The action potential (AP) threshold, AP amplitude,
AP width, afterhyperpolarization (AHP), afterdepolariza-
tion (ADP), the first AP latency, and the upstroke-to-
downstroke ratio (UDR) were computed as illustrated in
Figure S12, using the very first AP fired by the neuron. AP
width was computed at the AP half-height. UDR refers to
the ratio of the maximal membrane voltage derivative dur-
ing the AP upstroke to the maximal absolute value of the
membrane voltage derivative during the AP downstroke.

The interspike interval (ISI) adaptation index for each
trace was defined as the ratio of the second ISI to the first
one. The ISI average adaptation index was defined as the
mean of ISI ratios corresponding to all consecutive pairs of
ISIs in that trace. For both quantities we took the median
over the five lowest depolarizing currents that elicited at
least three spikes (if fewer than five were available, we used
all of them). AP amplitude adaptation index and AP am-
plitude average adaptation index were defined analogously
to the two ISI adaptation indices, but using the ratios of
consecutive AP amplitudes (and using the median over the
five lowest depolarizing currents that elicited at least two
spikes).

The maximum number of APs refers to the number of
APs emitted during the 600 ms stimulation window of the
highest firing trace. The spike frequency adaptation (SFA)
denotes the ratio of the number of APs in the second half
of the stimulation window to the number of APs in the first
half of the stimulation window of the highest firing trace.
If the highest firing trace had fewer than five APs, SFA was
not defined. Here and below the highest firing trace corre-
sponds to the first depolarising current step that showed
the maximum amount of APs during the current stimula-
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tion window (after excluding all stimulation currents for
which at least one AP was observed in 100 ms before or in
200 ms after the stimulation window; see below).

The membrane time constant (tau) was computed as
the time constant of the exponential fit to the membrane
voltage from the stimulation onset to the first local mini-
mum (we took the median over all hyperpolarizing traces).
Three further features described the sag of the first (the
lowest) hyperpolarization trace. The sag ratio was defined
as the sag trough voltage (average voltage in a 5 ms win-
dow around the sag trough) difference from the resting
membrane potential, divided by the steady state mem-
brane voltage difference from the resting membrane poten-
tial. The sag time was defined as the time period between
the first and the second moments the membrane voltage
crosses the steady state value after the stimulation onset.
The sag area refers to the absolute value of the integral
of the membrane voltage minus the steady-state voltage
during the sag time period (Figure S12). If the sag trough
voltage and the steady state voltage differed by less than
4 mVs, the sag time and sag area were set to zero.

The rebound was defined as the voltage difference be-
tween the resting membrane potential and the average
voltage over 150 ms (or whatever time remained until
300 ms after the stimulation offset) after rebound onset,
which we identified as the time point after stimulation
offset when the membrane voltage reached the value of
the resting membrane potential. If the membrane voltage
never reached the resting membrane potential during the
300 ms after the stimulation offset, the rebound was set
to zero. The rebound number of APs was defined as the
number of APs emitted during the same period of time.
Both rebound features were computed using the lowest
hyperpolarization trace.

The ISI coefficient of variation (CV) refers to the stan-
dard deviation divided by the mean of all ISIs in the high-
est firing trace. Note that a Poisson firing neuron would
have ISI CV equal to one. The ISI Fano factor refers to
the variance divided by the mean of all ISIs in the high-
est firing rate. The AP CV and AP Fano factor refer to
the CV and the Fano factor of the AP amplitudes in the
highest firing trace.

The burstiness was defined as the difference between the
inverse of the smallest ISI within a detected burst and the
inverse of the smallest ISI outside of bursts, divided by
their sum. We took the median over the first five depolar-
izing traces. We relied on the Allen SDK code to detect the
bursts. Briefly, within that code a burst onset was iden-
tified whenever a ‘detour’ ISI was followed by a ‘direct’
ISI. Detour ISIs are ISIs with a non-zero ADP or a drop
of at least 0.5 mVs of the membrane voltage after the first
AP terminates and before the next one is elicited. Direct
ISIs are ISIs with no ADP and no such drop of membrane
voltage before the second AP. A burst offset was identi-
fied whenever a direct ISI was followed by a detour ISI.
Additionally, bursts were required to contain no ‘pause-
like’ ISIs, defined as unusually long ISIs for that trace (see
Allen SDK for the implementation details).

Some neurons (in particular neurogliaform cells) started
emitting APs before and after the current stimulation
window, after the stimulation currents exceeded certain
amount. To quantify this effect, we defined wildness as
the difference in the number of APs between the highest
firing trace (possibly showing APs before or after stimula-
tion window) and the highest firing trace as defined above
(without any APs outside the stimulation window). For
most neurons, wildness was equal to zero.

For all statistical analysis we used 16 features out of the
extracted 28, excluding features that were equal to zero
for many cells (afterdepolarization, burstiness, rebound
number of APs, sag area, sag time, wildness), two Fano
factor features that were highly correlated with the corre-
sponding coefficient of variation features (AP Fano factor,
ISI Fano factor), features that had very skewed distribu-
tions (AP amplitude average adaptation index, ISI average
adaptation index), features that could not be extracted for
some of the cells (spike frequency adaptation), and fea-
tures that we considered potentially unreliable (latency).
Three features were log-transformed to make their distri-
bution more Gaussian-like: AP coefficient of variation, ISI
coefficient of variation, ISI adaptation index.

Extraction of morphological features
Reconstructed morphologies were converted into the SWC
format using NLMorphologyConverter 0.9.0 (http://
neuronland.org) and further analyzed in Python. Each
cell was soma-centered in the x (slice width) and y (slice
depth) dimensions, and aligned to pia in the z (cortical
depth) dimension so that z = 0 corresponded to pia. All
neurites were smoothed in the slice depth dimension (y)
using a Savitzky-Golay filter of order 3 and window length
21, after resampling points to have maximally 1 µm spac-
ing. For further analysis we computed two different feature
representations of each cell: the normalized z-profile and a
set of morphometric statistics (Scala et al., 2019; Gouwens
et al., 2019; Laturnus et al., 2019).
To compute the normalized z-profile, we divided all the

coordinates of the neuronal point cloud by the thickness
of the respective cortical slice, so that z = 1 corresponded
to the white matter border. We projected this point cloud
onto the z-axis and binned it into 20 equal-sized bins span-
ning [0, 1]. The resulting histogram describes a neuron’s
normalised depth profile perpendicular to the pia. For the
purposes of downstream analysis, we treated this as a set
of 20 features. The z-profiles were separately computed
for axons and dendrites.

Morphometric statistics were separately computed for
the dendritic and the axonal neurites to quantify their ar-
borization shape and branching patterns. For the exci-
tatory neurons, several additional morphometric statistics
were computed for the apical dendrites, where apical den-
drite was operationally defined as the dendrite with the
longest total path length. We further used two ‘somatic’
features, normalized soma depth and soma radius. We did
not use any features measuring morphological properties
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in the slice depth (y) direction due to possible slice shrink-
age artefacts. We did not use any axonal features for the
excitatory cells because only a small part of the axon could
typically be reconstructed. For the inhibitory cells, where
dendrite and axon can both be fully recovered, we included
some measures of the dendritic and axonal overlap. The
full list of morphometric statistics is given in Table S1.

We extracted a set of 75 features, of which 40 were de-
fined for excitatory neurons and 58 for inhibitory neurons,
and processed the data for excitatory and inhibitory neu-
rons separately. In each case, we excluded features with
coefficient of variation below 0.25 (among the features with
only positive values). This procedure excluded 5 features
for the excitatory and 10 features for the inhibitory cells.
The distributions of the remaining features were visually
checked for outliers and for meaningful variation between
transcriptomic types, leading to a further exclusion of 3
and 4 features for the excitatory and the inhibitory cells
respectively. The full list of excluded features is given
in Table S1. The resulting set of morphometric statistics
used for further analysis consisted of 32 features defined
for the excitatory neurons and 48 features defined for the
inhibitory neurons.

Reduced-rank regression
For the reduced-rank regression (RRR) analysis (Kobak
et al., 2019) we used 16 electrophyiological features and
all 1213 cells for which values for all 16 features and a t-
type assignment could be computed. Electrophyiological
features were standardized. Transcriptomic counts were
converted to CPM, log2(x+1)-transformed, and then stan-
dardized. We selected the 1000 most variable genes and
only used those for the RRR analysis.

Briefly, RRR finds a linear mapping of gene expres-
sion levels to a low-dimensional latent representation, from
which the electrophysiological features are then predicted
with another linear transformation (for mathematical de-
tails, see Kobak et al. (2019)). The model employs sparsity
constraints in form of elastic net penalty to select only a
small number of genes. For Figure 3 we used a model with
rank r = 5, zero ridge penalty (α = 1), and lasso penalty
tuned to yield a selection of 25 genes (λ = 0.45). Cross-
validation (Figure S8) was done using 10 folds, elastic net
α values 0.5, 0.75, and 1.0, and λ values from 0.2 to 6.0.
The plots shown in Figure 3a and Figure 3b are called

bibiplots because they combine two biplots: the left biplot
shows a mapping of gene expression levels on the two latent
dimensions; the right biplot shows the same mapping of
electrophysiological features. To illustrate the meaning of
the latent dimensions, each biplot combines the resulting
scatter plots with lines showing how original features are
related to the latent dimensions. Specifically, we computed
the correlations of individual genes or electrophysiological
properties with the latent dimensions and visualized these
correlations as lines on the biplot. The circle shows the
maximal possible correlation; only lines longer than 0.4
times the circle radius were shown in Figure 3.

For the model based on ion channel genes, we ob-
tained the list of 328 ion channel genes from https:
//www.genenames.org/data/genegroup/#!/group/177
and used 293 of them that had non-zero expression in at
least 10 of our cells. We used rank r = 5, α = 1, and λ
tuned to yield 25 genes (λ = 0.325), as above.

T-SNE visualization of the morpho-electric
phenotypes
For the t-SNE visualization (Maaten and Hinton, 2008) of
the electrophysiological phenotypes, we used 16 features
as described above and all n = 1311 cells that had values
for all 16 features. All features were standardized across
this set of cells and transformed with PCA into a set of 16
PCs. We scaled the PCs by the standard deviation of PC1.
We used the t-SNE implementation from scikit-learn
Python library with the default perplexity (30), early ex-
aggeration 4 (the default value 12 can be too large for
small datasets), and scaled PCA initialisation (Kobak and
Berens, 2019). Figure 4a only shows n = 1218 cells that
had a t-type assignment.

For the t-SNE visualization of the morphological pheno-
types, we combined morphometric statistics with the nor-
malized z-profiles. The pre-processing, including PCA,
was done separately for the excitatory and for the in-
hibitory neurons because they used different sets of mor-
phometric statistics (see above). Only neurons with as-
signed t-type were used for this analysis. Two inhibitory
neurons were left out because some of the morphometric
statistics could not be extracted due to insufficient den-
dritic recovery; this left 367 inhibitory neurons (with 48
morphometric features) and 268 excitatory neurons (with
32 morphometric features). All features were standardized
and each set was reduced to 20 PCs. We scaled the PCs
by the standard deviation of the respective PC1, to make
the inhibitory and the excitatory PCs have comparable
variances.

We used dendritic z-profiles for the excitatory neurons
and axonal z-profiles for the inhibitory neurons. We re-
duced each set to 5 PCs, discarded PC1 (it was strongly
correlated with the normalized soma depth and made
the resulting embedding strongly influenced by the soma
depth), and scaled the PCs by the standard deviation of
the respective PC2. We stacked the 20 scaled morpho-
metric PCs and the 4 scaled z-profile PCs to get a com-
bined 24-dimensional representation, separate for the ex-
citatory and for the inhibitory neurons. We then com-
bined these representations into one block-diagonal 48-
dimensional matrix. This procedure makes the excitatory
and the inhibitory populations both have zero mean. To
prevent this overlap, we added a small constant value of
0.3 to the excitatory block-diagonal block, leading to the
strong excitatory/inhibitory separation in Figure 4b. The
t-SNE was performed exactly as described above.

For the t-SNE visualization of the morpho-electrical
landscape, we stacked together the 48-dimensional mor-
phological representation and the 16-dimensional electro-
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physiological representation obtained above, using only
cells that had all morphological and all electrophysiologcal
features (n = 627). We multiplied the electrophysiological
block by

√
2 to put its total variance on a similar scale (it

only consisted of one set of scaled PCs, whereas the mor-
phological representation consisted of two sets of scaled
PCs: morphometrics and z-profiles). The resulting 64-
dimensional morpho-electrical representation was used for
t-SNE, exactly as described above.

kNN classification of transcriptomic fami-
lies

To classify neurons into transcriptomic families based on
the electrophysiological, morphological, or combined fea-
tures (Figures 4d, 6a), we used a kNN classifier with k = 10
and Euclidean distance metric (taking the majority fam-
ily among the k nearest neighbours). This is effectively
a leave-one-out cross-validation procedure. For each data
modality we took the exact same data representation that
was used for computing t-SNE embeddings (Figure 4a–c),
see above. Note that t-SNE algorithm is also based on
nearest neighbors and makes all close neighbors attract
each other in the embedding. We chose the kNN classifier
as a simple but versatile non-parametric classifier that is
directly related to the t-SNE embeddings. We did not use
the Sncg and NP families due to insufficient coverage in
our data set (Figure 1).

Figure 4d shows the fraction of cells from each fam-
ily that got classified into each family. Figure 6a shows
fractions of cells from each t-type that got classified into
each family. For morphological and combined features, it
shows fractions of cells from the majority layer of each t-
type. E.g. Pvalb Reln type occurred most often in L5, so
only cells from that layer were taken for that type. Only
t-types with at least 10 cells (or at least 10 layer-restricted
cells) are shown.

Within-family analysis

To study the relationship between transcriptomic and elec-
trophyiological distances between pairs of t-types (insets in
Figure 5a,b, Figure S10), we took all t-types with at least
10 cells. For each pair of t-types, transcriptomic distance
was computed as the Pearson correlation between the av-
erage log2(x+1)-transformed gene counts in the single-cell
10x v2 data from Yao et al. (in preparation). 1000 most
variable genes across all neural types were used for the Fig-
ure S10 and 500 most variable genes across the respective
family were used for the Figure 5a,b. Electrophysiological
distance was computed as the Euclidean distance between
the average feature vectors.

Figure 5c used the soma depth distance, computed as
the absolute value of the difference between the average
normalized soma depths. Here we used all t-types with at
least 5 cells.

T-type variability analysis
The normalized total variance in Figure 6b was computed
as follows. For each modality, we took the exact same
data representation that was used for computing t-SNE
embeddings (Figure 4a–c), see above. For each t-type (or
layer-restricted t-type, see above), we took the sum of its
variances in all dimensions as the total variance and di-
vided by the sum of variances in all dimensions across the
whole data set:∑

j
1
|T |

∑
i∈T (Xij − 1

|T |
∑

i∈T Xij)2∑
j

1
n

∑
i(Xij − 1

n

∑
i Xij)2 ,

where Xij is a value of feature j of cell i, n is the total
number of cells, and T is the set of cell numbers belonging
to the given t-type. The value 0 indicates that all cells
from this t-type have exactly identical features. The value
1 indicates that there is as much variance in this one t-
type as in the whole data set. Only t-types with at least
10 cells (or at least 10 layer-restricted cells) are shown in
Figure 6b.

To provide a sensible baseline for the range of possi-
ble normalized total variances in a population of morpho-
electrically homogeneous types, we used a clustering anal-
ysis. For the cells of all the K t-types (or layer-restricted
t-types) with at least 10 cells in a given panel, we used the
k-means algorithm to cluster them into K clusters, rea-
soning that these clusters should be as homogeneous as
possible given the variability in our data set. We used the
k-means implementation from scikit-learn with default
parameters. We then computed the normalized total vari-
ance of each cluster as described above. Grey shading in
Figure 6b shows the interval between the minimum and
the maximum cluster variances. Note that the k-means
algorithm is directly minimizing within-cluster total vari-
ances.

We used the entropies of a Leiden clustering (Traag
et al., 2019) as an alternative way to approach the same
question. For each modality, using the exact same data
representation as above, we constructed its kNN graph
with k = 10 and clustered it using the Leiden algorithm
as implemented in the Python package leidenalg with
RBConfigurationVertexPartition quality function and
resolution parameter manually tuned to produce roughly
the same number of clusters for each modality as in
Gouwens et al. (2019) (Figure S11). For each t-type
(or layer-restricted t-type) we then measured the entropy
of the distribution of electrophysiological/morphological
cluster ids, after randomly subsampling the t-type to 10
cells. Subsampling was done to eliminate a possible bias
due to the t-type abundance. The whole procedure was
repeated 100 times with different random seeds for the
Leiden clustering and for the subsampling.
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Supplementary Figures

Figure S1: Patch-seq protocol. (a) Patch-seq combines electrophyiological recordings, RNA sequencing using Smart-seq2,
and biocytin staining in the same cell. (b) Four exemplary slice images. Top: an image of the whole slice using 4x magnification.
Bottom: a flattened 3D image stack using 20x magnification. From left to right: L5 PT neuron, L2/3 IT neuron, L5 Sst neuron,
L5 Pvalb neuron.
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Figure S2: Quality control. (a) Age distribution of the mice used in the experiments. Median: 75 days. (b) Soma depths
of all cells and cortical thickness of the corresponding slices. Dashed lines show layer boundaries, based on the Nissl-stained
slices (measured layer boundaries shown as blue points). All soma depths were normalized by dividing them by the cortical
thickness. (c) Relationship between cDNA yield and the number of genes detected after sequencing. Cells with very low yield
were typically not sequenced. Red: cells eventually failing quality control. (d) Relationship between sequencing depth (total
number of reads) and the number of detected genes (number of genes with non-zero counts). (e) Relationship between the number
of detected genes and the maximal correlation to clusters from Tasic et al. (2018). Cells with maximal correlation below 0.4
were declared low quality. (f) Relationship between the maximal correlation across neural clusters and the maximal correlation
across non-neural clusters from Tasic et al. (2018). Cells with maximal neural correlation below 0.4 were declared low quality.
See Methods for additional QC creiteria. (g) Maximal correlations using single-cell and single-nuclei Smart-seq2 reference data
sets (Yao et al., in preparation). (h) Maximal correlations using Smart-seq2 reference data sets (maximum across cell types
and across two data sets) and using 10x reference data sets (maximum across cell types and across five data sets). (i) T-type
assignment using single-cell Smart-seq2 reference data set and using single-cell 10x v2 reference data set. All points are on the
integer grid; marker size shows the number of cells at the corresponding location. Dashed lines separate three taxonomic orders:
CGE-derived interneurons, MGE-derived interneurons, and excitatory cells. The mapping was done within each order, so there
cannot be any cells outside of the diagonal blocks.
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Figure S3: T-types assigned to cells collected in mice from different Cre lines. ‘WT / Cre-’ stands for cells from any
Cre line that were not labeled with a fluorescent indicator, or for the cells patched in wild type mice. 1221 cells shown.
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Figure S4: T-type assignment procedure. All panels show one particular Patch-seq cell. (a) Correlations to the mean
log expression of all t-types from Tasic et al. (2018), using 3000 most variable genes. Maximum correlation is to the excitatory
neurons. (b) Correlations to all excitatory t-types from Yao et al. (in preparation) using all seven reference data sets and
500 most variable genes. (c) T-type assignment confidences for all seven datasets, obtained via bootstrapping over genes. The
average confidence is shown in black. The mode of the average confidence was taken as the final t-type.
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Figure S5: Full t-SNE of MOp neurons. Combined t-SNE of all neurons from the single-cell 10x v2 reference data set
(Yao et al., in preparation), with our cells overlayed as in Figure 1c–e. Sample size 121 423, perplexity 30, downsampling-based
initialization (Kobak and Berens, 2019).
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Figure S6: Interneurons assigned to the Tasic et al. 2018 t-types. This is an exact analogue of Figures 1b and 2 using
inhibitory t-types from Tasic et al. (2018). It allows the direct comparison with the results from the parallel work by Gouwens
et al. (in preparation). We used the same neurons as in Figure 2 whenever possible. 97 neurons in 53 t-types.
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Figure S7: Distribution of electrophysiological features. The ten most important electrophyiological features are shown
for all cells across all t-types. For t-types with at least three cells, horizontal lines show median value.
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Figure S8: Cross-validation for the reduced-rank regression models. (a) Cross-validated R2 of ‘naive’ and ‘relaxed’
sparse RRR solutions (Kobak et al., 2019) for various elastic net penalties (α and λ). ‘Relaxed’ means that the model was
re-fit without a lasso penalty using only the selected genes; ‘naive’ means that it was not re-fit. Vertical dashed lines at 25
genes corresponds to the choice made for Figure 3. The best performance is around ∼100 genes, but we chose 25 for the sake
of interpretability. The subsequent panels only show results for the ‘relaxed’ models. (b) Cross-validated R2 using α = 1 for
different ranks from rank 1 to rank 16 (full rank). (c) Cross-validated R2 using α = 1 and λ needed to obtain 25 genes for
different ranks. The peak performance is achieved with rank ∼12 (inset), but rank-5 model used in the main text is almost as
good. (d) Cross-validated correlations between sequential projections of the transcriptomic and electrophysiological data sets
(rank-5 models with α = 1). For any given number of selected genes, correlations decrease monotonically for higher components.
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Figure S9: Reduced-rank regression model using only ion channel genes. A full analogue of Figure 3 but using only
328 ion channel genes (https://www.genenames.org/data/genegroup/#!/group/177), of which 293 were detected in our dataset
in at least 10 cells.
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Figure S10: Pooled within-family analysis. The same analysis as in Figure 5a,b (insets) but pooled across all families.
We found 29 t-types with at least 10 cells, and computed transcriptomic and electrophysiological distances between all pairs. 77
pairs had t-types belonging to the same family (within-family pairs) and the correlation across those pairs was r = 0.70.

31

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.929158doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.03.929158
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S11: Clustering entropies. (a–c) We used Leiden clustering (Traag et al., 2019) to cluster the cells based on
electrophysiological, morphological, and combined features. The clustering resolution was adjusted to roughly match the number
of e-types, m-types, and em-types from Gouwens et al. (2019). The cluster colors in these panels are arbitrary and not the same
as the colors used for t-types. (d–f) For each t-type with at least 10 cells, we measured the entropy of the cluster assignments.
Entropy zero corresponds to all cells getting into one cluster. Higher entropies mean that cells get distributed across many
clusters. We repeated the clustering 100 times with different random seeds, and for each of them, subsampled each t-type to 10
cells to measure the entropy. Points show 100 repetitions, big markers show medians. When using morphological and combined
features, all t-types were layer-restricted, as in Figure 6. The t-type colors do not correspond to the colors in panels (a–c).
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Figure S12: Extraction of the electrophysiological features. All panels show data from the same exemplary cell. (a)
Membrane potential responses to the consecutive step current injections. Hyperpolarizing currents were used to compute the
input resistance (274.80 MOhm) and membrane time constant tau (21.95 ms). (b) The first five traces showing spikes were
used to compute ISI adaptation index (1.26), ISI average adaptation index (1.15), AP amplitude adaptation index (0.91) and
AP amplitude average adapation index (0.99). (c) The first AP elicited in this neuron. It was used to compute AP threshold
(−40.18 mV), AP amplitude (81.17 mV), AP width (0.80 ms), AHP (−12.60 mV), ADP (0 mV), UDR (1.62) and latency of the
first spike (69.28 ms). (d) Regression line gives the rheobase estimate (20.44 pA). (e) The highest firing trace with 32 APs. This
trace was used to estimate the ISI CV (0.27), ISI Fano factor (0.0014 ms), AP CV (0.17) and AP Fano factor (1.32 mV). (f)
The lowest hyperpolarization trace was used to compute the sag ratio (1.17), sag time (0.26 ms), sag area (31.16 mV·ms) and
rebound (17.84 mV).
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Supplementary Tables

Somatic Features

Normalized soma depth Distance from pia to soma divided by the distance from pia to
white matter (pia=0, wm=1).

Soma radius Radius of the sphere that approximates the soma (µm).

Shape Features
Defined for the axon, dendrites, and apical dendrites

Height Total extent in the z direction (µm).
Robust height The distance between the 2.5th and 97.5th percentiles of the z

coordinates across the whole point cloud (µm).
Width Total extent in the x direction (µm).
Robust width The distance between the 2.5th and 97.5th percentiles of the x

coordinates across the whole point cloud (µm).
Total length Total path length across all neurites (µm).
Branch points Total number of bifurcations.

Defined for the axon and dendrites only

First bifurcation moment The average bifurcation position in the z direction, relative to the
soma (µm).

Bifurcation standard deviation The standard deviation of the bifurcation positions in the z direc-
tion (µm).

Max branch order The maximum number of bifurcations passed when tracing a neu-
rite from the tip back to the soma. Branch ordering starts with
the soma having branch order 0 and each subsequent bifurcation
increases the order by 1.

Tips The number of end-points.
Max Euclidean distance to soma Euclidean distance between the soma and the most distal node

(µm).
Max path distance to soma Total path length of the longest neurite from its tip to the soma

(µm).
Max segment length Path length of the longest segment between the two neighbouring

bifurcations (µm).
Mean neurite radius The average radius across all neurites (µm).
Fraction above soma Fraction of nodes above the soma, i.e. closer to the pia.
X-bias The absolute difference between x-extents to the left and to the

right of the soma (µm).
Z-bias The difference between z-extents above and below the soma (µm).
Max/Mean/Min branch angle Maximal/average/minimal branch angle at each bifurcation. A

branch angle denotes the angle between the subsequent neurites
at a furcation point.

Log max/median/min tortuosity Log-transformed 99.5th percentile/median/minimal tortuosity
across all segments. Tortuosity describes the “bendiness” of a
segment and is defined as the ratio of the segment path length to
the Euclidean distance between its ends.

Max/Median path angle 99.5th percentile and median across all path angles. A path an-
gle describes the angle between two consecutive sub-segments (1-
micron-long each) along the path between the two adjacent bifur-
cation points. Can take values in the [0, 180) degree range.

Defined for dendrites only

Stems Number of neurites extending directly from the soma.
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Stems exiting up/down/to the sides Fraction of stems exiting into the three directions. The direction
of a stem is determined by its angle w.r.t. the normal pointing
towards the pia. Up: below 45 degrees, down: above 135 degrees,
sides: 45–135 degrees.

Defined for the apical dendrite only

Mean bifurcation distance The average position of bifurcations projected onto a line connect-
ing the soma to the furthest node, normalized by the total path
length. The furthest node is defined in terms of the path length.
Takes values in the (0, 1) range.

Bifurcation distance standard deviation Standard deviation of the normalized bifurcation positions (see
above).

Log1p number of outer bifurcations The number of bifurcations with Euclidean distance to the soma
above 0.5 of the maximal Euclidean distance to the soma. This
feature was log(x+ 1)-transformed.

Defined for axon only

Mean initial segment radius The average radius of the first axonal segment leaving the soma
(µm).

Overlap Features

EMD axon dendrite Earth mover’s distance (also known as the Wasserstein distance)
calculated between the normalized z-profile 20-bin histograms of
axon and dendrite. We used the implementation from the scipy
library.

Log1p fraction of axon above/below
dendrite

Fraction of axonal nodes above/below the full z-extent of the den-
drites. This feature was log(x+ 1)-transformed.

Log1p fraction of dendrite above/below
axon

(see above).

Excluded Features
Based on small coefficient of variation: CV < .25

Excitatory dendrite above soma, dendrite max branch angle, dendrite max
path angle, dendrite mean branch angle, dendrite log median tor-
tuosity

Inhibitory axon/dendrite max/mean branch angle, axon max/median path
angle, dendrite max path angle, axon log max/median tortuosity

Based on visual inspection

Excitatory dendrite log min tortuosity, dendrite x-bias, dendrite min branch
angle

Inhibitory axon/dendrite log min tortuosity, Log1p fraction of dendrite below
axon, dendrite min branch angle

Table S1: Full list of computed morphometric statistics. It is indicated whether a feature was computed on the soma, the axon,
the dendrites or the apical dendrite. The apical dendrite was identified in an automated fashion as the one dendrite with the
longest total path length. Overlap features are computed on inhibitory cells only. The section Excluded Features lists all features
that have been subsequently excluded.
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Supplementary Files
Supplementary File 1: A PDF file containing all reconstructed morphologies and electrophysiological traces in the same
format as in Figure 2, sorted by transcriptomic type.
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