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ABSTRACT 1 

 2 

With mounting interest in translating GWAS hits from large meta-analyses (meta-GWAS) in diverse 3 

clinical settings, evaluating their generalizability in target populations is crucial. Here we consider long-4 

term survivors of childhood cancers from the St. Jude Lifetime Cohort Study and show the limited 5 

generalizability of 1,376 robust SNP associations reported in the general population across 12 complex 6 

anthropometric and cardiometabolic phenotypes (N=2,231; observed-to-expected replication ratio=0.68, 7 

P=2.4x10-9). An examination of five comparable phenotypes in a second independent cohort of survivors 8 

from the Childhood Cancer Survivor Study corroborated the overall limited generalizability of meta-GWAS 9 

hits to survivors (N=4,212, observed-to-expected replication ratio=0.53, P=1.1x10-16). Meta-GWAS hits 10 

were less likely to be replicated in survivors exposed to cancer therapies associated with phenotype risk. 11 

Examination of complementary DNA methylation data in a subset of survivors revealed that treatment-12 

related methylation patterns at genomic sites linked to meta-GWAS hits may disrupt established genetic 13 

signals in survivors.14 
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Recent meta-analyses of genome-wide association studies (meta-GWAS) with large study 15 

samples (N>10,000) have discovered novel and replicated known associations between common genetic 16 

variants (i.e., single nucleotide polymorphisms or SNPs) and many complex traits and diseases. Genetic 17 

associations reported in cohorts with individuals of predominantly European ancestry have proven to be 18 

highly generalizable in other European cohorts1. For example, a recent examination of genome-wide 19 

significant associations for 32 complex traits across five broad disease groups reported a median 20 

replication rate of 84% in a cohort with >13,000 individuals of European ancestry2. 21 

The generalizability of robust genetic associations reported by large-scale meta-GWAS (hereafter 22 

referred to as meta-GWAS hits) from the general population to specialized clinical populations has not 23 

been established for most complex phenotypes. Yet there is growing enthusiasm for utilizing polygenic 24 

risk scores to predict disease risk and identify high-risk individuals for targeted interventions; for example, 25 

polygenic risk scores have been shown to improve clinical prediction models for cardiovascular disease 26 

risk and used to support pharmaceutical interventions to target reductions in low-density lipoprotein levels 27 

in high-risk individuals1,3. It is imperative to evaluate the generalizability of established meta-GWAS hits in 28 

target populations before adopting such genetic tools built on the GWAS literature. Childhood cancer 29 

survivors are one such example of a specialized clinical population that would greatly benefit from 30 

knowledge of the generalizability of meta-GWAS hits. Today, approximately one in every 750 individuals 31 

is a survivor of childhood or adolescent cancer in the United States4. This growing population of survivors 32 

differs markedly from the general population. Studies have consistently shown that survivors are at 33 

greater risk for a wide range of serious health conditions earlier in life relative to general population or 34 

sibling controls, in part due to their exposures to treatments necessary to cure pediatric cancers4-8, 35 

including chronic cardiovascular and metabolic health conditions that are among the leading causes of 36 

morbidity and mortality among survivors5,9-12. 37 

Here we report on the limited generalizability of 1,376 robust meta-GWAS hits (P<5x10-8) 38 

identified from the literature for 12 anthropometric and cardiometabolic phenotypes to adult survivors of 39 

childhood cancer from the St. Jude Lifetime Cohort Study7 (SJLIFE; N=2,231, European ancestry), a 40 

single-institution retrospective cohort study with longitudinal follow-up of survivors with clinically 41 

ascertained health outcomes. We also found limited generalizability of meta-GWAS hits in a second 42 
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cohort of survivors for five phenotypes available for comparison from the Childhood Cancer Survivor 43 

Study (CCSS; N=4,212, European ancestry), a multi-center study with self-reported health conditions. 44 

Depletions of replicated meta-GWAS hits were exacerbated in survivor subgroups exposed to certain 45 

cancer treatments, particularly when treatments had larger contributions to phenotype variation. Lastly, 46 

we conducted ancillary analyses to explore the role of DNA methylation, an epigenetic alteration that is 47 

influenced by both inherited genetic variation and environmental factors13. Among the 236 survivors of 48 

SJLIFE with both germline methylome and genotype data, we found that cancer treatments, particularly 49 

radiation therapy, may obscure some robust meta-GWAS SNP associations in survivors. 50 

 51 

RESULTS 52 

 53 

Compiling robust meta-GWAS hits 54 

 55 

The 12 phenotypes of interest included three anthropometric traits (height, body mass index 56 

[BMI], waist-to-hip ratio [WHR]); two blood pressure traits (systolic [SBP], diastolic [DBP]); four serum lipid 57 

traits (high-density lipoprotein levels [HDL], low-density lipoprotein levels [LDL], total cholesterol levels 58 

[TC], triglycerides [TG]); and three cardiometabolic disease outcomes (coronary artery disease [CAD], 59 

obesity, type 2 diabetes [T2D]). Using the NHGRI-EBI GWAS Catalog14, we identified 149 GWAS for 60 

these 12 phenotypes. After reviewing the literature against criteria for relevance, ancestry, and study 61 

suitability (see Methods), we compiled 1,415 genome-wide significant (P<5x10-8) SNP-phenotype 62 

associations from 46 selected GWAS featuring meta-analyses with replication studies that included 63 

>10,000 participants of predominantly European ancestry (Figure 1). We limited our analysis to the 1,376 64 

SNP-phenotype associations (97.2%) that could be directly tested using 1,231 SNPs measured in SJLIFE 65 

that passed strict quality control. 66 

 67 

Replicating meta-GWAS hits in SJLIFE childhood cancer survivors 68 

 69 
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Using phenotype definitions, adjustment covariates, and exclusion criteria that were consistent 70 

with reference GWAS (Table 1), our primary aim was to replicate the 1,376 robust meta-GWAS hits in 71 

2,231 adult long-term (≥5-year) survivors of childhood cancer of European ancestry in SJLIFE7. Relevant 72 

descriptive statistics for the SJLIFE cohort are provided in Table 2. Most survivors had been exposed to 73 

at least one type of chemotherapeutic agent (85.3%) and over half (58.3%) had received radiotherapy; 74 

additional adjustments for specific cancer treatment exposures were considered based on the childhood 75 

cancer survivorship literature (Table 1). There was high correspondence between effect allele frequencies 76 

(EAFs) reported in the reference GWAS and the SJLIFE sample, with a median absolute difference of 77 

0.99% (IQR=0.47-1.71%). 78 

 All meta-GWAS hits that were replicated in SJLIFE (P<0.05, with same directions of effect in 79 

literature) are listed in Supplementary Table 1. The results of the meta-GWAS hit replication enrichment 80 

analysis in SJLIFE are summarized in Figure 2 and Supplementary Table 2. Of the 1,376 meta-GWAS 81 

hits, we expected to replicate ~279 SNP-phenotype associations across all phenotypes, based on power 82 

calculations for replication with SJLIFE sample sizes and SNP EAFs. We replicated only 189 SNP-83 

phenotype associations (replication rate=13.7%; 189/1,376 tested) with models adhering to reference 84 

GWAS, and 185 SNP-phenotype associations (replication rate=13.4%; 185/1,376 tested) after adjusting 85 

for additional covariates relevant to childhood cancer survivors (i.e., cancer treatment exposures, Table 86 

1). The Replication Enrichment Ratio (RER), or the ratio of observed-to-expected meta-GWAS hit 87 

replication frequencies, across all 12 phenotypes was 0.68 (95% CI: 0.60-0.77, P=2.4x10-9) using models 88 

adjusting for reference GWAS covariates only, suggesting that the overall number of meta-GWAS hit 89 

replications observed in SJLIFE was significantly less than expected. Significant replication depletion was 90 

also observed across all phenotypes using models adjusting for additional covariates relevant to survivors 91 

(RER=0.66, 95% CI: 0.58-0.76, P=4.1x10-10). While three phenotypes (WHR, T2D, TG) showed no 92 

evidence of replication depletion (RER>1), the remaining nine phenotypes had either significant 93 

depletions of meta-GWAS hit replications (RER<1 and P<0.05 for height, BMI, DBP, and obesity) or 94 

suggestive evidence of replication depletions (RER<1 and P<0.2 for SBP, HDL, LDL, TC, CAD). 95 

 We explored alternative definitions of meta-GWAS hit replication in SJLIFE. First, we examined 96 

an “extended” replication strategy, under the possible but unlikely scenario that all SNPs involved in the 97 
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1,187 non-replicated robust meta-GWAS hits are weak representatives for nearby causal variants, but are 98 

in high linkage disequilibrium (LD) with causal variants in the same LD block. We re-tested non-replicated 99 

meta-GWAS hits using best SNP proxies for reported index SNPs, where best proxies were defined as 100 

SNPs in high LD with the index SNP (r2>0.8 in the 1000 Genomes15 European reference population or 101 

1000G EUR) likely to fall in the same LD block (i.e., within a 5-kb window, based on median LD block 102 

sizes of ~2.5 kb reported in 1000G EUR16). While we re-tested 812 non-replicated SNP associations with 103 

at least one plausible proxy (median=3 proxies per index SNP), this added only 12 additional meta-104 

GWAS hit replications (overall RER=0.72, 95% CI: 0.64-0.82, P=2.2x10-7) (Supplementary Table 3). We 105 

also assessed replication rates for a set of independent SNP-phenotype associations by limiting the SNP 106 

set to those with the highest EAF in SJLIFE among clusters of SNPs in high LD (r2>0.8, 500-kb window in 107 

1000G EUR) for each phenotype, in order to avoid bias in replication rate estimates due to clusters of 108 

SNPs in high LD. The same nine phenotypes as our primary analysis continued to show significant or 109 

suggestive replication depletion using the pruned SNP-phenotype associations (Supplementary Table 4). 110 

Finally, we examined replications of meta-GWAS hits under strict replication P-value thresholds corrected 111 

for multiple testing. While replication of ~55 SNP-phenotype associations were expected under 112 

Bonferroni-corrected P-value thresholds, only 25 SNP-phenotype associations were replicated, most of 113 

which were related to BMI/obesity or blood lipid phenotypes (Supplementary Table 5). 114 

 115 

Replicating meta-GWAS hits in childhood cancer survivors in CCSS 116 

 117 

 To assess our findings from SJLIFE in an independent cohort, we conducted a second analysis in 118 

survivors from the Childhood Cancer Survivor Study (CCSS). We examined five self-reported phenotypes 119 

available in CCSS that corresponded with our SJLIFE analysis (height, BMI, CAD, obesity, and T2D) in 120 

4,513 survivors with high-quality imputed genotype data (loci with imputation quality score r2>0.8, see 121 

Methods). Descriptive statistics for the CCSS study sample are provided in Table 2. Similar to SJLIFE, 122 

most CCSS survivors had been exposed to at least one type of chemotherapeutic agent (73.9%) or 123 

radiotherapy (61.9%). Under power calculations for replication with CCSS sample sizes and EAFs, we 124 

expected to replicate ~253 meta-GWAS hits. A total of 135 SNP-phenotype associations were 125 
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successfully replicated in CCSS survivors with complete genotype, phenotype, and covariate data (up to 126 

N=4,212) using models consistent with reference GWAS. All five phenotypes showed significant (P<0.05) 127 

or suggestive (P<0.2) meta-GWAS hit replication depletions than expected (Figure 3, Supplementary 128 

Table 2), contributing to an overall RER of 0.53 (P=1.1x10-16) using models adhering to reference GWAS. 129 

 130 

Treatments for pediatric cancer and meta-GWAS hit replication depletions in SJLIFE survivors 131 

 132 

 We considered whether factors specific to childhood cancer survivors, i.e., exposure to cancer 133 

treatments, could “disrupt” robust genetic associations reported in the general population. For the nine 134 

phenotypes that showed evidence of meta-GWAS hit replication depletion in SJLIFE (RER<1), we 135 

estimated RERs in survivor subgroups stratified by treatment exposure, where treatment exposure was 136 

defined as any exposure to therapeutic agents for pediatric cancer associated with the phenotype of 137 

interest (Table 1). We hypothesized that if cancer treatments contribute to phenotypic variation and 138 

obscure replications of meta-GWAS hits in survivors, we would not only observe replication depletion in 139 

treatment-exposed subgroups, but greater replication depletion in treatment-exposed subgroups than in 140 

treatment-unexposed subgroups.  141 

We found evidence of replication depletion in treatment-exposed survivor subgroups for seven 142 

phenotypes: the height, BMI, TC, obesity, and DBP phenotypes showed significant (P<0.05) replication 143 

depletion, while CAD and LDL phenotypes showed suggestive (P<0.2) replication depletion. Among these 144 

seven phenotypes, CAD, height, LDL, TC, and DBP showed stronger evidence of replication depletion in 145 

treatment-exposed subgroups compared to treatment-unexposed subgroups (i.e., smaller RERs in 146 

treatment-exposed subgroups; Figure 4). Specifically, CAD, height, LDL, and TC also had the greatest 147 

changes in adjusted R2 (>1%) and the strongest treatment likelihood ratio test P-values (P<1x10-7) when 148 

comparing clinical models with and without the relevant treatments, suggesting that replication depletions 149 

in meta-GWAS hits are exacerbated in survivors when treatments have greater contributions to the 150 

phenotype risk. 151 

 152 

Differences in functional/epigenetic annotations for replicated and non-replicated meta-GWAS hits 153 
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 154 

 We speculated that meta-GWAS SNPs with replicated phenotype associations in survivors could 155 

have functional/epigenetic annotation enrichments that may distinguish them from SNPs with non-156 

replicated associations. Using publicly available bioinformatics data from GTEx17 and the Roadmap 157 

Epigenomics Consortium18 for functional/epigenetic annotation, we compared the set of 170 SNPs with at 158 

least one replicated association with the 12 phenotypes (“replicated SNPs”) against the set of 1,061 159 

SNPs without any replicated associations (“non-replicated SNPs”) from our main analysis in SJLIFE. 160 

Similar proportions of replicated and non-replicated SNPs were mapped to RefSeq19 gene bodies (57.1% 161 

vs. 58.7%, respectively; P=0.74). Using GTEx17 to examine expression quantitative trait loci (cis-eQTL) 162 

enrichment, replicated SNPs had greater odds of being a cis-eQTL SNP (FDR≤0.05) in adipose and liver 163 

tissues than non-replicated SNPs (nominal P<0.05, Supplementary Table 6). Top 15-state ChromHMM18 164 

enhancer and promoter chromatin state annotation enrichments revealed that replicated SNPs also had 165 

greater odds of overlapping enhancer chromatin states in cell/tissue types related to the kidney, adipose, 166 

gut and obesity-linked brain structures (nominal P<0.05, Supplementary Table 7). We also assessed top 167 

Reactome20 biological pathway enrichments for non-overlapping genes mapped to replicated and non-168 

replicated SNPs against all other genes in human genome (Supplementary Figure 5). For the 79 genes 169 

that corresponded with the replicated SNPs, the lead biological pathway enrichments (FDR<0.10) were 170 

specific to cardiometabolic phenotypes, i.e., plasma lipoprotein metabolism is connected to serum lipid 171 

traits; elastic fiber assembly is related to arterial wall formation and cardiovascular phenotypes; 172 

PPARalpha-mediated lipid metabolism is linked to metabolic phenotypes. To contrast, the vast majority of 173 

lead biological pathway enrichments (FDR <0.10) for the 466 genes mapped to non-replicated SNPs 174 

were related to signal transduction.  175 

 176 

Treatment-DNA methylation patterns and non-replicated meta-GWAS hits in SJLIFE 177 

 178 

We used BIOS Consortium (BIOS QTL21) methylation quantitative trait loci (meQTLs) as a 179 

reference resource for ancillary DNA methylation analyses. BIOS QTL includes samples from the Lifelines 180 

Cohort Study, which recently reported high meta-GWAS hit replication rates (median=84%) across 32 181 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

phenotypes2. Whole blood cis-meQTLs (≤250 kb between SNP and CpG) from BIOS QTL for any of the 182 

1,231 meta-GWAS SNPs of interest (FDR<0.05) were regarded as established phenotype-variant-183 

associated cis-meQTLs in the general population. Most meta-GWAS SNPs examined in our main 184 

analysis (87.5%, 1,077 SNPs) were mapped to at least one established cis-meQTL (Supplementary 185 

Table 8).  186 

First, we assessed whether established cis-meQTLs in the general population (BIOS QTL) could 187 

be generalized to childhood cancer survivors using experimental blood-derived methylome and genotype 188 

data from 236 SJLIFE survivors. Despite the small sample size, we successfully validated 5,651 189 

established cis-meQTLs for the meta-GWAS SNPs of interest (40.6%; 13,930 tested) in SJLIFE, where 190 

validation was defined by SNP-CpG methylation associations with P<0.05 and the same directions of 191 

association as reported in BIOS QTL. We further evaluated whether SJLIFE-validated cis-meQTLs could 192 

be differentiated by their relationships to SNPs with successful or failed replications in survivors. We 193 

discovered that non-replicated SNPs had greater odds of being cis-meQTLs than replicated SNPs 194 

(OR=1.66, P=0.02, Supplementary Table 9).  195 

Next, we investigated the involvement of cis-meQTLs in meta-GWAS hit replications in SJLIFE by 196 

considering whether replications were affected by childhood cancer treatments. Specifically, we 197 

compared 48 “treatment-sensitive” meta-GWAS SNPs that showed replicated assocations only in the 198 

treatment-unexposed subgroup, i.e., in survivors that are more similar to the general population, and 66 199 

“treatment-insensitive” meta-GWAS SNPs with robust replications, i.e., replicated in both treatment-200 

unexposed and treatment-exposed subgroups. We found greater enrichment for SJLIFE-validated cis-201 

meQTLs among treatment-sensitive SNPs (38/42, 90.5%) compared to treatment-insensitive SNPs 202 

(37/57, 64.9%; OR=5.06, P=4.1x10-3, Supplementary Table 9), suggesting that SNPs with phenotype 203 

association replications that were perturbed by treatment exposures in survivors were more likely to 204 

involve cis-meQTL mechanisms than SNPs with robust replications. 205 

We then explored whether non-replicated meta-GWAS hits in survivors could be attributed to 206 

treatment-related disruptions of cis-meQTL profiles. We hypothesized that survivors’ exposures to 207 

treatments that counter the direction of CpG methylation by a meta-GWAS SNP would reduce the 208 

likelihood of replication for the corresponding SNP-phenotype association in survivors. We measured 209 
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treatment-related disruptions of cis-meQTL profiles by counting the frequency of discordance in the 210 

direction of methylation at a CpG site in BIOS QTL for a meta-GWAS SNP and the direction of 211 

methylation at the same CpG site for exposure to a specific childhood cancer treatment. We split the 212 

4,153 CpG sites linked to the 5,561 SJLIFE-validated cis-meQTLs between replicated and non-replicated 213 

SNPs, i.e., 549 “replicated CpGs” versus 3,604 “non-replicated CpGs”, respectively. We examined 214 

different radiation therapy (RT) and chemotherapeutic exposures (Supplementary Table 10). Non-215 

replicated CpGs were enriched for directionally discordant SNP-methylation and treatment-methylation 216 

associations for multiple treatment types relative to the replicated CpGs (Supplementary Table 11). The 217 

non-replicated CpGs showed the strongest enrichment for directionally discordant methylation 218 

associations for pelvic RT, with ~54% of non-replicated CpGs bearing directionally discordant methylation 219 

associations in contrast to ~29% of replicated CpGs (OR=2.90, P=8.7x10-4). The non-replicated CpGs 220 

were also significantly enriched for directionally discordant associations for chest RT (OR=2.70, 221 

P=5.3x10-4) and modestly enriched for abdominal RT (OR=1.91, P=0.06).  222 

We illustrate these results by describing the failed replication of the T2D risk variant rs1552224 223 

(chr11:72722053, GRCh38) in SJLIFE survivors as an example. Multiple meta-GWAS have linked the A 224 

allele of rs1552224 with increased T2D risk22,23. However, this association was not replicated among 225 

survivors exposed to abdominal or pelvic RT, but was replicated in survivors without these RT exposures 226 

(Supplementary Table 12). Figure 5 demonstrates how abdominal/pelvic RT can obscure the replication 227 

of the rs1552224 – T2D risk association in survivors by disrupting cis-meQTL effects on T2D risk in the 228 

general population. The strongest cis-meQTL effect for rs1552224 was reported at cg04827223 in BIOS 229 

QTL (assessed allele=A, Z=34.8, P=6.0x10-266) and was validated in SJLIFE (β=0.12, P=3.7x10-4). Figure 230 

5a shows increasing A allele dose for rs1552224 corresponds with increases in methylation at 231 

cg04827223 and T2D risk in survivors without exposures to abdominal/pelvic RT, consistent with the 232 

general population. But in survivors with increasing doses of abdominal/pelvic RT, increasing A allele 233 

dose for rs1552224 does not change methylation at cg04827223 or T2D risk (Figure 5b, 5c), which 234 

reflects the inverse relationships between methylation levels at cg04827223 and pelvic (β=-4.0x10-6, 235 

P=0.03) and abdominal RT (β =-3.4x10-6, P=0.06) dose observed in SJLIFE. 236 

 237 
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DISCUSSION 238 

 239 

There is growing interest in leveraging knowledge of established meta-GWAS hits though 240 

polygenic risk scores (PRS) in specialized clinical populations such as childhood cancer survivors24. The 241 

suitability of translating this knowledge to such populations, however, depends on the generalizability of 242 

general population SNP associations to the clinical population of interest. We evaluated the 243 

generalizability of 1,376 SNP associations reported in 46 selected meta-GWAS for 12 anthropometric and 244 

cardiometabolic phenotypes in a large cohort of adult survivors of pediatric cancer in SJLIFE using 245 

genotypes from whole genome sequencing and clinically ascertained phenotypes. Significantly fewer than 246 

expected robust meta-GWAS hits were replicated in SJLIFE survivors, with an observed-to-expected 247 

RER of 0.68 (P=2.4x10-9) across all phenotypes. Replication depletion was also observed in a secondary 248 

analysis of five comparable phenotypes in an independent cohort of survivors from CCSS. These results 249 

suggest that advances in genetic risk prediction (and opportunities for targeted intervention) in vulnerable 250 

clinical populations like childhood cancer survivors may ultimately lag behind the general population, and 251 

highlight the need for novel genetic association studies in diverse populations. 252 

Given that the meta-GWAS hits we tested were robust findings in the general population, i.e., 253 

were genome-wide significant (P<5x10-8) and compiled from large meta-GWAS (>10,000 participants), 254 

and accompanied by replication, complementary functional annotation, and even experimental validation 255 

studies, the limited generalizability of these genetic associations to survivors is unexpected. For 256 

comparison, one of the largest recent studies of the generalizability of European-derived GWAS hits in a 257 

non-European, multi-ancestral population (N=49,839) observed a more reasonable ~42% replication rate 258 

(P<0.05 threshold) across 22 complex continuous phenotypes25, despite the accumulating evidence for 259 

the poorer predictive accuracy of European-derived PRS in non-Europeans1. Discovering that these 260 

meta-GWAS hits may only be partially generalizable to survivors is unlikely to be attributable to the 261 

methods we employed: we tested associations between measured (not imputed) index SNPs and 262 

clinically ascertained phenotypes; we restricted our analyses to survivors of European ancestry; we 263 

observed high correspondence between EAFs in SJLIFE and the reference literature; and replication 264 

depletion was evaluated accounting for the expected probability of replication based on our sample size. 265 
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We further investigated the possible but unlikely scenario that non-replications could be primarily due to 266 

testing index SNPs that were poor representatives for SNPs causal for phenotype in the same LD block, 267 

or non-replication bias due to highly correlated clusters of non-replicating SNPs. These ancillary 268 

analyses, along with our analysis of five corresponding phenotypes in a second cohort of survivors in 269 

CCSS, corroborate that some of these meta-GWAS hits do not apply to survivors. This analysis is among 270 

the first to provide evidence towards a hypothesis described in a recent review of the transferability of 271 

PRS across populations, specifically that the generalizability of PRS may also be limited in cohorts with 272 

differential environmental exposures1. 273 

Recent studies have demonstrated that ionizing radiation can induce persistent changes in DNA 274 

methylation in cells/tissues targeted by radiation that are dose-dependent26-30. Chemotherapies, e.g., 275 

cisplatin31 and carboplatin32, have also been linked to differential methylation of genes involved in cell 276 

cycle regulation and DNA repair. In this study, we discovered when cancer treatments had greater 277 

contributions to phenotype risk, greater replication depletions than expected were observed in treatment-278 

exposed survivor subgroups. Therefore, we assessed whether treatment-related DNA methylation could 279 

potentially “disrupt” robust SNP-phenotype relationships reported in the general population among 280 

survivors. We found that non-replicated SNPs were significantly enriched for SNPs with cis-meQTLs 281 

reported in BIOS QTL that were also validated in a subset of SJLIFE survivors. Furthermore, we 282 

discovered a ~5-fold enrichment (P=4.1x10-3) of validated cis-meQTL SNPs among SNPs with 283 

replications perturbed by treatments in survivors compared to SNPs that were robustly replicated in 284 

survivors. Lastly, enrichments of “disruptive” or directionally discordant methylation associations for chest 285 

(OR=2.70, P=5.3x10-4), pelvic (OR=2.90, P=8.7x10-4), and abdominal (OR=1.91, P=0.06) RT among 286 

CpGs linked to meta-GWAS SNPs that failed to replicate in SJLIFE survivors were observed. Notably, 287 

chronic hematological toxicity has been well-documented for RT to the chest, pelvic, and abdominal fields 288 

due to the volume of active bone marrow in these regions33, which suggests the DNA methylation 289 

patterns we see in the blood-derived methylome data are plausibly related to these RT exposures. Taken 290 

together, these results suggest cancer treatments (particularly RT), may disrupt DNA methylation patterns 291 

at genomic sites linked to some disease-/trait-associated variants and interfere with their generalizability 292 

to survivors. 293 
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The main limitation of this analysis was the relatively small sample sizes of the survivor cohorts. 294 

Our analysis had limited power to detect some SNP-phenotype replications (especially those with small 295 

effect sizes), but we estimated the expected number of replications given available power accounting for 296 

sample size, reported effect sizes, and sample EAFs and used these estimates to compare observed and 297 

expected replication rates. We also performed a secondary analysis of meta-GWAS hit replications in the 298 

CCSS cohort which was nearly double the size of the SJLIFE cohort and saw stronger evidence of 299 

replication depletions. Another limitation was that we could not combine CCSS and SJLIFE cohorts for all 300 

12 phenotypes, since all phenotypes in CCSS are self-reported. Lastly, interpretations of our analyses of 301 

SNP and treatment associations with cross-sectional whole blood DNA methylation measurements have 302 

several limitations. We were only able to evaluate DNA methylation associations in a small sample of 303 

survivors (N=236); however, we did observe a high (~41%) validation rate for established cis-meQTLs 304 

(FDR<0.05) reported by BIOS QTL. Similar to the limitations reported in other analyses of DNA 305 

methylation associations, we cannot ascertain the extent to which methylation levels at the selected 306 

CpGs truly contribute to phenotype variation, or that methylation associations with treatments are strictly 307 

attributable to our factor of interest (treatments) versus some other related factor with potential effects on 308 

DNA methylation (e.g., primary cancer diagnosis). In addition, evaluating associations between 309 

treatments and gene expression levels linked to these CpG sites would be a necessary first step to 310 

determine how treatment-related changes in DNA methylation disrupt SNP-phenotype associations. 311 

Despite these limitations, our preliminary analyses of DNA methylation in survivors have specific 312 

strengths: cumulative prior exposures to RT and chemotherapy are well-documented in our sample, and 313 

our analyses only examine established meta-GWAS variants and cis-meQTLs. 314 

In summary, we have shown that robust meta-GWAS SNP hits that were observed in general 315 

populations for a range of cardiometabolic phenotypes are only partially generalizable to childhood 316 

cancer survivor cohorts. Methodologies and applications that rely on established meta-GWAS hits from 317 

the general population to predict or clinically surveil some cardiometabolic outcomes or traits may have 318 

limited utility in survivors. A plausible explanation for the partial generalizability of robust meta-GWAS hits 319 

in survivors is that cancer treatment exposures obscure some genetic associations through epigenetic 320 

alterations such as DNA methylation. This phenomenon may also apply to other clinical populations. 321 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

 322 

METHODS 323 

 324 

Compiling SNP associations with complex traits and diseases 325 

 326 

 We selected 12 complex traits and diseases that were: (a) related to cardiovascular and 327 

metabolic disease; (b) measured or clinically ascertained during SJLIFE study visits; and (c) examined in 328 

at least one recent (i.e., published after 01/01/2008) meta-GWAS with >10,000 participants of European 329 

ancestry. To identify genetic associations for our replication analysis, we searched all reports available in 330 

the NHGRI-EBI GWAS Catalog14 published between 1/1/2008 – 11/20/2017 and retained any meta-331 

analysis based on the following reference literature selection criteria: (1) study is relevant to the 332 

phenotype and the association testing method of interest (i.e., no SNP interaction or gene-environment 333 

interaction association testing); (2) study was performed in predominantly European cohort(s); (3) study 334 

included a replication analysis; and (4) study had discovery and/or replication sample size(s) with at least 335 

10,000 participants (Figure 1). We reviewed the compiled literature to confirm the set of “index SNPs” for 336 

replication testing, i.e., published SNPs with genome-wide significant associations (P<5x10-8), and their 337 

respective effect sizes, P-values, and effect alleles. Effect allele frequencies (EAFs) and standard errors 338 

were recorded when available. Reported effect sizes and P-values for a published SNP association were 339 

taken from the combined analysis of discovery and replication samples; if a combined analysis was not 340 

available, effect sizes were taken from the replication analysis and P-values were taken from the 341 

discovery analysis. When necessary, we transformed effect sizes reported in different units across papers 342 

for comparability. 343 

 344 

Description of study cohorts 345 

 346 

 This study was approved by the Institutional Review Boards at St. Jude Children’s Research 347 

Hospital (SJCRH; Memphis, TN) and all participating study centers. All participants in this study provided 348 

informed consent. Brief descriptions of the two cohorts included in our study are provided below. 349 
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Additional details regarding phenotype-specific analyses applied in both cohorts, including reference 350 

GWAS-informed definitions for phenotypes, adjustment covariates, and participant exclusion criteria, 351 

along with survivor-specific factors, are provided in Table 1. 352 

 353 

SJLIFE cohort 354 

 355 

Initiated in 2007, the St. Jude Lifetime Cohort Study34 (SJLIFE) is an ongoing retrospective cohort 356 

study dedicated to the longitudinal study of a wide-ranging set of health outcomes in survivors treated for 357 

pediatric cancer at SJCRH. The details of this study have been described previously34. In brief, eligibility 358 

criteria include treatment for pediatric cancer at SJCRH and ≥5 years survival since diagnosis. 359 

Participants included in the current study were ≥18 years of age, had no history of allogeneic stem cell 360 

transplantation, participated in specimen biobanking, and completed at least one SJCRH study visit as of 361 

the June 30, 2015 freeze date. 362 

SJCRH study visits include medical evaluations (with core laboratory/diagnostic studies), 363 

assessments of self-reported outcomes, and examinations of neurocognitive function and physical 364 

performance. Data for demographics, treatments (chemotherapeutic agent cumulative dosages; 365 

field/doses of radiation therapy; surgical interventions), and primary cancer diagnosis were obtained from 366 

medical record review. Medication use was self-reported as a part of the health and behavior 367 

questionnaires. All quantitative trait measurements used in this analysis were taken from the participant’s 368 

most recent SJLIFE study visit as of 06/30/2017. Height and weight were measured using a stadiometer 369 

and an electronic scale (Scale-Tronix, White Plains, NY); WHR circumferences were taken with a Gulick 370 

tape measure. BMI values were adjusted for amputation. Average systolic and diastolic blood pressure 371 

(SBP and DBP, respectively; mmHg) values for participants with at least two measurements taken with a 372 

calibrated sphygmomanometer after an initial 5-minute rest were used. Fasting blood lipids (mg/dL), 373 

including high-density lipoprotein (HDL), calculated low-density lipoprotein (LDL), total cholesterol (TC), 374 

and triglycerides (TG) were measured using an enzymatic spectrophotometric assay (Roche Diagnostics, 375 

Indianapolis, IN). 376 
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Coronary artery disease (CAD) and diabetes mellitus were clinically assessed and graded 377 

according to the SJCRH-modified NCI Common Terminology Criteria for Adverse Events (CTCAE) v4.03 378 

classification system35. The CTCAE grades used to define cases were based on presence of symptoms 379 

and/or relevant medication use. For CAD, use of medications to treat angina symptoms or evidence of 380 

abnormal cardiac enzymes, angina and ischemic heart disease, myocardial infarction, percutaneous 381 

transluminal coronary angioplasty (PTCA), or coronary artery bypass grafting (CABG) was used to define 382 

cases. Participants with symptomatic diabetes or use of oral medications or insulin to treat diabetes were 383 

considered as diabetes mellitus cases; for this analysis, we treated all cases of diabetes mellitus as type 384 

2 diabetes cases (T2D) given recent reports suggesting that at least 79% of cases in survivors can be 385 

classified as T2D36. Brief episodes of diabetes mellitus occurring immediately after treatment or 386 

pregnancy were excluded. Obesity was defined as BMI ≥30kg/m2, which was consistent with CTCAE-387 

based obesity grades. 388 

 389 

CCSS cohort 390 

  391 

The Childhood Cancer Survivor Study37 (CCSS) is a retrospective cohort study of 5-year 392 

childhood cancer survivors with prospective follow-up. Descriptions for CCSS participant eligibility and 393 

study design have been published in detail elsewhere38,39. CCSS participants included in this analysis 394 

were <21 years of age at primary cancer diagnosis between January 1, 1970 and December 31, 1986, 395 

received treatment for pediatric cancer at one of 26 participating study institutions in North America, 396 

responded to at least one CCSS questionnaire covering demographics, health conditions, health-related 397 

behaviors and health care use; and provided a whole blood, saliva, or buccal sample for DNA 398 

sequencing. 399 

 All phenotypes assessed in CCSS (height, BMI, obesity, CAD, T2D) were self-reported or 400 

reported by family proxies for survivors who could not complete surveys, were deceased or <18 years old. 401 

For CAD and T2D phenotypes, questionnaire responses related to these conditions (including relevant 402 

medication use) were graded using CTCAE v4.03. Information related to chemotherapy, radiotherapy, 403 

and surgery was abstracted from medical records. Participants with height values above/below ±4 SD of 404 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

the sample mean or improbable BMI values (<10, >100 kg/m2) were excluded from analyses. Exclusion 405 

criteria or covariates considered in analyses performed in SJLIFE that were not included in CCSS due to 406 

missing data included genetic conditions affecting height and hypothalamic-pituitary axis tumor history. 407 

Any exposure to glucocorticoids was used as a substitute for glucocorticoid cumulative dosages. All other 408 

exclusion criteria, adjustment covariates, and case/phenotype definitions were identical to those applied 409 

to the SJLIFE analysis. 410 

 411 

Genotype data 412 

 413 

Our analysis was restricted to the common SNPs (≥1% EAF) reported to have a genome-wide 414 

significant association (P<5x10-8) with any of the selected phenotypes in the meta-GWAS that met our 415 

reference literature selection criteria (i.e., index SNPs). We also considered best common SNP proxies, 416 

defined as SNPs in high LD with corresponding index SNPs in the European 1000 Genomes15 (1000G 417 

EUR) populations (minimum r2 =0.8) likely to fall in the same LD block. Descriptions for collecting and 418 

processing genotype data for each cohort are summarized below. 419 

 420 

SJLIFE genotype data 421 

 422 

 The SJLIFE genotype data used in this analysis was collected as a part of larger effort to 423 

sequence whole genomes of SJLIFE participants40. Comprehensive details of DNA sample collection, 424 

extraction, sequencing, quality control, and variant mapping have been described previously40,41. Briefly, 425 

sequencing for 3,006 samples was completed at the HudsonAlpha Institute for Biotechnology Genomic 426 

Services Laboratory (Huntsville, AL) using the Illumina HiSeq X10 platform to yield 150 base pair paired-427 

end reads with an average coverage per sample of 36.8X. Whole exome data from survivors (coverage 428 

>20x) sequenced by the SJCRH Department of Computational Biology was used to assess the validity of 429 

coding variants. Sequenced data was aligned to the GRCh38 human reference using BWA-ALN 430 

v0.7.1242. Variant calls were processed with GATK v3.4.043 and BCFtools44. PLINK v1.90b45 and 431 

VCFtools v0.1.1346 were used to perform additional quality control, applying the following sample 432 
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exclusion criteria: excess missingness (5%), cryptic relatedness (pi-hat>0.25), and excess 433 

heterozygosity (>3 SD). Variants with Hardy Weinberg Equilibrium (HWE) P<110-10 and >10% 434 

missingness across samples were removed, leaving approximately 84.3 million autosomal single 435 

nucleotide variants (SNVs) and small insertions and deletions (indels) in 2,986 samples. We then 436 

restricted our sample to the 2,364 participants that were identified as European (see Ancestry below). 437 

 438 

CCSS genotype data 439 

 440 

 Details describing methods used to generate genotype data for the CCSS cohort can be found in 441 

previous papers47,48. To summarize, DNA was extracted from whole blood, saliva, or buccal samples and 442 

genotyped at the Cancer Genomics Research Laboratory of the National Cancer Institute (Bethesda, MD) 443 

using the Illumina HumanOmni5Exome array. Genotyping Module v1.9 (Illumina GenomeStudio software 444 

v2011.1) was used to call genotypes. The following per-sample exclusion criteria were applied: ≥8% 445 

missingness, heterozygosity of <0.11 or >0.16, X chromosome heterozygosity >5.0% for males or 446 

<20.0% for females, and identity-by-descent sharing >0.70. Genotypes were then imputed using 447 

Minimac349 and the Haplotype Reference Consortium r1.1 reference panel for the 5,739 samples meeting 448 

quality control thresholds. After retaining 4,513 survivors of European ancestry (see Ancestry below) with 449 

no overlap with SJLIFE, downstream analyses excluded SNPs with minor allele frequency <1% and 450 

missingness >5% and only considered SNPs with high imputation quality (r2≥0.8). 451 

 452 

Ancestry 453 

 454 

Procedures to identify the ancestry of SJLIFE and CCSS samples have been described 455 

elsewhere41,48. Briefly, PLINK v1.90b was used to perform an EIGENSTRAT-based Principal Component 456 

Analysis50 for each cohort by combining the cohort samples with samples from 1000G global reference 457 

populations. Cohort samples with principal component scores within 3 SD of the means of the first two 458 

principal components in the 1000G EUR populations were of European ancestry.  459 

 460 
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SJLIFE DNA methylation data 461 

 462 

Whole blood DNA methylation was measured in 300 survivors in SJLIFE with a range of 463 

treatment histories with the Infinium MethylationEPIC Array (Illumina, San Diego, CA, USA) according to 464 

the manufacturer’s protocols. Genomic DNA (500 ng per sample; previously extracted for WGS) was 465 

treated with bisulfate using the Zymo EZ DNA Methylation Kit under the following thermos-cycling 466 

conditions: 16 cycles: 95°C for 30 sec, 50°C for 1 hour. Following bisulfite treatment, DNA samples were 467 

desulphonated, column purified, then eluted using 12 μl of elution buffer (Zymo Research). Bisulfite-468 

converted DNA (4 µl) was then processed by following the Illumina Infinium Methylation Assay protocol 469 

which includes hybridization to MethylationEPIC BeadChips, single base extension assay, and staining 470 

and scanning using the Illumina HiScan system. The raw intensity data was exported from the Illumina 471 

Genome Studio Methylation Module as IDAT files for further downstream analysis.  472 

Raw intensity data was processed with the “minfi” R package51, including sample and probe 473 

quality controls, background correction, and normalization. Probes were mapped to the GRCh38 build to 474 

identify and remove cross-reactive and non-specific probes. We eliminated samples with a low call rate 475 

(<95% probes with a detection P value <0.01) or sex discrepancies, along with probes located on sex 476 

chromosomes, with low detection rates (<95%), or with SNPs at CpG sites. A total of 689,742 high-quality 477 

probes were retained for 300 samples after preliminary quality control. Of the 15,481 probes in BIOS QTL 478 

contributing to significant cis-meQTLs with meta-GWAS SNPs of interest, 11,458 probes were available 479 

for the current study after quality control for the 236 participants of European ancestry with WGS data that 480 

were included in our main analysis. 481 

 482 

SNP-phenotype association testing and replication enrichment analysis 483 

 484 

 Statistical procedures to perform SNP-phenotype association testing and replication enrichment 485 

analysis were identical in SJLIFE and CCSS cohorts. Details are described below. 486 

 487 

SNP-phenotype association testing 488 
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 489 

 We conducted association tests for the reported genome-wide significant SNPs using phenotype 490 

definitions (i.e., units and transformations), exclusion criteria, and adjustment covariates that were 491 

consistent with the literature, along with factors relevant to childhood cancer survivors (Table 1). All 492 

regression coefficients, standard errors, and P-values were obtained with linear or logistic regression for 493 

quantitative traits or disease outcomes, respectively, using R v3.4.1. All association tests assumed an 494 

additive model of genetic inheritance. We used the first 10 principal components as covariates in all 495 

association analyses to account for population stratification. Measurements for adjustment covariates or 496 

data applied for phenotype transformations that were closest to the measurement or validation date of the 497 

trait/outcome were taken. SNP-phenotype associations with P-values <0.05 and the same direction of 498 

effect as the reference literature were considered as successful replications. While we also evaluated 499 

replications under trait-specific Bonferroni-corrected P-value thresholds, we regarded the P-value 500 

threshold of 5% as the primary definition for replication because all tested SNP associations were 501 

considered to be robust associations, i.e., published in large-scale meta-GWAS. In SJLIFE, we 502 

considered whether reported index SNPs were in high LD with potentially “causal” SNP candidates that 503 

would better capture the phenotype association at a given locus or LD block. To this end, we tested all 504 

best SNP proxies for non-replicated SNP associations, where best proxies for an index SNP were defined 505 

as SNPs in strong LD with the index SNP in the 1000G EUR populations (r2>0.8) within a 5-kb window of 506 

the index SNP (based on a median LD block size of ~2.5 kb16 in 1000G EUR). We also assessed 507 

observed versus expected replication rates for a pruned set of independent SNP-phenotype associations 508 

in SJLIFE given that non-replication rates from clusters of high-LD SNPs without replication signals could 509 

inflate replication depletions. Pruning entailed retaining the SNP with the highest EAF in SJLIFE among 510 

clusters of SNPs in high LD (r2>0.8, 500-kb window in 1000G EUR) for each phenotype. 511 

 512 

Replication power and enrichment analysis 513 

 514 

 We used QUANTO v1.2.452 to estimate the power for replicating each SNP association reported 515 

in the compiled literature with its respective phenotype in SJLIFE and CCSS. Power calculations 516 
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assumed a 5% significance threshold (as well as a Bonferroni-corrected significance threshold in 517 

SJLIFE), phenotype-specific sample sizes, and an additive genetic model. Phenotype-specific power 518 

curves for our main analysis accounting for a range of effect allele frequencies and effect sizes are 519 

provided in Supplementary Figures 1-4. We used these power calculations to estimate the replication 520 

power for each SNP-phenotype association assuming the effect size reported in reference GWAS and the 521 

effect allele frequency observed in the survivor cohorts. We used the same procedure to also estimate 522 

replication power for each SNP-phenotype association in treatment-exposed and treatment-unexposed 523 

subsamples in SJLIFE, where treatment exposure was defined as any exposure to one or more curative 524 

agents for pediatric cancer previously associated with the specific phenotype. 525 

In order to evaluate whether the observed replication frequencies were greater or less than 526 

expected for each of our phenotypes, we used a Poisson generalized estimating equations (GEE) 527 

regression approach with robust variance estimation53. We estimated the expected number of replications 528 

for each phenotype based on the assumption that each SNP replication may be treated as a Bernoulli 529 

random variable with a replication probability equal to its estimated replication power, and under Le 530 

Cam’s theorem54, the sum of independent Bernoulli variables that are not identically distributed 531 

approximately follows a Poisson distribution. The model assumed a log-link of the following form: 532 

log(𝑂𝑏𝑠) = log(𝐸𝑥𝑝) + 𝛽଴, 533 

where 𝑂𝑏𝑠 and 𝐸𝑥𝑝 were observed replications and the expected replication probability, respectively. The 534 

exponentiated 𝛽଴ estimate served as the Replication Enrichment Ratio (RER), or the ratio of observed to 535 

expected replication frequencies. 536 

  537 

Ancillary analyses: Epigenetic and functional annotation enrichments by SNP replication state 538 

 539 

We applied epigenetic/functional annotations using resources provided by Roadmap 540 

Epigenomics Mapping Consortium18 (REMC), Genotype-Tissue Expression Project17 (GTEx Analysis v7), 541 

Reactome20, and BIOS QTL21. We assessed the specificity of enhancer and promoter states for all SNPs 542 

with at least one replicated association in the SJLIFE main analysis using the REMC 15-chromatin state 543 

annotation data for 127 human cell types. For each cell type, we compared the frequency of 544 
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enhancer/promoter state overlap in the set of SNPs with replicated associations (“replicated SNPs”) 545 

against the SNPs without replicated associations (“non-replicated SNPs”) in our SJLIFE main analysis. 546 

We evaluated nominal enrichment for these regulatory states using P-values obtained from 2-sided 547 

Fisher’s exact tests. Using GTEx, we counted the number of significant cis-eQTLs (SNPs within ±1 Mb of 548 

transcription start sites, FDR≤0.05) for replicated SNPs and non-replicated SNPs and used a 2-sided 549 

Fisher’s exact test to investigate enrichments in gene expressions among replicated SNPs for each of the 550 

48 available cell-/tissue-types. Lastly, we compiled non-overlapping gene sets for replicated SNPs and 551 

non-replicated SNPs to conduct a biological pathway enrichment analysis with geneSCF v1.155 and 552 

Reactome gene pathway ontologies. A gene was regarded as relevant to a SNP group if a SNP was 553 

located within the body of a RefSeq19 gene. For each biological pathway, the number of genes in our SNP 554 

groups with that ontology were compared to the number of genes with that ontology in all remaining 555 

genes in the genome. Top biological pathway enrichments were determined using FDR-adjusted P-556 

values from 2-sided Fisher’s exact tests. Lastly, we used BIOS QTL21 to identify significant (FDR<0.05) 557 

cis-meQTLs linked to our 1,231 meta-GWAS SNPS and tested for enrichments/depletions of SNPs with 558 

≥1 cis-meQTL among the replicated and non-replicated SNPs in our SJLIFE main analysis with two-sided 559 

Fisher’s exact tests. 560 

 561 

SNP-methylation and treatment-methylation associations 562 

 563 

As a first step, we sought to validate significant (FDR<5%) cis-meQTLs reported in BIOS QTL in 564 

our sample of 236 SJLIFE participants with methylation and genotype data. For each established cis-565 

meQTL available for testing in SJLIFE, we considered M-values (log2-transformed ratio of the methylated 566 

to unmethylated probe intensities) at quality-controlled CpG sites and tested associations between CpG 567 

M-values and SNP genotypes assuming an additive inheritance model using linear regression, adjusting 568 

for sex, age, and genetic ancestry. Since additional analyses to evaluate potential confounding by inter-569 

individual differences in blood cell composition revealed no significant differences in cell type distributions 570 

across samples, no adjustment covariates for blood cell composition were considered. Established cis-571 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

meQTLs (i.e., reported in BIOS QTL with FDR<5%) were defined as validated in SJLIFE for associations 572 

with P<0.05 and the same direction of allelic effect. 573 

We tested for enrichment of SJLIFE-validated cis-meQTLs among non-replicated SNPs with at 574 

least one significant cis-meQTL in BIOS QTL using a 2-sided Fisher’s exact test. We also identified a 575 

priori 48 “treatment-sensitive” meta-GWAS SNPs (without replications in our main analysis but were 576 

replicated in samples without treatment exposures) and 66 “treatment-insensitive” meta-GWAS SNPs 577 

(replicated in treatment-unexposed and treatment-exposed samples) and tested for enrichment of 578 

validated cis-meQTLs among treatment-sensitive SNPs. Finally, we examined directionally discordant 579 

SNP-methylation and treatment-methylation associations for CpGs linked to non-replicated SNPs (“non-580 

replicated CpGs”) and CpGs linked to replicated SNPs (“replicated CpGs”) for the cis-meQTLs we 581 

validated in SJLIFE. Among the eight treatment types we considered (cranial, chest, abdominal, and 582 

pelvic radiotherapies; anthracycline, corticosteroid, cisplatin, and carboplatin chemotherapies), we limited 583 

our analysis to seven treatment types where >5% of the experimental sample was exposed. To ascertain 584 

the direction of SNP-CpG methylation associations for CpGs in SJLIFE-validated meQTLs with multiple 585 

associated SNPs without arbitrarily assigning a “best” SNP-CpG (i.e., smallest P-value), we used simple 586 

majority voting classification to assign the direction of the SNP-methylation association for such CpGs. 587 

For each treatment type, treatment dose associations with M-values at CpGs contributing to SJLIFE-588 

validated cis-meQTLs were tested with linear regression, adjusting for age and sex. We compared the 589 

discordance between directions of SNP-methylation and treatment-methylation associations at each CpG 590 

for each of the seven treatment types among replicated and non-replicated CpGs using a two-sided 591 

Fisher’s exact test. 592 

 593 
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 595 

The data used in this study may be accessed from the St. Jude Cloud (https://www.stjude.cloud/) under 596 

accession number SJC-DS-1002. 597 

 598 

ACKNOWLEDGEMENTS 599 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

 600 

This work was funded by the National Cancer Institute (U24 CA55727 GT Armstrong, principal 601 

investigator, U01 CA195547 MM Hudson/L Robison, principal investigators, CA 21765, C. Roberts, 602 

Principal Investigator and R01 CA216354), American Lebanese Syrian Associated Charities, and Alberta 603 

Machine Intelligence Institute. 604 

 605 

AUTHOR CONTRIBUTIONS 606 

 607 

C.I., Y.Y. designed study concept and analytic methodologies. W.C., T.M.G., D.A.M., C.L.W. informed 608 

phenotype models specific to survivors. C.I., Y.Y., W.Q., N.Q., Z.W. performed analyses. Z.W., J.Z., 609 

W.C., K.K.N., C.L.W., Y.S., W.M., M.M.H., L.L.R., L.M.M., G.T.A. oversaw recruitment, sample collection, 610 

genotyping/sequencing, and data processing in SJLIFE and CCSS studies. Z.W., N.Q., J.Z. coordinated 611 

the generation and processing of methylome data. C.I., C.R.H., K.K.N., W.Q. managed phenotype, 612 

clinical data. C.I., N.Q., Z.W., Y.Y. drafted the paper. All authors critically revised and approved the final 613 

manuscript. 614 

 615 

COMPETING FINANCIAL INTERESTS 616 

 617 

The authors declare no competing financial interests.  618 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

REFERENCES 
 
1. Martin, A.R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. 

Nat. Genet. 51, 584 (2019). 
2. Nolte, I.M. et al. Missing heritability: is the gap closing? An analysis of 32 complex traits in the 

Lifelines Cohort Study. European Journal of Human Genetics 25, 877 (2017). 
3. Knowles, J.W. & Ashley, E.A. Cardiovascular disease: the rise of the genetic risk score. PLoS 

medicine 15, e1002546 (2018). 
4. Robison, L.L. & Hudson, M.M. Survivors of childhood and adolescent cancer: life-long risks and 

responsibilities. Nat. Rev. Cancer 14, 61 (2014). 
5. Bhakta, N. et al. The cumulative burden of surviving childhood cancer: an initial report from the St 

Jude Lifetime Cohort Study (SJLIFE). Lancet 390, 2569-2582 (2017). 
6. Armstrong, G.T. et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the 

childhood cancer survivor study. J. Clin. Oncol. 32, 1218 (2014). 
7. Hudson, M.M. et al. Clinical ascertainment of health outcomes among adults treated for childhood 

cancer. JAMA 309, 2371-2381 (2013). 
8. Oeffinger, K.C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. 

Med. 355, 1572-1582 (2006). 
9. Bhakta, N. et al. Cumulative burden of cardiovascular morbidity in paediatric, adolescent, and 

young adult survivors of Hodgkin's lymphoma: an analysis from the St Jude Lifetime Cohort 
Study. Lancet Oncol. 17, 1325-1334 (2016). 

10. Nottage, K.A. et al. Metabolic syndrome and cardiovascular risk among long‐term survivors of 
acute lymphoblastic leukaemia‐From the St. Jude Lifetime Cohort. Br. J. Haematol. 165, 364-374 
(2014). 

11. Mulrooney, D.A. et al. Cardiac outcomes in a cohort of adult survivors of childhood and 
adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ 
339, b4606 (2009). 

12. Mertens, A.C. et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the 
Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 100, 1368-1379 (2008). 

13. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates 
intrinsic and environmental signals. Nat. Genet. 33, 245-254 (2003). 

14. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. 
Nucleic Acids Res. 42, D1001-D1006 (2013). 

15. 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 
68 (2015). 

16. Whalen, S. & Pollard, K.S. Most chromatin interactions are not in linkage disequilibrium. Genome 
Res. 29, 334-343 (2019). 

17. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene 
regulation in humans. Science 348, 648-660 (2015). 

18. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330 
(2015). 

19. O'Leary, N.A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic 
expansion, and functional annotation. Nucleic Acids Res. 44, D733-45 (2016). 

20. Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472-D477 
(2013). 

21. Bonder, M.J. et al. Disease variants alter transcription factor levels and methylation of their 
binding sites. Nature genetics 49, 131 (2017). 

22. Zhao, W. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological 
pathways with coronary heart disease. Nat. Genet. 49, 1450 (2017). 

23. Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale 
association analysis. Nat. Genet. 42, 579 (2010). 

24. Wang, Z. et al. Polygenic determinants for subsequent breast cancer risk in survivors of 
childhood cancer: The St Jude Lifetime Cohort Study (SJLIFE). Clin. Cancer Res. 24, 6230-6235 
(2018). 

25. Wojcik, G.L. et al. Genetic analyses of diverse populations improves discovery for complex traits. 
Nature, 1 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

26. Reisz, J.A., Bansal, N., Qian, J., Zhao, W. & Furdui, C.M. Effects of ionizing radiation on 
biological molecules—mechanisms of damage and emerging methods of detection. Antioxid. 
Redox Signal. 21, 260-292 (2014). 

27. Antwih, D.A., Gabbara, K.M., Lancaster, W.D., Ruden, D.M. & Zielske, S.P. Radiation-induced 
epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 8, 839-848 
(2013). 

28. Kuhmann, C. et al. DNA methylation changes in cells regrowing after fractioned ionizing radiation. 
Radiother. Oncol. 101, 116-121 (2011). 

29. Goetz, W., Morgan, M.N. & Baulch, J.E. The effect of radiation quality on genomic DNA 
methylation profiles in irradiated human cell lines. Radiat. Res. 175, 575-587 (2011). 

30. Pogribny, I., Raiche, J., Slovack, M. & Kovalchuk, O. Dose-dependence, sex-and tissue-
specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem. 
Biophys. Res. Commun. 320, 1253-1261 (2004). 

31. Yu, W. et al. Global analysis of DNA methylation by Methyl-Capture sequencing reveals 
epigenetic control of cisplatin resistance in ovarian cancer cell. PLoS One 6, e29450 (2011). 

32. Gifford, G., Paul, J., Vasey, P.A., Kaye, S.B. & Brown, R. The acquisition of hMLH1 methylation 
in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin. 
Cancer. Res. 10, 4420-4426 (2004). 

33. Mauch, P. et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy 
and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 31, 1319-1339 (1995). 

34. Hudson, M.M. et al. Prospective medical assessment of adults surviving childhood cancer: study 
design, cohort characteristics, and feasibility of the St. Jude Lifetime Cohort study. Pediatr. Blood 
Cancer 56, 825-36 (2011). 

35. Hudson, M.M. et al. Approach for Classification and Severity-grading of Long-term and Late-
onset Health Events among Childhood Cancer Survivors in the St. Jude Lifetime Cohort. Cancer 
Epidemiol. Biomarkers Prev. 26, 666-674 (2016). 

36. Meacham, L.R. et al. Diabetes mellitus in long-term survivors of childhood cancer: increased risk 
associated with radiation therapy: a report for the childhood cancer survivor study. Arch. Intern. 
Med. 169, 1381-1388 (2009). 

37. Robison, L.L. et al. The Childhood Cancer Survivor Study: a National Cancer Institute–supported 
resource for outcome and intervention research. J. Clin. Oncol. 27, 2308 (2009). 

38. Robison, L.L. et al. Study design and cohort characteristics of the Childhood Cancer Survivor 
Study: a multi‐institutional collaborative project. Med. Pediatr. Oncol. 38, 229-239 (2002). 

39. Leisenring, W.M. et al. Pediatric cancer survivorship research: experience of the Childhood 
Cancer Survivor Study. J. Clin. Oncol. 27, 2319 (2009). 

40. Wang, Z. et al. Genetic Risk for Subsequent Neoplasms Among Long-Term Survivors of 
Childhood Cancer. J. Clin. Oncol. 36, 2078-2087 (2018). 

41. Sapkota, Y. et al. Whole-genome sequencing of childhood cancer survivors treated with cranial 
radiation therapy identifies 5p15. 33 locus for stroke: A report from the St. Jude Lifetime Cohort 
study. Clin. Cancer Res., clincanres. 1231.2019 (2019). 

42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. 
Bioinformatics 25, 1754-1760 (2009). 

43. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 20, 1297-1303 (2010). 

44. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079 
(2009). 

45. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am. J. Hum. Genet. 81, 559-575 (2007). 

46. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156-2158 (2011). 
47. Morton, L.M. et al. Genome-wide association study to identify susceptibility loci that modify 

radiation-related risk for breast cancer after childhood cancer. J. Natl. Cancer Inst. 109, djx058 
(2017). 

48. Sapkota, Y. et al. Genome-Wide Association Study in Irradiated Childhood Cancer Survivors 
Identifies HTR2A for Subsequent Basal Cell Carcinoma. J. Invest. Dermatol. 
https://doi.org/10.1016/j.jid.2019.02.029 (2019). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

49. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284-
1287 (2016). 

50. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide 
association studies. Nat. Genet. 38, 904 (2006). 

51. Aryee, M.J. et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of 
Infinium DNA methylation microarrays. Bioinformatics 30, 1363-1369 (2014). 

52. Gauderman, W. & Morrison, J. QUANTO 1.1: A computer program for power and sample size 
calculations for genetic-epidemiology studies, http://hydra.usc.edu/gxe. (2006). 

53. Greenland, S. Model-based estimation of relative risks and other epidemiologic measures in 
studies of common outcomes and in case-control studies. Am. J. Epidemiol. 160, 301-305 (2004). 

54. Le Cam, L. An approximation theorem for the Poisson binomial distribution. Pac. J. Math. 10, 
1181-1197 (1960). 

55. Subhash, S. & Kanduri, C. GeneSCF: a real-time based functional enrichment tool with support 
for multiple organisms. BMC Bioinformatics 17, 365 (2016). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Diagram describing selection of meta-GWAS and genome-wide significant SNP-phenotype 
associations for replication in childhood cancer survivor cohorts. All reference GWAS considered in the 
current study were published between 1/1/2008 – 11/20/2017. 
 
  

NHGRI-EBI GWAS Catalog: 
149 GWAS  

for 12 phenotypes of interest 

73 GWAS 

46 meta-GWAS 

Relevant European ancestry GWAS 

Meta-analyses with replication studies, 
>10,000 participants 

1,415 SNP-phenotype 
associations (“meta-GWAS 

hits”) in literature 

1,376 meta-GWAS hits 
tested in SJLIFE 

Post-quality control in SJLIFE 

Genome-wide significant (P<5x10-8) 
associations 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2020. ; https://doi.org/10.1101/2020.02.02.930818doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.02.930818
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Plots of replication enrichment ratios (RERs) and respective 95% confidence intervals by 
phenotype in SJLIFE. RERs left of the vertical line corresponding to a RER equal to 1 suggest meta-
GWAS hit replication depletion, i.e., observations of fewer replications of meta-GWAS hits than expected. 
RERs considering adjustment covariates under two different models are presented for each phenotype: 
(1) covariates adhering to reference GWAS (“GWAS”), and (2) GWAS covariates along with covariates 
considered in childhood cancer survivor populations (“Survivor”). Phenotype RERs are color-coded by 
similarity: anthropometric (blue); blood pressure (green); lipid (yellow), and cardiometabolic disease (red). 
The observed numbers of replications included in the figure are under the “GWAS” model. The expected 
numbers of replications are estimated by the sum of the power to replicate each SNP-phenotype 
association assuming observed SNP effect allele frequencies, the cohort sample size, an additive genetic 
inheritance model, α=0.05, and effect sizes in reference meta-GWAS. 
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Figure 3: Plots of replication enrichment ratios (RERs) and respective 95% confidence intervals by 
phenotype in CCSS. RERs left of the vertical line corresponding to a RER equal to 1 suggest meta-
GWAS hit replication depletion, i.e., observations of fewer replications of meta-GWAS hits than expected. 
Phenotype RERs are color-coded by similarity: anthropometric (blue) and cardiometabolic disease (red). 
The observed numbers of replications included in the figure are under the “GWAS” model. 
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Figure 4: Plots of phenotype-specific replication enrichment ratios (RERs) and respective 95% 
confidence intervals in samples unexposed to treatments (“No Treatment”) and exposed to treatments 
(“Treatment”). Treatments were defined as cancer treatments associated with phenotypes. Phenotypes 
with any evidence of replication depletion (RER<1) in our main analysis that showed either significant 
(P<0.05) or suggestive (P<0.2) replication depletion in treatment-exposed samples are included in this 
figure. Sample sizes by exposure strata (NTX-, No Treatment; NTX+, Treatment) are provided, as well as 
likelihood ratio test P-values representing treatment associations with phenotypes (PTX) and changes in 
adjusted R2 (∆RTX2) after removing treatment variables from clinical models. Phenotypes are ordered by 
∆RTX2 values, with larger ∆RTX2 values reflecting greater treatment influence on phenotype variation. 
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Figure 5: DNA methylation levels at cg04827223 and percentage of T2D cases by genotype classes for 
rs1552224 in SJLIFE survivor subgroups with no (a), low-to-moderate (b), and high doses (c) of 
abdominal or pelvic radiation therapy (RT). No RT dose was defined as 0 Gy, low-to-moderate RT dose 
was defined by >0 to <20 Gy, and high dose was defined by ≥20 Gy. The upper panels show the 
observed methylation level relationships with the SNP at the cg04827223 CpG site in the SJLIFE subset 
with methylome and genotype data (N=236); boxes represent the median and interquartile range (IQR), 
with whiskers extending from the first or third quartile to 1.5 times the IQR. Methylation level trend by 
allele dose is shown with median regression lines. Genotype frequencies in this SJLIFE subset were as 
follows: 1.8% (C/C), 30.8% (C/A), and 67.4% (A/A). The lower panels show the percentage (%) of T2D 
cases by genotype in SJLIFE survivors in the main analysis (N=2,112), with the following genotype 
frequencies: 1.9% (C/C), 26.9% (C/A), and 71.2% (A/A).  
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TABLES 

Table 1: Summary of methodological components for each SNP-phenotype association analysis in SJLIFE 

Phenotype 
Phenotype 

transformationa Unit or definitionb 
GWAS adjustment 

covariatesa 
Childhood cancer survivor 

adjustment covariatesc Exclusionsb Reference meta-GWAS (PMID) 

Anthropometric       

Height Sex-standardized Z-
score 

cm Age, ancestry Surgical procedures affecting 
spinal growth; scoliosis; 
hypothalamic-pituitary axis tumors; 
cranial or craniospinal radiation 

Genetic syndromes, 
health conditions 
affecting statured 

25282103, 20881960, 19570815, 19343178, 
18952825, 18391952, 18391951, 18391950, 
18193045 

Body mass index (BMI) Inverse normal 
transformation of 
residuals 

kg/m2; BMI adjusted 
for amputation 

Age, age2, sex, 
ancestry 

Hypothalamic-pituitary axis tumors; 
cranial radiation; glucocorticoids 

None 25673413, 24064335, 23669352, 22982992, 
20935630, 19079261, 18454148 

Waist-to-hip ratio (WHR) Inverse normal 
transformation of sex-
standardized residuals 

Ratio of waist and 
hip circumference 
(cm) 

Age, age2, BMI, 
ancestry 

Hypothalamic-pituitary axis tumors; 
cranial radiation; glucocorticoids 

None 28443625, 25673412, 20935629 

Blood pressure       

Systolic blood pressure (SBP) +15 mmHg with use of 
blood pressure lowering 
medications 

mmHg Age, age2, sex, 
BMI, ancestry 

Abdominal, pelvic radiation Prior myocardial 
infarction or heart 
failure 

28135244, 28739976, 26390057, 21909115, 
19430483, 19430479 

Diastolic blood pressure (DBP) +10 mmHg with use of 
blood pressure lowering 
medications 

mmHg Age, age2, sex, 
BMI, ancestry 

Abdominal, pelvic radiation Prior myocardial 
infarction or heart 
failure 

Same as SBP 

Blood lipids       

High-density lipoprotein (HDL) Inverse normal 
transformation of 
residuals 

mg/dL Age, age2, sex, 
ancestry 

Hypothalamic-pituitary axis tumors; 
cranial radiation 

Use of lipid-lowering 
medications 

24097068, 19060906 

Low-density lipoprotein (LDL) Inverse normal 
transformation of 
residuals 

mg/dL Age, age2, sex, 
ancestry 

Hypothalamic-pituitary axis tumors; 
cranial radiation 

Use of lipid-lowering 
medications 

Same as HDL 

Total cholesterol (TC) Inverse normal 
transformation of 
residuals 

mg/dL Age, age2, sex, 
ancestry 

Hypothalamic-pituitary axis tumors; 
cranial radiation 

Use of lipid-lowering 
medications 

24097068 

Triglycerides (TG) Inverse normal 
transformation of 
residuals 

mg/dL Age, age2, sex, 
ancestry 

Hypothalamic-pituitary axis tumors; 
cranial radiation 

Use of lipid-lowering 
medications 

Same as HDL 

Cardiometabolic disease       

Coronary artery disease (CAD) None Cases: CTCAE 
grades ≥2 

Age, sex, ancestry BMI; smoking; cardiac-directed 
radiation; anthracyclines; platinums 
(cisplatin, carboplatin) 

None 28714975, 26950853, 26343387, 19198609 

Type 2 diabetes (T2D) None Cases: CTCAE 
grades ≥2 

Age, sex, BMI, 
ancestry 

Cranial radiation; abdominal 
radiation 

None 28869590, 28566273, 24509480, 20581827, 
20418489, 19734900, 18372903 

Obesity None Cases: BMI ≥30 
kg/m2 

Age, sex, ancestry Hypothalamic-pituitary axis tumors; 
cranial radiation; glucocorticoids 

None 23563607, 21708048 

Abbreviations: genome-wide association study (GWAS); cm (centimeter); kg (kilogram); m (meter); mmHg (millimeter of mercury); CTCAE (Common Terminology Criteria for Adverse Events, modified v4.03). 
a. GWAS covariates, as defined by reference GWAS. 
b. Phenotype units and definitions and participant exclusion criteria from reference GWAS were reviewed and adapted when necessary for analysis in SJLIFE. 
c. Covariates specific to childhood cancer survivors, based on the childhood cancer survivorship research literature. 
d. Syndromes and health conditions affecting height include: Down syndrome; Turner syndrome; Neurofibromatosis, type 1; Russell-Silver syndrome; benign bone lesion/cysts; cartilage disorder, skeletal 

spine disorder.
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Table 2: Descriptive statistics for phenotypes, treatments, and demographic variables in SJLIFE 
  SJLIFE CCSS 

Phenotypes / Variables Unit N 
% or  

median (IQR) N 
% or  

median (IQR) 
Demographic variables      

Sex      
Male % 2,231 53.0% 4,513 48.1% 
Female % 2,231 47.0% 4,513 51.9% 

Age years 2,231 35.8 (13.3) 4,513 40.9 (12.9) 
Treatments (any exposure)      

Radiation, any type % 2,231 58.3% 4,513 61.9% 
Chemotherapeutic agent, any type % 2,231 85.3% 4,513 73.9% 
Cranial radiation % 2,199 31.0% 4,227 30.9% 
Cardiac-directed radiation % 2,199 22.9% 4,224 26.7% 
Abdominal radiation % 2,199 20.0% 4,226 25.9% 
Pelvic radiation % 2,199 17.5% 4,226 20.5% 
Anthracyclines % 2,231 57.9% 4,290 35.8% 
Glucocorticoids % 2,231 47.8% 4,513 43.4% 
Platinums (cisplatin, carboplatin) % 2,227 10.3% 4,513 4.4% 

Phenotypes      
Anthropometric      

Height cm 2,025 168.7 (14.6) 4,212 168.0 (18.0) 
Body mass index kg/m2 2,229 27.6 (9.3) 4,208 26.1 (7.3) 
Waist-to-hip ratio ratio 2,204 0.9 (0.1)   

Blood pressure      
Systolic blood pressure mmHg 2,020 123.0 (17.7)   
Diastolic blood pressure mmHg 2,020 75.5 (13.0)   

Serum lipids      
High-density lipoprotein mg/dL 1,984 49.0 (20.0)   
Low-density lipoprotein mg/dL 1,964 107.0 (46.0)   
Total cholesterol mg/dL 1,997 183.0 (50.0)   
Triglycerides mg/dL 1,997 100.0 (80.0)   

Cardiometabolic disease      
Coronary artery disease % cases 2,079 4.7% 4,036 4.1% 
Obesity % cases 2,229 38.3% 4,208 25.8% 
Type 2 diabetes % cases 2,112 7.1% 4,207 7.0% 
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