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ABSTRACT

With mounting interest in translating GWAS hits from large meta-analyses (meta-GWAS) in diverse
clinical settings, evaluating their generalizability in target populations is crucial. Here we consider long-
term survivors of childhood cancers from the St. Jude Lifetime Cohort Study and show the limited
generalizability of 1,376 robust SNP associations reported in the general population across 12 complex
anthropometric and cardiometabolic phenotypes (N=2,231; observed-to-expected replication ratio=0.68,
P=2.4x10-). An examination of five comparable phenotypes in a second independent cohort of survivors
from the Childhood Cancer Survivor Study corroborated the overall limited generalizability of meta-GWAS
hits to survivors (N=4,212, observed-to-expected replication ratio=0.53, P=1.1x10-1¢). Meta-GWAS hits
were less likely to be replicated in survivors exposed to cancer therapies associated with phenotype risk.
Examination of complementary DNA methylation data in a subset of survivors revealed that treatment-
related methylation patterns at genomic sites linked to meta-GWAS hits may disrupt established genetic

signals in survivors.
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Recent meta-analyses of genome-wide association studies (meta-GWAS) with large study
samples (N>10,000) have discovered novel and replicated known associations between common genetic
variants (i.e., single nucleotide polymorphisms or SNPs) and many complex traits and diseases. Genetic
associations reported in cohorts with individuals of predominantly European ancestry have proven to be
highly generalizable in other European cohorts®. For example, a recent examination of genome-wide
significant associations for 32 complex traits across five broad disease groups reported a median
replication rate of 84% in a cohort with >13,000 individuals of European ancestry?.

The generalizability of robust genetic associations reported by large-scale meta-GWAS (hereafter
referred to as meta-GWAS hits) from the general population to specialized clinical populations has not
been established for most complex phenotypes. Yet there is growing enthusiasm for utilizing polygenic
risk scores to predict disease risk and identify high-risk individuals for targeted interventions; for example,
polygenic risk scores have been shown to improve clinical prediction models for cardiovascular disease
risk and used to support pharmaceutical interventions to target reductions in low-density lipoprotein levels
in high-risk individuals™3. It is imperative to evaluate the generalizability of established meta-GWAS hits in
target populations before adopting such genetic tools built on the GWAS literature. Childhood cancer
survivors are one such example of a specialized clinical population that would greatly benefit from
knowledge of the generalizability of meta-GWAS hits. Today, approximately one in every 750 individuals
is a survivor of childhood or adolescent cancer in the United States*. This growing population of survivors
differs markedly from the general population. Studies have consistently shown that survivors are at
greater risk for a wide range of serious health conditions earlier in life relative to general population or
sibling controls, in part due to their exposures to treatments necessary to cure pediatric cancers*?,
including chronic cardiovascular and metabolic health conditions that are among the leading causes of
morbidity and mortality among survivors59-12,

Here we report on the limited generalizability of 1,376 robust meta-GWAS hits (P<5x108)
identified from the literature for 12 anthropometric and cardiometabolic phenotypes to adult survivors of
childhood cancer from the St. Jude Lifetime Cohort Study’” (SJLIFE; N=2,231, European ancestry), a
single-institution retrospective cohort study with longitudinal follow-up of survivors with clinically

ascertained health outcomes. We also found limited generalizability of meta-GWAS hits in a second
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cohort of survivors for five phenotypes available for comparison from the Childhood Cancer Survivor
Study (CCSS; N=4,212, European ancestry), a multi-center study with self-reported health conditions.
Depletions of replicated meta-GWAS hits were exacerbated in survivor subgroups exposed to certain
cancer treatments, particularly when treatments had larger contributions to phenotype variation. Lastly,
we conducted ancillary analyses to explore the role of DNA methylation, an epigenetic alteration that is
influenced by both inherited genetic variation and environmental factors'3. Among the 236 survivors of
SJLIFE with both germline methylome and genotype data, we found that cancer treatments, particularly

radiation therapy, may obscure some robust meta-GWAS SNP associations in survivors.

RESULTS

Compiling robust meta-GWAS hits

The 12 phenotypes of interest included three anthropometric traits (height, body mass index
[BMI], waist-to-hip ratio [WHR]); two blood pressure traits (systolic [SBP], diastolic [DBP]); four serum lipid
traits (high-density lipoprotein levels [HDL], low-density lipoprotein levels [LDL], total cholesterol levels
[TC], triglycerides [TG]); and three cardiometabolic disease outcomes (coronary artery disease [CAD],
obesity, type 2 diabetes [T2D]). Using the NHGRI-EBI GWAS Catalog', we identified 149 GWAS for
these 12 phenotypes. After reviewing the literature against criteria for relevance, ancestry, and study
suitability (see Methods), we compiled 1,415 genome-wide significant (P<5x10-8) SNP-phenotype
associations from 46 selected GWAS featuring meta-analyses with replication studies that included
>10,000 participants of predominantly European ancestry (Figure 1). We limited our analysis to the 1,376
SNP-phenotype associations (97.2%) that could be directly tested using 1,231 SNPs measured in SJLIFE

that passed strict quality control.

Replicating meta-GWAS hits in SJLIFE childhood cancer survivors
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Using phenotype definitions, adjustment covariates, and exclusion criteria that were consistent
with reference GWAS (Table 1), our primary aim was to replicate the 1,376 robust meta-GWAS hits in
2,231 adult long-term (=5-year) survivors of childhood cancer of European ancestry in SILIFE”. Relevant
descriptive statistics for the SJLIFE cohort are provided in Table 2. Most survivors had been exposed to
at least one type of chemotherapeutic agent (85.3%) and over half (58.3%) had received radiotherapy;
additional adjustments for specific cancer treatment exposures were considered based on the childhood
cancer survivorship literature (Table 1). There was high correspondence between effect allele frequencies
(EAFSs) reported in the reference GWAS and the SJLIFE sample, with a median absolute difference of
0.99% (IQR=0.47-1.71%).

All meta-GWAS hits that were replicated in SJLIFE (P<0.05, with same directions of effect in
literature) are listed in Supplementary Table 1. The results of the meta-GWAS hit replication enrichment
analysis in SJLIFE are summarized in Figure 2 and Supplementary Table 2. Of the 1,376 meta-GWAS
hits, we expected to replicate ~279 SNP-phenotype associations across all phenotypes, based on power
calculations for replication with SILIFE sample sizes and SNP EAFs. We replicated only 189 SNP-
phenotype associations (replication rate=13.7%; 189/1,376 tested) with models adhering to reference
GWAS, and 185 SNP-phenotype associations (replication rate=13.4%; 185/1,376 tested) after adjusting
for additional covariates relevant to childhood cancer survivors (i.e., cancer treatment exposures, Table
1). The Replication Enrichment Ratio (RER), or the ratio of observed-to-expected meta-GWAS hit
replication frequencies, across all 12 phenotypes was 0.68 (95% Cl: 0.60-0.77, P=2.4x10-) using models
adjusting for reference GWAS covariates only, suggesting that the overall number of meta-GWAS hit
replications observed in SJLIFE was significantly less than expected. Significant replication depletion was
also observed across all phenotypes using models adjusting for additional covariates relevant to survivors
(RER=0.66, 95% CI: 0.58-0.76, P=4.1x10-°). While three phenotypes (WHR, T2D, TG) showed no
evidence of replication depletion (RER>1), the remaining nine phenotypes had either significant
depletions of meta-GWAS hit replications (RER<1 and P<0.05 for height, BMI, DBP, and obesity) or
suggestive evidence of replication depletions (RER<1 and P<0.2 for SBP, HDL, LDL, TC, CAD).

We explored alternative definitions of meta-GWAS hit replication in SJLIFE. First, we examined

an “extended” replication strategy, under the possible but unlikely scenario that all SNPs involved in the
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98 1,187 non-replicated robust meta-GWAS hits are weak representatives for nearby causal variants, but are
99  in high linkage disequilibrium (LD) with causal variants in the same LD block. We re-tested non-replicated
100 meta-GWAS hits using best SNP proxies for reported index SNPs, where best proxies were defined as
101 SNPs in high LD with the index SNP (r2>0.8 in the 1000 Genomes'® European reference population or
102 1000G EUR) likely to fall in the same LD block (i.e., within a 5-kb window, based on median LD block
103  sizes of ~2.5 kb reported in 1000G EUR'®). While we re-tested 812 non-replicated SNP associations with
104 at least one plausible proxy (median=3 proxies per index SNP), this added only 12 additional meta-
105 GWAS hit replications (overall RER=0.72, 95% CI: 0.64-0.82, P=2.2x107) (Supplementary Table 3). We
106  also assessed replication rates for a set of independent SNP-phenotype associations by limiting the SNP
107  set to those with the highest EAF in SJLIFE among clusters of SNPs in high LD (r2>0.8, 500-kb window in
108 1000G EUR) for each phenotype, in order to avoid bias in replication rate estimates due to clusters of
109 SNPs in high LD. The same nine phenotypes as our primary analysis continued to show significant or
110  suggestive replication depletion using the pruned SNP-phenotype associations (Supplementary Table 4).
111 Finally, we examined replications of meta-GWAS hits under strict replication P-value thresholds corrected
112 for multiple testing. While replication of ~55 SNP-phenotype associations were expected under
113 Bonferroni-corrected P-value thresholds, only 25 SNP-phenotype associations were replicated, most of
114 which were related to BMI/obesity or blood lipid phenotypes (Supplementary Table 5).
115
116 Replicating meta-GWAS hits in childhood cancer survivors in CCSS
117
118 To assess our findings from SJLIFE in an independent cohort, we conducted a second analysis in
119  survivors from the Childhood Cancer Survivor Study (CCSS). We examined five self-reported phenotypes
120  available in CCSS that corresponded with our SJLIFE analysis (height, BMI, CAD, obesity, and T2D) in
121 4,513 survivors with high-quality imputed genotype data (loci with imputation quality score r2>0.8, see
122 Methods). Descriptive statistics for the CCSS study sample are provided in Table 2. Similar to SJLIFE,
123 most CCSS survivors had been exposed to at least one type of chemotherapeutic agent (73.9%) or
124 radiotherapy (61.9%). Under power calculations for replication with CCSS sample sizes and EAFs, we

125  expected to replicate ~253 meta-GWAS hits. A total of 135 SNP-phenotype associations were
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126  successfully replicated in CCSS survivors with complete genotype, phenotype, and covariate data (up to
127 N=4,212) using models consistent with reference GWAS. All five phenotypes showed significant (P<0.05)
128 or suggestive (P<0.2) meta-GWAS hit replication depletions than expected (Figure 3, Supplementary

129  Table 2), contributing to an overall RER of 0.53 (P=1.1x10-16) using models adhering to reference GWAS.
130

131 Treatments for pediatric cancer and meta-GWAS hit replication depletions in SJLIFE survivors
132

133 We considered whether factors specific to childhood cancer survivors, i.e., exposure to cancer
134 treatments, could “disrupt” robust genetic associations reported in the general population. For the nine
135 phenotypes that showed evidence of meta-GWAS hit replication depletion in SILIFE (RER<1), we

136 estimated RERs in survivor subgroups stratified by treatment exposure, where treatment exposure was
137 defined as any exposure to therapeutic agents for pediatric cancer associated with the phenotype of

138 interest (Table 1). We hypothesized that if cancer treatments contribute to phenotypic variation and

139  obscure replications of meta-GWAS hits in survivors, we would not only observe replication depletion in
140 treatment-exposed subgroups, but greater replication depletion in treatment-exposed subgroups than in
141 treatment-unexposed subgroups.

142 We found evidence of replication depletion in treatment-exposed survivor subgroups for seven
143 phenotypes: the height, BMI, TC, obesity, and DBP phenotypes showed significant (P<0.05) replication
144  depletion, while CAD and LDL phenotypes showed suggestive (P<0.2) replication depletion. Among these
145  seven phenotypes, CAD, height, LDL, TC, and DBP showed stronger evidence of replication depletion in
146 treatment-exposed subgroups compared to treatment-unexposed subgroups (i.e., smaller RERs in

147  treatment-exposed subgroups; Figure 4). Specifically, CAD, height, LDL, and TC also had the greatest
148 changes in adjusted R? (>1%) and the strongest treatment likelihood ratio test P-values (P<1x107) when
149 comparing clinical models with and without the relevant treatments, suggesting that replication depletions
150 in meta-GWAS hits are exacerbated in survivors when treatments have greater contributions to the

151 phenotype risk.

152

153 Differences in functional/epigenetic annotations for replicated and non-replicated meta-GWAS hits
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154

155 We speculated that meta-GWAS SNPs with replicated phenotype associations in survivors could
156 have functional/epigenetic annotation enrichments that may distinguish them from SNPs with non-

157 replicated associations. Using publicly available bioinformatics data from GTEx'” and the Roadmap

158 Epigenomics Consortium™@ for functional/epigenetic annotation, we compared the set of 170 SNPs with at
159 least one replicated association with the 12 phenotypes (“replicated SNPs”) against the set of 1,061

160  SNPs without any replicated associations (“non-replicated SNPs”) from our main analysis in SJLIFE.

161 Similar proportions of replicated and non-replicated SNPs were mapped to RefSeq'® gene bodies (57.1%
162  vs. 58.7%, respectively; P=0.74). Using GTEXx'” to examine expression quantitative trait loci (cis-eQTL)
163  enrichment, replicated SNPs had greater odds of being a cis-eQTL SNP (FDR<0.05) in adipose and liver
164 tissues than non-replicated SNPs (nominal P<0.05, Supplementary Table 6). Top 15-state ChromHMM'8
165  enhancer and promoter chromatin state annotation enrichments revealed that replicated SNPs also had
166 greater odds of overlapping enhancer chromatin states in cell/tissue types related to the kidney, adipose,
167  gut and obesity-linked brain structures (nominal P<0.05, Supplementary Table 7). We also assessed top
168 Reactome?0 biological pathway enrichments for non-overlapping genes mapped to replicated and non-
169 replicated SNPs against all other genes in human genome (Supplementary Figure 5). For the 79 genes
170 that corresponded with the replicated SNPs, the lead biological pathway enrichments (FDR<0.10) were
171 specific to cardiometabolic phenotypes, i.e., plasma lipoprotein metabolism is connected to serum lipid
172 traits; elastic fiber assembly is related to arterial wall formation and cardiovascular phenotypes;

173 PPARalpha-mediated lipid metabolism is linked to metabolic phenotypes. To contrast, the vast majority of
174 lead biological pathway enrichments (FDR <0.10) for the 466 genes mapped to non-replicated SNPs

175 were related to signal transduction.

176

177  Treatment-DNA methylation patterns and non-replicated meta-GWAS hits in SJLIFE

178

179 We used BIOS Consortium (BIOS QTL?') methylation quantitative trait loci (meQTLs) as a

180 reference resource for ancillary DNA methylation analyses. BIOS QTL includes samples from the Lifelines

181 Cohort Study, which recently reported high meta-GWAS hit replication rates (median=84%) across 32
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182  phenotypes?2. Whole blood cis-meQTLs (<250 kb between SNP and CpG) from BIOS QTL for any of the
183 1,231 meta-GWAS SNPs of interest (FDR<0.05) were regarded as established phenotype-variant-

184 associated cis-meQTLs in the general population. Most meta-GWAS SNPs examined in our main

185  analysis (87.5%, 1,077 SNPs) were mapped to at least one established cis-meQTL (Supplementary

186  Table 8).

187 First, we assessed whether established cis-meQTLs in the general population (BIOS QTL) could
188 be generalized to childhood cancer survivors using experimental blood-derived methylome and genotype
189 data from 236 SJLIFE survivors. Despite the small sample size, we successfully validated 5,651

190  established cis-meQTLs for the meta-GWAS SNPs of interest (40.6%; 13,930 tested) in SILIFE, where
191 validation was defined by SNP-CpG methylation associations with £<0.05 and the same directions of
192  association as reported in BIOS QTL. We further evaluated whether SJLIFE-validated cis-meQTLs could
193 be differentiated by their relationships to SNPs with successful or failed replications in survivors. We

194  discovered that non-replicated SNPs had greater odds of being cis-meQTLs than replicated SNPs

195 (OR=1.66, P=0.02, Supplementary Table 9).

196 Next, we investigated the involvement of cis-meQTLs in meta-GWAS hit replications in SILIFE by
197 considering whether replications were affected by childhood cancer treatments. Specifically, we

198  compared 48 “treatment-sensitive” meta-GWAS SNPs that showed replicated assocations only in the
199 treatment-unexposed subgroup, i.e., in survivors that are more similar to the general population, and 66
200 “treatment-insensitive” meta-GWAS SNPs with robust replications, i.e., replicated in both treatment-

201 unexposed and treatment-exposed subgroups. We found greater enrichment for SJLIFE-validated cis-
202 meQTLs among treatment-sensitive SNPs (38/42, 90.5%) compared to treatment-insensitive SNPs

203 (37/57, 64.9%; OR=5.06, P=4.1x10-3, Supplementary Table 9), suggesting that SNPs with phenotype
204  association replications that were perturbed by treatment exposures in survivors were more likely to

205 involve cis-meQTL mechanisms than SNPs with robust replications.

206 We then explored whether non-replicated meta-GWAS hits in survivors could be attributed to
207 treatment-related disruptions of cis-meQTL profiles. We hypothesized that survivors’ exposures to

208 treatments that counter the direction of CpG methylation by a meta-GWAS SNP would reduce the

209 likelihood of replication for the corresponding SNP-phenotype association in survivors. We measured
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210  treatment-related disruptions of cis-meQTL profiles by counting the frequency of discordance in the

211 direction of methylation at a CpG site in BIOS QTL for a meta-GWAS SNP and the direction of

212 methylation at the same CpG site for exposure to a specific childhood cancer treatment. We split the

213 4,153 CpG sites linked to the 5,561 SJLIFE-validated cis-meQTLs between replicated and non-replicated
214 SNPs, i.e., 549 “replicated CpGs” versus 3,604 “non-replicated CpGs”, respectively. We examined

215  different radiation therapy (RT) and chemotherapeutic exposures (Supplementary Table 10). Non-

216  replicated CpGs were enriched for directionally discordant SNP-methylation and treatment-methylation
217 associations for multiple treatment types relative to the replicated CpGs (Supplementary Table 11). The
218 non-replicated CpGs showed the strongest enrichment for directionally discordant methylation

219  associations for pelvic RT, with ~54% of non-replicated CpGs bearing directionally discordant methylation
220  associations in contrast to ~29% of replicated CpGs (OR=2.90, P=8.7x10-). The non-replicated CpGs
221 were also significantly enriched for directionally discordant associations for chest RT (OR=2.70,

222 P=5.3x10-) and modestly enriched for abdominal RT (OR=1.91, P=0.06).

223 We illustrate these results by describing the failed replication of the T2D risk variant rs1552224
224 (chr11:72722053, GRCh38) in SJLIFE survivors as an example. Multiple meta-GWAS have linked the A
225  allele of rs1552224 with increased T2D risk?223. However, this association was not replicated among

226 survivors exposed to abdominal or pelvic RT, but was replicated in survivors without these RT exposures
227  (Supplementary Table 12). Figure 5 demonstrates how abdominal/pelvic RT can obscure the replication
228  of the rs1552224 — T2D risk association in survivors by disrupting cis-meQTL effects on T2D risk in the
229  general population. The strongest cis-meQTL effect for rs1552224 was reported at cg04827223 in BIOS
230  QTL (assessed allele=A, Z=34.8, P=6.0x102%) and was validated in SJLIFE (=0.12, P=3.7x104). Figure
231 5a shows increasing A allele dose for rs1552224 corresponds with increases in methylation at

232 cg04827223 and T2D risk in survivors without exposures to abdominal/pelvic RT, consistent with the

233 general population. But in survivors with increasing doses of abdominal/pelvic RT, increasing A allele
234  dose for rs1552224 does not change methylation at cg04827223 or T2D risk (Figure 5b, 5c), which

235 reflects the inverse relationships between methylation levels at cg04827223 and pelvic (=-4.0x10-6,

236  P=0.03) and abdominal RT (3 =-3.4x10-%, P=0.06) dose observed in SILIFE.

237

10
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238  DISCUSSION

239

240 There is growing interest in leveraging knowledge of established meta-GWAS hits though

241 polygenic risk scores (PRS) in specialized clinical populations such as childhood cancer survivors?*. The
242 suitability of translating this knowledge to such populations, however, depends on the generalizability of
243 general population SNP associations to the clinical population of interest. We evaluated the

244 generalizability of 1,376 SNP associations reported in 46 selected meta-GWAS for 12 anthropometric and
245 cardiometabolic phenotypes in a large cohort of adult survivors of pediatric cancer in SJLIFE using

246  genotypes from whole genome sequencing and clinically ascertained phenotypes. Significantly fewer than
247  expected robust meta-GWAS hits were replicated in SJLIFE survivors, with an observed-to-expected

248 RER of 0.68 (P=2.4x10°) across all phenotypes. Replication depletion was also observed in a secondary
249  analysis of five comparable phenotypes in an independent cohort of survivors from CCSS. These results
250  suggest that advances in genetic risk prediction (and opportunities for targeted intervention) in vulnerable
251 clinical populations like childhood cancer survivors may ultimately lag behind the general population, and
252 highlight the need for novel genetic association studies in diverse populations.

253 Given that the meta-GWAS hits we tested were robust findings in the general population, i.e.,
254  were genome-wide significant (P<5x10-8) and compiled from large meta-GWAS (>10,000 participants),
255  and accompanied by replication, complementary functional annotation, and even experimental validation
256  studies, the limited generalizability of these genetic associations to survivors is unexpected. For

257 comparison, one of the largest recent studies of the generalizability of European-derived GWAS hits in a
258 non-European, multi-ancestral population (N=49,839) observed a more reasonable ~42% replication rate
259 (P<0.05 threshold) across 22 complex continuous phenotypes?5, despite the accumulating evidence for
260  the poorer predictive accuracy of European-derived PRS in non-Europeans. Discovering that these

261 meta-GWAS hits may only be partially generalizable to survivors is unlikely to be attributable to the

262 methods we employed: we tested associations between measured (not imputed) index SNPs and

263 clinically ascertained phenotypes; we restricted our analyses to survivors of European ancestry; we

264 observed high correspondence between EAFs in SILIFE and the reference literature; and replication

265 depletion was evaluated accounting for the expected probability of replication based on our sample size.

11
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266  We further investigated the possible but unlikely scenario that non-replications could be primarily due to
267 testing index SNPs that were poor representatives for SNPs causal for phenotype in the same LD block,
268 or non-replication bias due to highly correlated clusters of non-replicating SNPs. These ancillary

269  analyses, along with our analysis of five corresponding phenotypes in a second cohort of survivors in
270 CCSS, corroborate that some of these meta-GWAS hits do not apply to survivors. This analysis is among
271 the first to provide evidence towards a hypothesis described in a recent review of the transferability of
272 PRS across populations, specifically that the generalizability of PRS may also be limited in cohorts with
273 differential environmental exposures®.

274 Recent studies have demonstrated that ionizing radiation can induce persistent changes in DNA
275  methylation in cells/tissues targeted by radiation that are dose-dependent?6-30. Chemotherapies, e.g.,

276  cisplatin®' and carboplatin®?, have also been linked to differential methylation of genes involved in cell
277 cycle regulation and DNA repair. In this study, we discovered when cancer treatments had greater

278 contributions to phenotype risk, greater replication depletions than expected were observed in treatment-
279 exposed survivor subgroups. Therefore, we assessed whether treatment-related DNA methylation could
280 potentially “disrupt” robust SNP-phenotype relationships reported in the general population among

281 survivors. We found that non-replicated SNPs were significantly enriched for SNPs with cis-meQTLs

282 reported in BIOS QTL that were also validated in a subset of SJLIFE survivors. Furthermore, we

283  discovered a ~5-fold enrichment (P=4.1x10-3) of validated cis-meQTL SNPs among SNPs with

284 replications perturbed by treatments in survivors compared to SNPs that were robustly replicated in

285  survivors. Lastly, enrichments of “disruptive” or directionally discordant methylation associations for chest
286  (OR=2.70, P=5.3x10), pelvic (OR=2.90, P=8.7x10#), and abdominal (OR=1.91, P=0.06) RT among

287 CpGs linked to meta-GWAS SNPs that failed to replicate in SJLIFE survivors were observed. Notably,
288  chronic hematological toxicity has been well-documented for RT to the chest, pelvic, and abdominal fields
289  due to the volume of active bone marrow in these regions33, which suggests the DNA methylation

290 patterns we see in the blood-derived methylome data are plausibly related to these RT exposures. Taken
291 together, these results suggest cancer treatments (particularly RT), may disrupt DNA methylation patterns
292 at genomic sites linked to some disease-/trait-associated variants and interfere with their generalizability

293 to survivors.
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294 The main limitation of this analysis was the relatively small sample sizes of the survivor cohorts.
295 Our analysis had limited power to detect some SNP-phenotype replications (especially those with small
296  effect sizes), but we estimated the expected number of replications given available power accounting for
297 sample size, reported effect sizes, and sample EAFs and used these estimates to compare observed and
298  expected replication rates. We also performed a secondary analysis of meta-GWAS hit replications in the
299  CCSS cohort which was nearly double the size of the SJLIFE cohort and saw stronger evidence of

300 replication depletions. Another limitation was that we could not combine CCSS and SJLIFE cohorts for all
301 12 phenotypes, since all phenotypes in CCSS are self-reported. Lastly, interpretations of our analyses of
302 SNP and treatment associations with cross-sectional whole blood DNA methylation measurements have
303 several limitations. We were only able to evaluate DNA methylation associations in a small sample of
304  survivors (N=236); however, we did observe a high (~41%) validation rate for established cis-meQTLs
305 (FDR<0.05) reported by BIOS QTL. Similar to the limitations reported in other analyses of DNA

306  methylation associations, we cannot ascertain the extent to which methylation levels at the selected

307 CpGs truly contribute to phenotype variation, or that methylation associations with treatments are strictly
308 attributable to our factor of interest (treatments) versus some other related factor with potential effects on
309 DNA methylation (e.g., primary cancer diagnosis). In addition, evaluating associations between

310  treatments and gene expression levels linked to these CpG sites would be a necessary first step to

311 determine how treatment-related changes in DNA methylation disrupt SNP-phenotype associations.

312 Despite these limitations, our preliminary analyses of DNA methylation in survivors have specific

313 strengths: cumulative prior exposures to RT and chemotherapy are well-documented in our sample, and
314 our analyses only examine established meta-GWAS variants and cis-meQTLs.

315 In summary, we have shown that robust meta-GWAS SNP hits that were observed in general
316 populations for a range of cardiometabolic phenotypes are only partially generalizable to childhood

317 cancer survivor cohorts. Methodologies and applications that rely on established meta-GWAS hits from
318 the general population to predict or clinically surveil some cardiometabolic outcomes or traits may have
319 limited utility in survivors. A plausible explanation for the partial generalizability of robust meta-GWAS hits
320 in survivors is that cancer treatment exposures obscure some genetic associations through epigenetic

321 alterations such as DNA methylation. This phenomenon may also apply to other clinical populations.
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322

323 METHODS

324

325  Compiling SNP associations with complex traits and diseases

326

327 We selected 12 complex traits and diseases that were: (a) related to cardiovascular and

328 metabolic disease; (b) measured or clinically ascertained during SJLIFE study visits; and (c) examined in
329  atleast one recent (i.e., published after 01/01/2008) meta-GWAS with >10,000 participants of European
330 ancestry. To identify genetic associations for our replication analysis, we searched all reports available in
331 the NHGRI-EBI GWAS Catalog'* published between 1/1/2008 — 11/20/2017 and retained any meta-

332  analysis based on the following reference literature selection criteria: (1) study is relevant to the

333  phenotype and the association testing method of interest (i.e., no SNP interaction or gene-environment
334 interaction association testing); (2) study was performed in predominantly European cohort(s); (3) study
335 included a replication analysis; and (4) study had discovery and/or replication sample size(s) with at least
336 10,000 participants (Figure 1). We reviewed the compiled literature to confirm the set of “index SNPs” for
337 replication testing, i.e., published SNPs with genome-wide significant associations (P<5x10-¢), and their
338 respective effect sizes, P-values, and effect alleles. Effect allele frequencies (EAFs) and standard errors
339  were recorded when available. Reported effect sizes and P-values for a published SNP association were
340 taken from the combined analysis of discovery and replication samples; if a combined analysis was not
341 available, effect sizes were taken from the replication analysis and P-values were taken from the

342  discovery analysis. When necessary, we transformed effect sizes reported in different units across papers
343  for comparability.

344

345 Description of study cohorts

346

347 This study was approved by the Institutional Review Boards at St. Jude Children’s Research

348 Hospital (SJCRH; Memphis, TN) and all participating study centers. All participants in this study provided

349 informed consent. Brief descriptions of the two cohorts included in our study are provided below.
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350 Additional details regarding phenotype-specific analyses applied in both cohorts, including reference

351 GWAS-informed definitions for phenotypes, adjustment covariates, and participant exclusion criteria,

352  along with survivor-specific factors, are provided in Table 1.

353

354 SJULIFE cohort

355

356 Initiated in 2007, the St. Jude Lifetime Cohort Study3* (SJLIFE) is an ongoing retrospective cohort
357  study dedicated to the longitudinal study of a wide-ranging set of health outcomes in survivors treated for
358 pediatric cancer at SUCRH. The details of this study have been described previously3. In brief, eligibility
359 criteria include treatment for pediatric cancer at SICRH and =5 years survival since diagnosis.

360 Participants included in the current study were =18 years of age, had no history of allogeneic stem cell
361 transplantation, participated in specimen biobanking, and completed at least one SUCRH study visit as of
362  the June 30, 2015 freeze date.

363 SJCRH study visits include medical evaluations (with core laboratory/diagnostic studies),

364  assessments of self-reported outcomes, and examinations of neurocognitive function and physical

365 performance. Data for demographics, treatments (chemotherapeutic agent cumulative dosages;

366  field/doses of radiation therapy; surgical interventions), and primary cancer diagnosis were obtained from
367 medical record review. Medication use was self-reported as a part of the health and behavior

368 questionnaires. All quantitative trait measurements used in this analysis were taken from the participant’s
369 most recent SJLIFE study visit as of 06/30/2017. Height and weight were measured using a stadiometer
370  and an electronic scale (Scale-Tronix, White Plains, NY); WHR circumferences were taken with a Gulick
371 tape measure. BMI values were adjusted for amputation. Average systolic and diastolic blood pressure
372 (SBP and DBP, respectively; mmHg) values for participants with at least two measurements taken with a
373 calibrated sphygmomanometer after an initial 5-minute rest were used. Fasting blood lipids (mg/dL),

374 including high-density lipoprotein (HDL), calculated low-density lipoprotein (LDL), total cholesterol (TC),
375  and triglycerides (TG) were measured using an enzymatic spectrophotometric assay (Roche Diagnostics,

376 Indianapolis, IN).
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377 Coronary artery disease (CAD) and diabetes mellitus were clinically assessed and graded

378  according to the SUICRH-modified NCI Common Terminology Criteria for Adverse Events (CTCAE) v4.03
379 classification system32. The CTCAE grades used to define cases were based on presence of symptoms
380  and/or relevant medication use. For CAD, use of medications to treat angina symptoms or evidence of
381 abnormal cardiac enzymes, angina and ischemic heart disease, myocardial infarction, percutaneous

382  transluminal coronary angioplasty (PTCA), or coronary artery bypass grafting (CABG) was used to define
383 cases. Participants with symptomatic diabetes or use of oral medications or insulin to treat diabetes were
384 considered as diabetes mellitus cases; for this analysis, we treated all cases of diabetes mellitus as type
385 2 diabetes cases (T2D) given recent reports suggesting that at least 79% of cases in survivors can be
386 classified as T2D?36. Brief episodes of diabetes mellitus occurring immediately after treatment or

387 pregnancy were excluded. Obesity was defined as BMI 230kg/m?, which was consistent with CTCAE-
388 based obesity grades.

389

390 CCSS cohort

391

392 The Childhood Cancer Survivor Study®” (CCSS) is a retrospective cohort study of 5-year

393 childhood cancer survivors with prospective follow-up. Descriptions for CCSS participant eligibility and
394  study design have been published in detail elsewhere33°, CCSS participants included in this analysis
395  were <21 years of age at primary cancer diagnosis between January 1, 1970 and December 31, 1986,
396 received treatment for pediatric cancer at one of 26 participating study institutions in North America,

397 responded to at least one CCSS questionnaire covering demographics, health conditions, health-related
398 behaviors and health care use; and provided a whole blood, saliva, or buccal sample for DNA

399  sequencing.

400 All phenotypes assessed in CCSS (height, BMI, obesity, CAD, T2D) were self-reported or

401 reported by family proxies for survivors who could not complete surveys, were deceased or <18 years old.
402 For CAD and T2D phenotypes, questionnaire responses related to these conditions (including relevant
403 medication use) were graded using CTCAE v4.03. Information related to chemotherapy, radiotherapy,

404  and surgery was abstracted from medical records. Participants with height values above/below +4 SD of
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405  the sample mean or improbable BMI values (<10, >100 kg/m?2) were excluded from analyses. Exclusion
406 criteria or covariates considered in analyses performed in SJLIFE that were not included in CCSS due to
407 missing data included genetic conditions affecting height and hypothalamic-pituitary axis tumor history.
408 Any exposure to glucocorticoids was used as a substitute for glucocorticoid cumulative dosages. All other
409 exclusion criteria, adjustment covariates, and case/phenotype definitions were identical to those applied
410  tothe SJLIFE analysis.

411

412 Genotype data

413

414 Our analysis was restricted to the common SNPs (=1% EAF) reported to have a genome-wide
415  significant association (P<5x10-8) with any of the selected phenotypes in the meta-GWAS that met our
416 reference literature selection criteria (i.e., index SNPs). We also considered best common SNP proxies,
417  defined as SNPs in high LD with corresponding index SNPs in the European 1000 Genomes'® (1000G
418 EUR) populations (minimum r2 =0.8) likely to fall in the same LD block. Descriptions for collecting and
419 processing genotype data for each cohort are summarized below.

420

421 SJLIFE genotype data

422

423 The SJLIFE genotype data used in this analysis was collected as a part of larger effort to

424  sequence whole genomes of SJLIFE participants*°. Comprehensive details of DNA sample collection,
425  extraction, sequencing, quality control, and variant mapping have been described previously*%4!. Briefly,
426  sequencing for 3,006 samples was completed at the HudsonAlpha Institute for Biotechnology Genomic
427 Services Laboratory (Huntsville, AL) using the lllumina HiSeq X10 platform to yield 150 base pair paired-
428  end reads with an average coverage per sample of 36.8X. Whole exome data from survivors (coverage
429 >20x) sequenced by the SUICRH Department of Computational Biology was used to assess the validity of
430 coding variants. Sequenced data was aligned to the GRCh38 human reference using BWA-ALN

431 v0.7.1242, Variant calls were processed with GATK v3.4.04% and BCFtools**. PLINK v1.90b*® and

432  VCFtools v0.1.1346 were used to perform additional quality control, applying the following sample
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433  exclusion criteria: excess missingness (>5%), cryptic relatedness (pi-hat>0.25), and excess

434  heterozygosity (>3 SD). Variants with Hardy Weinberg Equilibrium (HWE) P<1x10-'% and >10%

435 missingness across samples were removed, leaving approximately 84.3 million autosomal single

436 nucleotide variants (SNVs) and small insertions and deletions (indels) in 2,986 samples. We then

437 restricted our sample to the 2,364 participants that were identified as European (see Ancestry below).
438

439 CCSS genotype data

440

441 Details describing methods used to generate genotype data for the CCSS cohort can be found in
442  previous papers*’“8. To summarize, DNA was extracted from whole blood, saliva, or buccal samples and
443  genotyped at the Cancer Genomics Research Laboratory of the National Cancer Institute (Bethesda, MD)
444 using the Illlumina HumanOmni5Exome array. Genotyping Module v1.9 (lllumina GenomeStudio software
445 v2011.1) was used to call genotypes. The following per-sample exclusion criteria were applied: 28%

446 missingness, heterozygosity of <0.11 or >0.16, X chromosome heterozygosity >5.0% for males or

447  <20.0% for females, and identity-by-descent sharing >0.70. Genotypes were then imputed using

448 Minimac34® and the Haplotype Reference Consortium r1.1 reference panel for the 5,739 samples meeting
449  quality control thresholds. After retaining 4,513 survivors of European ancestry (see Ancestry below) with
450 no overlap with SJLIFE, downstream analyses excluded SNPs with minor allele frequency <1% and

451 missingness >5% and only considered SNPs with high imputation quality (r>=0.8).

452

453 Ancestry

454

455 Procedures to identify the ancestry of SJILIFE and CCSS samples have been described

456  elsewhere*'48, Briefly, PLINK v1.90b was used to perform an EIGENSTRAT-based Principal Component
457  Analysis®0 for each cohort by combining the cohort samples with samples from 1000G global reference
458 populations. Cohort samples with principal component scores within 3 SD of the means of the first two
459 principal components in the 1000G EUR populations were of European ancestry.

460
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461 SJLIFE DNA methylation data

462

463 Whole blood DNA methylation was measured in 300 survivors in SJLIFE with a range of

464  treatment histories with the Infinium MethylationEPIC Array (lllumina, San Diego, CA, USA) according to
465  the manufacturer’s protocols. Genomic DNA (500 ng per sample; previously extracted for WGS) was

466  treated with bisulfate using the Zymo EZ DNA Methylation Kit under the following thermos-cycling

467  conditions: 16 cycles: 95°C for 30 sec, 50°C for 1 hour. Following bisulfite treatment, DNA samples were
468  desulphonated, column purified, then eluted using 12 pl of elution buffer (Zymo Research). Bisulfite-

469 converted DNA (4 ul) was then processed by following the lllumina Infinium Methylation Assay protocol
470 which includes hybridization to MethylationEPIC BeadChips, single base extension assay, and staining
471 and scanning using the lllumina HiScan system. The raw intensity data was exported from the lllumina
472 Genome Studio Methylation Module as IDAT files for further downstream analysis.

473 Raw intensity data was processed with the “minfi” R package®!, including sample and probe

474 quality controls, background correction, and normalization. Probes were mapped to the GRCh38 build to
475 identify and remove cross-reactive and non-specific probes. We eliminated samples with a low call rate
476 (<95% probes with a detection P value <0.01) or sex discrepancies, along with probes located on sex
477 chromosomes, with low detection rates (<95%), or with SNPs at CpG sites. A total of 689,742 high-quality
478 probes were retained for 300 samples after preliminary quality control. Of the 15,481 probes in BIOS QTL
479 contributing to significant cis-meQTLs with meta-GWAS SNPs of interest, 11,458 probes were available
480  for the current study after quality control for the 236 participants of European ancestry with WGS data that
481 were included in our main analysis.

482

483 SNP-phenotype association testing and replication enrichment analysis

484

485 Statistical procedures to perform SNP-phenotype association testing and replication enrichment
486  analysis were identical in SILIFE and CCSS cohorts. Details are described below.

487

488 SNP-phenotype association testing
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489

490 We conducted association tests for the reported genome-wide significant SNPs using phenotype
491 definitions (i.e., units and transformations), exclusion criteria, and adjustment covariates that were

492 consistent with the literature, along with factors relevant to childhood cancer survivors (Table 1). All

493  regression coefficients, standard errors, and P-values were obtained with linear or logistic regression for
494  quantitative traits or disease outcomes, respectively, using R v3.4.1. All association tests assumed an
495 additive model of genetic inheritance. We used the first 10 principal components as covariates in all

496  association analyses to account for population stratification. Measurements for adjustment covariates or
497 data applied for phenotype transformations that were closest to the measurement or validation date of the
498 trait/outcome were taken. SNP-phenotype associations with P-values <0.05 and the same direction of
499  effect as the reference literature were considered as successful replications. While we also evaluated
500 replications under trait-specific Bonferroni-corrected P-value thresholds, we regarded the P-value

501 threshold of 5% as the primary definition for replication because all tested SNP associations were

502 considered to be robust associations, i.e., published in large-scale meta-GWAS. In SJLIFE, we

503 considered whether reported index SNPs were in high LD with potentially “causal” SNP candidates that
504 would better capture the phenotype association at a given locus or LD block. To this end, we tested all
505 best SNP proxies for non-replicated SNP associations, where best proxies for an index SNP were defined
506 as SNPs in strong LD with the index SNP in the 1000G EUR populations (r2>0.8) within a 5-kb window of
507  the index SNP (based on a median LD block size of ~2.5 kb'® in 1000G EUR). We also assessed

508 observed versus expected replication rates for a pruned set of independent SNP-phenotype associations
509 in SJLIFE given that non-replication rates from clusters of high-LD SNPs without replication signals could
510 inflate replication depletions. Pruning entailed retaining the SNP with the highest EAF in SJLIFE among
511 clusters of SNPs in high LD (r2>0.8, 500-kb window in 1000G EUR) for each phenotype.

512

513 Replication power and enrichment analysis

514

515 We used QUANTO v1.2.4%2 to estimate the power for replicating each SNP association reported

516 in the compiled literature with its respective phenotype in SILIFE and CCSS. Power calculations
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517  assumed a 5% significance threshold (as well as a Bonferroni-corrected significance threshold in

518 SJLIFE), phenotype-specific sample sizes, and an additive genetic model. Phenotype-specific power

519 curves for our main analysis accounting for a range of effect allele frequencies and effect sizes are

520 provided in Supplementary Figures 1-4. We used these power calculations to estimate the replication

521 power for each SNP-phenotype association assuming the effect size reported in reference GWAS and the
522  effect allele frequency observed in the survivor cohorts. We used the same procedure to also estimate
523 replication power for each SNP-phenotype association in treatment-exposed and treatment-unexposed
524  subsamples in SILIFE, where treatment exposure was defined as any exposure to one or more curative
525 agents for pediatric cancer previously associated with the specific phenotype.

526 In order to evaluate whether the observed replication frequencies were greater or less than

527  expected for each of our phenotypes, we used a Poisson generalized estimating equations (GEE)

528 regression approach with robust variance estimation3. We estimated the expected number of replications
529 for each phenotype based on the assumption that each SNP replication may be treated as a Bernoulli
530 random variable with a replication probability equal to its estimated replication power, and under Le

531 Cam'’s theorem?®4, the sum of independent Bernoulli variables that are not identically distributed

532  approximately follows a Poisson distribution. The model assumed a log-link of the following form:

533 log(Obs) = log(Exp) + By,

534 where Obs and Exp were observed replications and the expected replication probability, respectively. The
535 exponentiated S, estimate served as the Replication Enrichment Ratio (RER), or the ratio of observed to
536 expected replication frequencies.

537

538 Ancillary analyses: Epigenetic and functional annotation enrichments by SNP replication state
539

540 We applied epigenetic/functional annotations using resources provided by Roadmap

541 Epigenomics Mapping Consortium'® (REMC), Genotype-Tissue Expression Project!” (GTEx Analysis v7),
542  Reactome?, and BIOS QTL?'. We assessed the specificity of enhancer and promoter states for all SNPs
543  with at least one replicated association in the SJILIFE main analysis using the REMC 15-chromatin state

544 annotation data for 127 human cell types. For each cell type, we compared the frequency of
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545 enhancer/promoter state overlap in the set of SNPs with replicated associations (“replicated SNPs”)

546 against the SNPs without replicated associations (“non-replicated SNPs”) in our SJLIFE main analysis.
547  We evaluated nominal enrichment for these regulatory states using P-values obtained from 2-sided

548 Fisher’s exact tests. Using GTEX, we counted the number of significant cis-eQTLs (SNPs within +1 Mb of
549 transcription start sites, FDR<0.05) for replicated SNPs and non-replicated SNPs and used a 2-sided

550 Fisher’s exact test to investigate enrichments in gene expressions among replicated SNPs for each of the
551 48 available cell-/tissue-types. Lastly, we compiled non-overlapping gene sets for replicated SNPs and
552 non-replicated SNPs to conduct a biological pathway enrichment analysis with geneSCF v1.1%% and

553 Reactome gene pathway ontologies. A gene was regarded as relevant to a SNP group if a SNP was

554 located within the body of a RefSeq'® gene. For each biological pathway, the number of genes in our SNP
555 groups with that ontology were compared to the number of genes with that ontology in all remaining

556 genes in the genome. Top biological pathway enrichments were determined using FDR-adjusted P-

557  values from 2-sided Fisher’s exact tests. Lastly, we used BIOS QTL? to identify significant (FDR<0.05)
558 cis-meQTLs linked to our 1,231 meta-GWAS SNPS and tested for enrichments/depletions of SNPs with
559 21 cis-meQTL among the replicated and non-replicated SNPs in our SJLIFE main analysis with two-sided
560  Fisher’s exact tests.

561

562 SNP-methylation and treatment-methylation associations

563

564 As a first step, we sought to validate significant (FDR<5%) cis-meQTLs reported in BIOS QTL in
565 our sample of 236 SJLIFE participants with methylation and genotype data. For each established cis-
566 meQTL available for testing in SJLIFE, we considered M-values (logz-transformed ratio of the methylated
567  to unmethylated probe intensities) at quality-controlled CpG sites and tested associations between CpG
568  M-values and SNP genotypes assuming an additive inheritance model using linear regression, adjusting
569  for sex, age, and genetic ancestry. Since additional analyses to evaluate potential confounding by inter-
570 individual differences in blood cell composition revealed no significant differences in cell type distributions

571 across samples, no adjustment covariates for blood cell composition were considered. Established cis-
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572 meQTLs (i.e., reported in BIOS QTL with FDR<5%) were defined as validated in SJLIFE for associations
573  with P<0.05 and the same direction of allelic effect.

574 We tested for enrichment of SJLIFE-validated cis-meQTLs among non-replicated SNPs with at
575 least one significant cis-meQTL in BIOS QTL using a 2-sided Fisher’s exact test. We also identified a
576 priori 48 “treatment-sensitive” meta-GWAS SNPs (without replications in our main analysis but were

577 replicated in samples without treatment exposures) and 66 “treatment-insensitive” meta-GWAS SNPs
578 (replicated in treatment-unexposed and treatment-exposed samples) and tested for enrichment of

579 validated cis-meQTLs among treatment-sensitive SNPs. Finally, we examined directionally discordant
580 SNP-methylation and treatment-methylation associations for CpGs linked to non-replicated SNPs (“non-
581 replicated CpGs”) and CpGs linked to replicated SNPs (“replicated CpGs”) for the cis-meQTLs we

582 validated in SJLIFE. Among the eight treatment types we considered (cranial, chest, abdominal, and

583 pelvic radiotherapies; anthracycline, corticosteroid, cisplatin, and carboplatin chemotherapies), we limited
584  our analysis to seven treatment types where >5% of the experimental sample was exposed. To ascertain
585  the direction of SNP-CpG methylation associations for CpGs in SJLIFE-validated meQTLs with multiple
586  associated SNPs without arbitrarily assigning a “best” SNP-CpG (i.e., smallest P-value), we used simple
587 majority voting classification to assign the direction of the SNP-methylation association for such CpGs.
588 For each treatment type, treatment dose associations with M-values at CpGs contributing to SJLIFE-
589 validated cis-meQTLs were tested with linear regression, adjusting for age and sex. We compared the
590  discordance between directions of SNP-methylation and treatment-methylation associations at each CpG
591 for each of the seven treatment types among replicated and non-replicated CpGs using a two-sided

592  Fisher’s exact test.
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FIGURES

NHGRI-EBI GWAS Catalog:
149 GWAS
for 12 phenotypes of interest

Relevant European ancestry GWAS

73 GWAS

Meta-analyses with replication studies,
>10,000 participants
v

46 meta-GWAS

Genome-wide significant (P<5x108)
associations

1,415 SNP-phenotype
associations (“meta-GWAS
hits”) in literature

Post-quality control in SJILIFE
v

1,376 meta-GWAS hits
tested in SJLIFE

Figure 1: Diagram describing selection of meta-GWAS and genome-wide significant SNP-phenotype
associations for replication in childhood cancer survivor cohorts. All reference GWAS considered in the
current study were published between 1/1/2008 — 11/20/2017.
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Figure 2: Plots of replication enrichment ratios (RERs) and respective 95% confidence intervals by
phenotype in SILIFE. RERs left of the vertical line corresponding to a RER equal to 1 suggest meta-
GWAS hit replication depletion, i.e., observations of fewer replications of meta-GWAS hits than expected.
RERSs considering adjustment covariates under two different models are presented for each phenotype:
(1) covariates adhering to reference GWAS (“GWAS?”), and (2) GWAS covariates along with covariates
considered in childhood cancer survivor populations (“Survivor”). Phenotype RERs are color-coded by
similarity: anthropometric (blue); blood pressure (green); lipid (yellow), and cardiometabolic disease (red).
The observed numbers of replications included in the figure are under the “GWAS” model. The expected
numbers of replications are estimated by the sum of the power to replicate each SNP-phenotype
association assuming observed SNP effect allele frequencies, the cohort sample size, an additive genetic
inheritance model, a=0.05, and effect sizes in reference meta-GWAS.
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Figure 3: Plots of replication enrichment ratios (RERs) and respective 95% confidence intervals by
phenotype in CCSS. RERs left of the vertical line corresponding to a RER equal to 1 suggest meta-
GWAS hit replication depletion, i.e., observations of fewer replications of meta-GWAS hits than expected.
Phenotype RERSs are color-coded by similarity: anthropometric (blue) and cardiometabolic disease (red).
The observed numbers of replications included in the figure are under the “GWAS” model.
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Figure 4: Plots of phenotype-specific replication enrichment ratios (RERs) and respective 95%
confidence intervals in samples unexposed to treatments (“No Treatment”) and exposed to treatments
(“Treatment”). Treatments were defined as cancer treatments associated with phenotypes. Phenotypes
with any evidence of replication depletion (RER<1) in our main analysis that showed either significant
(P<0.05) or suggestive (P<0.2) replication depletion in treatment-exposed samples are included in this
figure. Sample sizes by exposure strata (Ntx,, No Treatment; Ntx+, Treatment) are provided, as well as
likelihood ratio test P-values representing treatment associations with phenotypes (Prx) and changes in
adjusted R? (ARtx?) after removing treatment variables from clinical models. Phenotypes are ordered by
ARTx? values, with larger ARTx? values reflecting greater treatment influence on phenotype variation.
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Figure 5: DNA methylation levels at cg04827223 and percentage of T2D cases by genotype classes for
rs1552224 in SJLIFE survivor subgroups with no (a), low-to-moderate (b), and high doses (c) of
abdominal or pelvic radiation therapy (RT). No RT dose was defined as 0 Gy, low-to-moderate RT dose
was defined by >0 to <20 Gy, and high dose was defined by 220 Gy. The upper panels show the
observed methylation level relationships with the SNP at the cg04827223 CpG site in the SJLIFE subset
with methylome and genotype data (N=236); boxes represent the median and interquartile range (IQR),
with whiskers extending from the first or third quartile to 1.5 times the IQR. Methylation level trend by
allele dose is shown with median regression lines. Genotype frequencies in this SILIFE subset were as
follows: 1.8% (C/C), 30.8% (C/A), and 67.4% (A/A). The lower panels show the percentage (%) of T2D
cases by genotype in SJLIFE survivors in the main analysis (N=2,112), with the following genotype
frequencies: 1.9% (C/C), 26.9% (C/A), and 71.2% (A/A).
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TABLES

Table 1: Summary of methodological components for each SNP-phenotype association analysis in SILIFE

Phenotype

Phenotype
transformation®

Unit or definition®

GWAS adjustment
covariates?

Childhood cancer survivor
adjustment covariates®

Exclusions®

Reference meta-GWAS (PMID)

Anthropometric
Height

Body mass index (BMI)

Waist-to-hip ratio (WHR)

Sex-standardized Z-
score

Inverse normal
transformation of
residuals

Inverse normal
transformation of sex-
standardized residuals

cm

kg/m?; BMI adjusted
for amputation

Ratio of waist and
hip circumference
(cm)

Age, ancestry

Age, age?, sex,
ancestry

Age, age?, BMI,
ancestry

Surgical procedures affecting
spinal growth; scoliosis;
hypothalamic-pituitary axis tumors;
cranial or craniospinal radiation

Hypothalamic-pituitary axis tumors;
cranial radiation; glucocorticoids

Hypothalamic-pituitary axis tumors;
cranial radiation; glucocorticoids

Genetic syndromes,
health conditions
affecting stature®

None

None

25282103, 20881960,
18952825, 18391952
18193045

25673413, 24064335
20935630, 19079261

28443625, 25673412

, 19570815, 19343178
, 18391951, 18391950

, 23669352, 22982992
, 18454148

, 20935629

Blood pressure
Systolic blood pressure (SBP) +15 mmHg with use of mmHg Age, age?, sex, Abdominal, pelvic radiation Prior myocardial 28135244, 28739976, 26390057, 21909115,
blood pressure lowering BMI, ancestry infarction or heart 19430483, 19430479
medications failure
Diastolic blood pressure (DBP) +10 mmHg with use of mmHg Age, age?, sex, Abdominal, pelvic radiation Prior myocardial Same as SBP
blood pressure lowering BMI, ancestry infarction or heart
medications failure
Blood lipids
High-density lipoprotein (HDL) Inverse normal mg/dL Age, age?, sex, Hypothalamic-pituitary axis tumors; Use of lipid-lowering 24097068, 19060906
transformation of ancestry cranial radiation medications
residuals
Low-density lipoprotein (LDL) Inverse normal mg/dL Age, age?, sex, Hypothalamic-pituitary axis tumors; Use of lipid-lowering Same as HDL
transformation of ancestry cranial radiation medications
residuals
Total cholesterol (TC) Inverse normal mg/dL Age, age?, sex, Hypothalamic-pituitary axis tumors; | Use of lipid-lowering 24097068
transformation of ancestry cranial radiation medications
residuals
Triglycerides (TG) Inverse normal mg/dL Age, age?, sex, Hypothalamic-pituitary axis tumors; Use of lipid-lowering Same as HDL

kg/m?

cranial radiation; glucocorticoids

transformation of ancestry cranial radiation medications
residuals
Cardiometabolic disease
Coronary artery disease (CAD) None Cases: CTCAE Age, sex, ancestry BMI; smoking; cardiac-directed None 28714975, 26950853, 26343387, 19198609
grades 22 radiation; anthracyclines; platinums
(cisplatin, carboplatin)
Type 2 diabetes (T2D) None Cases: CTCAE Age, sex, BMI, Cranial radiation; abdominal None 28869590, 28566273, 24509480, 20581827,
grades =2 ancestry radiation 20418489, 19734900, 18372903
Obesity None Cases: BMI 230 Age, sex, ancestry Hypothalamic-pituitary axis tumors; None 23563607, 21708048

Abbreviations: genome-wide association study (GWAS); cm (centimeter); kg (kilogram); m (meter); mmHg (millimeter of mercury); CTCAE (Common Terminology Criteria for Adverse Events, modified v4.03).
a. GWAS covariates, as defined by reference GWAS.
b. Phenotype units and definitions and participant exclusion criteria from reference GWAS were reviewed and adapted when necessary for analysis in SJLIFE.
c. Covariates specific to childhood cancer survivors, based on the childhood cancer survivorship research literature.

d. Syndromes and health conditions affecting height include: Down syndrome; Turner syndrome; Neurofibromatosis, type 1; Russell-Silver syndrome; benign bone lesion/cysts; cartilage disorder, skeletal

spine disorder.
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Table 2: Descriptive statistics for phenotypes, treatments, and demographic variables in SILIFE

SJLIFE CCSSs
% or % or
Phenotypes / Variables Unit N median (IQR) N median (IQR)
Demographic variables
Sex
Male % 2,231 53.0% 4,513 48.1%
Female % 2,231 47.0% 4,513 51.9%
Age years 2,231 35.8 (13.3) 4,513 40.9 (12.9)
Treatments (any exposure)
Radiation, any type % 2,231 58.3% 4,513 61.9%
Chemotherapeutic agent, any type % 2,231 85.3% 4,513 73.9%
Cranial radiation % 2,199 31.0% 4,227 30.9%
Cardiac-directed radiation % 2,199 22.9% 4,224 26.7%
Abdominal radiation % 2,199 20.0% 4,226 25.9%
Pelvic radiation % 2,199 17.5% 4,226 20.5%
Anthracyclines % 2,231 57.9% 4,290 35.8%
Glucocorticoids % 2,231 47.8% 4,513 43.4%
Platinums (cisplatin, carboplatin) % 2,227 10.3% 4,513 4.4%
Phenotypes
Anthropometric
Height cm 2,025 168.7 (14.6) 4,212 168.0 (18.0)
Body mass index kg/m? 2,229 27.6 (9.3) 4,208 26.1 (7.3)
Waist-to-hip ratio ratio 2,204 0.9 (0.1)
Blood pressure
Systolic blood pressure mmHg 2,020 123.0 (17.7)
Diastolic blood pressure mmHg 2,020 75.5(13.0)
Serum lipids
High-density lipoprotein mg/dL 1,984 49.0 (20.0)
Low-density lipoprotein mg/dL 1,964 107.0 (46.0)
Total cholesterol mg/dL 1,997 183.0 (50.0)
Triglycerides mg/dL 1,997 100.0 (80.0)
Cardiometabolic disease
Coronary artery disease % cases 2,079 4.7% 4,036 4.1%
Obesity % cases 2,229 38.3% 4,208 25.8%
Type 2 diabetes % cases 2,112 71% 4,207 7.0%
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