

1 **A screen for *Plasmodium falciparum* sporozoite surface protein binding to**
2 **human hepatocyte surface receptors identifies novel host-pathogen**
3 **interactions**

4 **Authors**

5 Rameswara Reddy Segireddy¹, Kirsten Dundas^{2*}, Julia Knoeckel^{2*}, Francis Galaway²,
6 Laura Wood², Gavin J Wright², Alexander D Douglas^{1†}

7 *KD and JK contributed equally to this study.

8 †Corresponding author: sandy.douglas@ndm.ox.ac.uk

9 **Affiliations**

10 1. Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics,
11 Oxford, United Kingdom.
12 2. Wellcome Sanger Institute, Cambridge, United Kingdom.

13 **Acknowledgments**

14 We are grateful to Adrian Hill and Wendy Crocker for support with respect to
15 Optimalvax funding, to Photini Sinnis for advice regarding selection of sporozoite
16 proteins, to Katie Ellis for cell culture assistance, to Simon Draper and David Staunton of
17 the University of Oxford Biochemistry Department Biophysical Instrument Facility for
18 access to Biacore, to Martino Bardelli for provision of the pVIPENTR plasmid, to Adam
19 Ritchie for helpful comments on the manuscript, and to Jake Baum and Joshua Blight for
20 input regarding work with *P. falciparum* sporozoites.

21 **Funding**

22 This work was supported by funding from the Wellcome Trust (grant 201477/Z/16/Z
23 to ADD and 206194 to GJW), the Medical Research Council (Doctoral Training award
24 MR/J004111/1) and the European Union's Horizon 2020 research and innovation
25 programme (under grant agreement No 733273).

26 **Abstract**

27 Sporozoite invasion of hepatocytes is a necessary step prior to development of malaria,
28 with similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of
29 the malaria blood-stage, efforts to identify host-pathogen protein-protein interactions
30 have yielded important insights including vaccine candidates. In the case of sporozoite-
31 hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly
32 understood. Here, we performed a systematic screen to identify such interactions. We
33 substantially extended previous *Plasmodium falciparum* and human surface protein
34 ectodomain libraries, creating new libraries containing 88 *P. falciparum* sporozoite
35 protein coding sequences and 182 sequences encoding human hepatocyte surface
36 proteins. Having expressed recombinant proteins from these sequences, we used a plate-
37 based assay capable of detecting low affinity interactions between recombinant proteins,
38 modified for enhanced throughput, to screen the proteins for interactions. We were able
39 to test 7540 sporozoite-hepatocyte protein pairs under conditions likely to be sensitive
40 for interaction. We report and characterise an interaction between human fibroblast
41 growth factor receptor 4 (FGFR4) and the *P. falciparum* protein Pf34, and describe an
42 additional interaction between human low-density lipoprotein receptor (LDLR) and the
43 *P. falciparum* protein PIESP15. Strategies to inhibit these interactions may have value in
44 malaria prevention, and the modified interaction screening assay and protein expression
45 libraries we report may be of wider value to the community.

46 **Keywords**

47 Malaria, *Plasmodium falciparum*, sporozoite, AVEXIS, Pf34, FGFR4.

48 Introduction

49 Malaria is a mosquito-borne infectious disease caused by protozoan parasites of the
50 genus *Plasmodium*. Despite some progress in malaria control across the globe, 228
51 million cases still occurred worldwide in 2018, causing 405 000 deaths, mostly young
52 children in Africa [1]. *Plasmodium* spp. have a complex life cycle that shuttles between
53 the mammalian host and the *Anopheles* mosquito vector. Malaria infection to the
54 mammalian host is initiated when the mosquito releases sporozoites into the skin while
55 obtaining a blood meal. The deposited sporozoites glide through the skin, enter the
56 bloodstream and traffic to the liver. In the liver, sporozoites actively migrate through
57 several hepatocytes prior to productive invasion, which is characterised by the formation
58 of a specialised compartment, the parasitophorous vacuole (PV). Within the PV,
59 sporozoites undergo several rounds of asexual replication producing thousands of
60 merozoites. Upon rupture of infected hepatocytes, merozoites are released into the blood,
61 invade and replicate inside erythrocytes, leading to the symptoms and complications of
62 malaria [2].

63 Sporozoite invasion of the hepatocyte is an obligatory step in this life cycle. The
64 *Plasmodium* spp. sporozoite and merozoite share a repertoire of subcellular organelles
65 with each other and with the extracellular stages of other apicomplexan parasites, such
66 as *Toxoplasma gondii*, reflecting their shared specialisation in the invasion of host cells.
67 A stepwise invasion process appears to be conserved across these parasites, comprising
68 initial low-affinity attachment, calcium-signalling-dependent release of parasite adhesins
69 capable of binding host proteins, formation of a moving junction, and finally
70 actin/myosin-dependent motile invasion into a parasitophorous vacuole [3]. Several
71 parasite ligand – host receptor interactions have been implicated in *P. falciparum*
72 merozoite – human erythrocyte invasion, and blockade of one of these (the interaction of
73 *P. falciparum* reticulocyte binding protein homologue 5 [PfRH5] with basigin) is now a
74 leading vaccine strategy [4]. A number of host and pathogen proteins have been
75 implicated in sporozoite-hepatocyte invasion, as recently reviewed by some of the
76 current authors [5]. Despite this, it is striking that no specific host-pathogen protein-
77 protein interactions have yet been shown to be essential for this process. To our
78 knowledge, no parasite proteins have been shown to interact with hepatocyte proteins
79 such as CD81 and scavenger receptor B1 (SR-B1) [6-9], no host proteins have been shown
80 to interact with parasite proteins such as circumsporozoite protein (CSP), P36 and P52

81 [9-13], and no clear role in hepatocyte invasion has been shown for the interaction of *P.*
82 *falciparum* thrombospondin-related anonymous protein (TRAP) with integrin $\alpha_v\beta_3$ [5].
83 An interaction between host Ephrin type-A receptor 2 (EphA2) and parasite P36 has been
84 suggested but not biochemically demonstrated, and EphA2 has subsequently been shown
85 not to be required for sporozoite invasion [13, 14].

86 We hypothesized that, like merozoite-erythrocyte invasion, sporozoite-hepatocyte
87 invasion involves multiple protein-protein interactions, identification of which would
88 enable improved vaccine strategies. Biologically important extracellular protein-protein
89 interactions are often of low affinity and can be very transient (for example, the PfRH5-
90 basigin interaction has 0.8 μ M affinity and a half-time of 2.7 s). Some of us previously
91 reported a plate-based assay which can be used to identify such interactions, the AVidity-
92 based EXtracellular Interaction Screen (AVEXIS) [15]. We therefore set out to perform an
93 AVEXIS screen to identify sporozoite-hepatocyte protein-protein interactions, modifying
94 the assay method to enhance throughput to a level adequate to investigate a large
95 proportion of the surface protein repertoire of *P. falciparum* sporozoites and human
96 hepatocytes.

97

98 **Results**

99 **AVEXIS assay development for systematic high-throughput screen**

100 The AVEXIS assay has previously been used to identify protein-protein interactions,
101 including those with low-affinity and fast dissociation rates [15]. Subsequently we have
102 modified the method to enhance sensitivity by using luciferase rather than β -lactamase
103 as the reporter assay (Galaway *et al*, manuscript in preparation). Here, given the limited
104 prior information about candidate sporozoite ligands and hepatocyte receptors and the
105 large number of expressed candidate proteins, we wished to perform a broad screen and
106 therefore further modified the method to enhance throughput while preserving or
107 improving sensitivity (Figure 1A-B). The assay modifications allowed expression of most
108 proteins in 24-well plates, removed dependency on streptavidin-biotin-mediated capture
109 and so eliminated the need for bait dialysis and expensive streptavidin-coated plates, and
110 retained the sensitive and immediate luciferase-generated luminescence readout.

111 The modified assay remained capable of the detection of four known protein-protein
112 interactions (Fig 1C-F), including *P. falciparum* RH5: human basigin [16] and mouse Juno:
113 Izumo (which, in monomeric format, is strikingly weak [$K_D = \sim 12\mu M$] and transient [$t_{1/2} = \sim 0.5$ sec] [17]).

115 All interactions were detected with a high signal:noise ratio when using bait
116 concentration of 7nM and prey concentration 4×10^8 LU/mL, and all remained detectable
117 with substantially lower protein concentrations, albeit with lower signal:noise ratios (Fig
118 1C-F). There was not an obvious relationship between assay sensitivity and interaction
119 affinity or half-life. Sensitivity may instead be influenced by protein quality (e.g.
120 conformational accuracy) and the accessibility of binding sites within these particular
121 constructs.

122 **Creation of sporozoite and hepatocyte surface protein ectodomain library**

123 Available proteomic, transcriptomic and functional data was reviewed to assemble lists
124 of 84 *P.falciparum* proteins and 189 human proteins which are likely to be expressed on
125 the sporozoite and hepatocyte surfaces respectively, and had architecture amenable to
126 AVEXIS (see Methods). The very large cysteine rich modular proteins CRMP1, 3 and 4
127 were split into two to three fragments, and three different CSP-based constructs were
128 designed, resulting in a total of 90 sporozoite constructs. The sporozoite protein set
129 partially overlapped with a previously designed library (Knoeckel *et al*, manuscript

130 submitted); 45 of the sporozoite constructs were newly designed for this study. Of the
131 189 human proteins, 127 constructs were taken from previously designed libraries [16,
132 18] (and Wright *et al*, manuscript in preparation), while the remaining 62 were newly
133 designed for this study.

134 Of these constructs, we were able to clone and attempt expression of 88 sporozoite and
135 182 hepatocyte proteins as AVEXIS baits and preys respectively (i.e. constructs as shown
136 in Figure 1B). Synthesis of the remaining coding sequences was unsuccessful. Full details
137 of constructs produced are provided in Supplementary Tables 1 and 2.

138 Expression levels obtained and examples of the protein quality as assessed by Western
139 blot are shown in Figure 2 (see also Supplementary Figures 1 and 2, and Supplementary
140 Tables 1 and 2). 82 baits were obtained at concentrations >1 nM which we regarded as
141 potentially informative (based on the results obtained with the test set of known
142 interactions (Figure 1C-F). 61 baits (including CSP, TRAP and P52) were obtained at >7
143 nM which we regarded as optimal. To achieve these levels, spin filter concentration was
144 required for 54 baits.

145 Of the preys, 165 were obtained at concentrations >1x10⁷ LU/mL which we regarded as
146 potentially informative, of which 139 preys (including CD81, SR-BI, EphA2, and integrin
147 $\alpha_v\beta_3$) were obtained at >4x10⁸ LU/mL which we regarded as optimal. Results of Western
148 blotting of preys are shown in Figure 2D and Supplementary Figure 2.

149 To provide additional assurance regarding the quality of key bait and prey proteins, and
150 in particular the activity of the folded proteins in a plate-format assay, we tested whether
151 the full-length CSP bait, and CD81, SR-BI and EphA2 preys could be captured onto 96 well
152 plate using cognate monoclonal antibodies. Captured baits and preys were detected using
153 ELISA and luciferase assay respectively, demonstrating the expected antibody reactivity
154 (Figure 2E-F).

155

156 **AVEXIS screen identifies sporozoite ligand: hepatocyte receptor interactions**

157 Having developed the modified high-throughput AVEXIS method and constructed the
158 candidate sporozoite ligand and hepatocyte receptor libraries, we proceeded to a
159 systematic screen for ligand-receptor interactions (Figure 3A and Supplementary Table
160 3). Signal:noise ratios were calculated by initially correcting for noise attributable to the

161 prey, and then for noise attributable to the bait (see Methods). Raw, prey-corrected and
162 final results are shown on separate worksheets in Supplementary Table 3.

163 All 16016 possible sporozoite protein/hepatocyte protein pairs were tested
164 (Supplementary Table 3). Of these, 7540 candidate interactions were tested using protein
165 concentrations we would regard as optimal (bait concentration \geq 7 nM, prey
166 concentration 4×10^8 LU/mL, and good protein quality as assessed by Western blotting),
167 and a further 4718 were tested using protein concentrations which our assay validation
168 data (Fig 1C) suggested would provide a signal:noise ratio of >10 for any of our 'test set'
169 of four known interactions.

170 Across the tested interactions, the highest signal:noise ratio (198) was observed with the
171 combination of the sporozoite protein Pf34 and the human cell-surface protein FGFR4
172 (Figure 3A). A novel and reproducible interaction was also observed between PIESP15
173 and LDLR. The protein PIESP15 is under investigation in a separate study by an
174 overlapping team of authors (Knoeckel et al, manuscript in preparation) and so this
175 interaction was not explored further here. Full results of the screen, and a summary table
176 of additional protein pairs with a signal:noise ratio exceeding 5, are presented in
177 Supplementary Tables 3 and 4. No detectable interactions were observed with any of the
178 proteins which have been most prominently implicated as possible sporozoite ligands
179 (CSP, TRAP, P36, P52) or hepatocyte receptors (CD81, SR-BI, EphA2), apart from the
180 known interaction of TRAP with α_v integrins.

181 **Interaction of Pf34 with FGFR4 is specific and consistent with saturable 1:1
182 binding kinetics**

183 Pf34 (PF3D7_0419700) is a GPI-anchored protein expressed by all parasite stages and
184 localized to rhoptry necks in blood-stage parasites [19]. Pf34 has orthologs in rodent
185 parasites but there are, to our knowledge, no studies to show the role of this protein in
186 sporozoite invasion of hepatocytes. Its *P. berghei* ortholog (PBANKA_0721800) was not
187 covered in recent large-scale 'PlasmoGEM' screens of gene essentiality in the *P. berghei*
188 blood, mosquito, and pre-erythrocytic stages [20, 21].

189 FGFR4 (CD334) is most strongly expressed in the liver, where it is the dominant FGFR
190 family member [22]. The full-length FGFR4 splicing isoform has an extracellular domain
191 which consists of 3 immunoglobulin-like domains, a single transmembrane domain and
192 a cytoplasmic tyrosine kinase domain [23]. A liver-specific signalling pathway through

193 FGFR4, stimulated by ligands including FGF19, is involved in regulation of cholesterol and
194 bile acid metabolism [24]. FGFR4 has previously been implicated in liver stage
195 development of *P. yoelii* in Hepa1-6 cells, as one among a number of 'hits' in a screen
196 investigating the role of host kinases in EEF development. [25], although negative results
197 were obtained in a similar screen investigating *P. berghei* [26].

198 To confirm the Pf34-FGFR4 interaction, the AVEXIS assay was repeated using
199 reciprocally-oriented constructs, with FGFR4 expressed as dimeric bait and probed with
200 pentameric Pf34 prey. Again, clear and reproducible binding was observed (Fig 2B).

201 To demonstrate Pf34 and FGFR4 interact with the saturable Langmuir kinetics typical of
202 a specific 1:1 interaction, we performed surface plasmon resonance. Weak but clear
203 saturable binding between Pf34 ligand and FGFR4 analyte was observed with an
204 equilibrium binding constant (K_D) of $\sim 40 \mu\text{M}$ and rapid kinetics including $t_{1/2} < 1 \text{ s}$ (Figure
205 3C-D, and Supplementary Figure 3). Kinetic values approached the limits for
206 determination using a Biacore T200 instrument and software, and inspection of residual
207 plots suggested that fitted values may have underestimated association and dissociation
208 rates. Re-fitting of the data (using GraphPad Prism) provided a good fit with similar K_D
209 ($46 \mu\text{M}$) and $t_{1/2} = 0.4 \text{ s}$ (data not shown). The ability of the AVEXIS assay to detect this
210 extremely weak interaction further illustrates the power of the technique.

211 Having identified the interaction between human FGFR4 and *P. falciparum* Pf34, we
212 examined whether this interaction is conserved across species by testing murine FGFR4
213 for interaction with the Pf34 orthologs found in the rodent malaria parasites *P. yoelii* and
214 *P. berghei*. We found no evidence of interaction of either of these protein pairs, despite
215 expression of all proteins at levels in the range expected to give optimal AVEXIS
216 sensitivity (Figure 3E).

217 Pairwise host-pathogen protein-protein interactions are frequently components of larger
218 multi-molecular complexes, and so we proceeded to investigate possible additional
219 interacting partners of Pf34.

220 Binding of many FGF family members to their receptors is enhanced by heparin and/or
221 heparan sulfate [27]. Using SPR, we tested whether heparin and heparan sulphate (HS)
222 may have a similar affect upon the Pf34 – FGFR4 interaction. We used a similar design to
223 that used in our experiment measuring Pf34 – FGFR4 kinetics, assessing whether pre-

224 incubation of soluble monomeric FGFR4 with heparin or HS had any effect upon binding
225 to Pf34 immobilised on the chip. Despite using high heparin/HS concentrations
226 (1mg/mL), we did not observe any enhancement of FGFR4 binding (data not shown).

227 **Discussion**

228 Invasion of hepatocytes by *P. falciparum* sporozoites is a bottleneck in the malaria
229 parasite lifecycle. Inhibition of this process, particularly by vaccine-induced antibodies,
230 is a major focus in efforts to develop means of malaria prevention. This effort is hindered
231 by limited knowledge of the host-parasite interactions involved in hepatocyte invasion.
232 This study has therefore sought to improve understanding in this area.

233 Our approach, expressing human and *P. falciparum* proteins in a human cell line and
234 testing them for interaction using a modified AVEXIS assay, was designed to achieve the
235 best sensitivity which we could achieve in a broad, high-throughput screen. Our selection
236 of proteins for study included the majority of single-transmembrane sporozoite and
237 hepatocyte surface proteins for which there is currently convincing proteomic evidence
238 of expression. Transient mammalian cell expression can achieve the same post-
239 translational modifications found in *P. falciparum* proteins. The AVEXIS assay has a
240 strong track record in detection of biologically important interactions, even when they
241 are strikingly weak [15, 16].

242 Nonetheless, the approach does have limitations. AVEXIS is limited to protein
243 ectodomains and so cannot interrogate many multi-transmembrane proteins (a
244 substantial proportion of the hepatocyte surface proteome). We were unable to express
245 some proteins at all, and a further proportion expressed weakly. Given the high
246 throughput nature of the screen, we cannot be certain about the conformational accuracy
247 of individual proteins, nor the accessibility of potential interaction sites in the constructs.
248 It is likely that relatively weak expression is to some extent an indicator of problematic
249 folding. Thus although results from our 'test set' of interactions (Figure 1 C-F) suggest
250 that even very low bait and prey concentrations would in many cases be adequate to
251 detect an interaction, negative results obtained with weakly-expressed proteins are of
252 uncertain reliability.

253 We found no evidence of interactions with sporozoite proteins of the previously reported
254 host receptors for sporozoite invasion (CD81, SR-BI, EphA2), nor of interactions with host
255 proteins of the suspected sporozoite invasion ligands P36 and P52. The role of these
256 proteins in the invasion process remains incompletely understood.

257 Our key novel findings are the interactions of Pf34 with the host protein FGFR4 and
258 PIESP15 with LDLR. The interaction of Pf34 with FGFR4 is of very low affinity, but in the
259 context of apposed membranes weak monovalent interactions can sum to provide
260 significant avidity and to become biologically critical (as illustrated by the Juno-Izumo
261 interaction which is essential for mammalian fertilisation [17]). It is also possible that the
262 Pf34 – FGFR4 interaction occurs in the context of a multi-molecular complex which
263 provides higher affinity between the host and parasite members. This possibility is
264 supported by the fact that a co-receptor, β -klotho, contributes substantially to the binding
265 affinity of FGFR4's endogenous ligands [28]. We were unfortunately unable to express β -
266 klotho in sufficient quantities to further explore this possibility.

267 The possibility that interactions between Pf34 and FGFR4 could contribute to a
268 functionally-important invasion complex is supported by FGFR4's role in liver-specific
269 signalling pathways, and evidence of reduced EEF formation in the absence of FGFR4 [24,
270 25, 29]. Investigation of the effect of disruption of these interactions upon sporozoite
271 invasion is a priority.

272 Materials and methods

273 Ethics statement

274 All animal work was conducted in accordance with the U.K. Animals (Scientific
275 Procedures) Act 1986 (ASPA), and the protocols were approved by the University of
276 Oxford Animal Welfare and Ethical Review Body (in its review of the application for the
277 U.K. Home Office Project Licence and P9804B4F1).

278 Design of sporozoite and hepatocyte surface protein libraries

279 Comprehensive lists of sporozoite and hepatocyte surface protein constructs used in this
280 study are provided in Supplementary Tables 1 and 2 respectively.

281 *P. falciparum* sporozoite surface proteins were selected for study on the basis of their
282 estimated abundance from available surface proteomic and transcriptomic data, plus
283 review of published functional data. In brief, a list of all *P. falciparum* proteins including
284 predicted signal peptides or transmembrane domains was downloaded from PlasmoDB
285 (accessed October 2016). We then used broad criteria to select proteins for manual
286 review. Proteins were considered further if they were among the top 30% of those on the
287 list by abundance in a mass spectrometric analysis of the sporozoite surface proteome
288 [30] or the same authors' re-analysis of a previous whole-sporozoite proteome [31], or
289 the original report of the sporozoite proteome [32]. Given the poor sensitivity of mass
290 spectrometry for certain proteins, we also included the 5% of proteins on the list for
291 which transcripts were most abundant in two profiles of sporozoite RNA ([33] and RNA-
292 seq data provided by Hoffman *et al* to PlasmoDB.org). We also considered lists of proteins
293 previously found to be present in the micronemes and rhoptries of other *Plasmodium* spp.
294 life-cycle stages [34, 35], and genes for disruption resulted in sporozoite or liver-stage
295 phenotypes, as reported in the RMgmDB transgenic parasite database [36]. These lists
296 were then manually synthesized and reviewed, together with annotation information in
297 PlasmoDB, to compile a set of 79 proteins for which there was reasonable evidence of
298 presence on the surface of the sporozoite (or release to the surface from intracellular
299 organelles during invasion). A further four proteins were added based upon published
300 functional information suggesting a role in sporozoite-hepatocyte attachment and/or
301 invasion (LIMP [37], MB2 [38], LSA-3 [39] and STARP [40]). PfRH5 was included on the
302 basis of its known role in the blood-stage, although we are unaware of any evidence it
303 may have a function in the sporozoite. The total number of proteins selected for study
304 was thus 84. Plasmids encoding 45 of these (though with different tags from our bait

305 configuration) were already available in a previously designed library (Knoeckel et al,
306 manuscript submitted).

307 For the remaining sporozoite proteins, starting with predicted amino acid sequences
308 from PlasmoDB, SignalP 4.1 and TMHMM v2.0 web servers were used to identify signal
309 peptide and transmembrane domains and hence identify ectodomains. Endogenous
310 signal peptides were replaced with a mammalian signal peptide (from mouse
311 immunoglobulin kappa chain). To avoid inappropriate glycosylation when expressed in
312 mammalian cells, asparagine-X-serine/threonine N-glycosylation sequons were mutated
313 to asparagine-X-alanine. Genes were then codon optimised for mammalian expression.
314 For three of the very large proteins from the cysteine-rich modular protein family
315 (CRMP1, 3 and 4), we designed two to three constructs, together spanning the
316 ectodomain. Given the importance of CSP and its known domain architecture, we
317 designed both a full-length construct and N-terminal and C-terminal domain constructs.
318 The remaining coding sequences were synthesized by Twist Biosciences or, for large or
319 challenging genes, ThermoFisher.

320 Selection of proteins for inclusion in the human hepatocyte surface protein library
321 proceeded similarly, using available proteomic, transcriptomic and functional data. Our
322 starting point for this was a manually-curated list of human cell-surface proteins. We
323 cross-referenced this with three human primary hepatocyte or hepatoma cell line
324 proteomic data-sets [22, 41, 42] to identify around 1000 cell surface proteins with
325 reasonable proteomic evidence of hepatocyte expression, adding a further 150 proteins
326 which were not detected by mass spectrometry but were abundant in hepatocyte
327 transcriptomes [43]. Because AVEXIS depends upon expression of ectodomains as
328 soluble proteins, we discarded most multi-pass transmembrane proteins from the list,
329 retaining type I, II and III and GPI-anchored single-pass transmembrane proteins, plus a
330 small number of multi-pass proteins with substantial N-terminal ectodomains (typically
331 >100 amino acids). Proteins with extremely large ectodomain coding sequences (>5kb)
332 were also discarded, due to anticipated difficulty of gene synthesis. The resulting list of
333 proteins was manually reviewed and the 189 proteins with the strongest evidence of
334 abundant expression on the hepatocyte surface were selected for study. Plasmids
335 encoding 127 of these (though with different tags from our prey configuration) were
336 already available in previously designed libraries [16, 18] (and Wright *et al*, manuscript

337 submitted). As an exception to our general rule of excluding multi-pass transmembrane
338 proteins, we included extracellular domains of CD81 and SR-BI, as proteins known to
339 have roles in sporozoite-hepatocyte invasion [6, 7, 44]. For CD81, we used the larger of
340 the protein's two extracellular loops. A similar construct has previously been shown to
341 retain the ability to bind hepatitis C virus E2 [45]. For SR-BI, we used the entire
342 extracellular loop.

343 For the 62 proteins for which plasmids with coding sequences were not available,
344 hepatocyte protein ectodomain coding sequences were designed as for the sporozoite
345 library, with the exceptions that amino acid sequences were obtained from Uniprot, and
346 that endogenous signal peptides and N-glycosylation sequons were retained. Mouse
347 immunoglobulin κ light chain signal peptides were added to the constructs encoding
348 CD81, SR-BI and type III transmembrane proteins (which lack signal peptides). The
349 library also included constructs encoding a number of integrin heterodimers, as
350 previously described [5].

351

352 **Cloning and protein expression**

353 Sporozoite ectodomain coding sequences were cloned using NotI/Ascl restriction
354 enzymes into a pTT5-based vector [46], in frame with sequence encoding tags as shown
355 in Fig 1A. Consequently, human Fc tagged bait proteins are expressed as dimers.

356 Hepatocyte ectodomain coding sequences were cloned similarly into the prey vectors by
357 using NotI/Ascl restriction enzymes. Two prey vectors were used, according to the
358 expected orientation of the native protein relative to the cell membrane. The majority of
359 constructs, encoding proteins with free N-termini and with transmembrane domains C-
360 terminal to the ectodomain, were cloned into a 'Type I' vector, providing tags as shown
361 in Fig 1A. Type II transmembrane proteins, with free C-termini, were expressed from a
362 'Type II' vector, again as shown in Fig 1A. In the case of integrins, α chain ectodomains
363 were cloned into the Type I prey vector, while β chain ectodomains were expressed
364 without tags.

365 For recombinant protein expression, ectodomain constructs were transiently transfected
366 using Expifectamine into Expi293F suspension cells as per the manufacturer's
367 instructions (ThermoFisher). Transient transfections were performed in deep 24 well

368 plates, with 4 mL cells/well and transfected cells were maintained at 37°C, 700 RPM, 8%
369 CO₂ and 70% relative humidity. Integrin preys were produced by co-transfection with α
370 and β chain constructs. Supernatants were collected on day 3-4 post-transfection and
371 secreted proteins in the supernatants quantified. Selected baits and preys which were
372 expressed in 4 mL cultures at insufficient levels for AVEXIS were expressed in 25mL
373 cultures in Erlenmeyer flasks, and concentrated by using 30kDa molecular weight cut-off
374 (MWCO) centrifugal filters (Vivaspin, GE Healthcare).

375 To produce purified monomeric protein for surface plasmon resonance (SPR), a codon-
376 optimised FGFR4 ectodomain coding sequence with C-terminal CD4d3+4-His₆ tag
377 sequence was cloned into pTT5 [47]. Transfection of Expi293F cells was performed as
378 above. Purification was performed using an AKTA Purifier instrument (GE Healthcare)
379 and HiTRAP Talon column (GE Healthcare). Quality of all purified proteins was confirmed
380 by means of Coomassie staining of an SDS-PAGE gel, demonstrating the expected
381 molecular weight and purity >90% (Supplementary Figure 3).

382 **Bait and prey quantification and normalisation**

383 Fc-tagged baits were expressed as soluble proteins and quantified by ELISA. For ELISA,
384 Nunc Maxisorp 96 well plates were coated with 50 ng/well of a high affinity mouse anti-
385 human Fc monoclonal antibody (mAb clone R10Z8E9, Abingdon Health) in PBS and
386 incubated overnight at 4°C. Plates were washed 5 times in PBS containing 0.05 % Tween
387 20 (PBS/T) and once in PBS. Plates were blocked with 5 % skimmed milk in PBS/T for 1h
388 at room temperature. Blocking solution was removed and baits were immobilised onto
389 the plate by incubating for 2h at room temperature. After washing again, 50 µL/well of
390 alkaline phosphatase-conjugated donkey anti-human Fc antibody (Jackson
391 ImmunoResearch, Cat. No. 709-055-098), diluted 1:1000 in PBS was added and incubated
392 for 1h at room temperature. After further washing, 100 µL/well of freshly prepared P-
393 nitrophenyl phosphate substrate (Sigma) in diethanolamine buffer was added and
394 incubated for 10-15 min at room temperature. OD 405 nm was read by a Clariostar plate
395 reader (BMG Labtech) and concentrations of unknown proteins were determined by
396 interpolating from a standard curve of samples of known protein concentration (Fig 2A).

397 For use in AVEXIS screening, bait concentration was adjusted to a target of 7 nM by
398 dilution with Blocker casein (ThermoFisher) or concentration using a 30kDa MWCO
399 Vivaspin centrifugal filter.

400 Preys were expressed as soluble 5×NanoLuc tagged proteins. Prey levels were quantified
401 in supernatants using the Nano-Glo Luciferase Assay System according to the
402 manufacturer's instructions (Promega), with the exception that the substrate solution
403 was diluted 1 in 20 in PBS prior to use. 50 μ L of supernatant diluted 1:10,000 with casein
404 was mixed with 50 μ L of NanoLuc substrate in a well of 96-well white Maxisorp plate
405 (VWR) and incubated for 3 min at room temperature. Plates were transferred to the
406 Clariostar plate reader and luminescence units (LU) measured (Fig 2B).

407 All preys were then diluted with 1 volume of Blocker casein (a step which we have found
408 reduces background noise [data not shown]) or, in the case of proteins at $\geq 8 \times 10^8$ LU/mL,
409 adjusted to a target of 4×10^8 LU/mL by dilution with Blocker casein. Given that integrin
410 constructs were of particular interest and these preys expressed at relatively low levels,
411 integrin-containing supernatants were concentrated to $\geq 8 \times 10^8$ LU/mL using a 30kDa
412 MWCO Vivaspin centrifugal filter, prior to addition of casein; other weakly expressed
413 proteins were not pre-concentrated.

414

415 **Western blotting**

416 Proteins were mixed with NuPAGE reducing sample buffer and boiled at 70°C for 10 min
417 and separated by SDS-PAGE on NuPAGE 4–12% Bis-Tris gels in anti-oxidant buffer (all
418 from ThermoFisher). Resolved proteins were transferred to a nitrocellulose membrane
419 using the Trans-blot Turbo system (BioRad). Membranes were probed with either
420 biotinylated anti-C-tag conjugate (ThermoFisher, Cat. No. 7103252100) for the detection
421 of baits, or biotinylated anti FLAG antibody (Sigma Aldrich, Cat. No. F9291) for detection
422 of preys. Streptavidin-HRP (Pierce, Cat. No. 21130) was used as a secondary reagent.
423 Proteins on the probed membrane were detected using SuperSignal West Pico
424 Chemiluminescent substrate (ThermoFisher) (Fig 2C-D).

425

426

427 **Antibody reactivity of selected baits and preys**

428 Full length CSP bait was captured from expression supernatant onto a 96 well plate
429 coated with anti-CSP mAb 2A10 (MR4 Resources), with supernatant containing CD200R
430 bait used as a negative control. Captured CSP bait was detected by using ELISA as
431 explained above.

432 CD81, SR-BI and EphA2 preys were captured from expression supernatant onto a white
433 96 well plate coated with cognate mAbs (1D6 [Abcam] for CD81, EP1556Y [Abcam] for
434 SR-BI, MAB3035 [R&D Systems] for EphA2), with supernatant containing CD200 prey
435 used as a negative control. Immobilised preys were quantified using luciferase assay as
436 explained above.

437

438 **Protein interaction assays by AVEXIS**

439 White Nunc Maxisorp 96 well plates (VWR) were coated with 50 ng/well mouse anti-
440 human Fc monoclonal R10Z8E9 in PBS and incubated overnight at 4°C. Plates were
441 washed 5 times in PBS containing 0.05 % Tween 20 (PBS/T) and once in PBS. Plates were
442 blocked with 5 % skimmed milk in PBS/T for 1h at room temperature. Blocking solution
443 was removed and normalised baits were immobilised onto the plates overnight at 4°C.
444 The next day, plates were washed as above, and normalised preys were added and
445 incubated for 2h at room temperature. Plates were washed and bound preys were
446 detected by using the Nano-Glo Luciferase Assay System (as described for prey
447 quantification).

448 Given that background levels of signal were observed to vary between preys, the screen
449 was performed by testing one prey against all baits on a single plate. Each plate included
450 the following controls: a 'pulldown' of the prey being investigated using anti-FLAG
451 antibody (Sigma Aldrich, Cat. No. F1804), to confirm the addition of functional prey;
452 positive control interaction using *P. falciparum* RH5 as bait and human BSG as prey; and
453 a negative control interaction using irrelevant bait and human BSG as prey.

454 AVEXIS results are presented in terms of signal:noise ratios, to correct for varying levels
455 of non-specific luminescence attributable to different constructs. The major determinant
456 of the level of noise is the prey (background luminescence after application to wells
457 coated with irrelevant baits varies 10-fold or more between different preys). In the case
458 of experiments using small numbers of baits and preys (<10 in total), signal:noise ratios
459 were thus calculated simply by dividing by the result obtained in wells containing an
460 irrelevant bait and probed with the prey of interest. In the case of the high-throughput
461 screen, we initially performed a 'single correction', dividing luminescence by the median
462 result across all baits probed with the prey in question (i.e. the median result on the
463 plate). The use of the median as 'noise' is based upon the assumption that the vast

464 majority of protein pairs will *not* interact, and hence the median bait can be regarded as
465 a more representative irrelevant control than any single bait picked to act as a control. A
466 small number of baits appeared to bind non-specifically to multiple preys. We therefore
467 performed 'double correction', dividing the 'single corrected' result for a given
468 interaction by the median 'single corrected' result for all preys tested with the same bait
469 to produce a final signal:noise ratio.

470 The screen was performed in singlicate. All apparent novel interactions with signal:noise
471 ratios exceeding 30 were repeated, as described in Supplementary Table 4, initially using
472 the same protein preparations. Interactions which were not reproduced were assumed
473 to have been falsely positive in the initial screen, probably due to incomplete plate
474 washing.

475 Interaction blocking experiments were performed similarly, with the exception that
476 blocking reagents (antibodies) were added onto the immobilised baits on the plate for 1h
477 prior to addition of preys.

478

479 **Surface plasmon resonance**

480 Surface plasmon resonance studies were performed at an analysis temperature of 25 °C
481 using a Biacore T200 instrument and HBS-EP+ buffer (both from GE Healthcare). Mouse
482 anti-human Fc monoclonal antibody R10Z8E9 was immobilised onto active and reference
483 flow cells of a Series S sensor CM5 chip using an amine capture kit (both from GE
484 Healthcare). Approximately 1000 response units of Pf34 bait protein was captured onto
485 the active flow cell, with a molar equivalent quantity of PfRH5 bait as a control protein
486 bearing the same tags (i.e. CD4d3+4, human Fc and C-tag).

487 For use as analyte in the mobile phase, FGFR4 protein bearing CD4d3+4, biotin acceptor
488 peptide and His₆ tags was purified by affinity chromatography as above. Analytical size
489 exclusion chromatography using a Superdex 200 Increase 10/300 column confirmed the
490 absence of aggregates from the protein preparation (GE Healthcare).

491 Increasing concentrations of the purified FGFR4 analyte were injected at 30 µL/min over
492 the chip surface, each for 60s followed by a 120s dissociation phase. The Biacore single-
493 cycle kinetics mode (without regeneration between injections) was used, although due to

494 the rapid kinetics of the interaction, all previously bound protein was dissociated prior
495 to the start of each injection.

496 Data was analysed using Biacore T200 evaluation software (GE Healthcare). All data was
497 double-reference subtracted before model fitting (i.e. both the signal on the reference
498 flow cell with the same analyte and the signal detected during a buffer-only blank
499 injection were subtracted from the signal with the analyte on the active flow cell). 1:1
500 binding models were fitted to both kinetic data and equilibrium binding data.

501 Heparin and Heparan sulfate (Sigma) were resuspended in HBS-EP+ buffer and used for
502 surface plasmon resonance studies at 1 mg/mL.

503 **Figure Legends**

504 **Figure 1. Development and validation of high-throughput modified AVEXIS.**

505 **(A-B)** Bait and prey expression constructs and assay schematic. Baits contained a human
506 Fc tag in place of the previously used biotin acceptor peptide. Preys contained a
507 5×NanoLuciferase tag in place of the previously used beta-lactamase tag. ‘Type I’ and
508 ‘Type II’ preys were used to allow selection of protein orientation (see Methods).
509 Following protein expression, mostly in 24-deep-well plates to enhance throughput, the
510 assay was performed as shown in panel B, with an Fc-tagged bait (labelled ‘B’; red)
511 immobilised on a 96-well plate pre-coated with anti-human IgG-Fc mAb (blue), and
512 probed for interaction with a interacting with a prey (labelled ‘P’; green) protein tagged
513 with pentameric 5×NanoLuc (labelled ‘L’; yellow). The rat cartilaginous oligomeric
514 matrix protein pentamerization domain (labelled ‘C’; pink) mediates pentamerisation.

515 **(C) - (F)** Performance characteristics of the AVEXIS assay were validated using four pairs
516 of proteins with known interaction affinities and dissociation half-lives [5, 16, 17, 48] as
517 indicated on panel labels (for each pair, the bait is named before the prey; for full details,
518 see methods). Graphs depict signal:noise ratio (Y-axis) for each pair at a range of prey
519 concentrations ranging from 1×10^9 LU/mL to 1.6×10^7 LU/mL (indicated on X-axis) and a
520 range of bait concentrations ranging from 14nM to 0.2nM (indicated by coloured lines, as
521 labelled on **(F)**). Signal:noise ratios were calculated as described in Methods, by reference
522 to results with the same prey protein/concentration and an irrelevant bait (CD200R,
523 except for CD200 prey, for which Juno was used as irrelevant bait). The dashed horizontal
524 line represents signal:noise ratio of 10.

525

526

527 Figure 2. Expression of the *P. falciparum* sporozoite and human hepatocyte surface
528 protein libraries.

529 Panels **(A)** and **(B)** depict expression levels of bait (by ELISA) and prey (by luciferase
530 assay) respectively, summarised as inverse cumulative distribution functions, and with
531 concentrations of selected proteins of particular interest indicated by name. In the case
532 of 54 relatively weakly-expressed baits and the integrin preys, for which transfections
533 were performed in flasks, the results shown are those obtained after concentration of
534 supernatant. Vertical dashed lines indicate boundaries between optimal, informative and
535 less informative concentrations, as defined based upon the assay validation experiments
536 (see Results and Figure 1C-F).

537 Panels **(C)** and **(D)** show Western blots of selected constructs: CSP, TRAP, P36, P52, Pf34
538 baits (detected with anti- C-tag antibody) and CD81, SR-BI, EphA2, integrin $\alpha_v\beta_3$ and
539 FGFR4 preys (detected with anti FLAG-tag antibody; the integrin β -chain is untagged and
540 so not seen). Legend indicates expected molecular weight of each construct in kDa,
541 including tags but excluding post-translational modifications. Some proteins were
542 detected at higher molecular weights than expected, probably due to glycosylation. For
543 Western blots of other proteins, see supplementary figures 1 and 2, and for complete list
544 of baits and preys with details of concentrations and Western blot results, see
545 supplementary tables 1 and 2. The band seen at c. 55 kDa in blots of pre-concentrated
546 baits is believed to represent reactivity of the anti-Ctag antibody with a HEK293-cell
547 protein (rather than degraded bait) as it was also seen in supernatant from cells
548 transfected with irrelevant constructs.

549 **(E)** and **(F)** graphs depict the quantified levels of captured bait and preys using ELISA
550 and luciferase assay respectively.

551 **Figure 3. Human FGFR4 interacts specifically with Pf34.**
552 **(A)** Human hepatocyte FGFR4 receptor ectodomain prey was tested by AVEXIS for
553 binding to a library of 88 *P. falciparum* ligand ectodomains. Bait numbers correspond to
554 named proteins in Supplementary Table 1. '+' and '-' indicate PfRH5 bait / BSG prey and
555 CD200R bait / BSG prey, used as positive and negative controls respectively.
556 **(B)** The Pf34-FGFR4 interaction was confirmed by re-testing in three independent
557 experiments, including testing with the reverse orientation of proteins from that used in
558 the screen. Bars represent median \pm range of the three experiments.
559 **(C)** and **(D)** show binding of a 3-fold dilution series of FGFR4 analyte (in solution) to Pf34
560 ligand (immobilised on chip) by surface plasmon resonance. Results shown are
561 representative of two independent replicate experiments with separate protein samples.
562 Panel **(C)** shows kinetics, with observed binding (red lines, double-reference subtracted
563 sensorgrams) overlaid with results of fitting a 1:1 interaction kinetic model (black lines).
564 Panel **(D)** shows equilibrium binding levels (points, from the experiment shown in **(C)**)
565 with the results of fitting a 1:1 equilibrium binding model (line). Curvature indicates
566 binding tending towards saturation, consistent with a specific interaction. **(E)** Absence of
567 AVEXIS-detectable interaction of *P. berghei* and *P. yoelii* orthologs of Pf34 ('Pb34'
568 [PBANKA_0721800] and 'Py34' [PY17X_0721800], in bait format) with murine FGFR4
569 (mFGFR4, in prey format).

570 **Supplementary information**

571 **Supplementary Figures**

572 Supplementary Figure 1. Western blots of sporozoite protein bait library.
573 Proteins are arranged approximately in order of concentration as measured by ELISA,
574 and were detected with anti-Ctag antibody. As described in the text and Supplementary
575 Table 1, expression of 45 of these proteins from related constructs has previously been
576 reported and, in these cases, this figure is intended to demonstrate quality rather than
577 imply novelty. The band seen at c. 55 kDa in blots of pre-concentrated baits is believed to
578 represent reactivity of the anti-Ctag antibody with a HEK293-cell protein (rather than
579 degraded bait) as it was also seen in supernatant from cells transfected with irrelevant
580 constructs.

581

582 Supplementary Figure 2. Western blots of hepatocyte surface protein prey library.
583 Proteins are arranged approximately in order of concentration as quantified by
584 luminescence measurement, and were detected with anti-FLAG-tag antibody. As
585 described in the text and Supplementary Table 1, expression of 127 of these proteins
586 from related constructs has previously been reported and, in these cases, this figure is
587 intended to demonstrate quality rather than imply novelty.

588

589 Supplementary Figure 3. Quality of purified protein used for SPR.
590 Purified monomeric FGFR4-CD4-Bio-His protein (~65 kDa) used for SPR, on SDS-PAGE
591 gel stained with Coomassie Blue.

592 [Supplementary Tables](#)

593 [Supplementary Table S1. Sporozoite protein ectodomain library details](#)

594 Details include bait index number (corresponding to numbering in Figure 3A), construct

595 boundaries and sequence, and expression levels (corresponding to Figure 2A).

596

597 [Supplementary Table S2. Human hepatocyte protein ectodomain library details.](#)

598 Details include construct boundaries and sequence, and expression levels (corresponding

599 to Figure 2B). Integrin α and β chain constructs are listed on the second worksheet, and

600 the results of integrin heterodimer expression are listed on the third worksheet.

601

602 [Supplementary Table S3.](#)

603 First worksheet presents complete AVEXIS screen results, presented in terms of double-

604 corrected signal:noise ratio (see Methods). Color scale denotes the signal:noise ratio of

605 each interaction, ranging from dark green (low) through yellow to dark red (high).

606 Second and third worksheets show results with FGFR4 prey against all sporozoite baits

607 (as shown in Figure 3A) and with Pf34 prey against all sporozoite baits (as shown in

608 Figure 4B).

609

610 [Supplementary Table S4.](#)

611 All protein pairs with a signal:noise ratio exceeding 5 in the initial AVEXIS screen.

612 References

- 613 1. WHO WHO. World Malaria Report 2019. Available from: <https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019>.
- 615 2. Kumar H, Tolia NH. Getting in: The structural biology of malaria invasion. *PLoS Pathog.* 616 2019;15(9):e1007943. Epub 2019/09/06. doi: 10.1371/journal.ppat.1007943. PubMed PMID: 617 31487334; PubMed Central PMCID: PMC6728024.
- 618 3. Baum J, Gilberger TW, Frischknecht F, Meissner M. Host-cell invasion by malaria parasites: 619 insights from Plasmodium and Toxoplasma. *Trends Parasitol.* 2008;24(12):557-63. doi: 620 10.1016/j.pt.2008.08.006. PubMed PMID: 18835222.
- 621 4. Cowman AF, Tonkin CJ, Tham WH, Duraisingh MT. The Molecular Basis of Erythrocyte 622 Invasion by Malaria Parasites. *Cell Host Microbe.* 2017;22(2):232-45. Epub 2017/08/12. doi: 623 10.1016/j.chom.2017.07.003. PubMed PMID: 28799908.
- 624 5. Dundas K, Shears MJ, Sun Y, Hopp CS, Crosnier C, Metcalf T, et al. Alpha-v-containing 625 integrins are host receptors for the Plasmodium falciparum sporozoite surface protein, TRAP. *Proc 626 Natl Acad Sci U S A.* 2018;115(17):4477-82. Epub 2018/04/11. doi: 10.1073/pnas.1719660115. 627 PubMed PMID: 29632205; PubMed Central PMCID: PMC5924908.
- 628 6. Yalaoui S, Zougbede S, Charrin S, Silvie O, Arduise C, Farhati K, et al. Hepatocyte 629 permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of 630 the CD81 large extracellular domain. *PLoS Pathog.* 2008;4(2):e1000010. Epub 2008/04/05. doi: 631 10.1371/journal.ppat.1000010. PubMed PMID: 18389082; PubMed Central PMCID: PMC2279262.
- 632 7. Rodrigues CD, Hannus M, Prudencio M, Martin C, Goncalves LA, Portugal S, et al. Host 633 scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. 634 *Cell host & microbe.* 2008;4(3):271-82. doi: 10.1016/j.chom.2008.07.012. PubMed PMID: 18779053.
- 635 8. Silvie O, Greco C, Franetich JF, Dubart-Kupperschmitt A, Hannoun L, van Gemert GJ, et al. 636 Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites 637 depending on the Plasmodium species. *Cell Microbiol.* 2006;8(7):1134-46. Epub 2006/07/06. doi: 638 10.1111/j.1462-5822.2006.00697.x. PubMed PMID: 16819966.
- 639 9. Manzoni G, Marinach C, Topcu S, Briquet S, Grand M, Tolle M, et al. Plasmodium P36 640 determines host cell receptor usage during sporozoite invasion. *Elife.* 2017;6. Epub 2017/05/17. doi: 641 10.7554/elife.25903. PubMed PMID: 28506360; PubMed Central PMCID: PMC5470872.
- 642 10. Frevert U, Sinnis P, Cerami C, Shreffler W, Takacs B, Nussenzweig V. Malaria 643 circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface 644 membrane of hepatocytes. *J Exp Med.* 1993;177(5):1287-98. Epub 1993/05/01. doi: 645 10.1084/jem.177.5.1287. PubMed PMID: 8478608; PubMed Central PMCID: PMC2190997.
- 646 11. Coppi A, Tewari R, Bishop JR, Bennett BL, Lawrence R, Esko JD, et al. Heparan sulfate 647 proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade 648 host cells. *Cell host & microbe.* 2007;2(5):316-27. doi: 10.1016/j.chom.2007.10.002. PubMed PMID: 649 18005753; PubMed Central PMCID: PMC2117360.
- 650 12. Iankov ID, Petrov DP, Mladenov IV, Haralambieva IH, Ivanova R, V RV, et al. Production and 651 characterization of monoclonal immunoglobulin A antibodies directed against *Salmonella* H:g,m 652 flagellar antigen. *FEMS Immunol Med Microbiol.* 2002;33(2):107-13. Epub 2002/06/08. doi: 653 10.1111/j.1574-695X.2002.tb00579.x. PubMed PMID: 12052565.
- 654 13. Kaushansky A, Douglass AN, Arang N, Vigdorovich V, Dambruskas N, Kain HS, et al. Malaria 655 parasites target the hepatocyte receptor EphA2 for successful host infection. *Science.*

656 2015;350(6264):1089-92. doi: 10.1126/science.aad3318. PubMed PMID: 26612952; PubMed Central
657 PMCID: PMC4783171.

658 14. Langlois AC, Marinach C, Manzoni G, Silvie O. Plasmodium sporozoites can invade
659 hepatocytic cells independently of the Ephrin receptor A2. *PLoS One*. 2018;13(7):e0200032. Epub
660 2018/07/06. doi: 10.1371/journal.pone.0200032. PubMed PMID: 29975762; PubMed Central
661 PMCID: PMC6033427.

662 15. Bushell KM, Sollner C, Schuster-Boeckler B, Bateman A, Wright GJ. Large-scale screening for
663 novel low-affinity extracellular protein interactions. *Genome Res*. 2008;18(4):622-30. Epub
664 2008/02/26. doi: gr.7187808 [pii] 10.1101/gr.7187808. PubMed PMID: 18296487; PubMed Central
665 PMCID: PMC2279249.

666 16. Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a
667 receptor essential for erythrocyte invasion by *Plasmodium falciparum*. *Nature*. 2011;480(7378):534-
668 7. Epub 2011/11/15. doi: 10.1038/nature10606 nature10606 [pii]. PubMed PMID: 22080952.

669 17. Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for
670 mammalian fertilization. *Nature*. 2014;508(7497):483-7. doi: 10.1038/nature13203. PubMed PMID:
671 24739963; PubMed Central PMCID: PMC3998876.

672 18. Sun Y, Vandebrielle C, Kauskot A, Verhamme P, Hoylaerts MF, Wright GJ. A Human Platelet
673 Receptor Protein Microarray Identifies the High Affinity Immunoglobulin E Receptor Subunit alpha
674 (FcepsilonR1alpha) as an Activating Platelet Endothelium Aggregation Receptor 1 (PEAR1) Ligand.
675 *Mol Cell Proteomics*. 2015;14(5):1265-74. Epub 2015/02/26. doi: 10.1074/mcp.M114.046946.
676 PubMed PMID: 25713122; PubMed Central PMCID: PMC4424398.

677 19. Proellocks NI, Kovacevic S, Ferguson DJ, Kats LM, Morahan BJ, Black CG, et al. Plasmodium
678 falciparum Pf34, a novel GPI-anchored rhoptry protein found in detergent-resistant microdomains.
679 *Int J Parasitol*. 2007;37(11):1233-41. Epub 2007/05/25. doi: 10.1016/j.ijpara.2007.03.013. PubMed
680 PMID: 17521656; PubMed Central PMCID: PMC2712672.

681 20. Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, et al. Functional Profiling of a
682 Plasmodium Genome Reveals an Abundance of Essential Genes. *Cell*. 2017;170(2):260-72 e8. Epub
683 2017/07/15. doi: 10.1016/j.cell.2017.06.030. PubMed PMID: 28708996; PubMed Central PMCID:
684 PMC5509546.

685 21. Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, et al.
686 Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver
687 Stage. *Cell*. 2019;179(5):1112-28 e26. Epub 2019/11/16. doi: 10.1016/j.cell.2019.10.030. PubMed
688 PMID: 31730853; PubMed Central PMCID: PMC6904910.

689 22. Wisniewski JR, Vildhede A, Noren A, Artursson P. In-depth quantitative analysis and
690 comparison of the human hepatocyte and hepatoma cell line HepG2 proteomes. *J Proteomics*.
691 2016;136:234-47. Epub 2016/01/31. doi: 10.1016/j.jprot.2016.01.016. PubMed PMID: 26825538.

692 23. Heinzle C, Erdem Z, Paur J, Grasl-Kraupp B, Holzmann K, Grusch M, et al. Is fibroblast growth
693 factor receptor 4 a suitable target of cancer therapy? *Curr Pharm Des*. 2014;20(17):2881-98. Epub
694 2013/08/16. doi: 10.2174/13816128113199990594. PubMed PMID: 23944363; PubMed Central
695 PMCID: PMC5453246.

696 24. Jones S. Mini-review: endocrine actions of fibroblast growth factor 19. *Mol Pharm*.
697 2008;5(1):42-8. Epub 2008/01/09. doi: 10.1021/mp700105z. PubMed PMID: 18179175.

698 25. Arang N, Kain HS, Glennon EK, Bello T, Dudgeon DR, Walter ENF, et al. Identifying host
699 regulators and inhibitors of liver stage malaria infection using kinase activity profiles. *Nat Commun*.

700 2017;8(1):1232. Epub 2017/11/02. doi: 10.1038/s41467-017-01345-2. PubMed PMID: 29089541;
701 PubMed Central PMCID: PMC5663700.

702 26. Prudencio M, Rodrigues CD, Hannus M, Martin C, Real E, Goncalves LA, et al. Kinome-wide
703 RNAi screen implicates at least 5 host hepatocyte kinases in Plasmodium sporozoite infection. PLoS
704 Pathog. 2008;4(11):e1000201. doi: 10.1371/journal.ppat.1000201. PubMed PMID: 18989463;
705 PubMed Central PMCID: PMC2574010.

706 27. Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev
707 Dev Biol. 2015;4(3):215-66. Epub 2015/03/17. doi: 10.1002/wdev.176. PubMed PMID: 25772309;
708 PubMed Central PMCID: PMC4393358.

709 28. Lee S, Choi J, Mohanty J, Sousa LP, Tome F, Pardon E, et al. Structures of beta-klotho reveal a
710 'zip code'-like mechanism for endocrine FGF signalling. Nature. 2018;553(7689):501-5. Epub
711 2018/01/18. doi: 10.1038/nature25010. PubMed PMID: 29342135; PubMed Central PMCID:
712 PMC6594174.

713 29. Proellocks NI, Kats LM, Sheffield DA, Hanssen E, Black CG, Waller KL, et al. Characterisation
714 of PfRON6, a Plasmodium falciparum rhoptry neck protein with a novel cysteine-rich domain. Int J
715 Parasitol. 2009;39(6):683-92. Epub 2008/12/17. doi: 10.1016/j.ijpara.2008.11.002. PubMed PMID:
716 19073187; PubMed Central PMCID: PMC4766589.

717 30. Swearingen KE, Lindner SE, Shi L, Shears MJ, Harupa A, Hopp CS, et al. Interrogating the
718 Plasmodium Sporozoite Surface: Identification of Surface-Exposed Proteins and Demonstration of
719 Glycosylation on CSP and TRAP by Mass Spectrometry-Based Proteomics. PLoS Pathog.
720 2016;12(4):e1005606. doi: 10.1371/journal.ppat.1005606. PubMed PMID: 27128092; PubMed
721 Central PMCID: PMC4851412.

722 31. Lindner SE, Swearingen KE, Harupa A, Vaughan AM, Sinnis P, Moritz RL, et al. Total and
723 putative surface proteomics of malaria parasite salivary gland sporozoites. Mol Cell Proteomics.
724 2013;12(5):1127-43. Epub 2013/01/18. doi: 10.1074/mcp.M112.024505. PubMed PMID: 23325771;
725 PubMed Central PMCID: PMC3650326.

726 32. Lasonder E, Janse CJ, van Gemert GJ, Mair GR, Vermunt AM, Douradinha BG, et al. Proteomic
727 profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite
728 development and infectivity. PLoS Pathog. 2008;4(10):e1000195. doi:
729 10.1371/journal.ppat.1000195. PubMed PMID: 18974882; PubMed Central PMCID: PMC2570797.

730 33. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, et al. Discovery of gene
731 function by expression profiling of the malaria parasite life cycle. Science. 2003;301(5639):1503-8.
732 Epub 2003/08/02. doi: 10.1126/science.1087025. PubMed PMID: 12893887.

733 34. Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR, 3rd, Wastling JM, et al. Characterisation
734 of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics. 2009;9(5):1142-
735 51. Epub 2009/02/12. doi: 10.1002/pmic.200800404. PubMed PMID: 19206106; PubMed Central
736 PMCID: PMC2706521.

737 35. Sam-Yellowe TY, Florens L, Wang T, Raine JD, Carucci DJ, Sinden R, et al. Proteome analysis
738 of rhoptry-enriched fractions isolated from Plasmodium merozoites. J Proteome Res. 2004;3(5):995-
739 1001. Epub 2004/10/12. doi: 10.1021/pr049926m. PubMed PMID: 15473688.

740 36. Khan SM, Kroeze H, Franke-Fayard B, Janse CJ. Standardization in generating and reporting
741 genetically modified rodent malaria parasites: the RMgmDB database. Methods Mol Biol.
742 2013;923:139-50. Epub 2012/09/20. doi: 10.1007/978-1-62703-026-7_9. PubMed PMID: 22990775.

743 37. Santos JM, Egarter S, Zuzarte-Luis V, Kumar H, Moreau CA, Kehrer J, et al. Malaria parasite
744 LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts.
745 *Elife*. 2017;6. Epub 2017/05/20. doi: 10.7554/eLife.24109. PubMed PMID: 28525314; PubMed
746 Central PMCID: PMC5438254.

747 38. Nguyen TV, Sacci JB, Jr., de la Vega P, John CC, James AA, Kang AS. Characterization of
748 immunoglobulin G antibodies to *Plasmodium falciparum* sporozoite surface antigen MB2 in malaria
749 exposed individuals. *Malar J*. 2009;8:235. Epub 2009/10/27. doi: 10.1186/1475-2875-8-235. PubMed
750 PMID: 19852802; PubMed Central PMCID: PMC2772840.

751 39. Brahimi K, Badell E, Sauzet JP, BenMohamed L, Daubersies P, Guerin-Marchand C, et al.
752 Human antibodies against *Plasmodium falciparum* liver-stage antigen 3 cross-react with *Plasmodium*
753 *yoelii* preerythrocytic-stage epitopes and inhibit sporozoite invasion in vitro and in vivo. *Infect*
754 *Immun*. 2001;69(6):3845-52. Epub 2001/05/12. doi: 10.1128/IAI.69.6.3845-3952.2001. PubMed
755 PMID: 11349050; PubMed Central PMCID: PMC98406.

756 40. Fidock DA, Pasquetto V, Gras H, Badell E, Eling W, Ballou WR, et al. *Plasmodium falciparum*
757 sporozoite invasion is inhibited by naturally acquired or experimentally induced polyclonal
758 antibodies to the STARP antigen. *Eur J Immunol*. 1997;27(10):2502-13. Epub 1997/11/22. doi:
759 10.1002/eji.1830271007. PubMed PMID: 9368603.

760 41. Ducret A, Kux van Geijtenbeek S, Roder D, Simon S, Chin D, Berrera M, et al. Identification of
761 six cell surface proteins for specific liver targeting. *Proteomics Clin Appl*. 2015;9(7-8):651-61. doi:
762 10.1002/prca.201400194. PubMed PMID: 26097162.

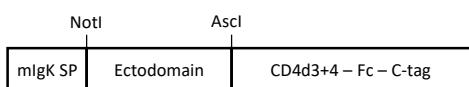
763 42. Tao D, King JG, Tweedell RE, Jost PJ, Boddey JA, Dinglasan RR. The acute transcriptomic and
764 proteomic response of HC-04 hepatoma cells to hepatocyte growth factor and its implications for
765 *Plasmodium falciparum* sporozoite invasion. *Mol Cell Proteomics*. 2014;13(5):1153-64. Epub
766 2014/02/18. doi: 10.1074/mcp.M113.035584. PubMed PMID: 24532842; PubMed Central PMCID:
767 PMC4014276.

768 43. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. *Proteomics*.
769 Tissue-based map of the human proteome. *Science*. 2015;347(6220):1260419. doi:
770 10.1126/science.1260419. PubMed PMID: 25613900.

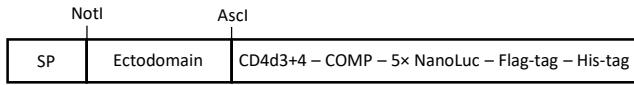
771 44. Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Renia L, et al. Hepatocyte CD81 is
772 required for *Plasmodium falciparum* and *Plasmodium yoelii* sporozoite infectivity. *Nat Med*.
773 2003;9(1):93-6. doi: 10.1038/nm808. PubMed PMID: 12483205.

774 45. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, et al. Binding of hepatitis C
775 virus to CD81. *Science*. 1998;282(5390):938-41. Epub 1998/10/30. doi:
776 10.1126/science.282.5390.938. PubMed PMID: 9794763.

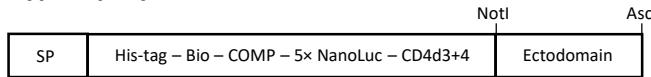
777 46. Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein
778 production by transient transfection of suspension-growing human 293-EBNA1 cells. *Nucleic Acids*
779 *Res*. 2002;30(2):E9. PubMed PMID: 11788735; PubMed Central PMCID: PMC99848.

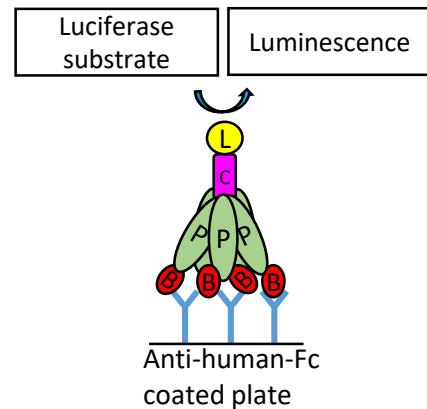

780 47. De Genst EJ, Guilliams T, Wellens J, O'Day EM, Waudby CA, Meehan S, et al. Structure and
781 properties of a complex of alpha-synuclein and a single-domain camelid antibody. *J Mol Biol*.
782 2010;402(2):326-43. doi: 10.1016/j.jmb.2010.07.001. PubMed PMID: 20620148.

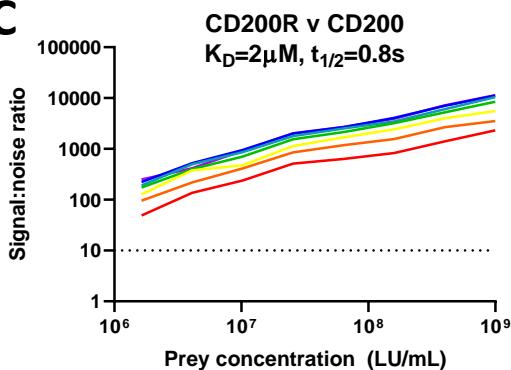
783 48. Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, et al.
784 Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages
785 implicated in the control of their function. *Immunity*. 2000;13(2):233-42. Epub 2000/09/12. doi:
786 10.1016/s1074-7613(00)00023-6. PubMed PMID: 10981966.

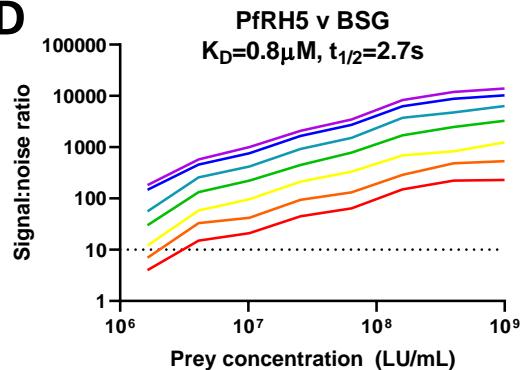

Figure 1

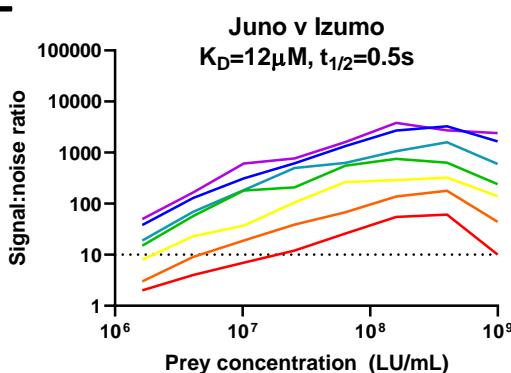
A

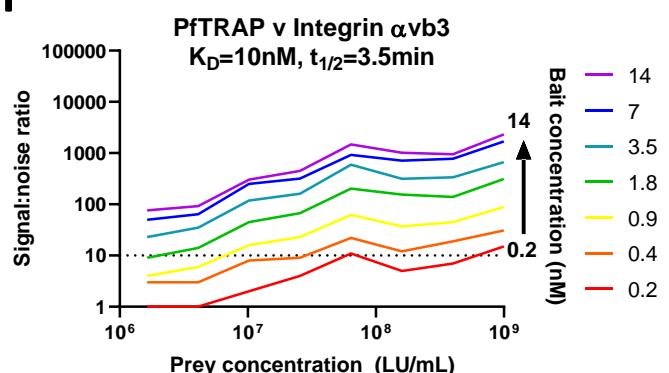

Bait construct

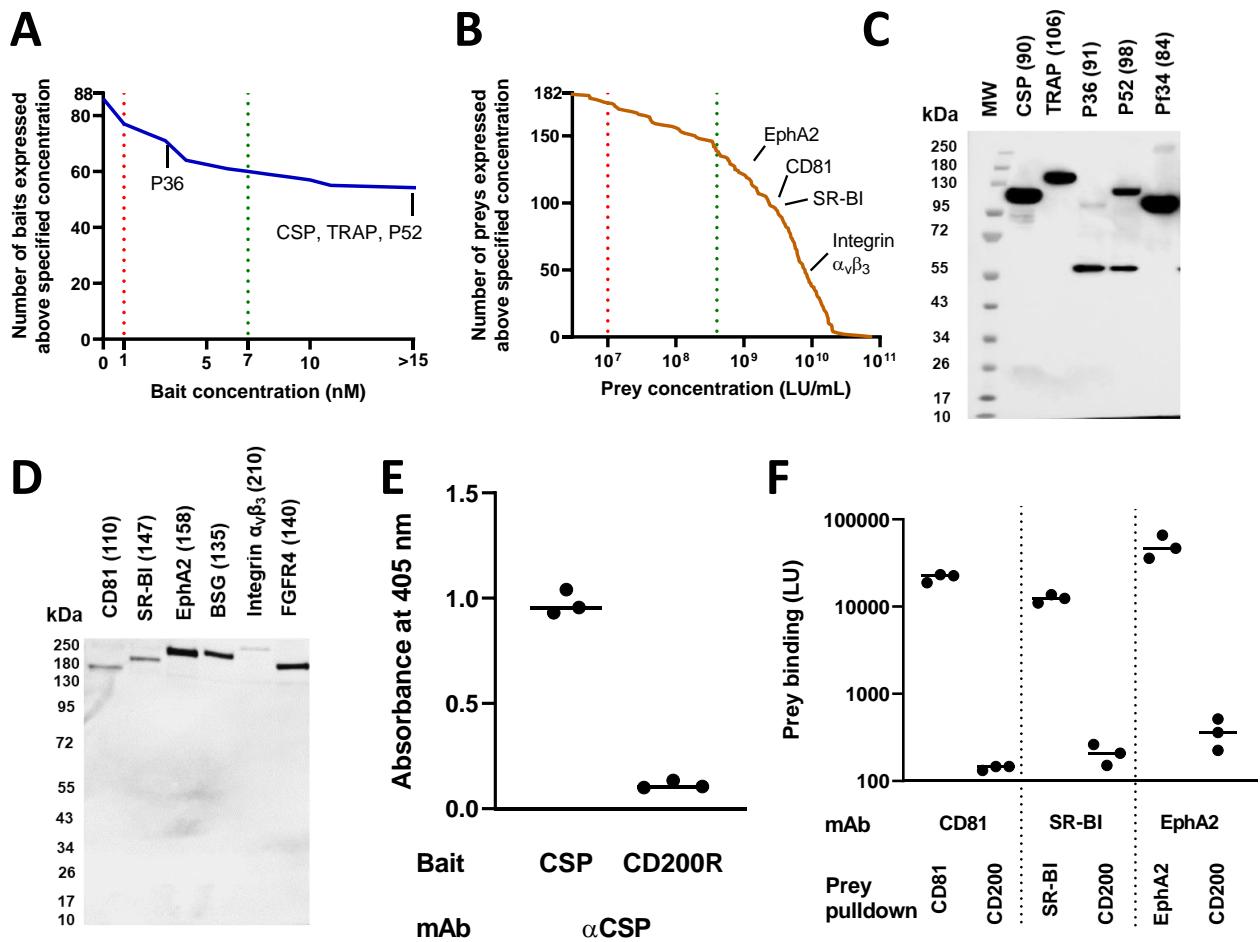

Type I prey construct


Type II prey construct


B


C


D


E

F

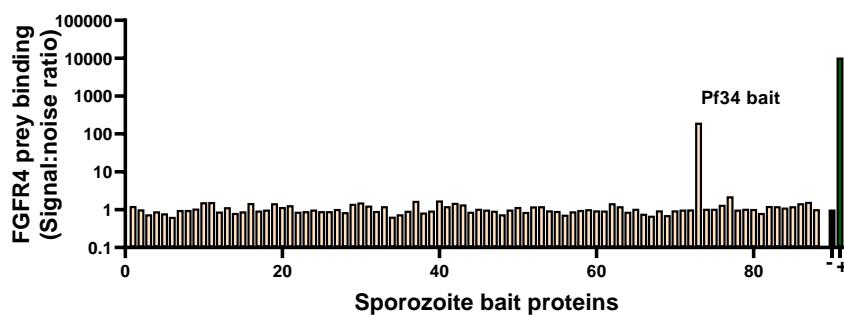


Figure 2

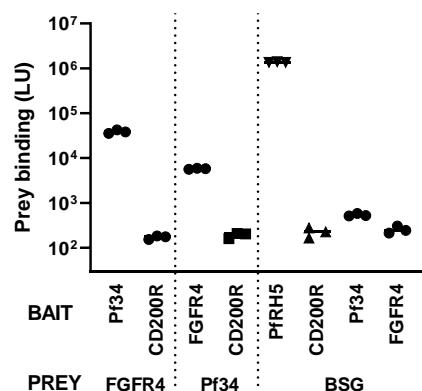
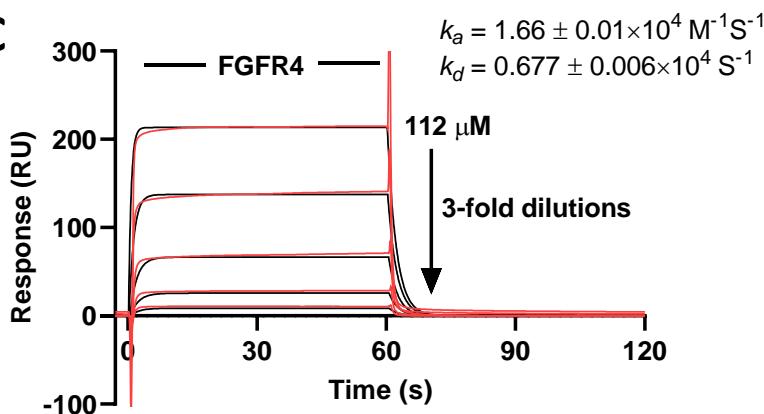
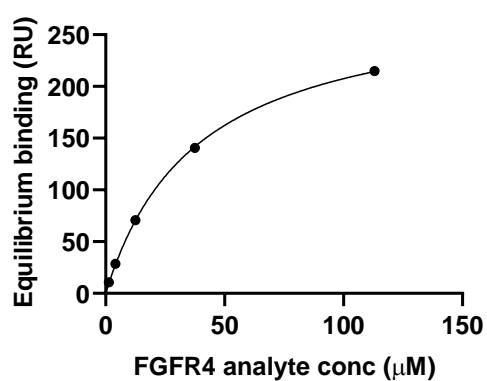
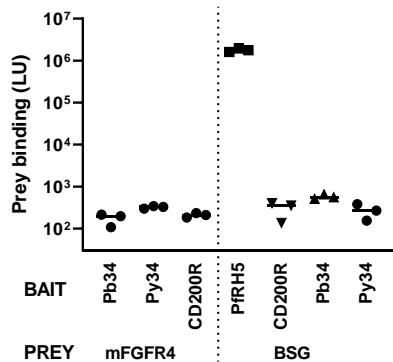
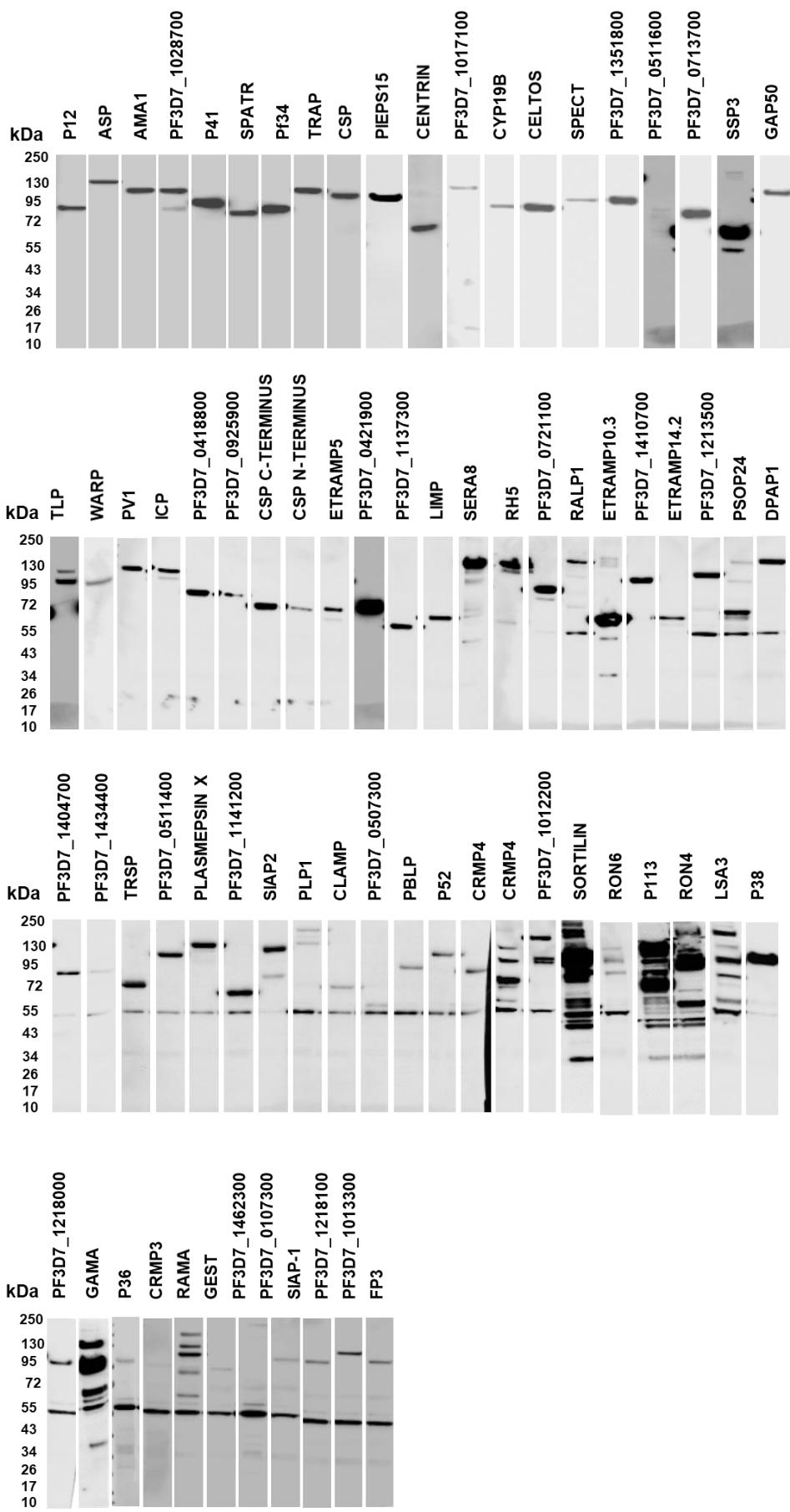


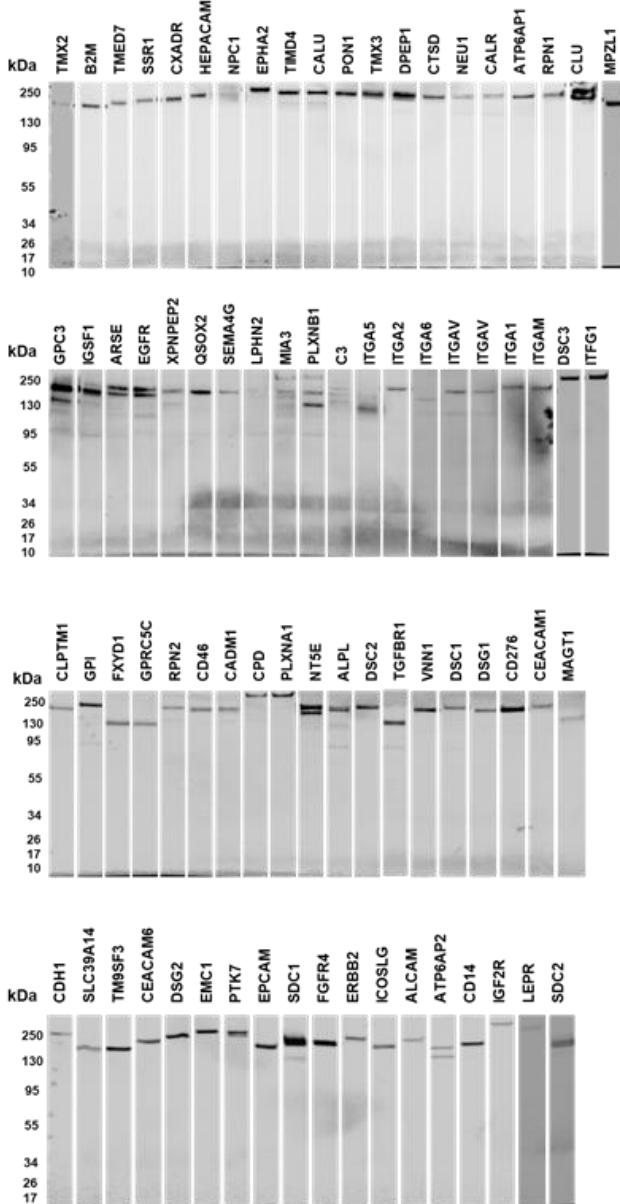
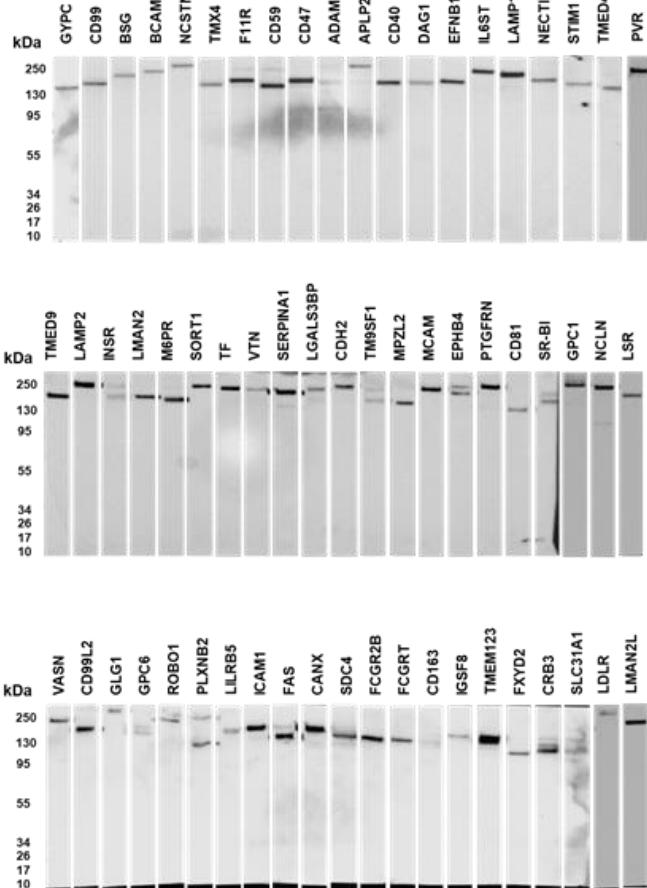
Figure 3

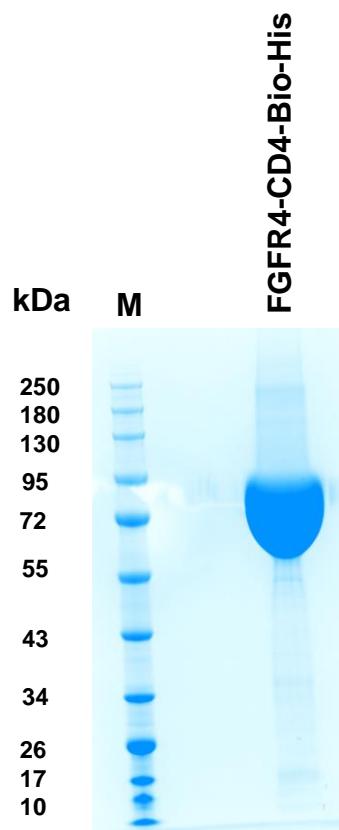

A


B


C


D



E


Supplementary Figure 1

Supplementary Figure 2

Supplementary Figure 3

