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Abstract

The abnormal deposition of beta-amyloid proteins in the brain is one of the major histopathological
hallmarks of Alzheimer’s disease. Currently available intravital microscopy techniques for high-
resolution plague visualization commonly involve highly invasive procedures and are limited to a
small field-of-view within the rodent brain. Here, we report the transcranial detection of amyloid-
beta deposits at the whole brain scale with 20 um resolution in APP/PS1 and arcAp mouse models
of Alzheimer’s disease amyloidosis using a large-field multifocal (LMI) fluorescence microscopy
technique. Highly sensitive and specific detection of amyloid-beta deposits at a single plaque level
in APP/PS1 and arcAP mice was facilitated using luminescent conjugated oligothiophene HS-169.
Immunohistochemical staining with HS-169, anti-Ap antibody 6E10, and conformation antibodies
OC (fibrillar) of brain tissue sections further showed that HS-169 resolved compact parenchymal
and vessel-associated amyloid deposits. The novel imaging platform offers new prospects for in
vivo studies into Alzheimer’s disease mechanisms in animal models as well as longitudinal

monitoring of therapeutic responses at a single plaque level.
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Introduction

The abnormal accumulation and spread of amyloid-beta (Ap) deposits are implicated to play a
central role in the pathogenesis of Alzheimer’s disease (AD). Different conformations, aggregation
states of AB, including Ap monomer, oligomer, fibrillar AB and plaque, elicit different responses
such as synaptotoxicity, neurotoxicity and inflammation (1-3). In a clinical setting, using positron
emission tomography (PET) imaging with amyloid tracers such as *C-PIB (4), 8F-florbetaben (5)
and *8F-florbetapir (6), higher cortical fibrillar AR loads were reported in patients with AD and
mild cognitive impairment compared to healthy controls (7). As a result, amyloid PET imaging

has been established as an imaging biomarker for early and differential diagnosis of AD (8).

In vivo AP detection and its longitudinal monitoring in mouse models of AD amyloidosis has
provided insights on the disease mechanisms and treatment effects. The detection has been
possible at macroscopic level by using 3D microPET imaging with *C-PIB (9), ‘®F-florbetapir
(10), 8F-florbetaben (11), *8F-flutemetamol, *C-AZD2184 (12), and '%I-labeled-antibody (13,
14). Alternatively, optical detection of AB deposits can be done with ex vivo optical projection
tomography (15) as well as various in vivo planar fluorescence approaches (16) and assisted with
various near-infrared contrast agents, such as AOI987 (17), CRANAD-2/-3 (18, 19), luminescent
conjugated oligothiophenes (LCOs) (20, 21), or in 3D via fluorescence molecular tomography
employing AOI1987 (22). Imaging of AB at a higher (mesoscopic) resolution has also been
demonstrated using *°F- and *H-magnetic resonance imaging (23) or using dual modalities near-

infrared magnetic resonance imaging (24), as well as optoacoustic tomography (25).
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To this end, in vivo imaging of Ap deposits at a single plaque resolution in an intact mouse brain
may enable the understanding of growth dynamics of amyloid deposits at their earliest onset and
evaluation of AP clearing therapies. As the diameter of AP plaques in murine models of
amyloidosis range between 8-120 um, the resolution of aforementioned macroscopic and
mesoscopic imaging methods is insufficient for single AP deposit detection (26-28). Optoacoustic
(29) and multiphoton microscopy techniques using methoxy-X04, BTA-1 and PIB (30-33) have
been shown capable of monitoring Ap with um resolution. However, these techniques provide a

limited field-of-view while commonly involving cranial opening, which may affect brain

physiology.

We devised a large-field multi-focal illumination (LMI) fluorescence microscopy method that
provides a unique combination between an extended 20 x 20 mm field-of-view as well as high
spatial (~20 um) and temporal (10 Hz) resolutions (34, 35). In the present study, we demonstrated
whole brain mapping of Ap deposits at single plaque resolution in APP/PS1 (26) and arcAp (36)
mouse models of AD cerebral amyloidosis mediated by HS-169 LCOs (37). Both strains are
commonly used in AD research, but differ in their A pathologies. The in vivo LMI imaging results
were validated by ex vivo LMI imaging and immunohistochemistry using HS-169 with anti-Ap

antibody 6E10 and anti-amyloid fibrillar conformation antibody (OC) on mouse brain sections.

Methods
In vitro binding between amyloid probes HS-169 and recombinant ASa. fibrils
Recombinant A4> monomers were expressed and produced by E.coli as described previously (38,

39). Amyloid fibrils were formed by incubating a solution of 2 uM A4, in phosphate buffer (PBS,
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pH 8.0). The aggregation process was monitored by a quantitative fluorescence assay based on the
Thioflavin T (ThT) dye (39). Fluorescence imaging in vitro of 2 ul of 30 uM HS-169, 30 uM
HS169 + 1 uM A4 fibril, and 1 pM APa2 fibril mixtures were performed at 0 and 30 minutes

after mixing.

Animal model

Two APP/PS1 mice (26) overexpressing the human APP695 transgene containing the Swedish
(K670N/M671L) and PSEN1 containing an L166P mutations under the control of Thl promoter
and two age-matched non-transgenic littermates of both sexes (16 months-of-age) were used. In
APP/PS1 mice, human AB42 is preferentially generated over AB40, but levels of both increase
with age. In the brain, the AP42/APrmi decreases with the onset of amyloid deposition (26).
Amyloid plaque deposition starts at approximately six weeks of age in the neocortex. Deposits
appear in the hippocampus at about three to four months, and in the striatum, thalamus, and
brainstem at four to five months. Cognitive impairment have been reported to start at seven months
of age (40). In addition, two arcAp mice overexpressing the human APP695 transgene containing
the Swedish (K670N/M671L) and Arctic (E693G) mutations under the control of prion protein
promoter and two age-matched non-transgenic littermates of both sexes were used (24 months-of-
age) (41). By six months of age, arcAp mice develop amyloid pathology affecting both the brain
parenchyma and vasculature. In the parenchyma, amyloid pathology starts as intracellular punctate
AP deposits in the cortex and hippocampus. Plaques are abundant in these areas by 9 to 15 months
(42). Severe cerebral amyloid angiopathy is also present by 9 to 15 months of age, with dense AP
aggregates accumulating in the walls of blood vessels (42). Cerebral amyloid angiopathy leads to

hypoperfusion, impaired vascular reactivity, decreased vessel density, blood-brain barrier
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impairment and occurrence of cerebral microbleeds (36, 43-46). Animals were housed in
ventilated cages inside a temperature-controlled room, under a 12-hour dark/light cycle. Pelleted
food (3437PXL15, CARGILL) and water were provided ad-libitum. All experiments were
performed in accordance with the Swiss Federal Act on Animal Protection and were approved by

the Cantonal Veterinary Office Zurich (permit number: ZH082/18).

In vivo and ex vivo LMI fluorescence imaging of AB deposits in mice

Our recently developed LMI fluorescence imaging method based on a beam-splitting grating and
an acousto-optic deflector synchronized with a high speed camera was employed for this study
(Fig. 1A) (35). Briefly, a high-repetition pulsed Q-switched, diode end-pumped Nd:YAG laser
(model: IS81I-E, EdgeWave, Germany) operating at 532 nm wavelength was used for the
excitation. The laser beam was first scanned by the acousto-optic deflector AOD (AA Opto-
Electronic, France) at 1 kHz and then guided into a customized beam-splitting grating (Holoeye
GmbH, Germany) to generate 21x21 mini-beams. The mini-beams were relayed by 4f system and
then focused onto the sample (mouse brain) to generate multiple foci, as shown in Fig. 1A. After
passing through the dichroic mirror, the emitted fluorescence signal was collected and focused

onto the sensor plane of a high-speed camera (PCO AG, Germany).

The fluorescence LCO probe HS-169 (Fig. 1B) was synthesized as described previously (37). Mice
were anesthetized with isoflurane (4 % v/v for induction and 1.5 % v/v during experiments) in 20 %
O at a flow rate of ~0.5 I/min. Before imaging each mouse was positioned onto the imaging stage,

the scalp was removed to reduce light scattering while the skull was kept intact. For APP/PS1,
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arcAp mice and non-transgenic littermates, an i.v. tail-vein bolus injection of 0.4 mg/kg HS-169

solution in 0.1 M PBS (pH 7.4) was administered.

Next we compared the difference between the LMI imaging and conventional wide-field imaging.
Brain sections from one APP/PS1, one arcAf and one non-transgenic littermate mouse were
imaged ex vivo after the in vivo imaging sessions using the aforementioned setup. The mice were
sacrificed under deep anesthesia (ketamine/xylazine/acepromazine maleate (75/10/2 mg/kg body
weight, i.p. bolus injection)) without prior perfusion. Horizontal brain slices of 3-mm thickness
were cut in a brain matrix using a razor blade. Sections were placed on object holders wrapped

with black tape.

To validate the in vivo and ex vivo signal, the other APP/PS1, arcA3 mouse and non-transgenic
littermate were perfused under ketamine/xylazine/acepromazine maleate anesthesia (75/10/2
mg/kg body weight, i.p. bolus injection) with 0.1 M PBS (pH 7.4) and decapitated. The skulls were
removed. The brains were then imaged using LMI imaging and afterwards post-fixed in 4 %

paraformaldehyde in 0.1M PBS (pH 7.4) for 1 day and stored in 0.1 M PBS (pH 7.4) at 4 °C.

Image reconstruction and data analysis

Reconstruction of the LMI images was performed based on the saved raw data from the CCD
camera. Firstly, local maxima in each scanning frame were identified and the excited fluorescence
signals were extracted with their centroids and intensity stored for later image stitching. Since the
illumination grid was well defined with equal intervals between adjacent spots, this prior

information facilitated signal extraction while suppressing noise. Correction for non-uniform beam
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intensity profile was then performed across each frame before combining the image values of local
maxima to form the complete high-resolution image. Note that laser pulse energy fluctuations and
other aberrations caused by optical components may necessitate additional corrections to obtain
fine-tuned image quality and more uniform responsivity, however no such corrections were
applied here. Fluorescence intensity (F.l.) in regions of interest (ROIs) were quantified for the
dataset of in vivo (Fig. 2) and ex vivo imaging (Fig. 3). Full width at half maximum (FWHM) at
x- and y- axis were used for plaque size analysis. Contrast-to-noise ratio (CNR) was calculated
using the in vivo LMI imaging and conventional wide-field fluorescence microscope data acquired
at 100 minutes after injections into APP/PS1, arcAB and non-transgenic littermate mice.

CNR = (51-52)+N

Where S is fluorescence intensity in the ROI; and N is the standard deviation from a region in the

background.

Immunohistochemical staining and confocal microscopy

Histology and immunohistochemical investigations were performed on the mouse brain sections
after PBS perfusion and ex vivo LMI imaging. Brain hemispheres were embedded in paraffin
following routine procedures and were cut in 5 um horizontal sections. For immunohistochemical
staining, 6E10, HS-169, and fibrillar conformation anti-amyloid antibodies OC (47) stainings were
performed following protocol described earlier with nuclei counterstained by 4',6-diamidino-2-
phenylindole (DAPI) (44) (Details in Supplementary Table 1). Histochemical staining using
Hematoxylin & Eosin were performed for structural information and detecting of abnormalities in

the brain. The whole brain slices of 6E10 and Alexa488, Cyanine3, OC were imaged at x20
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magnification using Pannoramic 250 (3D HISTECH, Hungary) at the ScopeM core imaging

facility of the ETH for quality control of the autofluorescence and antibody specificity.

To further assess the co-localization of different channels, confocal images of arcAf, APP/PS1
mice and non-transgenic littermates were further obtained at x10, x 63 magnification in the cortex,
hippocampus areas, and x20 magnification for the whole brain slices using a Leica SP8 confocal
microscope (Leica Microsystems GmbH, Germany) at the ScopeM. Sequential images were
obtained by using 405 nm, 488 nm, 561 nm lines respectively. Identical resolution settings were
used for the Z stacks (n = 15). Full width at half maximum (FWHM) at x- and y- axis were used
for plaque size analysis using x10 cortex confocal images for both HS-169 and 6E10 channels.

The Allen brain atlas was used for anatomical reference (48).

Statistics
Paired two-tail student t test was used (Graphpad Prism) for comparing values between LMI
imaging and wide-field imaging. All data are present as mean + standard deviation. Significance

was set at * p < 0.05.

Results

In vitro LCO binding in aggregated ABaz fibrils

Very weak fluorescence was detected shortly after co-incubation of HS-169 with ABa: fibrils. The
signals were significantly increasing over time reaching 3756.7: 1552.2: 725.8 (a.u.) for

HS169+AB: HS-169: ApB at 30 minutes post co-incubation (Fig. 1C).


https://doi.org/10.1101/2020.02.01.929844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.01.929844; this version posted February 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In vivo LMI imaging using LCO exhibited stronger fluorescence signal from the brain in
APP/PS1 and arcAB mice compared to NTLs

After i.v. injection of HS-169 through the mouse tail vein, fluorescence intensity increase was
observed in the mouse brain indicating that the probe was passing the blood-brain barrier. In
general, the HS-169 fluorescence intensity increased over time in the brain from both APP/PS1
and arcAP mice, although exhibiting different kinetics. In APP/PS1 mice the signal increase was
slower peaking at 140 minutes (Fig. 2A) while in arcAp mice (Fig. 2C) the signal increased faster
in the early phase peaking at 100 minutes. The highest signal intensity was observed at 100-140
minutes post-injection indicating specific binding rather than probe wash-in. In comparison, HS-
169 fluorescence intensity remained low in the brain from non-transgenic littermates (Fig. 2B). At
120 minutes, fluorescence signal integrated over the cortex was 663 times higher in the brain from
APP/PS1 mouse and 463 times higher in arcAp mouse in comparison with that in non-transgenic
littermate (Fig. 2D). Bright signal spots appeared on LMI fluorescence microscopy images, in both
the brains from APP/PS1 and arcAf mice, suggestive of single AP deposits. Size analysis showed
that the spots detected in the brain from APP/PS1 and arcAp mice are of mean 31 um, range 15-
150 um, resembling typical plaque sizes (Fig. 2E-F). It should be noted that accuracy of the size
analysis is influenced by the fluorescence blooming effect as well as the difficulty to separate two
closely neighboring signal sources in the fluorescence microscope. Intriguingly, these single signal
spots were observed in APP/PS1 and arcAp mouse in the area overlaying the cortex after 40
minutes and remained visible until the end of data acquisition (140-160 minutes), substantiating

the capacity to visualize individual plaques (Fig. 2A-C).

10
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Ex vivo LMI imaging using LCO HS-169 showed stronger cortical signal in APP/PS1, arcAp
mice as compared to non-transgenic littermates

Ex vivo imaging was performed on mouse brain slices as well as on PBS-perfused whole brains.
Ex vivo LMI imaging revealed higher levels of cortical HS-169 accumulation in APP/PS1 and
arcAB mice compared to non-transgenic littermates (Fig. 3A-C). Greater visibility and thus
detection sensitivity of Ap plaques were observed by LMI imaging as compared to wide-field (WF)
imaging both in whole brains (Fig. 3C-F) as well as in individual horizontal brain sections (Fig.
31-L). The fluorescence signal integrated over the cortical areas was approximately 2.5 times
higher in the APP/PS1 and arcAp mice compared to non-transgenic mice (Fig. 3F). The contrast-
to-noise ratio (CNR) was approximately 24 times higher in LMI imaging compared to wide-field
images (t test, p = 0.0003) (Fig. 3G, ROI indicated in Fig. 3C, D). Compared to APP/PS1 mice,

the HS-169 signal in the brain vasculature became more apparent in arcAp mice.

Regional distribution of plaques and difference in probe binding

Immunohistochemical and histological staining were performed on horizontal brain tissue sections
from APP/PS1, arcAp mice and non-transgenic littermates using HS-169, 6E10, OC and DAPI
(Fig. 4). In APP/PS1, the AP plaques distributed mainly in the parenchymal regions (pronounced
in the cortex and hippocampus) (Fig. 4A, B), and the size of plaques identified with 6E10 (mean
27 um, range 4-117 um) was larger as compared to HS-169 (mean 19 um, range 2-82 um) (Fig.
4M). In arcAB mice, both parenchymal (pronounced in the cortex, hippocampus and thalamus)
and vascular deposits are detected. The plaques in arcAf mice are less diffuse compared to that in
APP/PS1 mice. Plaques identified by using 6E10 (mean 40 um, range 7-131 um) are also higher
in diameter than HS-169 mean 27 pum, range 2-117 um) in arcAp mice. OC staining for fibrillar

11
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AP showed good overlap with HS-169 in the cortical slices from both APP/PS1 and arcAf3 mice
(Fig. 4N-P). The lack of 6E10 and HS-169 signal in cortex of the non-transgenic littermate

indicated highly specific binding of HS-169 to Ap which absent in these brains (Fig. 4R).

Discussion

Developing tools for non-invasive detection of AP deposits at high-resolution is important for
understanding disease mechanism and translational development of Af-targeted disease-
modifying therapies. Here, we demonstrated a novel in vivo LMI imaging approach to detect brain
AP deposits at single plaque resolution with a large field-of-view covering the entire cortex in

APP/PS1 and arcAp mouse models.

In LMI imaging the out-of-focus light can be effectively rejected, due to the inherent advantage of
laser beam scanning. Thus the proposed method enables minimally invasive imaging in vivo
without employing craniotomy, a powerful advantage especially when it comes to longitudinal
imaging of disease progression and treatment monitoring in aging mouse models of AD
amyloidosis. By employing an image reconstruction algorithm that first extracts signals from small
foci then superimposes them to form a high resolution image, the LMI imaging approach further
enables high resolving power at a single plague level across the entire mouse cortex. Compared to
laser scanning confocal microscopy, LMI imaging is a highly parallelized technique employing
hundreds of illumination foci, thus enabling fast imaging speed which is crucial for mitigating
motion artifacts in in vivo studies. In addition, the LMI imaging approach is optimally suited for
imaging large objects up to a centimeter scale, which is not attainable with multi-photon

microscopy methods that are further hindered by the lack of optimal labels with large absorption

12


https://doi.org/10.1101/2020.02.01.929844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.01.929844; this version posted February 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

cross section and longer absorption/emission wavelengths (49, 50). Due to the small numerical
aperture of the mini-beams, a large depth of focus has been further achieved, which makes the
system suitable for imaging highly curved surfaces such as the mouse head. Yet, due to the lack
of the optical sectioning ability, the current LMI imaging implementation can only obtain 2D

information from the mouse brain.

In vivo imaging of A plaques with other imaging modalities, such as PET, confronts the challenge
of an inadequate spatial resolution to distinguish individual plaques (11, 12, 51-53). Moreover,
mouse brain imaging by PET is limited by a complicated experimental setting, short half-life of
positron-emitting nuclei (17), spillover as well as severe partial volume effects (54). MRI has been
reported to detect AR plaques from APP/PS1 mice (23, 55, 56), albeit its low detection sensitivity
is generally inadequate for detecting amyloid plague due to its insufficient contrast against the

surrounding tissues (56).

LMI amyloid imaging in vivo and ex vivo using HS-169 in APP/PS1 and arcAp mice showed
patterns generally fitting the known A distribution in these mouse lines and was confirmed by
immunohistochemistry. In APP/PS1 mice, abundant AP deposits were detected in the cortex and
hippocampus (26) by using immunohistochemical staining, while arcAB mouse showed higher
presence of cortical, hippocampal and thalamic plaques and higher load of cerebral amyloid
angiopathy (36, 43). The higher load of amyloid in the vessel wall might explain the faster kinetics
of probe accumulation in arcAp mice compared to APP/PS1 mice. Size analysis (28) of the AP
deposits detected in vivo by HS-169and ex vivo by HS-169 and 6E10 revealed comparable values

to what was previously reported in both APP/PS1 (28, 57) and arcA mouse brains (36). We
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observed that HS-169 stained the core of AP deposits ex vivo, thus the area stained by HS-169 is
smaller than that by 6E10. In addition, HS-169 stained less proportion of 6E10 plaque in APP/PS1
compared to in arcAp mouse. This is probably due to the more fibrillar composition and compact
plaque structure in the arcAp mouse (as observed in 6E10 and OC staining, Fig. 4H, P) as
compared to the larger and more diffuse plaque types in APP/PS1 (Fig. 4F, J). In the smaller
compact AB deposits (Fig. 4M), more overlapping between 6E10 and HS-169 was observed. As
chemical probes such as HS-169 chiefly detect the beta-sheet structure, which is richer in the
compact fibrillar AB, higher similarity is expected between HS-169 and 6E10 in the arcAp than in
APP/PS1 mouse brain. Different amyloid composition in mouse models of amyloidosis has been
reported in previous studies by using immunohistochemical staining (58-60). In human brain,
different binding property of various probes to amyloid deposits in familial AD patients with
various mutation were also reported (61). Mean diameters for HS-169 were estimated to be 19 um
and 27 um for APP/PS1 and arcAP mice respectively, which corresponds well with spot sizes of
10-30 um measured with LMI imaging in vivo. However, it indicates also that plaques sizes are
underestimated (Stronger in arcAp mice) with LMI imaging using HS-169 and might limit the
capability to follow individual plaque growth. Thus, in the future novel probes may be developed

and tested, which show better correspondence with true A plaque size (27).

APP/PS1 is a widely used animal model for AD mechanistic study (62-66). The single AB deposits
detection described in the current work is directly applicable to study A plaque clearance (67-70),
and to monitor antibody treatment effect in the mouse models (9, 62, 71, 72), which can currently
only be achieved by craniotomy and ex vivo techniques. Serial in vivo LMI imaging of the same

mice would thus significantly reduce the number of animals required for studies monitoring A3
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accumulation, compared to cross-sectional analysis with immunohistochemistry. In addition, the
suggested LMI imaging method may potentially provide a new platform for detecting tau deposits
(21, 73) and other protein aggregates of beta-sheet structures (74) in vivo in animal models using
chemical probes. Note that we have previously shown efficacy of the single plaque detection
framework in arcA mouse model (36, 45). Yet, further studies on younger mice (to determine
detection thresholds), and other mouse strains of amyloidosis such as APPswe, APPswe/PS1dE9
mice(75) are essential for corroborating the presently available results. Additional limitations
include confounding factors such as the skull thickness of the mice, and vascular abnormality in
the transgenic mouse lines (especially of old age), which may have influenced the detected

fluorescence intensity levels.

In conclusion, we demonstrated in vivo high-resolution whole brain Ap imaging by LMI imaging
without skull opening in APP/PS1 and arcAp mouse model of AD amyloidosis. The new imaging
platform offers new prospects for in vivo studies into AD-related disease mechanisms in animal

models as well as longitudinal monitoring of therapeutics targeting AB.
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Figure 1. Large-field multifocal illumination (LMI) fluorescence microscopy system. (A)
Schematic diagram of the set up consisting of an acousto-optic deflector (AOD), beam-splitting
grating, focusing assembly, and a high-speed fluorescence camera; insert: illumination grid when
a 21x21 beam-splitting grating is employed; (B) Chemical structure of amyloid imaging probe HS-
169; (C) Increase of fluorescence intensity of HS-169 (30 uM) in aggregated A4 fibril (1 uM) at

30 minutes after incubation.

Figure 2. In vivo large-field multifocal illumination (LMI) imaging of amyloid-beta deposits
in APP/PS1 and arcApB mouse brain. (A) APP/PS1, (B) non-transgenic littermate (NTL) and (C)
arcAp mouse at pre-injection and followed up to 140 minutes after i.v. injection of HS169 through
tail vein. Scale bar = 200 um. Fluorescence intensity (FI) scale = 0-1 (a.u.); (D) Fluorescence
intensity normalized to pre-injection values as a function of time after probe injection in APP/PS1,
arcAp and NTL mouse brains; (E) Zoom-in view of skull area over the cortex of an APP/PS1 at

140 minutes and (F) an arcAp mouse at 100 minutes after injection. Scale bar = 50 um;

Figure 3. Ex vivo large-field multifocal illumination (LMI) imaging compared to wide-field
fluorescence microscopy of amyloid-beta deposits in APP/PS1 and arcAp mouse brain. LMI
imaging ex vivo showed higher signal in the whole brain from (A) one APP/PS1 and (C) one arcAB
mouse compared to (B) one non-transgenic littermate; Higher contrast to noise is further achieved
by using (C, E) LMI imaging than (D, F) wide-field (WF) fluorescence imaging in the ex vivo
whole brain of APP/PS1 and arcAP mouse; (G) Quantification of signal of ex vivo LMI imaging
in APP/PS1, arcAB mouse and non-transgenic littermate (A-C); (H) contrast to noise ratio (CNR)

of ex vivo LMI imaging and WF imaging in one arcAp mouse; ***p<0.001; Region of interest
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(ROls, red squares) and background (BG, blue square), noise (green square) indicated in C, D; (I,
J) exvivo LMI imaging and WF imaging of brain slice from APP/PS1 mouse; (K, L) ex vivo whole
brain LMI imaging in arcAB (Fluorescence intensity scale = 0-1 (a.u.)). Scale bar = 50 um. Ctx:

cortex; Hip: hippocampus; Cb: cerebellum.

Figure 4. Staining for AB deposition in APP/PS1 and arcAp mouse brain tissue sections. (A,
B) Confocal imaging in horizontal whole brain sections from APP/PS1 mouse; and (C, D) from
arcAB mouse. DAPI (blue), Alexa488-6E10 (green), HS-169 (red); Zoom in of (E-H)
hippocampus (blue square); (I-L) cortex (magenta square) in (A, C) respectively; demonstrating
co-localization of 6E10 and HS-169 to amyloid-beta plaque in APP/PS1 and arcAp mouse brain;
(M) Better overlapping between HS-169 and 6E10 in small compact amyloid deposits; (N-P)
Confocal imaging in cortex from APP/PS1 and arcAp mice, OC (yellow), Alexa488-6E10 (green),
HS-169 (red), DAPI (blue); (Q) Size analysis shows the plaque detected using 6E10 and HS-169
in the cortex from APP/PS1 and arcAB mice; (R) No positive 6E10 or HS-169 signal in the cortex
section from non-negative control mice; (S) Hematoxylin & Eosin staining on horizontal brain
section from one arcAp mouse. White arrowhead = cerebral amyloid angiopathy; Scale bar =1 mm

(A-D); 100 um (E, G, I, K, O, R); 20 um (F, H, J, L, N, P).
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