

1

2

3 **Carbohydrate complexity structures stable diversity in gut-derived microbial consortia**
4 **under high dilution pressure**

5 Tianming Yao¹, Ming-Hsu Chen^{1†}, and Stephen R. Lindemann^{1,2*}

6

7

8

9

10 1. Whistler Center for Carbohydrate Research, Department of Food Science, Purdue
11 University. 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA

12 2. Department of Nutrition Science, Purdue University. 700 W. State Street, West
13 Lafayette, IN 47907, USA

14 † School of Chemical and Biomedical Engineering, Nanyang Technological University.
15 Block N1.2, 62 Nanyang Drive, Singapore 637459

16

17 *Corresponding author: Tel: 765-494-9207, Email: lindems@purdue.edu

18 Keywords: dietary fiber, inulin, arabinoxylan, human gut microbiota, consortia

19 Running title: Substrate complexity controls gut microbiota diversity

20 Competing interests statement: The authors declare no competing interests.

21

22 **ABSTRACT**

23 Dietary fibers are major substrates for the colonic microbiota, but the structural
24 specificity of these fibers for the diversity, structure, and function of gut microbial
25 communities are poorly understood. Here, we employed an *in vitro* sequential batch fecal
26 culture approach to determine: 1) whether the chemical complexity of a carbohydrate
27 structure influences its ability to maintain microbial diversity in the face of high dilution
28 pressure and 2) whether substrate structuring or obligate microbe-microbe metabolic
29 interactions (e.g. exchange of amino acids or vitamins) exert more influence on maintained
30 diversity. Sorghum arabinoxylan (SAX, complex polysaccharide), inulin (low-complexity
31 oligosaccharide) and their corresponding monosaccharide controls were selected as model
32 carbohydrates. Our results demonstrate that complex carbohydrates stably sustain diverse
33 microbial consortia. Further, very similar final consortia were enriched on SAX from the
34 same individual's fecal microbiota across a one-month interval, suggesting that
35 polysaccharide structure is more influential than stochastic alterations in microbiome
36 composition in governing the outcomes of sequential batch cultivation experiments. SAX-
37 consuming consortia were anchored by *Bacteroides ovatus* and retained diverse consortia
38 of >12 OTUs; whereas final inulin-consuming consortia were dominated either by *Klebsiella*
39 *pneumoniae* or *Bifidobacterium* sp. and *Escherichia coli*. Furthermore, auxotrophic
40 interactions were less influential in structuring microbial consortia consuming SAX than the
41 less-complex inulin. These data suggest that carbohydrate structural complexity affords
42 independent niches that structure fermenting microbial consortia, whereas other metabolic
43 interactions govern the composition of communities fermenting simpler carbohydrates.

44

45 **IMPORTANCE**

46 The mechanisms by which gut microorganisms compete for and cooperate on human-
47 indigestible carbohydrates of varying structural complexity remain unclear. Gaps in this
48 understanding make it challenging to predict the effect of a particular dietary fiber's structure
49 on the diversity, composition, or function of gut microbiomes, especially with inter-
50 individual variability in diets and microbiomes. Here, we demonstrate that carbohydrate
51 structure governs the diversity of gut microbiota under high dilution pressure, suggesting that
52 such structures may support microbial diversity *in vivo*. Further, we also demonstrate that
53 carbohydrate polymers are not equivalent in the strength by which they influence community
54 structure and function, and that metabolic interactions among members arising due to
55 auxotrophy exert significant influence on the outcomes of these competitions for simpler
56 polymers. Collectively, these data suggest that large, complex dietary fiber polysaccharides
57 structure the human gut ecosystem in ways that smaller and simpler ones may not.

58

59 **INTRODUCTION**

60 Gut microbiota play an increasingly appreciated role in the human digestive system
61 and are now regarded as an important “forgotten organ” in maintaining health and treating
62 disease (1). For instance, the gut microbiota convert dietary fibers into various bacterial
63 metabolites, including short-chain fatty acids (SCFAs), that influence diverse health
64 properties (2). Altered microbiome structures are associated with chronic diseases such
65 metabolic syndrome, diabetes, and inflammatory bowel diseases (3–5); disturbed intestinal
66 ecosystems (6–8) and chronic disease (9) are both associated with low diversity. However,
67 the mechanisms that maintain diversity in the human gut microbiome are poorly understood
68 but of great potential interest to modulate health.

69 Environmental factors, such as eating and fasting cycles, lifestyle shifts, infections,
70 age and diet, can alter the composition of gut microbiota. Dietary fibers, which are
71 carbohydrates resistant to human digestive enzymes and which escape small intestinal
72 degradation and enter the colon, strongly influence the composition and function of gut
73 microbiota (10). The capability of a gut microorganism to consume a dietary fiber depends on
74 1) its carbohydrate-active enzyme (CAZyme)-encoding genes that are specific to cleavage of
75 different carbohydrate linkages (11), 2) its genome-encoded suite of transporters that take up
76 the products of polysaccharide hydrolysis for use as carbon and energy sources, and 3) how
77 those genes are regulated (12).

78 The competitive exclusion principle of ecology (Gause’s Law) states that two species
79 competing for the same limiting resource cannot coexist under stable environmental
80 conditions (13, 14). In the colonic environment, microbiota compete for non-digestible
81 carbohydrates, but the effect of carbohydrate structure on ecological outcomes of competition
82 are poorly understood. As CAZymes are highly specific for their cognate substrates and
83 carbohydrates are very structurally diverse (15), multiple CAZymes are required to hydrolyze

84 complex polysaccharides. Consequently, it is possible that organisms may specialize in
85 consuming specific carbohydrate linkages, dividing metabolic labor and promoting
86 coexistence through niche differentiation. However, many organisms (e.g., *Bacteroides* sp.)
87 have the genetic potential to hydrolyze all glycosidic bonds in some carbohydrates (16, 17),
88 suggesting the possibility that such generalists may successfully exclude others in
89 competition for these resources. In this study, we hypothesized that carbohydrate structural
90 complexity would maintain diverse gut microbiota. Specifically, we hypothesized that the
91 more-complex the carbohydrate structure, in terms of the number of enzymes required for a
92 polymer's degradation, 1) the more likely the polymer will impart strong selective pressure
93 on community structure and, 2) the greater the sustained diversity of species under high
94 dilution pressure. To test this hypothesis, we selected inulin as a model simple carbohydrate
95 (both small in size and requiring only a single hydrolase for degradation) and sorghum
96 arabinoxylan (SAX) as a model complex polysaccharide (a high molecular-weight polymer
97 with diverse glycosyl residues and linkages among them).

98 To identify the microbial populations most efficient for consumption of each substrate,
99 we employed sequential batch fermentation; consortia were continuously passaged under
100 high dilution pressure (1:100 dilution per day) in media containing model carbohydrate
101 substrates differing in complexity. These were then compared to identical cultures fermenting
102 monosaccharide controls mimicking the sugar composition of the respective polymers.
103 Sequential batch fermentation strongly selects for the organisms with the highest growth rates
104 under experimental conditions, rapidly diluting out slow- or non-growing organisms. Further,
105 we investigated whether carbohydrate structure or other interactions were more influential in
106 structuring the resulting communities via the addition of exogenous nutrients to alleviate
107 potentially obligate metabolic interactions arising from auxotrophy. Our results support the
108 hypothesis that increasing carbohydrate complexity affords greater numbers of independent

109 niches, which select for stable, carbohydrate-specific consortia. Furthermore, our data
110 suggest that increasingly complex carbohydrates (i.e. SAX) more strongly govern the
111 composition of fermenting microbial consortia than simpler ones (i.e. inulin), which are more
112 strongly governed by other metabolic interactions. This study reveals that complex
113 carbohydrates effectively structure gut microbial consortia and maintain diversity against
114 strong dilution pressure.

115

116 **RESULTS**

117 **Carbohydrate polymer structural properties**

118 The structural complexity of inulin and SAX with respect to glycosyl residue
119 composition and molecular sizes are shown in Table 1 and Supplementary Figure 1. Fructose
120 was the major component in the inulin employed in this study (86.2%) with a small amount
121 of terminal glucose (13.8%). In contrast, SAX was predominantly composed of arabinose
122 (35.1%) and xylose (37.0%), with minor components of glucose (7.6%), galactose (6.0%),
123 and mannose (4.0%). Arabinoxylans (AXs) are hemicelluloses and are typically composed of
124 β -1,4-linked xylose backbones with substituted arabinose branches. The arabinose/xylose
125 ratio was 0.95, indicating SAX was highly branched. In size exclusion chromatography
126 (Supplementary Figure 1), SAX eluted much faster than the inulin, suggesting the inulin was
127 significantly smaller than SAX in molecular size.

128

129 **Carbohydrate structure governed fermentation rate and metabolic outputs**

130 We used inulin and SAX as substrates for *in vitro* sequential batch cultivation
131 experiments, matched with monosaccharide controls mimicking glycosyl residue
132 stoichiometry in the cognate polymer (fructose and SAX sugars, respectively) over 7
133 sequential passages (1/day). This sequential batch culture regime imposed very high dilution

134 rates (10^{-14} dilution over 7 days), as in experimental evolution experiments conducted by
135 Lenski and coworkers (18). Fermentation was vigorous for all samples in the first passage, as
136 measured by both gas production and pH. Dilution initially reduced gas production (Figure
137 1A) in the second passage (day 2); monosaccharide control and inulin cultures stabilized in
138 gas production resulted after day 3, whereas gas production from SAX remained low
139 throughout the experiment. Terminal pH increased until day 3 for all conditions, after which
140 it stabilized for SAX, SAX sugars, and inulin; terminal pH of fructose cultures continued to
141 decrease until day 5 (Figure 1B).

142 The SCFAs acetate, propionate, and butyrate are regarded as the major terminal products
143 of carbohydrate fermentation by human gut microbial communities. SCFA profiles produced
144 from fructose, SAX sugars, inulin, and SAX are illustrated in Figure 5. Acetate production
145 from all carbohydrates was largely steady or increased only slowly after day 2, except for
146 SAX sugars. The highest acetate concentration from final cultures was observed for SAX
147 sugars (21.1 mM), followed by SAX (15.0 mM), inulin (12.0 mM) and fructose (11.2 mM)
148 (Figure 2). Only SAX elicited appreciable propionate and butyrate over sequential cultures in
149 fortified buffered medium (FB), which contained amino acids and vitamins. Inulin has been
150 reported to produce large amounts of SCFAs, especially butyrate (19), and did so in the first
151 culture. However, over sequential passage inulin-fermenting consortia produced relatively
152 lower total SCFAs (12.9 mM) and only trace amount of propionate (0.7 mM) and butyrate
153 (0.2 mM). This result was consistent with relatively more of the carbon being released as CO₂
154 and/or other, unmeasured organic acids rather than SCFAs (which is consistent with low
155 terminal pH results from these cultures). Comparatively, fermentation of SAX produced
156 much larger amounts of propionate (5.5 mM) and butyrate (2.2 mM) in FB at day 7; the
157 normalized molar ratios of acetate, propionate, and butyrate in the final cultures were
158 66:24:10 (SAX), 98:1:1 (SAX sugars), 93:5:2 (inulin) and 94:5:1 (fructose) (Figure 2).

159

160 **Carbohydrate polymers maintained diverse and stable consortia**

161 To determine whether carbohydrate structure influences the diversity of fermenting consortia,
162 we sequenced the V4-V5 regions (20) of the 16S rRNA gene at each passage. Microbial
163 relative abundances are plotted for one of the three replicate lineages for each condition and
164 experiment in Figure 4. Across both experiments we describe here, microbial succession was
165 very similar across the three lineages of each condition, suggesting carbohydrate structure-
166 based selection exerts strongly deterministic forces on community assembly (Supplementary
167 Figure 2). Interestingly, the first passage from fecal inocula were very similar in structure
168 even across experiments (as seen by Bray-Curtis dissimilarity; Figure 3), with dominant
169 populations of *Bacteroides* spp., diverse OTUs representing phylum *Firmicutes* and classified
170 within families *Clostridiaceae*, *Lachnospiraceae*, *Enterococcaceae*, *Streptococcaceae*, and
171 two OTUs within class *Negativicutes* (identified as *Phascolarctobacterium faecium* and
172 *Veillonella* sp.; Figure 4A). In the second passage and thereafter, significant differences in
173 succession emerged among conditions. In fermentation of inulin, fructose, and SAX sugar
174 controls, cultures were strongly dominated by a bloom of OTU3 (*Escherichia* sp.), which was
175 succeeded by OTU1 (*Klebsiella pneumoniae*) and remained dominant thereafter.
176 Monosaccharide controls ended in near-monocultures of OTU1 (99.2% for fructose and 97.8%
177 for SAX sugars). Inulin cultures also maintained small populations of *Clostridium ramosum*
178 (OTU8, 5.7%) and *B. ovatus* (OTU2, 3.5%). Conversely, throughout the experiment SAX
179 sustained a diverse community anchored by *Bacteroides ovatus* (OTU2, 63.7%), but with
180 significant representation of OTUs classified within *Firmicutes* (especially *Eisenbergiella*
181 *tayi* (OTU5, 13.6%) and *Hungatella effluvia* (OTU16, 3.5%)).

182

183 **Alleviation of obligate interactions imposed by auxotrophy drastically altered
184 succession of inulin- but not SAX-fermenting lineages**

185 To test the hypothesis that carbohydrate polymer structure, rather than other
186 metabolic interactions among members (imposed by their inability to biosynthesize required
187 components) governed composition, we performed a similar sequential batch fermentation
188 experiment using inulin and SAX as sole carbon sources but with and without
189 supplementation of amino acids and vitamins. Fecal inocula were derived from the same
190 donor as the first experiment, collected fresh one month later. In contrast to the initial
191 experiment, gas production from inulin did not decrease at passage 2 and 3, however SAX
192 fermentations displayed similar dynamics across experiments (Figure 1C). Gas production
193 from inulin was inverse to acid production, decreasing with concurrent decreases in pH
194 slightly for inulin-fermenting consortia in normal buffered medium (NB) and much more
195 strongly in FB (Figure 1D). In both cases, this shift was accompanied by transitions from day
196 3 and 4 cultures dominated by clostridia and enterobacteria to increasing bifidobacteria
197 (which ferment largely to acetate and lactate) (21), though the magnitude was much larger
198 with fortification (see below). Fortification significantly increased both gas and acid
199 production from SAX.

200 SCFA production data was consistent within inulin samples, which was acetogenic
201 with and without fortification; propionate and butyrate concentrations were low or
202 undetectable after a peak of butyrogenesis in NB on day 3 (Figure 6). Production of SCFAs
203 from SAX in NB was substantially smaller than in the first experiment; small amounts of
204 acetate (~5 mM) and propionate (~1.5 mM) were detected but butyrate was vanishingly small
205 (~0.1 mM). With fortification, relatively stable production of acetate (~10 mM), propionate
206 (~3 mM), and butyrate (~2 mM) were observed after passage 2 (Figure 6). These data,
207 coupled with the gas production data, suggested that the utilization of SAX was rate-limited

208 in normal medium and alleviated with fortification. Though SAX is regarded as a highly
209 propiogenic fiber in fecal fermentation (22), our data also suggested sustained butyrate
210 production with fortification. We detected trace amounts of other fermentation products
211 including lactate and ethanol (Supplementary Table 1) in day 7 SAX-fermenting culture
212 supernatants; they did not approach SCFA concentrations and did not vary with medium
213 fortification.

214 Alleviation of metabolic interdependencies imposed by auxotrophies exerted a much
215 stronger impact upon inulin-fermenting than SAX-fermenting community structure. β -
216 diversity analyses revealed clustering of SAX-consuming consortia across experiments and
217 media conditions (Figure 3), driven most strongly by similarly dominant OTU2 *B. ovatus*
218 populations (Figure 4A,B). However, inulin-fermenting consortia in NB were dominated by
219 OTU1, with smaller populations of clostridia (OTU8, *C. ramosum* in the first and OTU14
220 *Clostridium* sp. in the second experiment). Both the first and second experiment in NB-inulin
221 ended in cultures dominated by OTU1. However, fortification resulted in very different
222 succession trajectories; communities initially dominated by *Bacteroides* spp. (OTU2 and
223 OTU4) then yielded to *Clostridium* sp. (OTU14 in NB and OTU8 with fortification).
224 Thereafter, OTU1 became dominant in NB, with minor populations of OTU2 and OTU8.
225 With fortification, *Bifidobacterium* sp. OTU6 became dominant with a sizeable population of
226 OTU3. Thus, fortification governed both bifidobacterial abundances at the conclusion of the
227 experiment and the identity of the dominant enterobacterial species, resulting in very
228 different final communities.

229 In contrast, SAX-fermenting consortia displayed remarkably similar successional
230 trajectories across experiments and media conditions. Besides the aforementioned dominance
231 of OTU2 across all SAX cultures, many other taxa were shared (e.g. OTU5 *Eisenbergiella*
232 *tayi*, OTU9 *Phascolarctobacterium faecium*), though at different relative abundances.

233 Interestingly, final consortia from the first experiment's NB were more similar in structure to
234 FB in the second, though only modestly so. One example is in the proteobacterial component;
235 in the first experiment and in fortified cultures, these populations were uniformly small
236 throughout succession and ended with approximately equal fractions of OTU1 and OTU3.
237 However, in the second experiment's NB condition, a proteobacterial bloom (especially
238 OTU3) occurred on passage 2, sharply declining thereafter and stabilizing with larger OTU1
239 populations. Further, *Clostridium* sp. OTU14 displayed a concurrent bloom only in NB.
240 Similarity between the first experiment's SAX NB consortia and second's FB consortia
241 suggests that similar taxa were present in the inoculum at low abundances, being retained
242 over a one-month time interval in the donor's microbiome.

243

244 **Carbohydrate structural complexity governed consortial diversity**

245 Carbohydrate structural complexity most strongly governed maintained diversity
246 across sequential passages, but diversity was also influenced by medium fortification. As
247 expected, carbohydrate polymer fermentation sustained consortia of significantly higher α -
248 diversity than monosaccharide controls (Figure 7, panels A, C, E, G) over sequential passages.
249 SAX-consuming consortia stabilized in the first experiment at ~19 OTUs of appreciable
250 abundance (> 0.1%; Fig. 8A), which was far higher than other lineages (including inulin) and
251 was reflected in Shannon and inverse Simpson metrics (Fig. 8C, G). These data suggested
252 that structured carbohydrates retained greater microbial diversity over sequential passages,
253 and the magnitude of the sustained diversity was related to the polymer's complexity.

254 Fortification increased the number of apparent species (OTUs greater than 0.1% in
255 abundance, which corresponded to an average of ~2.6 reads) in SAX-fermenting consortia
256 but did not significantly influence Shannon, inverse Simpson, and Simpson evenness (Figure
257 7 D, F & H). However, the opposite result was observed for fortification of inulin-fermenting

258 cultures; fortified inulin consortia displayed fewer species observed but significantly
259 increased evenness, driven mostly by relatively even abundances of OTU3 and OTU6 in
260 fortified cultures. Taken together, these data suggest that complex polysaccharides sustain
261 diverse fermenting consortia over sequential dilutions in a manner related to the structural
262 complexity of the polysaccharide, and that the extent to which carbohydrate structure drives
263 final community composition, as opposed to other metabolic interdependencies, differs with
264 polymer structural complexity.

265

266 **DISCUSSION**

267 The sequential batch fermentation approach, also called consecutive batch culture, has
268 been used for decades to understand the associations of microbiota with the polysaccharides
269 they hydrolyze, but to the best of our knowledge this approach has not been widely employed
270 to identify linkages between human gut microbiota and the dietary carbohydrates they
271 consume. For example, Gascoyne and Theodorou passaged rumen microbiota ten times
272 through a medium containing soluble carbohydrates and rye grass hay, finding that the
273 addition of monosaccharides into hay fermentations changed the molar ratio of SCFAs and
274 the fraction of biomass digested (23). Cheng *et al.* passaged rumen digesta nine times through
275 a media containing 1% barley straw and found that the fiber-degrading consortia were robust
276 and permitted transfer for up to 63 days (24). However, previous studies before the advent of
277 culture-independent assays were hampered in their ability to measure the effect of
278 carbohydrate polymer structure on maintenance of diversity. We employed a similar
279 approach with amplicon sequencing to identify the diversity of human gut microorganisms
280 selected by model carbohydrate structures under *in vitro* conditions.

281 Our results support the hypothesis that linkage diversity allows microbial division of
282 labor in consumption of structured carbohydrates, which in turn permits cooperative

283 consumption of these carbohydrates and maintains microbial diversity even under high
284 dilution pressure. Further, they suggest that microbial succession on carbohydrates is
285 influenced by the availability of other nutrients, which disrupts obligate metabolic
286 interactions imposed, presumably, by auxotrophy. It should be noted, however, that trace
287 nutrients may subtly alter fitness landscapes in other ways beyond binary growth/no growth
288 phenotypes imposed by auxotrophy; nutrient availability may, for example, also exert
289 impacts through alterations in gene regulation, enzyme activity, or metabolic fluxes.

290 Recently, Chung et al. employed continuous flow fermenters (bioreactors) to simulate
291 the human colonic environment for 20 days to investigate the relationship between microbial
292 diversity and structural complexity of dietary fibers (25). Inulin and arabinoxylan-
293 oligosaccharides (AXOS) were used as substrates in their study, although the continuous
294 cultivation method employed imposed much less dilution pressure (one medium exchange
295 per day) than our experiment. Their results showed dominance by members of family
296 *Bacteroidaceae* across all carbon sources, suggesting strong priority effects strongly
297 influence community structure at low dilution (similarly to the first passages in our
298 experiment). However, though they did not perform detailed carbohydrate structure analyses,
299 they also observed that dietary fibers with likely-greater structural complexity sustained
300 greater microbial diversity in the reactors, which concurs with our findings. Together, their
301 data and ours suggest that relationships between carbohydrate structural complexity and
302 sustained diversity may be a fundamental property of carbohydrate-microbiome interactions.

303 In our study, the fructose control was the simplest carbon source that can be widely
304 transported and utilized by most anaerobic bacteria. With the mixture of two pentoses and
305 three hexoses, the SAX-simulating sugar mixture retained slightly higher diversity compared
306 with the fructose culture at day 3 (Figure 4), but finally stabilized with similar consortia after
307 day 4, indicating that monosaccharide mixes have only a weak ability to maintain diversity.

308 Inulins are fructan-type storage carbohydrates from plants such as chicory, onions, and
309 asparagus (26), in which one terminal glucosyl unit is linked with an α -1,2 bond to fructose
310 (as in sucrose) and is extended into chains of β -2,1-linked fructose residues (DP = 2–60). In
311 this study, inulin was used as an intermediate-complexity carbon source since it contains only
312 two types of glycosidic linkages in its linear chain structure. Inulin day 7 consortia showed a
313 significantly higher Shannon index than those fermenting monosaccharides, indicating that
314 even simple carbohydrate structuring supports maintenance of microbial diversity.
315 Arabinoxylans are hemicelluloses typically composed of a β -1,4-linked xylose backbone,
316 substituted at the 2- and 3-carbon positions with arabinose branches. The branches can be
317 disaccharides or even trisaccharides, and was employed as a model complex carbon source
318 structure in this study. The molecular size of AXs can range from 300 kDa to 2 MDa (27).
319 Compared with inulin, AXs have more than 10 different linkage types that require multiple
320 CAZymes to fully decompose. Therefore, day 7 SAX-consuming consortia exhibited very
321 different community structures (*Bacteroides* spp.-dominant) with the highest diversity among
322 four carbon sources.

323 It is notable that congruence was observed across two experiments from the same
324 donor's microbiota separated by a month and in by very high similarities among three
325 independent replicate lineages for each carbohydrate, which stabilized with microbial
326 diversities that related to structural complexity (Figure 4, Supplementary Figure 2). As we
327 observed the same OTUs across both experiments, our data suggest that the same V4-5
328 ribotypes responsive to SAX and inulin were present in this individual's microbiome across
329 this time frame, despite an uncontrolled diet. However, some of the taxa observed in the first
330 (unfortified) SAX-consuming consortia required alleviation of auxotrophy in the second to
331 become dominant. These data suggest the possibility that the initial availability of "public
332 good" nutrients (28) like amino acids and vitamins (or natural networks of producers of these

333 nutrients that influence exchange) may have varied among experiments, driving differences
334 in community succession. Further, it suggests the possibility that variations in the initial
335 concentrations of gut micronutrients or natural assemblages of microbiota that impact
336 community nutrient exchange may impact the activity and abundances of microbiota in *in*
337 *vitro* fermentations.

338 If initial nutrient conditions substantially vary in *in vitro* fecal fermentations, even
339 from the same donor, these differences may influence the outcomes of batch fermentations
340 attempting to link carbohydrates with fermenting microbiota. This suggests tighter control of
341 initial nutrient conditions in fecal fermentations is likely warranted to identify relationships
342 between carbohydrate structure and fermenting microbiota. Increases in microbial
343 abundances may arise due to extensive metabolic interactions in diverse communities that are
344 second- or third-order to consumption of the carbohydrate substrate. If true, this suggests that
345 single batch cultures from fecal inocula may mask the organisms able to grow most rapidly
346 on a certain carbohydrate. Together, our data suggest substantial context-dependence in
347 carbohydrate utilization by gut communities, which declines with increasing structure.

348 This context-dependence may help explain conflicting results in *in vitro* and *in vivo*
349 experiments linking resistant carbohydrates to the microbiota they selectively favor (central
350 to the definition of a prebiotic (29). Inulin and fructooligosaccharides (FOS) have been
351 extensively studied for their bifidogenic effect. In human trials, increases in bifidobacterial
352 populations after consumption of inulin or FOS have been regularly observed (30, 31).
353 Nevertheless, contradictory results of the inulin bifidogenic effect have also been reported.
354 Bettler and Euler supplemented infant food with FOS for 212 infant participants and found
355 no significant change of bifidobacterial count over 12 weeks of study (32). Calame *et al.*
356 provided 54 volunteers with inulin for 4 weeks but observed no bifidogenic effect (33).

357 Investigations have demonstrated that inulin interactions with gut microbiota may not
358 be highly specific to promoting growth of *Bifidobacterium* spp. in mixed communities. Scott
359 et al. cultured both short-chain and long-chain inulin samples with dominant human colonic
360 butyrate producers and *Bifidobacteria*, finding that all 15 tested strains including
361 *Faecalibacterium*, *Roseburia*, *Eubacterium*, *Anaerostipes*, *Bifidobacterium* and *Bacteroides*
362 spp. were able to consume short-chain inulin (DP 2-8), while only *Roseburia inulinivorans*
363 was able to propagate on long-chain inulin (DP 25) (34). Sheridan et al. analyzed genomes of
364 *Rosburia* spp. and *Eubacterium* spp. and found *Roseburia inulinivorans* and *Agathobacter*
365 *rectalis* (previously *Eubacterium rectale*) strains also exhibited genomic evidence of inulin
366 utilization genes and, correspondingly, strong growth on inulin (35). These data suggest that
367 small alterations in carbohydrate structure may alter which organisms are able consume a
368 carbohydrate, and, specifically, that the organisms best able to grow on inulins may depend
369 upon community context (i.e., population sizes of competing organisms). Our data further
370 suggests that concentrations of other nutrients may also shape community responses to
371 inulins.

372 With respect to members of family *Enterobacteriaceae*, *Klebsiella pneumoniae* has
373 been previously observed to grow on fructooligosaccharides, which differ from inulins only
374 in the terminal glucose residue (36). Reports are few on the utilization of inulin and FOS by
375 *Escherichia* spp. However, Hidaka et al. reported that *K. pneumoniae* was able to consume
376 FOS, but *E. coli* did not (37). Hartemink et al. observed the growth of *E. coli* and *K.*
377 *pneumoniae* in media containing FOS (38). Schouler et al. identified a pathogenic *E. coli*
378 strain BEN2908 containing a *fos* locus that utilized kestose and nystose (inulin of DP = 4)
379 (39). Although most *in vivo* studies suggest that inulin and FOS feeding are associated with
380 inhibition of pathogenic bacteria in the colon, our data and these observations suggest the

381 inhibition phenomenon may actually originate from the success of competing microbial
382 consortia rather than the selectivity of the substrate for bifidobacteria and lactobacilli.

383 Members of *Bacteroidetes* are known to possess the ability to utilize complex dietary
384 carbohydrates and also encode CAZymes for cleavage and the intake of oligosaccharide
385 substrates (40). Human gut bacteroides, including the strains of *B. eggerthii*, *B.*
386 *cellulosilyticus*, *B. intestinalis*, *B. ovatus* and *B. xylanisolvans*, are generally able to utilize
387 xylan (41). *B. ovatus*, as the dominant OTU in the final SAX consortia, have surface
388 endoxylanases that are able to break down the xylan backbone extracellularly (42).

389 Subsequently, the released xylan fragments (sometimes with arabinose substituents) are
390 imported through the outer membrane via surface carbohydrate-binding proteins and are
391 debranched in the *B. ovatus* periplasmic region. However, extracellular hydrolysis and import
392 is not perfectly efficient for *B. ovatus*; the released oligosaccharides can support the growth
393 of species that do not have xylan-consuming ability (43). Little information exists on
394 microbial populations that are associated with *B. ovatus* xylan consumption. Our sequential
395 passage approach suggested possible interactions among *B. ovatus*, *Eisenbergiella tayi* and a
396 *Clostridium XIVa* species (Figure 4B). *Eisenbergiella tayi* produces acetate, butyrate and
397 lactate as its major metabolic end products (44). Members of *Clostridium XIVa* are known as
398 major butyrate producers in the colon, which may have a beneficial effect on gastrointestinal
399 health (45). Increased abundances in both of these taxa in fortified versus unfortified media
400 may explain the differential butyrate concentrations among SAX-consuming consortia.

401 Modulating human gut microbiota using dietary carbohydrates has been proposed as a
402 possible approach to improve human health. The composition of gut microbiota is affected by
403 the carbohydrate degradation process and the interactions of key carbohydrate-degrading
404 microorganisms. Although there are variations in gut microbiota structures among individuals,
405 the loss of community diversity has been associated with multiple health disorders such as

406 obesity and Crohn's disease (6). Our *in vitro* fermentation data suggest the hypothesis that
407 complex carbohydrate structure may be a potential mechanism to maintain diverse human gut
408 microbiota *in vivo*.

409

410 MATERIALS and METHODS

411 Carbohydrate substrates

412 Inulin was purchased from a commercial chemical supplier (Alfa Aesar, Haverhill,
413 MA); the inulin sample contains fructan polymers up to degree of polymerization (DP) of 25
414 according to the manufacturer's specification sheet. SAX was isolated in the lab from
415 sorghum bran using alkali extraction followed by an ethanol precipitation method as
416 described previously (46). Sugar controls including fructose, xylose, arabinose, mannose,
417 galactose and glucose were purchased from Sigma-Aldrich Inc (St. Louis, MO).

418

419 Polysaccharide composition and structure

420 The neutral monosaccharide compositions of inulin and SAX were determined using
421 the acid hydrolysis and volatile alditol acetate derivatization methods as previously described
422 (47, 48). Briefly, inulin polymers were hydrolyzed in 2M trifluoracetic acid (TFA) at 50°C
423 for 30 min; sugar concentrations in hydrolyzate were quantified by HPLC (49). SAX was
424 hydrolyzed in 2M TFA at 121°C for 90 min; the released sugars were reduced by NaBD₄ and
425 were converted into volatile alditol acetates by reacting with acetic anhydride at 100°C for
426 2.5 h. The alditol acetate derivatives were quantified via gas-chromatography-mass
427 spectrometry (12).

428 Molecular size distribution of inulin and SAX was analyzed by high performance
429 size-exclusion chromatography with refractive index detectors (Wyatt Technology
430 Corporation, Santa Barbara, CA) as previously described (46). Briefly, sample solutions were

431 prepared in DI water (0.1% w/v), prefiltered through a syringe membrane (1.5 μ m) and
432 injected (100 μ L) into S500HR column (Amersham Biosciences, Piscataway, NJ). Data were
433 collected after 130 minutes elution and RI signals were normalized by Origin Pro 9.1
434 (OriginLab Corporation, Northampton, MA).

435

436 ***In vitro* sequential fermentation**

437 Fermentations were performed in an anaerobic chamber (Coy Laboratory Products
438 Inc., Great Lake, MI) supplied with an 90% N₂, 5% CO₂, and 5% H₂ atmosphere. Sodium
439 phosphate buffer (10 mM) was prepared and autoclaved at 121°C for 20 min. The base media
440 (hereafter referred to as normal buffered (NB) medium) contained (per liter) 0.47 g NaCl,
441 0.45 g KCl, 0.40 g urea, 0.10 g Na₂SO₄, 0.001 g resazurin, 0.865 g Na₂HPO₄ and 0.468 g
442 NaH₂PO₄ and was autoclaved (121°C for 20 min). Heat sensitive compounds, including
443 0.0728 g CaCl₂, 0.1 g MgCl₂, 1 mL of 1000X P1 metal solution, and cysteine hydrochloride
444 (0.25 g/L) were sterilized by 0.22 μ m filtration and added; the media was then reduced in
445 anaerobic chamber overnight. To alleviate auxotrophies via exogenous nutrients, media were
446 also fortified with both 200 μ M amino acids (10 μ M of each) and 1% (v/v) ATCC vitamin
447 supplement (Hampton, NH). This medium is hereafter referred to as fortified buffered (FB)
448 medium.

449 The protocols involved for handling human fecal samples were reviewed and
450 approved by Purdue University's Institutional Review Board (IRB protocol #1701018645).
451 Human fecal samples were acquired from a single healthy donor who had not received
452 antibiotic treatment in the prior three months. Samples were sealed in 50 mL Falcon tubes,
453 stored on ice and followed by a rapid transfer into an anaerobic chamber. To prepare the
454 inoculum, fecal samples were anoxically homogenized in sodium phosphate buffer at a ratio
455 of 1:20 (w/w). The fecal slurry was filtered through four layers of sterile cheesecloth and

456 used as inocula within 2 hrs. Fresh fecal inocula used in the two described experiments were
457 collected from the same donor at a one-month interval. The overall research scheme is
458 illustrated in Supplementary Figure 3.

459 Sequential batch cultivations of inulin and SAX-consuming consortia were conducted
460 in 25 mL autoclaved Balch-type culture tubes (Chemglass Life Sciences, Vineland, NJ) in
461 triplicate lineages (5 mL each, with total carbohydrate of 1% w/v). The tubes were sealed
462 with rubber stoppers (Chemglass Life Sciences, Vineland, NJ) and aluminum seals
463 (Chemglass Life Sciences, Vineland, NJ), and incubated in an Innova 42 shaking incubator
464 (New Brunswick Scientific, Edison, NJ) at 37°C and 150 rpm for 24 hrs. For sequential
465 passages, tubes were opened inside the anaerobic chamber to maintain low oxygen condition
466 in each passage, diluted 1:100 into fresh media and fermented for another 24 h. The
467 sequential cultivation experiment was continued for 7 days, and each substrate/culture
468 condition was cultured in triplicate lineages that were not intermixed.

469 The gas production (as overpressure volume) of each culture tube was recorded for
470 each passage by piercing the stopper with a needle and glass syringe. Two aliquots were
471 collected from cultures at each passage for DNA extraction (1 mL) and short-chain fatty acid
472 measurements (1 mL). These samples were stored in sterile Eppendorf tubes and immediately
473 frozen at -80°C. The pH value was recorded from the remainder using a pH meter (Mettler
474 Toledo, Columbus, OH).

475

476 **Short chain fatty acid (SCFA) and other metabolites analysis**

477 SCFAs were quantitated as described previously (50). Briefly, cultures were
478 centrifuged (13,000 rpm) for 10 minutes to remove cell debris, mixed 10:1 with an internal
479 standard mixture containing 4-methylvaleric acid, phosphoric acid, and copper sulfate
480 pentahydrate, and supernatants were transferred to 2 mL screw-thread autosampler vials.

481 SCFA (acetate, propionate and butyrate) concentrations were quantified using an Agilent
482 7890A gas chromatograph (GC-FID 7890A, Santa Clara, CA) with a fused silica capillary
483 column (Nukon SUPELCO No:40369-03A, Bellefonte, PA).

484 SAX consortia culture at day 7 were analyzed for formate, lactate, succinate and
485 ethanol concentrations using a HPLC system (Waters Corporation, Milford, MA) that was
486 equipped with an organic acid column (BioRad Aminex HPX-87) and a refractive detector
487 (Model 2414, Waters Corporation, Milford, MA). The SAX culture (1 mL) was centrifuged
488 at 13,000 rpm for 10 min and then the supernatant was filtered through a 0.2 μ m membrane
489 to acquire a cell-free solution. The sample injection volume was set at 30 μ L, the column was
490 operated at 50°C and was eluted using 0.005M H₂SO₄ at 0.6 mL/min, the run time was set at
491 25 minutes.

492

493 **DNA extraction**

494 Microbial DNA was extracted using a modified phenol-chloroform method (51, 52).
495 Briefly, 1 mL of fermentation sample stored for DNA extraction was incubated at 85°C for 5
496 min to inactivate native DNases, cooled, and centrifuged at 13,000 rpm for 10 min. The
497 resulting cell pellets were incubated with 500 μ L lysozyme (Fisher Bioreagents, Pittsburgh,
498 PA) solution (1 mg/mL) at 37°C for 45 min. 100 μ L proteinase K (Fisher Bioreagents,
499 Pittsburgh, PA) solution (0.2 mg/mL) was then added and further incubated at 56°C for 1 h.
500 Lysates were then extracted with 500 μ L phenol/chloroform/isoamyl alcohol (Acros
501 Organics, Morris Plains, NJ) solution (25:24:1, PCI) in a reinforced sterile microvial (330 TX)
502 preloaded with 0.3 g of 0.1 mm zirconia/silica beads (1107910z, both BioSpec Products, Inc.,
503 Bartlesville, OK). The lysis tubes were subjected to bead beating in a FastPrep-24
504 homogenizer (MP Biomedicals, Santa Ana, CA) for 10 sec (6 m/s), which was followed by
505 cooling on ice for 5 min. An additional 500 μ L of PCI solution were added and vortexed for

506 15 sec. Samples were centrifuged (13,000 rpm, 10 min, 4°C), and the upper aqueous phase
507 was transferred to new tubes and mixed with 1 mL of a chloroform/isoamyl alcohol solution
508 (24:1) by vortex for 15 sec. Samples were centrifuged again (13,000 rpm, 10 min) and the
509 upper aqueous phase was transferred to new tubes containing 100 µL of 3 M sodium acetate
510 and precipitated with 1 mL of isopropanol. The solution was shaken gently, incubated at
511 room temperature for 10 min, and centrifuged at 13,000 rpm for 30 min. Supernatants were
512 decanted and the DNA pellets were washed with 500 µL 70% ethanol twice. The microbial
513 DNA was then air-dried, resuspended in Tris-EDTA buffer (pH 8.0), and stored at -20°C.

514

515 **16S rRNA amplicon sequencing, sequence processing, and community analysis**

516 Regions of the 16S rRNA gene were amplified from microbial DNA and sequenced to
517 quantify community composition as described previously (12). Briefly, primers 515-FB
518 (GTGYCAGCMGCCGCGGTAA) and 926-R (CCGYCAATTYMTTTRAGTTT) (20) were
519 used over 20 amplification cycles. The resulting amplicons were purified using an AxyPrep
520 PCR Clean-up Kit (Axygen Inc., Tewksbury, MA) following the manufacturer's instructions.
521 Amplicons were then barcoded using the TruSeq dual-index approach for five cycles. The
522 barcoded amplicons were purified as above, quantified using a Qubit dsDNA HS Assay Kit
523 (Invitrogen, Carlsbad, CA) and pooled. Quality control for each pool was performed on an
524 Agilent Bioanalyzer (Agilent, Santa Clara, CA) and sequenced on an Illumina MiSeq run
525 with 2 x 250 cycles at the Purdue Genomics Core Facility. Sequences are associated with
526 BioProject PRJNA432190 and publicly available as BioSamples SAMN08438641-
527 SAMN08438684 of the National Center for Biotechnology Information's Sequence Read
528 Archive. Sequences were processed using mothur v.1.39.3 according to the MiSeq SOP
529 (https://www.mothur.org/wiki/MiSeq_SOP) with previously described modifications (50).
530 Groups were subsampled to 2,594 reads to normalize sampling effort.

531

532 **ACKNOWLEDGEMENTS**

533

534 This work was supported, in part, through Hatch project IND011670 to S.R.L. and through
535 institutional funds provided by the Purdue University Departments of Food Science and
536 Nutrition Science. The authors thank Dr. Anton Terekhov for his assistance with
537 carbohydrate analyses.

538

539 **COMPETING INTERESTS**

540

541 The authors declare no competing interests.

542

543 **Reference**

544 1. O'Hara AM, Shanahan F. 2006. The gut flora as a forgotten organ. *EMBO Rep* 7:688–
545 693.

546 2. Wong JM, De Souza R, Kendall CW, Emam A, Jenkins DJ. 2006. Colonic health:
547 fermentation and short chain fatty acids. *J Clin Gastroenterol* 40:235–243.

548 3. Braaten JT, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-White P, Collins
549 MW. 1994. Oat beta-glucan reduces blood cholesterol concentration in
550 hypercholesterolemic subjects. *Eur J Clin Nutr* 48:465–474.

551 4. Giacco R, Parillo M, Rivellesse AA, Lasorella G, Giacco A, D'episcopo L, Riccardi G.
552 2000. Long-term dietary treatment with increased amounts of fiber-rich low-glycemic
553 index natural foods improves blood glucose control and reduces the number of
554 hypoglycemic events in type 1 diabetic patients. *Diabetes Care* 23:1461–1466.

555 5. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR,
556 Delzenne NM. 2007. Selective increases of bifidobacteria in gut microflora improve
557 high-fat-diet-induced diabetes in mice through a mechanism associated with
558 endotoxaemia. *Diabetologia* 50:2374–2383.

559 6. Mosca A, Leclerc M, Hugot JP. 2016. Gut microbiota diversity and human diseases:
560 should we reintroduce key predators in our ecosystem? *Front Microbiol* 7:455.

561 7. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm
562 MC. 2014. Low gut microbiota diversity in early infancy precedes asthma at school age.
563 *Clin Exp Allergy* 44:842–850.

564 8. Näpflin K, Schmid-Hempel P. 2018. High Gut Microbiota Diversity Provides Lower
565 Resistance against Infection by an Intestinal Parasite in Bumblebees. *Am Nat* 192:131–
566 141.

567 9. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. 2017. The resilience of the
568 intestinal microbiota influences health and disease. *Nat Rev Microbiol* 15:630.

569 10. Hamaker BR, Tuncil YE. 2014. A perspective on the complexity of dietary fiber
570 structures and their potential effect on the gut microbiota. *J Mol Biol* 426:3838–3850.

571 11. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2008. The
572 Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics.
573 *Nucleic Acids Res* 37:D233–D238.

574 12. Tuncil YE, Nakatsu CH, Kazem AE, Arioglu-Tuncil S, Reuhs B, Martens EC, Hamaker
575 BR. 2017. Delayed utilization of some fast-fermenting soluble dietary fibers by human
576 gut microbiota when presented in a mixture. *J Funct Foods* 32:347–357.

577 13. Gause GF. 1932. Experimental Studies on the Struggle for Existence: I. Mixed
578 Population of Two Species of Yeast. *J Exp Biol* 9:389–402.

579 14. Hardin G. 1960. The Competitive Exclusion Principle. *Science* 131:1292–1297.

580 15. Abbott DW, van Bueren AL. 2014. Using structure to inform carbohydrate binding
581 module function. *Curr Opin Struct Biol* 28:32–40.

582 16. McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA,
583 Muegge BD, Henrissat B, Hettich RL, Gordon JI. 2013. Effects of Diet on Resource
584 Utilization by a Model Human Gut Microbiota Containing *Bacteroides cellulosilyticus*
585 WH2, a Symbiont with an Extensive Glycobiome. *PLOS Biol* 11:e1001637.

586 17. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A,
587 Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet M-
588 C, Henrissat B, Martens EC, Mosimann SC, Abbott DW, Gilbert HJ. 2018. Dietary
589 pectic glycans are degraded by coordinated enzyme pathways in human colonic
590 Bacteroides. *Nat Microbiol* 3:210.

591 18. Lenski RE. 2017. Convergence and Divergence in a Long-Term Experiment with
592 Bacteria. *Am Nat* 190:S57–S68.

593 19. Rycroft CE, Jones MR, Gibson GR, Rastall RA. 2001. A comparative in vitro
594 evaluation of the fermentation properties of prebiotic oligosaccharides. *J Appl*
595 *Microbiol* 91:878–887.

596 20. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert
597 JA, Jansson JK, Caporaso JG, Fuhrman JA. 2016. Improved bacterial 16S rRNA gene
598 (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial
599 community surveys. *Msystems* 1:e00009–15.

600 21. Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011. Carbohydrate metabolism in
601 Bifidobacteria. *Genes Nutr* 6:285–306.

602 22. Van den Abbeele P, Van De Wiele T, Possemiers S. 2011. Prebiotic effect and potential
603 health benefit of arabinoxylans. *Agro Food Ind Hi Tech* 22:9.

604 23. Gascoyne DJ, Theodorou MK. 1988. Consecutive batch culture—a novel technique for
605 the in vitro study of mixed microbial populations from the rumen. *Anim Feed Sci*
606 *Technol* 21:183–189.

607 24. Cheng YF, Edwards JE, Allison GG, Zhu W-Y, Theodorou MK. 2009. Diversity and
608 activity of enriched ruminal cultures of anaerobic fungi and methanogens grown
609 together on lignocellulose in consecutive batch culture. *Bioresour Technol* 100:4821–
610 4828.

611 25. Chung WSF, Walker AW, Vermeiren J, Sheridan PO, Bosscher D, Garcia-Campayo V,
612 Parkhill J, Flint HJ, Duncan SH. 2019. Impact of carbohydrate substrate complexity on
613 the diversity of the human colonic microbiota. *FEMS Microbiol Ecol* 95.

614 26. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, Shakeel A, Ansari A,
615 Niazi S. 2016. Inulin: Properties, health benefits and food applications. *Carbohydr
616 Polym* 147:444–454.

617 27. Lu J, Li Y, Gu G, Mao Z. 2005. Effects of molecular weight and concentration of
618 arabinoxylans on the membrane plugging. *J Agric Food Chem* 53:4996–5002.

619 28. Konopka A, Lindemann S, Fredrickson J. 2015. Dynamics in microbial communities:
620 unraveling mechanisms to identify principles. *ISME J* 9:1488–1495.

621 29. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K,
622 Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. 2017. Expert consensus
623 document: The International Scientific Association for Probiotics and Prebiotics (ISAPP)
624 consensus statement on the definition and scope of prebiotics. *Nat Rev Gastroenterol
625 Hepatol* 14:491–502.

626 30. Meyer D, Stasse-Wolthuis M. 2009. The bifidogenic effect of inulin and oligofructose
627 and its consequences for gut health. *Eur J Clin Nutr* 63:1277.

628 31. Vandeputte D, Kathagen G, D'hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J,
629 Wang J, Tito RY, De Commer L, Darzi Y. 2017. Quantitative microbiome profiling
630 links gut community variation to microbial load. *Nature* 551:507.

631 32. Bettler J, Euler AR. 2006. An evaluation of the growth of term infants fed formula
632 supplemented with fructo-oligosaccharide. *Int J Probiotics Prebiotics* 1:19.

633 33. Calame W, Weseler AR, Viebke C, Flynn C, Siemensma AD. 2008. Gum arabic
634 establishes prebiotic functionality in healthy human volunteers in a dose-dependent
635 manner. *Br J Nutr* 100:1269–1275.

636 34. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. 2013. The influence of diet on
637 the gut microbiota. *Pharmacol Res* 69:52–60.

638 35. Sheridan PO, Martin JC, Lawley TD, Browne HP, Harris HM, Bernalier-Donadille A,
639 Duncan SH, O'Toole PW, Scott KP, Flint HJ. 2016. Polysaccharide utilization loci and
640 nutritional specialization in a dominant group of butyrate-producing human colonic
641 Firmicutes. *Microb Genomics* 2.

642 36. Hoeflinger JL, Davis SR, Chow J, Miller MJ. 2015. In vitro impact of human milk
643 oligosaccharides on Enterobacteriaceae growth. *J Agric Food Chem* 63:3295–3302.

644 37. Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y. 1986. Effects of
645 fructooligosaccharides on intestinal flora and human health. *Bifidobact Microflora*
646 5:37–50.

647 38. Hartemink R, Van Laere KMJ, Rombouts FM. 1997. Growth of enterobacteria on
648 fructo-oligosaccharides. *J Appl Microbiol* 83:367–374.

649 39. Schouler C, Taki A, Chouikha I, Moulin-Schouleur M, Gilot P. 2009. A genomic island
650 of an extraintestinal pathogenic *Escherichia coli* strain enables the metabolism of
651 fructooligosaccharides, which improves intestinal colonization. *J Bacteriol* 191:388–393.

652 40. Dodd D, Mackie RI, Cann IKO. 2011. Xylan degradation, a metabolic property shared
653 by rumen and human colonic Bacteroidetes. *Mol Microbiol* 79:292–304.

654 41. Zhang M, Chekan JR, Dodd D, Hong P-Y, Radlinski L, Revindran V, Nair SK, Mackie
655 RI, Cann I. 2014. Xylan utilization in human gut commensal bacteria is orchestrated by
656 unique modular organization of polysaccharide-degrading enzymes. *Proc Natl Acad Sci*
657 111:E3708–E3717.

658 42. Nie X, Martens E, Xiao Y, Reuhs B, Hamaker B. 2016. Substrate Structure-dependent
659 Growth of *Bacteroides Xylanisolvans* XB1A on Corn Arabinoxylan Fragments in Pure
660 and Mixed Culture Environments. *FASEB J* 30:683.7-683.7.

661 43. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A,
662 Morland C, Day AM, Zheng H. 2015. Glycan complexity dictates microbial resource
663 allocation in the large intestine. *Nat Commun* 6:7481.

664 44. Amir I, Bouvet P, Legeay C, Gophna U, Weinberger A. 2014. *Eisenbergiella tayi* gen.
665 nov., sp. nov., isolated from human blood. *Int J Syst Evol Microbiol* 64:907–914.

666 45. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, De
667 Weirdt R, Kerckhof F-M, Van de Wiele T. 2013. Butyrate-producing *Clostridium*
668 cluster XIVa species specifically colonize mucins in an in vitro gut model. *ISME J*
669 7:949.

670 46. Rumpagaporn P, Reuhs BL, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR. 2015.
671 Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in
672 vitro fermentation by human fecal microbiota. *Carbohydr Polym* 130:191–197.

673 47. Pettolino FA, Walsh C, Fincher GB, Bacic A. 2012. Determining the polysaccharide
674 composition of plant cell walls. *Nat Protoc* 7:1590.

675 48. Xu J, Chen D, Liu C, Wu X-Z, Dong C-X, Zhou J. 2016. Structural characterization and
676 anti-tumor effects of an inulin-type fructan from *Atractylodes chinensis*. *Int J Biol
677 Macromol* 82:765–771.

678 49. Chen M-H, Dien BS, Vincent ML, Below FE, Singh V. 2014. Effect of harvest maturity
679 on carbohydrates for ethanol production from sugar enhanced
680 temperate\times\tropical maize hybrid. *Ind Crops Prod* 60:266–272.

681 50. Tuncil YE, Thakkar RD, Marcia ADR, Hamaker BR, Lindemann SR. 2018. Divergent
682 short-chain fatty acid production and succession of colonic microbiota arise in
683 fermentation of variously-sized wheat bran fractions. *Sci Rep* 8:16655.

684 51. Ferrera I, Massana R, Balagué V, Pedrós-Alió C, Sánchez O, Mas J. 2010. Evaluation of
685 DNA extraction methods from complex phototrophic biofilms. *Biofouling* 26:349–357.

686 52. Lindemann SR, Moran JJ, Stegen JC, Renslow RS, Hutchison JR, Cole JK, Dohnalkova
687 AC, Tremblay J, Singh K, Malfatti SA. 2013. The epsonitic phototrophic microbial mat
688 of Hot Lake, Washington: community structural responses to seasonal cycling. *Front
689 Microbiol* 4:323.

690

691

692 **Figure Legends**

Figure 1. Total gas and acid production from sequential batch cultures of monomeric (fructose, SAX sugar control) and polymeric (inulin, SAX) carbon sources in unfortified media. Gas production as overpressure (A) and pH (B) were measured after each daily passage. Total gas (C) and acid production (D) from sequential batch cultures on polymeric (inulin, SAX) carbon sources in normal and fortified media were also recorded each day in the nutrient supplementation experiment. Error bars depict standard error of the mean.

Figure 2. Comparison of total SCFA, acetate, propionate and butyrate production in day 7 cultures. (A) The SCFAs among SAX-, SAX sugar control-, inulin- and fructose-consuming cultures from the first experiment in NB. (B) SCFAs comparison plot of the second experiment in which SAX and inulin were fermented either in unfortified or fortified media. Error bars depict standard error of the mean. Statistically significant differences are calculated by Tukey's multiple comparisons test with $p < 0.05$. Symbol style: nonsignificant (ns), 0.0332 (*), 0.0021 (**), 0.0002(***), <0.0001 (****).

Figure 3. Principal coordinate analysis (PCoA) plot of Bray-Curtis dissimilarity across all lineages of both experiments. Numbers in the symbols indicate the passage day. SAX-consuming consortia clustered in the lower right corner across both experiments, indicating similar community structure regardless of medium condition. Inulin-consuming consortia in normal media formed a distinct cluster, which was close to the fructose and SAX sugars control samples. In contrast, communities consuming inulin in

fortified media displayed an alternate succession trajectory and resulted in distinct community structure.

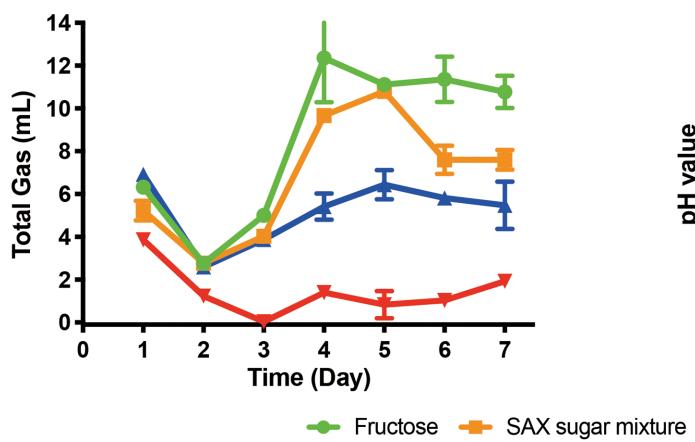
Figure 4. Microbial community structure across sequential passages as revealed by 16S rRNA gene amplicon sequencing. Daily changes of community structures from one donor's lineage over 7 days are shown in (A) sequential cultures on inulin, SAX, and their respective monosaccharide controls (first experiment) and (B) the effect of fortification on SAX- and inulin-fermenting consortia (second experiment). Each shade represents a distinct OTU, which are colored by phylum: *Proteobacteria* (blue), *Bacteroidetes* (red), *Firmicutes* (green) and *Actinobacteria* (gray). Rare OTUs (those below 0.2% relative abundance) are grouped in Others (black).

Figure 5. Short-chain fatty acid (SCFA) production as a function of carbohydrate complexity, including polymers (inulin, SAX) and their corresponding monosaccharide controls (fructose (A), SAX sugar control (B), inulin (C) and SAX (D)). SCFAs were measured at each daily passage by gas chromatography. Error bars depict standard error of the mean.

Figure 6. Short-chain fatty acid (SCFA) production of inulin- and SAX-consuming cultures with and without medium fortification with amino acids and vitamins. SCFAs were measured at each daily passage by gas chromatography. Error bars depict standard error of the mean.

Figure 7. Numbers of observed OTUs (> 0.1% relative abundance across each sample) at each passage in the first experiment (A) and second experiment (B). Alpha diversity metrics (Shannon index (C,D), Simpson evenness (E,F) and inverse Simpson index (G,H) of day 7 communities

are plotted for each experiment (first experiment: A, C, E, G, second experiment: B, D, F, H). Identical letters in panels A and B indicate nonsignificantly different values. Statistically significant differences are calculated by Tukey's multiple comparisons test with $p < 0.05$. Symbol style: nonsignificant (ns), 0.0332 (*), 0.0021 (**), 0.0002(***), <0.0001 (****).


Supplementary Figure 1. Molecular size distribution of inulin (A) and SAX (B) from high performance size exclusion chromatography with refractive index detector (HPSEC-RI). Samples were suspended into deionized water with final concentration of 1% and injected into a Sephacryl S500HR column (Amersham Biosciences, Piscataway, NJ, USA). The molecular weight (MW) was estimated from a calibration curve generated using maltodextrin standards.

Supplementary Figure 2. OTU relative abundances across all lineages. Each shade represents a different OTU and are colored according to phylum (*Proteobacteria*, blue; *Bacteroidetes*, red; *Firmicutes*, green; and *Actinobacteria*, gray). Rare OTUs ($< 0.2\%$ relative abundance in total) are combined together in Others (black).

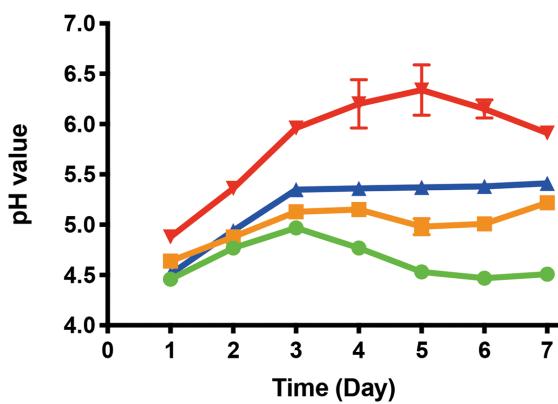
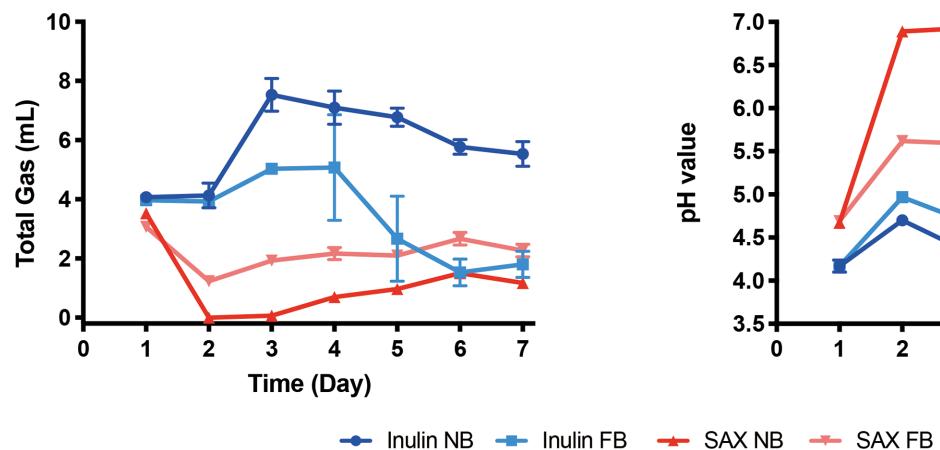
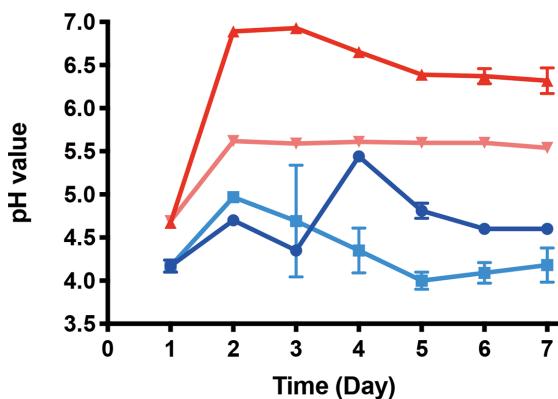
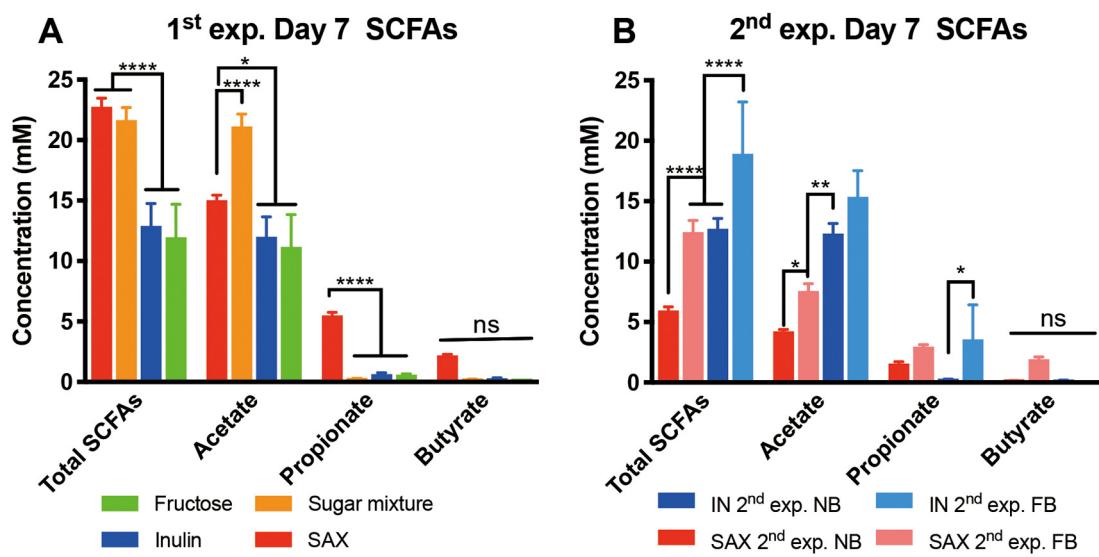

Supplementary Figure 3. Schematic outline of 2 experiments.

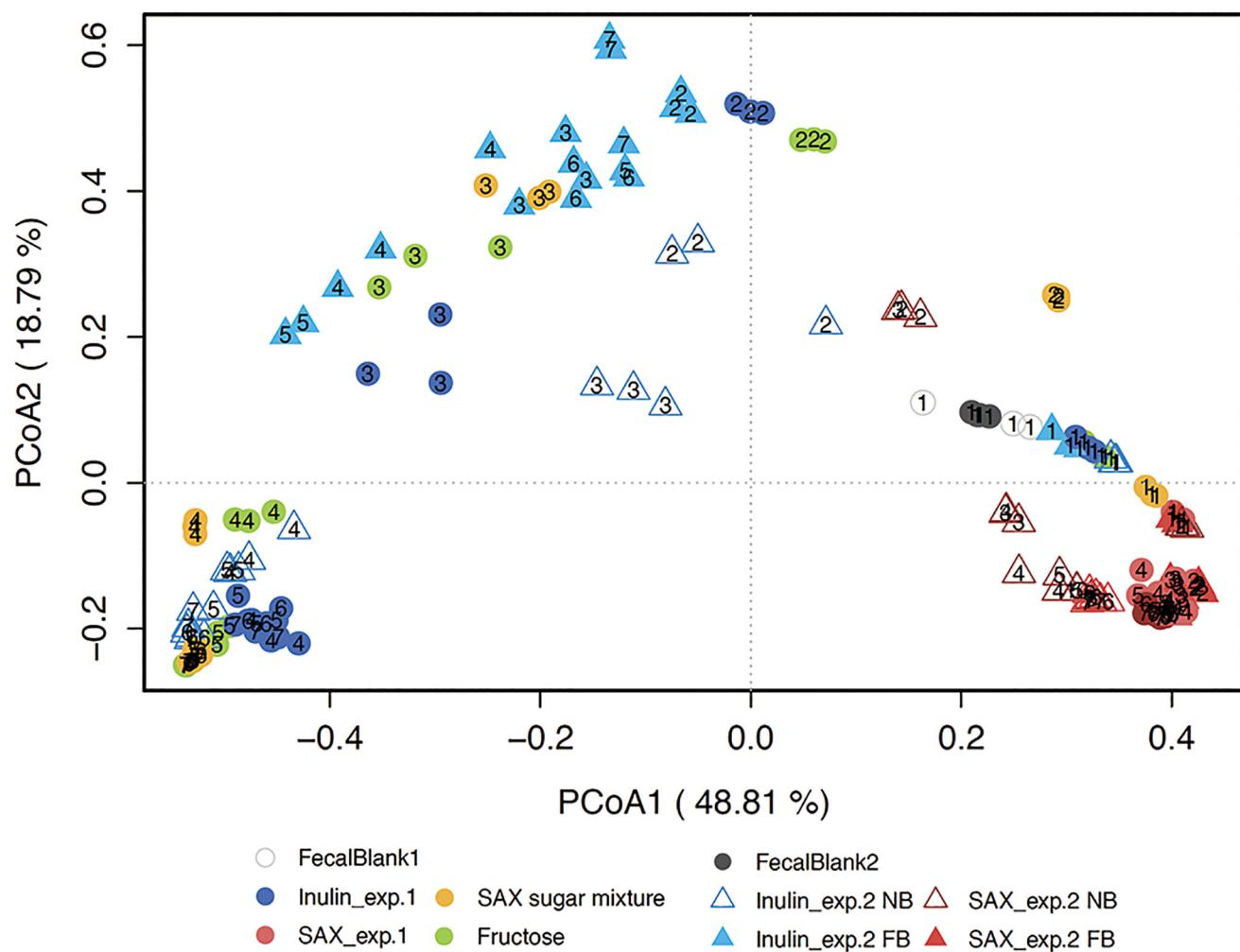
Figure 3.

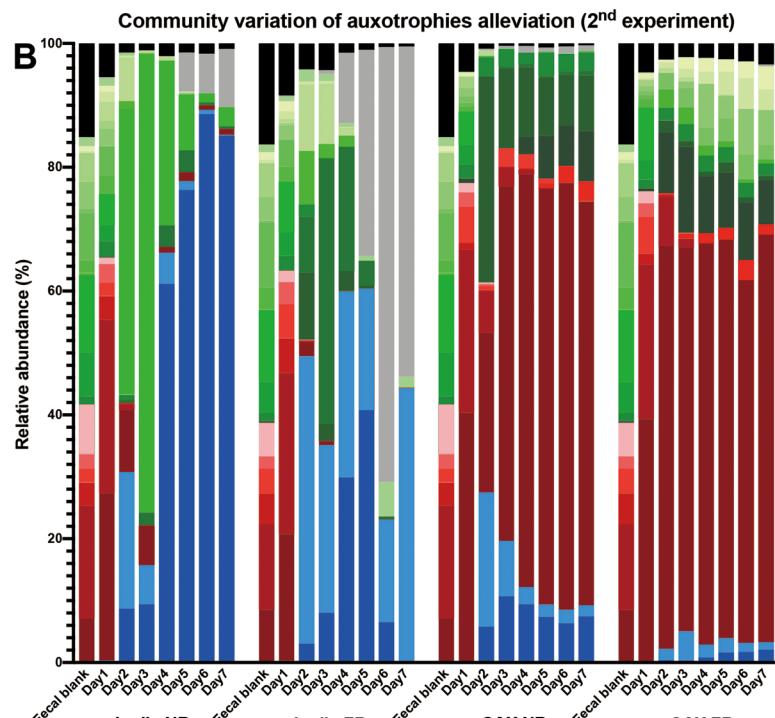
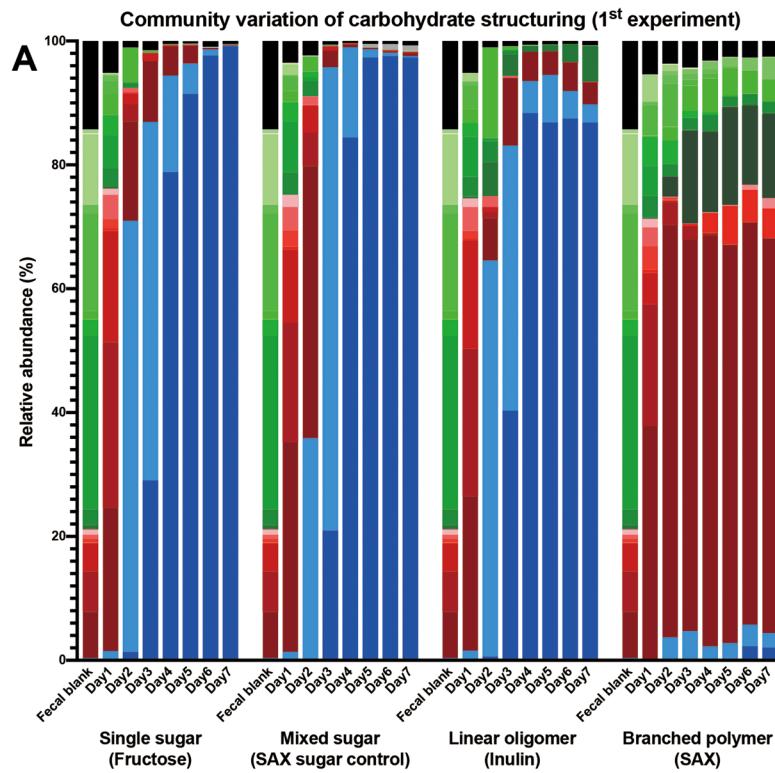

A Gas production of first experiment

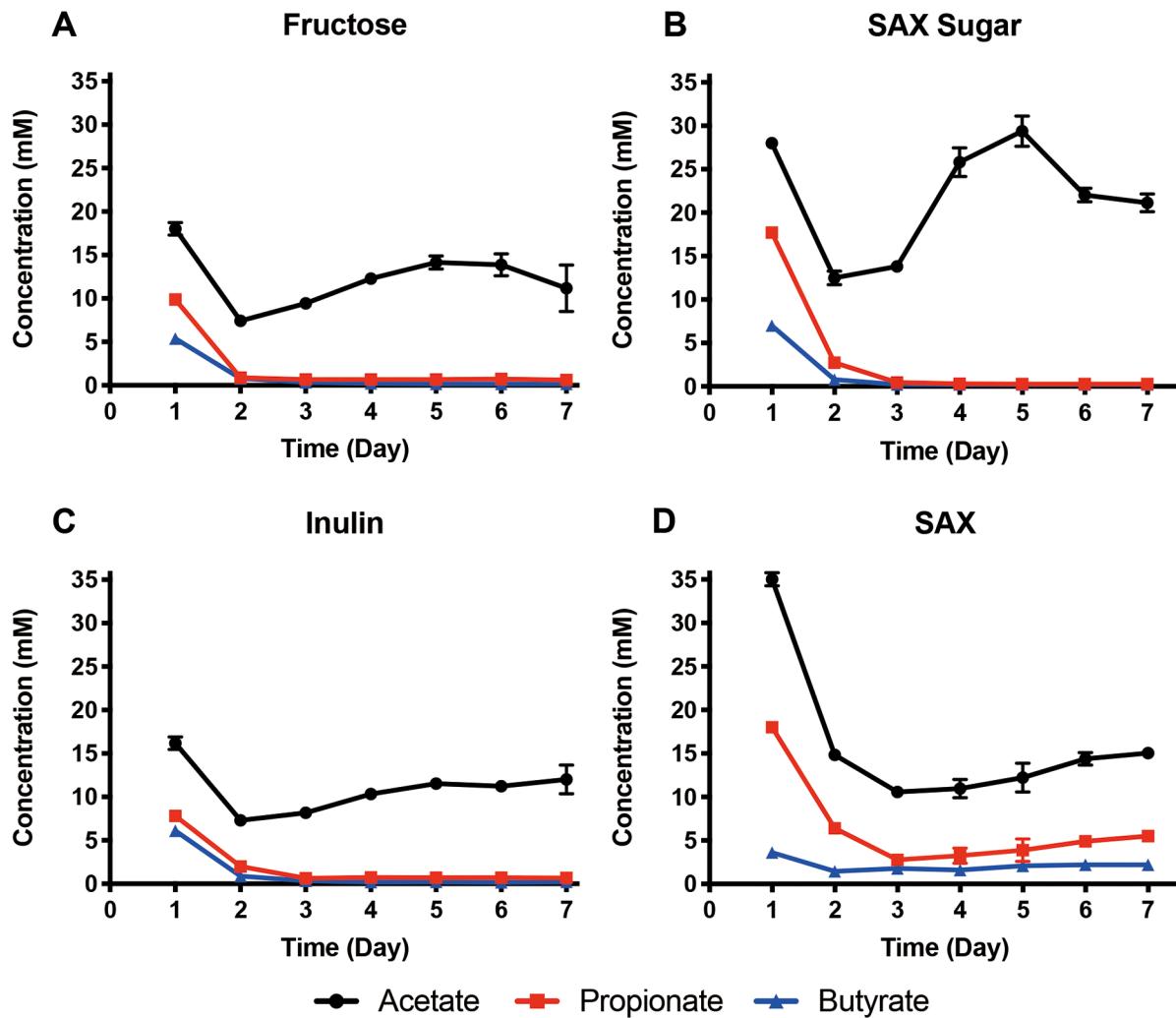

B pH value of first experiment

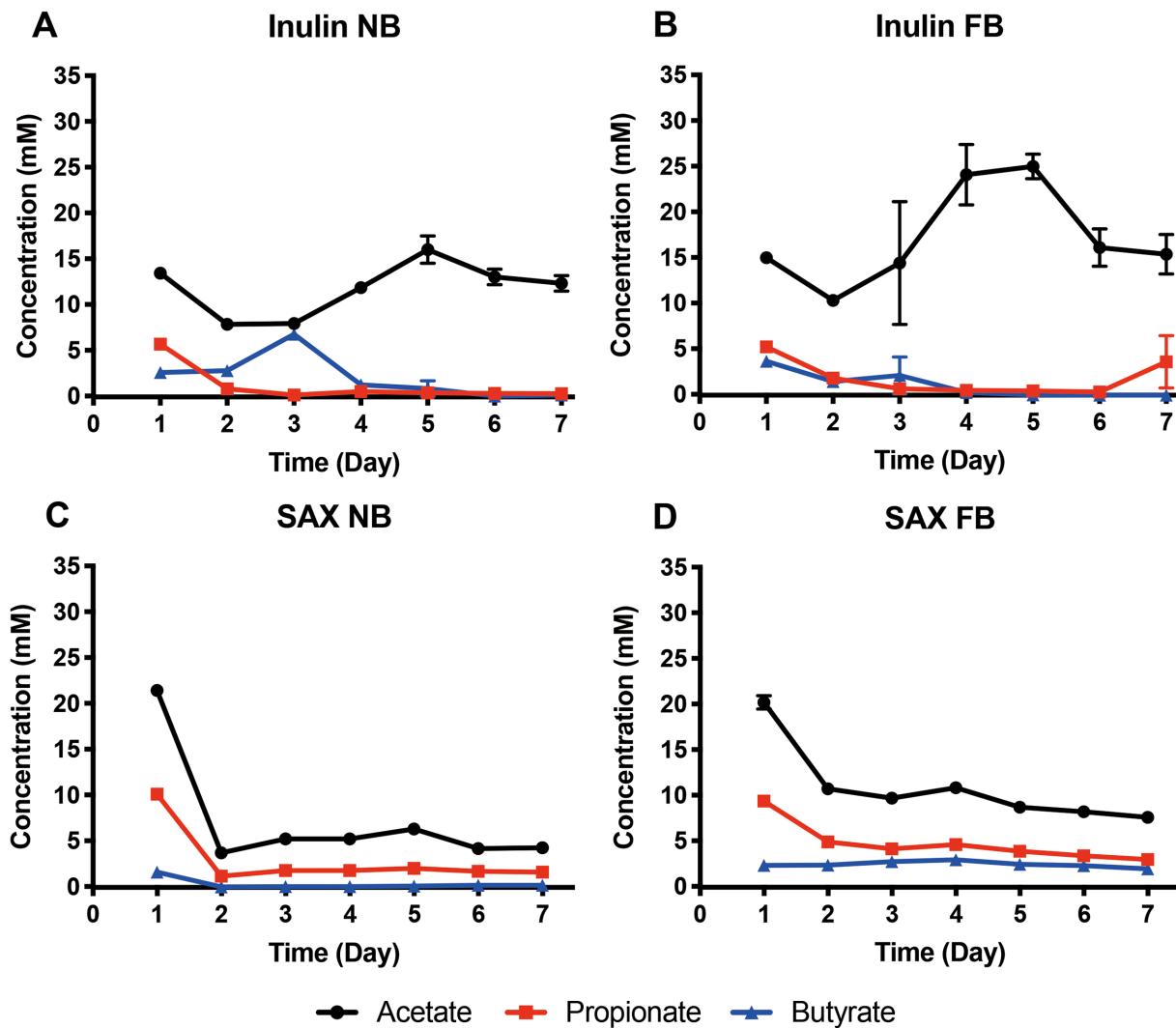


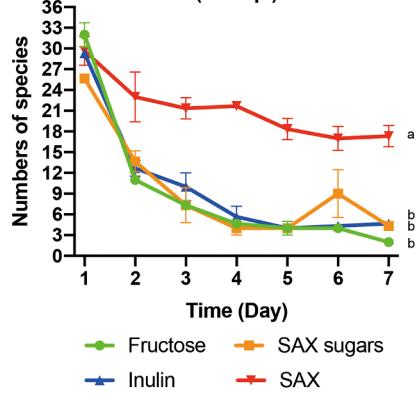
C Gas production of second experiment



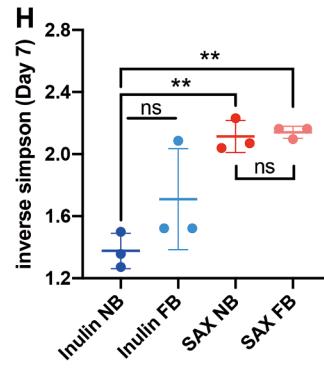
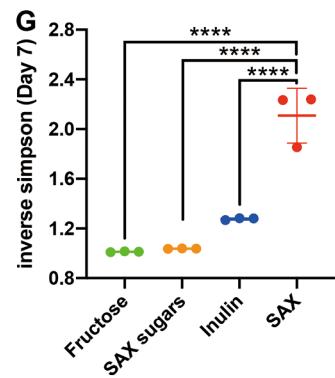
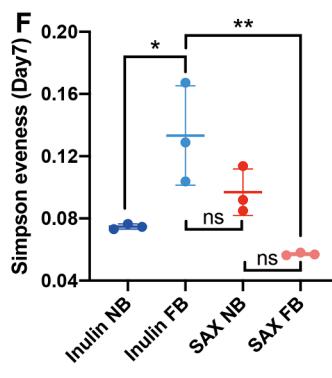
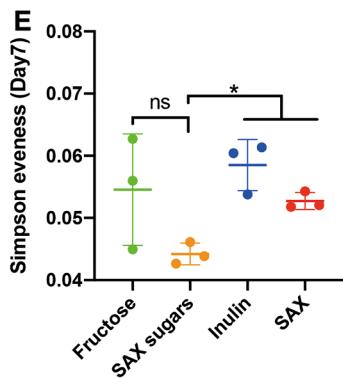
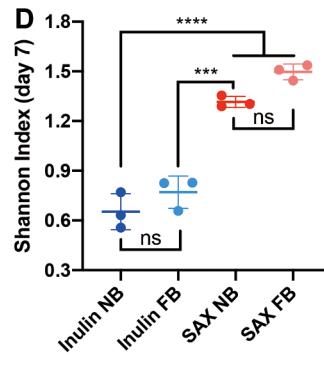
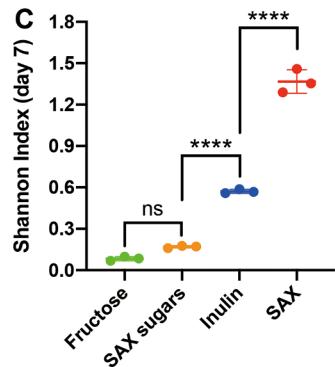
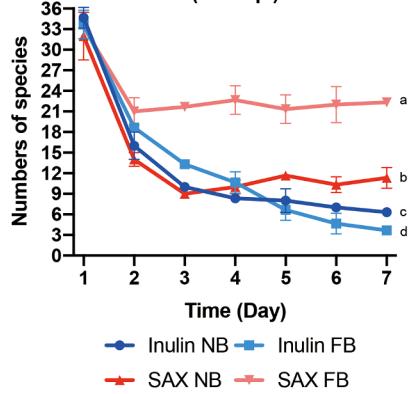


D pH value of second experiment




Community structure migration (PCoA)



Klebsiella pneumoniae	Enterobacteriaceae_unclassified	Bacteroides ovatus	Bacteroides_unclassified
Bacteroides stercoris	Parabacteroides_unclassified	Parabacteroides distasonis	Parabacteroides distasonis
Parabacteroides merdae	Bacteroides massiliensis	Eisenbergiella tayi	Enterococcus saccharolyticus
Clostridium_XVIII_ramosum	Phascolarctobacterium faecium	Lachnospiraceae_unclassified	Faecalibacterium prausnitzii
Clostridium_sensu_stricto_unclassified	Hungatella effluvii	Faecalibacterium_unclassified	Clostridium_XVIII_unclassified
Lachnospiraceae_unclassified	Clostridium_XVa_unclassified	Fusicatenibacter saccharivorans	Dorea longicatena
Lactococcus lactis	Veillonella_unclassified	Butyricicoccus pullicaeorum	Streptococcus salivarius
Bifidobacterium_unclassified	Others		

A Numbers of observed species (>0.1%)
(1st exp.)

B Numbers of observed species (>0.1%)
(2nd exp.)

