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The adaptive immune system of vertebrates can detect, respond to, and memorize diverse
pathogens from past experience. While the selection of T helper (Th) clones is the simple and
established mechanism to recognize and memorize new pathogens, the question that still remains
unexplored is how the Th cells can acquire better ways to bias the responses of immune cells for
eliminating pathogens more efficiently by translating the recognized antigen information into regu-
latory signals. In this work, we address this problem by associating the adaptive immune network
organized by the Th cells with reinforcement learning (RL). By employing recent advancements of
network-based RL, we show that the Th immune network can acquire the association between anti-
gen patterns of and the effective responses to pathogens. Moreover, the clonal selection as well as
other inter-cellular interactions are derived as a learning rule of this network. We also demonstrate
that the stationary clone-size distribution after learning shares characteristic features with those
observed experimentally. Our theoretical framework may contribute to revising and renewing our
understanding of adaptive immunity as a learning system.

I. INTRODUCTION

The adaptive immunity of vertebrates is a complex
adaptive system. The system constantly adapts to in-
truding pathogens by orchestrating the populations and
responses of diverse immune cells, each type of which
can have distinct roles [1–3]. For example, effector cells
(innate cells, T killer cells, a part of innate lymphoid
cells, B cells, etc.) are responsible for executing intrin-
sic pathogen-specific responses, whereas T helper (Th)
cells mainly control and bias the activities of these effec-
tor cells. The diversity and activity of immune cells are
modulated over the organisms’ lifetimes through inter-
cellular communications via hundreds of chemical mes-
sengers and subsequent adaptive changes in the popula-
tion sizes or phenotypic states [4–7]. Even though young
children are susceptible to infections [8–10], they may de-
velop higher resistance to infections through the modula-
tion. As evidenced by the vaccination and immunization
[11–13], such modulation may be achieved as an adaptive
response to previous infections, which can be regarded as
a type of learning from experience.

Despite the availability of latest experimental technolo-
gies, revealing the principles of such complex learning
dynamics is still intricate because the immunological dy-
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namics is shaped and organized by the collective inter-
actions of the entire immune cell population, which pre-
vents us from simply reducing the problem down to the
mere existence of specific cell types or molecules. In order
to comprehend a complex learning system, David Marr
in neuroscience highlighted the importance of character-
izing the system at three levels [14, 15]: the goal of the
system (the computational level), the process and com-
putation to realize the goal (the algorithmic level), and
the physical implementation of the process (the imple-
mentation level).

In the past decades, a substantial amount of effort has
been devoted to understand the immune system, espe-
cially at the implementation level [1, 2]. Cellular and
molecular immunology has identified hundreds of phe-
notypically and functionally distinct immune cells and
associated molecular markers[5]. Concurrently, tens of
cytokines and chemokines have been discovered as chem-
ical messages to coordinate the communications between
immune cells [6, 16]. Moreover, with the advancement of
high-throughput sequencing, it is now possible to mea-
sure the diversity of T and B cells, which constitutes an
integral part of immunological recognition and memory
[17, 18]. Despite the accumulation of such knowledge at
the implementation level, our understanding of the im-
mune system at the algorithmic and computational levels
lags far behind and still remains limited to conceptual
theories such as the clonal selection theory [19, 20]. In
the face of the revealed complexity, the theory is nei-
ther sufficiently descriptive nor quantitative to draw new
insights[21] and should be renewed to have a greater ex-
planatory and predictive power by being endowed with
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a firm mathematical basis[22–25]. In particular, most of
theoretical works still focus only on antigen-induced T
cell selection even though activated innate immune cells
convey information to T cells about the origin and na-
ture of antigens and pathogens via co-stimulation and
cytokine signals[26]. The problem that still remains un-
solved is how Th cells are modulated by these different
signals not only to recognize antigens but also to induce
and bias the activities of the groups of effector cells for
evicting pathogens more efficiently by translating the rec-
ognized antigen information.

To this end, we revised the concept of immunological
learning and bestowed it with a modern mathematical
basis by focusing on the computational and algorithmic
levels. At the computational level, the goal of the system
may be to learn better ways from past experiences to bias
the activities of the effector cells in response to infections,
so as to evict the infected pathogens more promptly and
specifically. We formulated this process as a reinforce-
ment learning (RL) problem described using a Markov
decision process (MDP) [27–29].

At the algorithmic level, the system has to find a bet-
ter way to bias the activities of the effector cells to the
infected pathogens. For example, activating T killer cells
is effective in coping with virus-infected cells but not with
bacteria. The Th cells coordinate this process; they ob-
tain the information of the infected pathogens from the
pattern of antigens presented by antigen presenting cells
(APCs). Then, the Th cells regulate the activities of
groups of effector cells by secreting different kinds of cy-
tokines. As a network, the Th cell population constitutes
the middle layer between the pattern of antigens and that
of the activated effector cells (Fig. 1). By following the
recent advancements in the applications of neural net-
works and entropy-regularization for solving RL prob-
lems [30, 31], we derive the learning dynamics of the Th
cell population, which corresponds to the algorithm to
achieve the goal formulated at the computational level.
The derived learning dynamics has the form of a repli-
cator equation, which can be interpreted at the imple-
mentation level as the clonal selection of the Th cells in
response to antigen presentation. The derived learning
rule also contains the terms that work as feedback from
the effector cells to the Th cells. These results provide us
with fruitful insights on the potential roles of molecular
and cellular components for learning in real immune sys-
tems. The simulations of MDP with the derived learning
dynamics demonstrate that the clone size distributions
of the Th cell population after learning can show proper-
ties that are qualitatively consistent with those observed
experimentally.

It should be noted that our formulation is not intended
to account for all the details of immunity but to highlight
the learning aspect of immunity.While we focus primarily
on Th cells, we also discuss how other components and
constraints of the immune system can be incorporated.
Our approach can also complement more mechanistic in-
vestigations of the dynamics and regulation of immune

responses by suggesting the functional roles of such dy-
namics at the computational and algorithmic levels.
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FIG. 1. Schematic diagram of the adaptive immune system
in relation with the network-based reinforcement learning.
When an infection occurs, APCs engulf the pathogens and
present multiple antigens as an antigen pattern s. The Th
cell population recognizes the antigen pattern s and biases
the activities of the effector cells. The stochastic mapping
πn(a|s) from s to a is regarded as the policy of the system
parameterized by the abundance of the Th clones n. The
effectiveness of the pattern of the effector activities a to the
infection is represented as the reward R(s,a).

II. MODEL

A. Framing adaptive immune response and
learning as reinforcement learning

Upon infection by a pathogen, the innate immune re-
sponses are initiated. Subsequently, the APCs that en-
gulf the pathogen start presenting peptide-fragments of
the pathogen (antigens) to the Th cells. In general,
multiple peptide fragments are derived from a pathogen
and their pattern works as a fingerprint of the pathogen.
Let N be the number of different types of antigens and
s ∈ {0, 1}N be a pattern of the antigens; si = 1 and
si = 0 indicate the presence and absence of the ith
type of antigen, respectively (Fig. 1). An antigen pat-
tern s = {0, 1, 1, 1}, for example, indicates that all but
the first type of antigens exist among the four. This
antigen pattern conveys information about the infected
pathogens to the Th cells.
Upon receiving the information, the Th cell population

secretes a pattern of cytokines, which may differ depend-
ing on the activities of the Th cells induced by the antigen
pattern s. In turn, depending on the cytokine pattern,
different groups of effector cells, which include B cells,
T killer cells, macrophages, etc., are activated or deacti-
vated, constitute the response to the pathogen. It should
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be noted that these effector cells are different from the
effector T cells. Let M be the number of different types
of effector cells and a ∈ {0, 1}M be an activation pattern
of the effector cells.

Here, aj = 1 and aj = 0 indicate the activation and
inactivation of the jth type of effector cells, respectively
(Fig. 1). An activation pattern a = {1, 1, 0}, for exam-
ple, implies that the first and second types of effector cells
are activated while the third one is inactivated. The Th
cell population can bias the activation pattern a of the
effector cells based on the information of the antigen pat-
tern s. We express this role of the Th cell population by
a stochastic transition probability π(a|s) that determines
which activation pattern a is likely to be realized when
the Th cells are exposed to the antigen pattern s. We
call this conditional probability distribution π the policy
of the Th cell population.

Patterns of the activated effector cells have different in-
fluences on the antigen patterns. If the activated effector
cells are effective for the pathogen, the types of antigens
that are specific to the pathogen should disappear from
the antigen pattern with a high probability. Otherwise,
the antigen pattern s may not change much. We express
this stochastic transition of s with a transition probabil-
ity P (s′|s,a), where s and s′ denote the antigen patterns
before and after being exposed to a pattern of effector
cells, respectively. It should be noted that this transi-
tion law itself is physically determined by the nature of
the effector cells and pathogens and that each transition
may not necessarily be dependent on its immunological
effectiveness. Immunological effectiveness is a vague but
important factor with which Th cells can learn a bet-
ter policy π to induce a better activity pattern a for a
given antigen pattern s. The immunological effectiveness
of action a for antigen pattern s is modeled here using a
reward function R(s,a) ∈ [0,∞) (Fig. 1). The reward
function can be a complicated function of the antigen and
activation patterns in general, but it can be presumed to
take a large value if the activity pattern of the effector
cells is effective for the current state; otherwise, it takes
a low value. The details and a biological counterpart of
this reward signal will be discussed in a later section.

In summary, the learning dynamics of the immune cell
population are modeled by the following five components.

• A set of antigen patterns S ⊂ {0, 1}N ,

• A set of activity patterns of the effector cells A ⊂
{0, 1}M ,

• Transition probability P (s′|s,a),

• Reward function R(s,a) ∈ R,

• Policy of Th cell population π(a|s).

In the terminology of MDP, the first four components
correspond to a set of states, a set of actions, transition
probability, and reward, respectively.

By optimizing the policy π(a|s) via interactions with
pathogens, the immune system can adaptively respond to

infections. The optimal policy π† is characterized as the
policy that maximizes the expected cumulative reward
J [π] := E [

∑∞
t=0 γ

tRπ(st,at)] as π† := argmaxπ J [π],
where

Rπ(st,at) = R(st,at)−
1

β
log

π(at|st)
π0(at|st)

.

The additional term 1
β log π/π0 represents the cost of con-

trol to bias the activity of the effector cells from their in-
trinsic behavior π0 to π. β ∈ (0,∞) is a scaling parameter
of the cost. Because of the functional form of the control
cost, this formulation is also recognized as an entropy-
regularized reinforcement learning (erRL)[32]. For sim-
plicity, we assume here that π0 is uniform. The optimal
policy can be explicitly represented as

π†(a|s) = exp[βQ†(a, s)]∑
a exp[βQ

†(a, s)]
,

where the optimal Q function Q† is defined as Q† :=
maxπ Q(s,a) and

Q(s,a) := E

[
R(s0,a0) +

∞∑
t=1

γtRπ(st,at)

∣∣∣∣∣ s0 = s,
a0 = a

]
.

(1)

While the optimal policy π† is obtained theoretically, it
is not clear how the immune system can implement it.
Moreover, because the immune system does not have per-
fect information on P (s′|s,a) and R(s,a) a priori, the
optimal policy should be learned via interactions with
pathogens a posteriori.

B. Implementation of policy by T helper cell
population

Each T helper cell can be characterized by its T cell re-
ceptor (TCR) and the types of cytokines secreted, which
roughly correspond to the phenotypic subtypes of the
Th cells, e.g., Th1, Th2[2, 33]. Let K be the number
of different Th clones classified according to these cri-
teria, and nk be the population size of the kth clones.
Each clone interacts with the ith antigen with a different
strength, which is determined by the affinity of the TCR
of the clones to the antigen and also by how the antigen
is presented. Because each clone has a unique TCR, the
interaction strength wki ∈ R of the kth clone to the ith
antigen is the same amongst all cells of the k-th clone.
When the antigen pattern is s, each Th cell of type k is
supposed to receive stimulation wkisi from the ith anti-
gen. The total stimulation that each Th cell of type k
receives becomes Σiwkisi. A Th cell of type k activates
itself, and its activity, hk(s), is assumed to be dependent
sigmoidally on the strength of the stimulation as

hk(s) = σ

(
N∑
i=1

wkisi

)
, (2)
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where σ is the sigmoid function and σ(x) = 1/(1 +
exp(−x)). The activity hk becomes either 1 or 0 when the
cell is fully activated or deactivated, respectively. Such
monotonous and sigmoidal dependency is consistent with
several experimental observations [2].

Depending on their activities, the Th cells release cy-
tokines, which in turn bias the activities of the effector
cells. All Th cells of type k are assumed to release the
same types of cytokines, because they belong to the same
effector subtype. A stimulus to the jth type of effector
cells via cytokines released from a Th cell of the kth type
is expressed as βujkhk, where hk is the activity of the
kth clone, ujk ∈ R defines the strength and sign of the
stimulus, and β ∈ (0,∞) is a global scaling parameter.
The integral stimuli received by the jth effector cells

from all Th cells is then represented as Σknkhkujk. In
response to this integral stimuli, the probability that the
jth type of effector cells is activated ( aj = 1) or deac-
tivated (aj = 0) is modulated according to the following
conditional probability:

p(aj = 1|s) = σ

(
K∑

k=1

βujknkhk(s)

)
, (3)

where we suppose that the cytokines are the major bias
factors of the activities of the effector cells by Th cells.
The positive and negative biases may be associated with
inflammatory and anti-inflammatory cytokines, respec-
tively. It should be noted that, in this formulation, the
effector cells have the autonomous ability to be activated
or deactivated, which is biased by the signal from the
Th cells. While we can consider that such autonomous
activity is directly modulated by the pathogens, we as-
sume that it is independent for simplicity and for focusing
mainly on the roles of the Th cells.

Therefore, the Th cell population translates the anti-
gen pattern s that it receives into an activation pattern
of the effector cells a with a probability πn:

πn(a|s) =
M∏
j=1

p(aj |s) =
exp(βQ̃n(s,a))∑

a∈A exp(βQ̃n(s,a))
, (4)

where Q̃n is defined as

Q̃n(s,a) =
K∑

k=1

nkhk(s)
M∑
j=1

ujkaj . (5)

This conditional probability is the policy of the immune
system implemented by the Th cell population, and the
role of the Th cell population is to update the policy over
time by modulating the clone size distribution n so as to
make πn closer to π† in order to receive a greater reward.

C. Learning dynamics of the Th cell population

Similarly to π†, the policy πn(a|s) is represented in
the form of Boltzmann distribution with respect to a in

which Q̃n(s,a) and β are the negative energy and the
global scaling parameter, respectively. Because of this
form, the policy π is likely to select an activity pattern
of the effector cells a with greater value of Q̃n(s,a) than

the others. If Q̃n(s,a) represents the value of choosing
a in response to s, the policy πn(a|s) implemented by
the Th cell population can be interpreted as a strategy
to choose the activity pattern of a higher Q̃n(s,a) value
with higher probability than the others. In terms of max-
imizing the reward, the immune system should select
the activity pattern of the effector cells a that returns
a higher reward R(s,a) in response to an antigen pat-
tern s. Therefore, intuitively, the policy πn(a|s) becomes

better when Q̃n(s,a) has been updated to represent the
reward R(s,a) more faithfully. This intuitive interpre-
tation can be rationalized by considering γ = 0 for (1).
The policy in the Boltzmann form of (4) is shown to be

optimal when Q̃n(s,a) becomes identical to the optimal
Q† function, which is equal to R(s,a) in this case (see
SM S1 for more details). Therefore, optimizing πn(a|s)
is equivalent to learning Q̃n(s,a), which is an estimate
of the reward function R(s,a), from the past experiences
of interactions with pathogens (see SM for more details
and generalization) [32].
Therefore, the learning dynamics can be reduced to up-

dating Q̃n(s,a) to be closer to the reward functionR(s,a)
than before by modulating the clone size distribution n.
One way to derive such an update rule is to minimize the
following cost function with respect to the parameter n
in Q̃n(s,a) for each episode s,a, and r = R(s,a):

Ln(s,a) =
1

2

(
r − Q̃n(s,a)

)2
. (6)

Q̃n(s,a) = R(s,a) is achieved when this cost function
Ln takes the minimum value 0 for all pairs of (s,a). If
a biological learning system were equipped with a versa-
tile memory that could store the experienced rewards for
all pairs of (s,a), Q̃n(s,a) = R(s,a) would seem to be
achieved trivially. However, such implementation is not
feasible both biologically and computationally. Storing
such information requires a large memory, the capacity
of which is of the order of 2M+N . Moreover, owing to the
lack of generalization in this implementation, i.e., the ex-
perienced rewards are not exploited to infer the reward of
the not-yet-experienced pairs of (s,a), the system needs
an extraordinarily long time to experience all pairs. Re-
cent advancements in network-based reinforcement learn-
ing have demonstrated that the implementation of the Q
function by a neural network is efficient in terms of both
memory usage and generalization [30].
The Th cells form a network similar to neural network

(Fig. 1) and can potentially approximate R(s,a) in the

form of Q̃n in (5). However, experimental evidence sug-
gests that Th cells realize learning mainly by adjusting
their clone size distribution n and that the other param-
eters such as the weights w of the Th clone-antigen in-
teractions may not be changed. This is in sharp contrast
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to the case of neural networks in which the interaction
weights can be directly modulated to achieve learning.
Thus, it is not obvious whether learning can be achieved
in the immune system only by adjusting n.
In addition, a simple update of n along the gradient of

the cost function, ∇nLn(s,a), may not necessarily be rel-
evant biologically because the learning dynamics should
satisfy the invariance constraint with respect to the sub-
division of a clone that is imposed by the interpretation
of n as the clone size distribution. Suppose that the kth
clone accommodates nk cells and is subdivided into two
sub-clones, k1 and k2, as nk = nk1 + nk2 . Such a subdi-
vision should not change the learning dynamics as long
as the two subclones have the same properties as those
before the subdivision. To satisfy this invariance rule,
the following metric of the parameter space n should be
considered (see SM for the derivation)::

gij(n) = δij/ni. (7)

With this metric, the appropriate gradient can be derived
as

{∇g
nLn(s, a)}k =

∑
m

g−1
km

∂Ln(s,a)

∂nm
= nk

∂Ln(s,a)

∂nk
, (8)

which is the natural gradient in the parameter space n
[34]. Thus, when the Th population with a clone size
distribution n(t) at time t experiences an antigen pattern
s(t) and an activation pattern a(t) of the effector cells,
the update rule of n can be derived in the form of a
replicator equation as

nk(t+ 1) = nk(t) + αnk(t)λk(t), (9)

where the positive constant α is the learning rate,

λk(t) :=
∂Ln(s,a, r)

∂nk
(10)

=
[
r(t)− Q̃(s(t),a(t))

]
hk(s(t))

∑
j
ujkaj(t),

(11)

and r(t) := R(s(t),a(t)). This rule of learning dynam-
ics is similar to that of SARSA or Q learning with a
linear functional approximation [28]. The details of the
dynamics show that the Th cell population can learn an
effective response to each pathogen if each clone of type k
proliferates or dies by following the growth rate λk. The
self-replicative nature of the dynamics originates from the
metric gij(n), whereas the functional form of the growth
rate λk(t) is determined by the gradient of Ln(s,a, r).
Therefore, the self-replicative nature of (9) is invariant
to changes in the details as long as the Th clone size
works as the learning parameter.

D. Biological interpretation of learning dynamics

The derived learning dynamics can be interpreted bi-
ologically by introducing the following decomposition of

the growth rate λk of the kth clones:

λk(s,a, r) = fk(s,a)
[
r − Q̃n(s,a)

]
, (12)

where

Q̃n(s,a) =
∑

l
nlfl(s,a), fk(s,a) := hk(s)

∑
j
ujkaj .

(13)[
r − Q̃n(s,a)

]
is common to all clones and can be in-

terpreted as a global signal to all Th cells. In contrast,
fk(s,a) determines the clone-specific sensitivity to that
signal. Further, hk(s) in fk(s,a) is the antigen-dependent
activity of the kth clones, whereas

∑
j ujkaj is the feed-

back from the active effector groups. This indicates that
the kth clones have a high sensitivity to the global sig-
nal when they receive a strong antigenic signal from the
current antigen pattern and also have feedbacks from the
effector groups[3, 35]. Such feedback requires local inter-
actions between the Th cells and the effector groups as
cytokines mediate the paracrine communications. Bio-
logically, the Th cell population is known to proliferate
only when exposed to both signals, namely the stimu-
lus to TCR and the co-stimulus from APCs or innate
immune cells [2, 36]. There are additional pieces of evi-
dence that indicate interactions between the signals from
TCR and cytokines that might be released by the ef-
fector groups [37, 38]. Moreover, pro-inflammatory cy-
tokines are secreted by Myeloid cells to activate naive
Th cells[39]. It should be noted that fk(s,a) can be neg-
ative if the kth clone has an inhibitory effect on certain
effector groups. Such a situation might be related to the
activation-induced cell death (AICD) of T cells [40, 41].
T helper cells express Fas ligands as they are activated.
While these Fas ligands have no significant effect on in-
active T cells, they can induce apoptosis on the activated
T cells, which is considered as a mechanism of immune
tolerance[40]. Additionally, the negative fk(s,a) may be
interpreted as the action of anti-inflammatory cytokines.
Our result suggests that these positive and negative back-
propagating controls may be responsible for modulating
the relative contributions of the T cell clones depending
on the consistency between the activities of the Th cells
and the effector groups. Moreover, the derived learning
rule indicates that such local modulations are not suffi-
cient for learning because the individual Th clones are
blind to whether their activities and those of the induced
effector groups have actual immunological impact. The

global signal
[
r − Q̃n(s,a)

]
is indispensable for convey-

ing that information and might be associated with the
damage signal[42] or physiological conditions of the body
such as temperature or endocrine signals. While the bio-
logical interpretations of the local and global signals are
not decisive, the learning rule highlights the roles and ne-
cessity of these two different types of interactions among
immune cells for achieving appropriate learning.
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FIG. 2. Schematic diagram of the stochastic transition dy-
namics of the infected and uninfected states (the environment
in MDP) defined by Eq. 15. In all simulations, q = 0.9 and
R0 = M/2 are used.

III. NUMERICAL SIMULATIONS AND CLONE
SIZE DISTRIBUTION AFTER LEARNING

We conducted simulations to confirm that the derived
dynamics could actually learn because the steepest de-
scent method does not always guarantee their resulting
performance. We also investigated stationary clone size
distributions of the Th cell population to draw insights on
the behavior of an appropriately trained learning system
after learning and to check the consistency with experi-
mentally observed results. Because individual antigens,
Th clones, and effector types are modeled explicitly in our
formulation, simulations with realistic parameter values
are prohibitive. For example, the varieties of Th clones,
K, can be of the order of 106 or more [43]. While we lack
a reliable estimate, the variety of antigens N can be of a
similar order as that of K because each antigen is char-
acterized by the peptide sequence of length 8 − 9. The
number of effector types M should be much of a smaller
order because the effector types are determined by genet-
ically encoded cell types and their phenotypic states. To
circumvent this difficulty, we instead focus on the gen-
eral properties of the learning dynamics and stationary
distribution for a much smaller and tractable parameter
set and investigate the scaling property with regard to
the change in the parameter values.

We assume that there are N distinct antigens and
P different antigen patterns {s1, s2, · · · , sP } represent-
ing uninfected and infected states. s1 corresponds to
the antigen patterns of the uninfected state and si cor-
responds to that of the ith pathogen. We also assume
that there are M different types of effector cells and the
associated P possible activity patterns {a1,a2, · · · ,aP },
each of which represents the most effective activity pat-
tern of the effector cells to the corresponding pathogen.
While the possible antigen and activity patterns, in prin-
ciple, depend on the kind of pathogens considered, such
detailed information is experimentally available only for
very exceptional cases [44]. Thus, both antigen and ac-
tivity patterns are generated randomly by following the
maximum entropy principle under non-informative situ-
ations. For each pair of i, j ∈ {1, · · · , P}, the reward
function R(s,a) is determined as

R(si,a) = M − ham(ai,a), (14)

where ai is the most effective activity pattern for the
antigen pattern si and ham(a,a′) is the hamming dis-
tance between two binary vectors a and a′. This func-
tional form indicates that the immune system receives the
highest reward M when the activity pattern a matches
the most effective one for the antigen pattern si. If a
deviates from the most effective ai, the immune system
experiences a loss of reward by the deviation ham(ai,a).
Because M is the maximum hamming distance for a pair
of vectors with length M , R(s,a) is always positive for
any pair of antigen and activity patterns.

The transition probability P (s′|s,a) is selected as

P (si|sj ,a) =



1− q if j = 1 & i = 1

q/(P − 1) if j = 1 & i ̸= 1

min
[
1, M−R(si,a)

M−R0

]
if j ̸= 1 & i = j

max
[
0, R(si,a)−R0

M−R0

]
if j ̸= 1 & i = 1

0 otherwise

.

(15)

The transition probability represents the dynamics de-
picted in Fig.2. Here, q is the probability to be infected
by a pathogen, which is randomly chosen from P − 1
pathogens equally. If infected, the pathogen is swept

out with the probability max
[
0, R(si,a)−R0

M−R0

]
. This means

that if the reward is its maximum M , the pathogen is
eliminated with probability 1. On the other hand, the
pathogen cannot be removed if the reward is less than or
equal to the threshold R0. As the reward increases from
R0, the chance of recovery increases linearly. If R0 is
small, the pathogen can be removed with a certain prob-
ability even without effective control from the Th cells
due to the intrinsic ability of the effector cells. If R0 is
very close to the maximum reward, the learning is typi-
cally hampered by being trapped in one of the infected
state. This suggests that the innate ability to recover
from infections is a requisite for adaptive learning. We
can consider more complicated situations by extending
the space of s. For example, by assigning several states
of s to each pathogen, we can represent the stages of in-
fection, the transitions between which are dependent on
the action of the immune system. Such a model can be
effectively used to analyze more complicated infections
such as chronic ones. We may also model adversarial
ones where the next infection is dependent on the cur-
rent infection due to the co-evolution of pathogens (see
also SM Section 3).
Finally, we suppose that the distribution of the inter-

action strength wki of the kth clone to the ith antigen
follows the normal distribution with mean 0 and variance
σ2
w to represent the cross-reactivity of TCRs[45]. Simi-

larly, the effect of the stimuli on the jth effector cells from
the kth clone, ujk, is sampled from a normal distribution
with mean 0 and variance σ2

u, because we lack quantita-
tive information on this parameter[6]. It should be noted
that the affinity of a TCR towards antigens is expected
to be sparse such that a TCR reacts to a small fraction of
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FIG. 3. (A) Trajectories of the Th clone size n along a learn-
ing trial. The parameter values are N = 100, K = 5, 000,
M = 20, and P = 30. The clone size n is normalized by
the initial abundance. This figure shows only 200 trajectories
sampled evenly out of 5000 ones at the stationary state to
avoid complication of the plot. (B) The dynamics of rank-
abundance distributions along the learning trial, which were
calculated from the trajectories of n in (A). The red circles
represent the stationary distribution after the learning, and
the colored curves are the transient distributions calculated
at training steps from 1× 103 (blue) to 28× 103(yellow). (C)
Statistics of learning curves of the Th cell population. The
rewards normalized by its maximum value are obtained as
functions of the training step for 100 independent learning
trials. The red curve is the average reward, and the yellow
and blue regions show the range between 25 and 75 percentiles
of the rewards and that between minimum and maximum of
the rewards at each training step, respectively. (D) The sta-
tionary rank-abundance distributions for the 100 independent
learning trials in (C) are shown by gray curves. The red circles
are the same as those in (B).

all possible antigens. Even if this sparsity is considered,
the following results are not affected qualitatively (see
SM, S4). In contrast to the training of neural networks,
these interaction parameters are fixed in our model and
the Th clone size, n, is the only tunable parameter for
learning.

Figures 3 (A) and (B) show the transient dynamics
of the Th clone sizes and the rank-abundance distribu-
tion during a learning process starting from the uniform
clone size distribution. We observe that the clone size dis-
tribution fluctuates transiently during the learning with
switching of ranks of the clones, and n(t) eventually con-
verges into a stationary distribution. The early fluctu-
ation is due to the small β in the learning process (see
Materials and Methods). This early fluctuation promotes
exploration of the system, which might be related to the

downregulation of the Th function in the early infancy
periods [46] It should be noted that, in a real biological
situation, the learning also starts with the Th clone dis-
tribution pre-trained in the thymus. Such pre-training
may be optimized to facilitate and expedite subsequent
learning, possibly by evading the very early exploring
stage of the learning [47]. Figure 3 (C) shows the statis-
tics of 100 independent learning curves and their fluctu-
ations. The monotonous increase in the average reward
demonstrates that the derived learning dynamics can ac-
tually work to obtain a greater reward over time by up-
dating the clone size distribution n(t) based on previ-
ous experiences. Figure 3 (D) shows the stationary rank
abundance distributions for the 100 independent learn-
ing trials. Owing to the stochastic nature of the learning
process, the rank-abundance distribution does not per-
fectly converge into an identical distribution; instead it
fluctuates, which is prominent in the abundances of the
highly ranked clones (i.e., Rank < 100) in Fig. 3 (D).

The simulations are conducted using a set of parameter
values chosen as a representative situation in which learn-
ing is effectively achieved with minimum diversities of the
antigens and Th cells. As shown in Fig. S3, further in-
crease in eitherN orK does not improve the performance
considerably, which indicates that the diversities of the
antigens and clone types are sufficiently large under this
condition. In contrast, the performance starts declining
if either P orM increases (Fig. S 3). The decline induced
by the increase in the number of pathogen types, P , is
natural because learning more pathogens should be more
difficult if the numbers of antigens and Th clone types
are fixed. In contrast, the decline due to the increased
M highlights the importance of constraining possible ac-
tions for an efficient learning [48].

To investigate how N , K, and P can be scaled to a
greater size while maintaining learning performance, we
calculated the stationary reward after learning by chang-
ing N , K, and P in Fig. 4. Figure 4 (A) shows that the
performance is approximately kept constant when N , K,
and P are scaled as ξN , ξK, and ξP , where ξ is the
scaling parameter. In contrast, if only either antigen di-
versity N or Th clone diversity K is increased while the
other is kept constant, as in Fig. 4 (B) and (C), the
increased variety of pathogens (larger P ) cannot be han-
dled, which indicates the importance of both diversities
for learning. This property should be linked to the learn-
ing capacity of the network, which has been intensively
analyzed for deep networks [49].

Next, we investigate the effect of parameters on the
shapes of the abundance distributions of the Th clones
when the learning is conducted appropriately. For the
set of parameter values in Fig. 3, the rank abundance
distribution in the log-log plot is relatively flat for abun-
dant clones (from rank 10 to 103, approximately) but
shows a sharp decline in clone size for less abundant
clones (rank > 103), which results in a concave distri-
bution. The sharp decline in the abundance is mainly
due to the limited number of Th clone types, K, which
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FIG. 4. Heatmap plots of the stationary normalized reward
after learning as functions of (A) K and {N,P}, (B) K and
P , (C) N and P , and (D) K and N . The other parameters
are the same as those in Fig. 3. The stationary reward was
calculated as the moving average of the last 104 steps. (A),
(B), and (C) use the same color code.

works as a boundary condition for the rank-abundance
distribution. By conducting learning for a much larger
K, (i.e., K = 105) as in Fig. 5 (A), we observe that the
relatively flat region stretches, which enhances the power-
law like property of the distribution as shown in Fig. 5
(B). If the total number of Th cells or observed samples
is limited, very low abundant clones at the boundary are
rarely observed, which can lead to a flat clone-size and
rank-abundance distributions, as shown in Figs. 5 (C)
and (D). Such flat distributions have been observed in
several sequencing experiments [17, 50–52] even though
Th clone types are discriminated only by the TCR se-
quences in the experiments. To compare the abundance
distributions obtained using our model with the experi-
mental ones, we use the TCR sequences of CD4+ T cells
collected from the peripheral blood of two healthy hu-
man donors (HV01 and HVD4) reported in [53]. In this
dataset, molecular barcodes were added to each cDNA
molecule to correct for PCR amplification and errors,
which can lead to more accurate and quantitative esti-
mates. The coincidence seems to be fairly good espe-
cially with Data 2 (Fig. 5 (C) and (D)). We also note
that qualitatively the same result was obtained for sparse
{wki} (Fig. 2S).

This coincidence implies that a simple mechanism un-
derlies the generation of power-law like distributions irre-
spective of the details of the dynamics. In previous theo-
retical analyses, the symmetric variation in the fitness of
clones was proposed as the mechanism of the power-law
distribution [54, 55]. Similar symmetric fitness variations
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FIG. 5. (A) Trajectories of the Th clone size n along a learn-
ing trial for K = 100, 000. The weights, w, are also scaled to
w/10 for comparison with the experimental data. The other
parameter values are the same as those in Fig. 3. The clone
size n is normalized by the initial abundance. The figure
shows only 200 trajectories sampled evenly out of 100, 000.
(B) The dynamics of the rank-abundance distributions along
the learning trial, which were calculated from the trajectories
of n in (A). The red circles represent the stationary distribu-
tion after the learning, and the colored curves are the tran-
sient distributions calculated at training steps from 1 × 104

(blue) to 77 × 104(yellow). The magenta circles shown the
same stationary distribution as in Fig. 3 (B), which is shown
here for comparison. (C, D) Clone size distributions (C) and
rank-abundance distributions (D) obtained from the model
and an experiment. The green and cyan points in (C) are
the clone-size distributions obtained by counting the TCR se-
quences of CD4+ T cells collected from the peripheral blood
of two healthy human donors (HV01 and HVD4) in [53], and
the curves in (D) are the corresponding rank-abundance dis-
tributions. Red and blue points in (C) are the clone-size dis-
tributions obtained by resampling the clones from the rank-
distributions in (B) for the same numbers of total counts as in
experiment 1 (red) and 2 (blue), and the red and blue curves
in (D) are the corresponding rank-abundance distributions.

are also observed in Fig. 5 (A), indicating that our model
shares the same property as the previous ones under this
learning condition. The next question is the mechanism
of the symmetric fitness variation, which was just as-
sumed in the previous analyses. Our model demonstrates
that such a variation is not an automatic consequence of
efficient learning. Our result suggests that the symmet-
ric variation can appear when Th clones have far more
diversity than minimally required for achieving efficient
learning under a given pathogen diversity (Fig. S4). If
the pathogen diversity is far beyond the capacity of the
Th diversity, a part of the Th clones dominates in fit-
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ness than the others, which results in asymmetric fitness
variation (Fig. S4). While this problem is still open both
theoretically and experimentally, our learning framework
may provide a perspective from the viewpoint of compu-
tational and algorithmic levels.

SUMMARY AND DISCUSSION

The learning dynamics of the adaptive immune sys-
tem has not yet been fully understood due to the lack of
approaches at the computational and algorithmic levels
despite the accumulated evidence at the implementation
level. Based on the framework of reinforcement learn-
ing, we constructed a mathematical model, which may
bridge this gap. From our model, the clonal selection
of Th cells is naturally derived as a learning rule, which
enables the system not only to recognize new pathogens
but also to acquire the appropriate way to bias the re-
sponses to the pathogens. Even though the simulations
were conducted under an abstract and simple situation,
we found a good scaling property among K, N , and P ,
which enables us to extrapolate our results to a more re-
alistic scale. In addition, our model could successfully
reproduce the experimental clone size distributions to a
certain extent when a sufficiently diverse Th clone type
was assumed.

Besides these results, our model still has room for ac-
commodating more detailed quantitative information, if
provided in the future, to make the simulation more real-
istic for more specific purposes. For example, the dynam-
ics of antigen patterns can be more detailed for describing
specific infectious and pathological situations. We may
represent chronic infections by introducing hidden states
in the dynamics of antigen patterns. For such cases, more
predictive behaviors with γ > 0 might be related to ac-
tual immunological learning. We can also introduce pre-
training to mimic and analyze the thymic selection[56].
Furthermore, if comprehensive quantitative data on the
interactions between antigens and Th clones are obtained
by future measurement technologies[57–60], we can in-
clude that information on the weights of the network.

Nonetheless, we acknowledge that there are several
discrepancies between the actual immune system and
our mathematical model. First, the dynamics of the
pathogen is implicit in our model because the framework
of the MDP requires the agent (Th cell population) to be
accessible to the environmental state[28, 29, 61]. Such a
problem can be addressed by extending the model to the
partially observable MDP [29]. Second, the Th clones
should be classified explicitly by the TCR and phenotypic
state to directly compare the simulation to the experi-
mental data. Third, while the derived learning dynamics
was qualitatively consistent with the clonal selection the-
ory, the local feedback interactions from the effector cells
to the Th cells should be associated with actual cell types
and interacting molecules[37, 38]. Similarly, the biologi-
cal counterpart of the global signal and reward should be

identified. Because the system cannot learn without the
global reward signal, its identification can be a pivotal
target for the verification of theoretical prediction. In
addition, the effector cells have an innate ability to recog-
nize and respond to pathogens. Such effect is abstractly
represented by the stochastic activation and inactivation
of the effector cells in our model and is important for
preventing the learning from becoming stuck in a certain
infectious state. We may improve our model to involve
more detailed and active behaviors of the effector cells as
self-supporting agents. Such a hierarchical architecture
resembles the memetic algorithm used for optimization
[62], and its investigation may deepen our understand-
ing of the interrelationship between innate and adaptive
immunity.
Finally, while our model can share the characteristic

feature of experimentally observed clone size distribu-
tions, it is not yet clear how the feature is related to
the general property of learning dynamics. Revealing
the general aspects of abstract learning systems is also
essential for understanding both universal and problem-
specific properties of the immune system.
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Appendix A: Simulation

The simulation starts with a set of initializations. P
different realizable antigen patterns are initialized by ran-
dom selections of N -dimensional binary vectors. Addi-
tionally, P most effective activity patterns of the effector
cells are initialized by randomly selecting M -dimensional
binary vectors. The weights of the TCR-antigen interac-
tions w are generated randomly by sampling each ele-
ment of the matrix from a normal distribution N (0, σ2

w),
where the variance σ2

w = 2/N is determined by the He
normal initialization method that is widely used in the
context of deep learning[63]. Each element in the weights
u representing the strength of the signals from the Th
clones to the effector cells is also sampled from a nor-
mal distribution N (0, σ2

u), where σ2
u = 2/K. The initial

population size of each clone is uniformly set to 1. The
initial antigen pattern s(t) at t = 0 is chosen uniformly
at random.
The simulation was conducted by iterating the follow-

ing steps. At each time step t, the activation pattern of
the effector cells a(t) was determined by sampling from
the policy πn(t)(a(t)|s(t)) calculated based on the anti-
gen pattern s(t). The calculation of the policy depends
on the global scaling parameter β(t), which was gradually
increased from 1.0 to 20.0 linearly towards the end of the
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iterations. Based on the activation pattern of the effec-
tor cells a(t), the reward r(t) was determined as shown
in (14). The population size of each clone changes ac-
cording to (9) with a learning rate of α = 0.1. If a clone
size becomes lower than 0, which is possible due to the
time discretization in the simulation, the clone size is set

to be 0. Finally, the subsequent iterations were started
after sampling the next antigen pattern s(t+1) from the
transition probability (15).
All simulations were implemented either in MATLAB

(R2018b; The MathWorks, Natick, MA) or Python using
the standard scientific libraries numpy and scipy.
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