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Abstract 55 

The assessment of platelet spreading through light microscopy, and the subsequent 

quantification of parameters such as surface area and circularity, is a key assay for many platelet 

biologists. Here we present an analysis workflow which robustly segments individual platelets 

to facilitate the analysis of large numbers of cells while minimising user bias. Image 

segmentation is performed by interactive learning and touching platelets are separated with an 60 

efficient semi-automated protocol. We also use machine learning methods to robustly automate 

the classification of platelets into different subtypes. These adaptable and reproducible 

workflows are made freely available and are implemented using the open source software 

KNIME and ilastik. 
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1. Introduction  

Testing platelet function in response to genetic mutations, gene knockouts and pharmacological 

agents is a valuable and widely used assay in platelet research1–8. In these studies the analysis 

of platelet spreading, either by the calculation of adhesion levels, spread surface areas or 70 

morphological categorisation, is used as a measure of platelet function. As platelets are small 

cells typically two to four microns in diameter, a single light microscopy field of view (FOV) 

can capture 50 - 400 platelets. As such it is easy to acquire data for large populations of cells 

allowing for the identification of subtle changes. In addition, immunofluorescence based 

labelling allows quantitative measures of platelet area and morphology to be combined with 75 

analysis of protein sub-cellular localisation and organisation. 

Despite this, the analysis of platelet spreading can be a laborious process, especially in 

large scale experiments, where many thousands of platelets over a range of conditions might 
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need to be analysed. A common way of measuring platelet spread area is to manually draw 

around the outline of the cell9. However, this is an extremely slow process which limits its 80 

application to larger datasets.  

A more efficient and typically less biased way to perform the analysis is to design an 

automated image analysis workflow (not machine learning based) which is automated using 

reproducible and preferably open-source software such as ImageJ/Fiji10. Such workflows 

typically employ simple filtering operations and thresholds on image intensity7. The free 85 

parameters of the workflow are then set ad-hoc and rarely perform well across large datasets. 

Moreover, these workflows are usually only applicable to images captured on a particular 

microscope, with cells stained, or imaged, under very specific conditions. The categorisation of 

platelets into sub-types based on spread morphology is typically performed manually, and is 

therefore time-consuming and highly susceptible to user bias. We present a simple, adaptable 90 

workflow which uses machine learning based techniques to overcome many of these 

limitations, and thus allows for the robust quantitative analysis of platelet spreading across 

different imaging modalities and laboratories. 

2. Method 

2.1 Workflow description 95 

An overview of the workflow is presented in Figure 1. The first step is the segmentation of 

platelets from the background to produce binary (black and white) images. To do this we use a 

pixel classifier trained within the open-source software ilastik11,12. Briefly, various pixel-level 

features including smoothed intensity and edge indicators are measured and used to train a 

random forest classifier with two outcomes; signal and background. Training images should be 100 

selected across replicates and treatments to ensure the full variability within the dataset is 

captured. Having trained the pixel classifier within ilastik, it is run on the full dataset along with 

all subsequent analysis steps within KNIME13, another open-source data analysis platform. 
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The second step is the separation of touching platelets. For this we chose to use a semi-

automated approach where the researcher is asked to click on the centre of all touching platelets. 105 

These points are then used as seeds for a watershed transform which fills the binary images 

produced by the pixel classifier. This produces labelled segmentation images where each cell 

has a unique pixel value which facilitates the separation of touching cells. A connected 

component analysis is then used to calculate per platelet morphological features including area 

and circularity.  110 

Finally, the population can be further interrogated by defining platelet morphological 

subtypes, for example unspread, partially spread and fully spread, and then using a machine 

learning approach to classify individual cells (objects). Again a random forest classifier is used, 

but it is trained using platelet morphological features, including area and circularity, as opposed 

to pixel level features like intensity. This quantifies the number of cells in each class and allows 115 

for the detailed morphological analysis of cells within a specific class. The corresponding 

workflows, and a detailed user guide can be found in the supplementary materials. 

2.2 Testing and validation 

To test and validate the workflow we chose to fluorescently label F-actin and image using wide-

field microscopy, a commonly used approach. The cells were spread on either collagen or 120 

fibrinogen and treated either with dasatinib or a DMSO control (Figure 2). Dasatinib is a Src 

family kinase inhibitor and is known to reduce the efficiency of platelet spreading14,15. We 

chose to use a treatment with well-established effects as this provides a better benchmark for 

workflow validation. Three technical replicates with three fields of view per replicate were 

acquired. Further experimental details can be found in the supplementary materials.  125 

The images were acquired as z-stacks so these were pre-processed by finding the most 

in-focus image of the stack and then taking the maximal projection across this slice and the two 

slices either side (5 slices in total).  This was done to limit out-of-focus contributions to the 
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projections and improve subsequent segmentation. Vollath's F4 measure was used as the focus 

metric,16,17 which is implemented using ImgLib218, within the KNIME workflows provided. 130 

The 2D projections were then processed with the remaining workflow steps including 

classification into the following pre-defined categories; unspread, partially spread and fully 

spread. In total across all conditions 9655 platelets were segmented and analysed. Eight cropped 

images selected across replicates and conditions were used to train both the pixel and object 

classifiers.  135 

To evaluate the performance of the object classifier twenty percent of the annotated 

platelets were reserved for validation. When using all measured morphological features the 

overall classification accuracy was found to be 90% and the corresponding confusion matrix is 

shown in Figure 3a. Classification accuracies of 71% and 77% were found when area or 

circularity were used as the only input. 87% accuracy was obtained using both area and 140 

circularity. This indicates that thresholds on area and circularity alone are not optimal for robust 

and accurate classification of platelets into sub-categories, and highlights the advantage of a 

machine learning approach which uses a larger number of different features.   

Figure 3b shows the measurements for mean platelet area and circularity. As expected 

there are significant differences in platelet area between the collagen and fibrinogen controls, 145 

and also with the dasatinib treatment on both substrates. For circularity the only significant 

difference observed is between the collagen and fibrinogen controls. Figure 3c shows the 

relative proportion of each class type. There are clear differences between conditions, 

highlighting the advantage of the classification approach in further delineating the platelet 

spread phenotype. For example, treatment with dasatinib dramatically reduces the percentage 150 

of fully spread platelets on both substrates. 

3. Discussion 
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In this manuscript, we have described a semi-automated analysis workflow for the 

quantification of platelet spreading. We demonstrate that, following the training of a pixel 

classifier on a small subset of data, this method is able to accurately segment and quantify the 155 

spread surface area and circularity of platelets treated with dasatinib (which at the concentration 

used here blocks both Btk and Src family kinases14) on both collagen and fibrinogen surfaces. 

The workflow was able to appropriately identify and segment both isolated cells and platelets 

touching other platelets. Subtleties of platelet morphology such as filopodia were clearly 

identified and quantification of the parameters such as spread area were able to give a simple, 160 

robust overview of the effect of the inhibitor treatment on platelet spreading. Furthermore, an 

object classifier was used to group platelets into classes which allowed for deeper interrogation 

of the data.  

A key advantage of the reported workflow is the ability to efficiently analyse large 

numbers of platelets (we routinely measure and classify 10,000+ platelets using the workflow) 165 

which allows robust statistical analyses to be performed. The power of this approach was 

demonstrated in a recent study of 55 samples from patients with bleeding of unknown cause19. 

We have used the workflow for both human and mouse platelets and it is applicable to a wide 

range of treatments (e.g. patient samples, gene knockouts, inhibitor studies, etc.). Therefore, 

this work presents a viable way to perform quick and accurate large scale analysis of spreading 170 

as a measure of platelet function while also minimising user bias. 

When designing the workflow care was taken to ensure each step was robust to different 

imaging systems and sample preparations so as to be widely applicable. Provided it is re-trained, 

the ilastik pixel classifier will perform well across a range of stains and non-florescent imaging 

modalities, for example phase-contrast microscopy (Supplementary Figure 1). However, where 175 

feasible we recommend florescent staining to enhance the contrast between cells and 

background, and note that as with all image analysis processes, poor quality input data may 
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result in incorrect classification or failure of the analysis. For object classification the classes 

are defined by the researcher and so can be changed to suit the biological question. Although it 

is important to note that classification will be more successful with classes that have a clearly 180 

distinct morphology.  

With regards to this final point, it is important to check the classification performance 

on a subset of the annotated data reserved for this purpose. Performance can then be assessed 

though overall classification accuracy and confusion matrices (Figure 3a). Tools and 

instructions for this performance evaluation are including in the provided workflows and 185 

guidelines. Manually selected thresholds on parameters such as area and circularity were 

avoided as they are non-optimal and rarely robust across replicates and conditions. For both 

pixel and object classification, the training can be performed quickly with a small amount of 

data (typically 5 – 10 cropped images) to produce high quality results. Furthermore the 

graphical programming interface offered by KNIME means that researchers with no, or limited, 190 

programming experience can adapt these protocols for their specific needs. 

The workflow is fully automated apart from the manual selection of touching platelets 

which is performed by the researcher within KNIME. Automated separation for other densely 

packed cell types is typically achieved by first segmenting nuclei which are then used as seeds 

to isolate the cytoplasm. This approach is not applicable to platelets which have no nuclei, hence 195 

the need to manually identify touching cells. Moreover platelet morphology can vary 

dramatically dependent on the surface coating and treatment which further complicates the task 

of automated separation. Further research will investigate if with sufficient training data, deep 

learning based methods can be used to robustly segment clustered platelets. 

4. Conclusion 200 

We present a semi-automated workflow that can be applied to segment, classify and analyse 

spread platelets. The workflow is adaptable and applicable to input images from a range of 
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imaging modalities. Once trained the workflow can perform efficient analysis of large data sets 

and provides an unbiased measure of platelet spreading. These factors, along with the use of 

open source software, should allow for wide uptake by platelet researchers, who will be able to 205 

use these tools to perform robust analyses on large scale image data. 
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Supplementary materials and methods 215 

Platelet preparation and treatment 

Platelets were isolated from human blood samples, which were donated by healthy volunteers. 

Human venous blood was drawn by venipuncture into sodium citrate and acid-citrate-dextrose 

solution. Whole blood was centrifuged at 200 × g for 20 minutes to obtain platelet rich plasma. 

0.1 µg/ml prostacyclin was added to the platelet rich plasma and platelets were collected after 220 

centrifugation at 1000 × g for 10 minutes. The platelet pellet was re-suspended in acid-citrate-

dextrose and modified Tyrode’s buffer containing 129 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM 

KCl, 12 mM NaHCO3, 20 mM HEPES, 5 mM glucose, 1 mM MgCl2, pH 7.3 and 0.1 µg/ml 

prostacyclin was added to the washed platelets and centrifuged at 1000 × g for 10 minutes to 

be washed. The platelet pellet was re-suspended in modified Tyrode’s buffer to a concentration 225 

of 2 × 108 platelets/ml and left to rest for at least 30 minutes before further dilution to 2 × 107 

platelets/ml prior to being used in spreading experiments. 
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Coverslips were coated with 100 µg/ml fibrinogen or 10 µg/ml collagen and left 

overnight at 4 ºC. The unbound fibrinogen and collagen were removed and the coverslips were 

blocked using 5 mg/ml bovine serum albumin (BSA) in PBS for 1 hour and washed with PBS 230 

prior to use. All spreading experiments were performed in the presence of 2 U/ml apyrase and 

10 µM indomethacin. 2 × 107 platelets/ml washed platelets were either incubated for 10 minutes 

at 37 ºC in the presence of 10 µM dasatinib or DMSO, prior to 45 minutes of spreading on pre-

coated coverslips at 37 ºC.  

Imaging 235 

Platelets were fixed after spreading using 10% neutral buffered formalin solution for 10 minutes 

at room temperature. 0.1% Triton X-100 was added for 5 minutes at room temperature prior to 

platelets being washed with PBS and incubated with Alexa488-phalloidin for 1 hour at room 

temperature to stain the filamentous (F)-actin fibres present within the platelets for the 

observation of platelet morphology. The actin stained platelets were mounted onto glass slides 240 

using hydromount. Images were acquired using an Axio Observer 7 inverted epifluorescence 

microscope (Carl Zeiss Microscopy) with Definite Focus 2 autofocus, 63x 1.4 NA oil 

immersion objective lens, Colibri 7 LED illumination source, Hammamatsu Orca Flash 4 V2 

sCMOS camera, Filter set 38 for Alexa488 and DIC optics. LED power and exposure time were 

chosen as appropriate for each set of samples but kept the same within each experiment. Using 245 

Zen 2.3 Pro software. Three image stacks (step size 0.3 µm) were taken per coverslip. 
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Figure 1. Overview of the proposed workflow for analysis of platelet spreading. First a pixel 

classifier is used to produce a binary segmentation mask. Next touching cells are manually 

annotated by clicking on their centre within KNIME and a watershed transform is used to 

establish the cell-cell boundaries. Per cell features are then calculated which can optionally be 345 

used to train a cell classifier. Validation of the classifier is achieved by reserving a proportion 

of the training data and visualised through a confusion matrix. 
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Figure 2. Representative cropped images and results from platelets seeded on either collagen 

(Col.) or fibrinogen (Fib.) and treated with either dasatinib (Das.) or a DMSO control (Cntl.). 

Top row shows a maximal projection of the raw data (inverted grey-scale look-up-table). This 

is used as the input for the analysis workflow. Middle row shows the individual platelet 360 

segmentations where each cell is a distinct colour. Bottom row shows the results of the object 

classifier where individual platelets are classified as either unspread (red), partially spread 

(green) or fully spread (blue). Scale bar 10 µm. 

 

 365 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.31.928168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.31.928168
http://creativecommons.org/licenses/by/4.0/


14 

 

 

Figure 3. Summarised quantitative outputs of the analysis workflow. Platelets were seeded on 

either collagen (Col.) or fibrinogen (Fib.) and treated with either dasatinib (Das.) or a DMSO 

control (Cntl.) (a) A confusion matrix allows for visual evaluation of the object classifier. A 370 

proportion of the training data is reserved (here 20%) and the class predicted by the classifier 

is compared to the true class as defined by the manual annotation. On-diagonal classifications 

(green) represent agreement between the classifier and manual annotation, off-diagonal 

classifications (red) represent disagreement. (b) Mean platelet area and circularity calculated 

across all platelets in a replicate (N=3, mean 805 platelets per replicate). (c) Percentage of 375 

cells in each category; unspread, partially spread and spread. All statistical analyses by one-

way Anova and subsequent pair-wise comparison by two-sample t-test with Bonforonni 

correction. ***P<0.001, **P<0.01, *P<0.05, error bars are mean ± s.d. 
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Supplementary Figure 1.  Phase contrast images and segmentation results for a representative 

acquisition where platelets were spread on fibrinogen. Full field of view and cropped images 385 

are shown. Each cell segmentation is represented by a different colour. The workflow is able to 

produce reasonable segmentation without using a florescent stain. Scale bar 10 µm. 
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