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Abstract
The assessment of platelet spreading through light microscopy, and the subsequent
quantification of parameters such as surface area and circularity, is a key assay for many platelet
biologists. Here we present an analysis workflow which robustly segments individual platelets
to facilitate the analysis of large numbers of cells while minimising user bias. Image
segmentation is performed by interactive learning and touching platelets are separated with an
efficient semi-automated protocol. We also use machine learning methods to robustly automate
the classification of platelets into different subtypes. These adaptable and reproducible
workflows are made freely available and are implemented using the open source software
KNIME and ilastik.
Keywords
Platelets, Machine learning, Spreading, Image analysis
1. Introduction
Testing platelet function in response to genetic mutations, gene knockouts and pharmacological
agents is a valuable and widely used assay in platelet research* 2. In these studies the analysis
of platelet spreading, either by the calculation of adhesion levels, spread surface areas or
morphological categorisation, is used as a measure of platelet function. As platelets are small
cells typically two to four microns in diameter, a single light microscopy field of view (FOV)
can capture 50 - 400 platelets. As such it is easy to acquire data for large populations of cells
allowing for the identification of subtle changes. In addition, immunofluorescence based
labelling allows quantitative measures of platelet area and morphology to be combined with
analysis of protein sub-cellular localisation and organisation.

Despite this, the analysis of platelet spreading can be a laborious process, especially in

large scale experiments, where many thousands of platelets over a range of conditions might
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need to be analysed. A common way of measuring platelet spread area is to manually draw
g0 around the outline of the cell®. However, this is an extremely slow process which limits its
application to larger datasets.

A more efficient and typically less biased way to perform the analysis is to design an
automated image analysis workflow (not machine learning based) which is automated using
reproducible and preferably open-source software such as Imagel/Fijil®. Such workflows

g5 typically employ simple filtering operations and thresholds on image intensity’. The free
parameters of the workflow are then set ad-hoc and rarely perform well across large datasets.
Moreover, these workflows are usually only applicable to images captured on a particular
microscope, with cells stained, or imaged, under very specific conditions. The categorisation of
platelets into sub-types based on spread morphology is typically performed manually, and is

90  therefore time-consuming and highly susceptible to user bias. We present a simple, adaptable
workflow which uses machine learning based techniques to overcome many of these
limitations, and thus allows for the robust quantitative analysis of platelet spreading across
different imaging modalities and laboratories.
2. Method

95 2.1 Workflow description
An overview of the workflow is presented in Figure 1. The first step is the segmentation of
platelets from the background to produce binary (black and white) images. To do this we use a
pixel classifier trained within the open-source software ilastik''2. Briefly, various pixel-level
features including smoothed intensity and edge indicators are measured and used to train a

100  random forest classifier with two outcomes; signal and background. Training images should be
selected across replicates and treatments to ensure the full variability within the dataset is
captured. Having trained the pixel classifier within ilastik, it is run on the full dataset along with

all subsequent analysis steps within KNIME?!?, another open-source data analysis platform.
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The second step is the separation of touching platelets. For this we chose to use a semi-
105  automated approach where the researcher is asked to click on the centre of all touching platelets.
These points are then used as seeds for a watershed transform which fills the binary images
produced by the pixel classifier. This produces labelled segmentation images where each cell
has a unique pixel value which facilitates the separation of touching cells. A connected
component analysis is then used to calculate per platelet morphological features including area

110 and circularity.

Finally, the population can be further interrogated by defining platelet morphological
subtypes, for example unspread, partially spread and fully spread, and then using a machine
learning approach to classify individual cells (objects). Again a random forest classifier is used,
but it is trained using platelet morphological features, including area and circularity, as opposed

115  to pixel level features like intensity. This quantifies the number of cells in each class and allows
for the detailed morphological analysis of cells within a specific class. The corresponding
workflows, and a detailed user guide can be found in the supplementary materials.

2.2 Testing and validation
To test and validate the workflow we chose to fluorescently label F-actin and image using wide-

120  field microscopy, a commonly used approach. The cells were spread on either collagen or
fibrinogen and treated either with dasatinib or a DMSO control (Figure 2). Dasatinib is a Src
family kinase inhibitor and is known to reduce the efficiency of platelet spreading***®. We
chose to use a treatment with well-established effects as this provides a better benchmark for
workflow validation. Three technical replicates with three fields of view per replicate were

125  acquired. Further experimental details can be found in the supplementary materials.

The images were acquired as z-stacks so these were pre-processed by finding the most
in-focus image of the stack and then taking the maximal projection across this slice and the two

slices either side (5 slices in total). This was done to limit out-of-focus contributions to the
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projections and improve subsequent segmentation. VVollath's F4 measure was used as the focus
130 metric,'®” which is implemented using ImgLib28, within the KNIME workflows provided.

The 2D projections were then processed with the remaining workflow steps including

classification into the following pre-defined categories; unspread, partially spread and fully

spread. In total across all conditions 9655 platelets were segmented and analysed. Eight cropped

images selected across replicates and conditions were used to train both the pixel and object
135  classifiers.

To evaluate the performance of the object classifier twenty percent of the annotated
platelets were reserved for validation. When using all measured morphological features the
overall classification accuracy was found to be 90% and the corresponding confusion matrix is
shown in Figure 3a. Classification accuracies of 71% and 77% were found when area or

140  circularity were used as the only input. 87% accuracy was obtained using both area and
circularity. This indicates that thresholds on area and circularity alone are not optimal for robust
and accurate classification of platelets into sub-categories, and highlights the advantage of a
machine learning approach which uses a larger number of different features.

Figure 3b shows the measurements for mean platelet area and circularity. As expected

145 there are significant differences in platelet area between the collagen and fibrinogen controls,
and also with the dasatinib treatment on both substrates. For circularity the only significant
difference observed is between the collagen and fibrinogen controls. Figure 3c shows the
relative proportion of each class type. There are clear differences between conditions,
highlighting the advantage of the classification approach in further delineating the platelet

150  spread phenotype. For example, treatment with dasatinib dramatically reduces the percentage
of fully spread platelets on both substrates.

3. Discussion
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In this manuscript, we have described a semi-automated analysis workflow for the
quantification of platelet spreading. We demonstrate that, following the training of a pixel

155 classifier on a small subset of data, this method is able to accurately segment and quantify the
spread surface area and circularity of platelets treated with dasatinib (which at the concentration
used here blocks both Btk and Src family kinases'*) on both collagen and fibrinogen surfaces.
The workflow was able to appropriately identify and segment both isolated cells and platelets
touching other platelets. Subtleties of platelet morphology such as filopodia were clearly

160 identified and quantification of the parameters such as spread area were able to give a simple,
robust overview of the effect of the inhibitor treatment on platelet spreading. Furthermore, an
object classifier was used to group platelets into classes which allowed for deeper interrogation
of the data.

A key advantage of the reported workflow is the ability to efficiently analyse large

165  numbers of platelets (we routinely measure and classify 10,000+ platelets using the workflow)
which allows robust statistical analyses to be performed. The power of this approach was
demonstrated in a recent study of 55 samples from patients with bleeding of unknown cause®®.
We have used the workflow for both human and mouse platelets and it is applicable to a wide
range of treatments (e.g. patient samples, gene knockouts, inhibitor studies, etc.). Therefore,

170 this work presents a viable way to perform quick and accurate large scale analysis of spreading
as a measure of platelet function while also minimising user bias.

When designing the workflow care was taken to ensure each step was robust to different
imaging systems and sample preparations so as to be widely applicable. Provided it is re-trained,
the ilastik pixel classifier will perform well across a range of stains and non-florescent imaging

175 modalities, for example phase-contrast microscopy (Supplementary Figure 1). However, where
feasible we recommend florescent staining to enhance the contrast between cells and

background, and note that as with all image analysis processes, poor quality input data may
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result in incorrect classification or failure of the analysis. For object classification the classes
are defined by the researcher and so can be changed to suit the biological question. Although it
IS important to note that classification will be more successful with classes that have a clearly
distinct morphology.

With regards to this final point, it is important to check the classification performance
on a subset of the annotated data reserved for this purpose. Performance can then be assessed
though overall classification accuracy and confusion matrices (Figure 3a). Tools and
instructions for this performance evaluation are including in the provided workflows and
guidelines. Manually selected thresholds on parameters such as area and circularity were
avoided as they are non-optimal and rarely robust across replicates and conditions. For both
pixel and object classification, the training can be performed quickly with a small amount of
data (typically 5 — 10 cropped images) to produce high quality results. Furthermore the
graphical programming interface offered by KNIME means that researchers with no, or limited,
programming experience can adapt these protocols for their specific needs.

The workflow is fully automated apart from the manual selection of touching platelets
which is performed by the researcher within KNIME. Automated separation for other densely
packed cell types is typically achieved by first segmenting nuclei which are then used as seeds
to isolate the cytoplasm. This approach is not applicable to platelets which have no nuclei, hence
the need to manually identify touching cells. Moreover platelet morphology can vary
dramatically dependent on the surface coating and treatment which further complicates the task
of automated separation. Further research will investigate if with sufficient training data, deep
learning based methods can be used to robustly segment clustered platelets.

4. Conclusion
We present a semi-automated workflow that can be applied to segment, classify and analyse

spread platelets. The workflow is adaptable and applicable to input images from a range of
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imaging modalities. Once trained the workflow can perform efficient analysis of large data sets
and provides an unbiased measure of platelet spreading. These factors, along with the use of
open source software, should allow for wide uptake by platelet researchers, who will be able to
use these tools to perform robust analyses on large scale image data.
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Supplementary materials and methods

Platelet preparation and treatment

Platelets were isolated from human blood samples, which were donated by healthy volunteers.
Human venous blood was drawn by venipuncture into sodium citrate and acid-citrate-dextrose
solution. Whole blood was centrifuged at 200 x g for 20 minutes to obtain platelet rich plasma.
0.1 pg/ml prostacyclin was added to the platelet rich plasma and platelets were collected after
centrifugation at 1000 x g for 10 minutes. The platelet pellet was re-suspended in acid-citrate-
dextrose and modified Tyrode’s buffer containing 129 mM NacCl, 0.34 mM Na2HPO4, 2.9 mM
KCI, 12 mM NaHCO3, 20 mM HEPES, 5 mM glucose, 1 mM MgCI2, pH 7.3 and 0.1 pg/ml
prostacyclin was added to the washed platelets and centrifuged at 1000 x g for 10 minutes to
be washed. The platelet pellet was re-suspended in modified Tyrode’s buffer to a concentration
of 2 x 108 platelets/ml and left to rest for at least 30 minutes before further dilution to 2 x 10’

platelets/ml prior to being used in spreading experiments.
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Coverslips were coated with 100 pg/ml fibrinogen or 10 pg/ml collagen and left
overnight at 4 °C. The unbound fibrinogen and collagen were removed and the coverslips were
blocked using 5 mg/ml bovine serum albumin (BSA) in PBS for 1 hour and washed with PBS
prior to use. All spreading experiments were performed in the presence of 2 U/ml apyrase and
10 uM indomethacin. 2 x 10 platelets/ml washed platelets were either incubated for 10 minutes
at 37 °C in the presence of 10 uM dasatinib or DMSO, prior to 45 minutes of spreading on pre-
coated coverslips at 37 °C.

Imaging
Platelets were fixed after spreading using 10% neutral buffered formalin solution for 10 minutes
at room temperature. 0.1% Triton X-100 was added for 5 minutes at room temperature prior to
platelets being washed with PBS and incubated with Alexa488-phalloidin for 1 hour at room
temperature to stain the filamentous (F)-actin fibres present within the platelets for the
observation of platelet morphology. The actin stained platelets were mounted onto glass slides
using hydromount. Images were acquired using an Axio Observer 7 inverted epifluorescence
microscope (Carl Zeiss Microscopy) with Definite Focus 2 autofocus, 63x 1.4 NA oil
immersion objective lens, Colibri 7 LED illumination source, Hammamatsu Orca Flash 4 V2
SCMOS camera, Filter set 38 for Alexa488 and DIC optics. LED power and exposure time were
chosen as appropriate for each set of samples but kept the same within each experiment. Using
Zen 2.3 Pro software. Three image stacks (step size 0.3 um) were taken per coverslip.
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Figure 1. Overview of the proposed workflow for analysis of platelet spreading. First a pixel

classifier is used to produce a binary segmentation mask. Next touching cells are manually

annotated by clicking on their centre within KNIME and a watershed transform is used to

establish the cell-cell boundaries. Per cell features are then calculated which can optionally be

used to train a cell classifier. Validation of the classifier is achieved by reserving a proportion

of the training data and visualised through a confusion matrix.
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Figure 2. Representative cropped images and results from platelets seeded on either collagen
(Col.) or fibrinogen (Fib.) and treated with either dasatinib (Das.) or a DMSO control (Cntl.).
Top row shows a maximal projection of the raw data (inverted grey-scale look-up-table). This
360 is used as the input for the analysis workflow. Middle row shows the individual platelet
segmentations where each cell is a distinct colour. Bottom row shows the results of the object
classifier where individual platelets are classified as either unspread (red), partially spread

(green) or fully spread (blue). Scale bar 10 pm.
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Figure 3. Summarised quantitative outputs of the analysis workflow. Platelets were seeded on
either collagen (Col.) or fibrinogen (Fib.) and treated with either dasatinib (Das.) or a DMSO
control (Cntl.) (a) A confusion matrix allows for visual evaluation of the object classifier. A
proportion of the training data is reserved (here 20%) and the class predicted by the classifier
is compared to the true class as defined by the manual annotation. On-diagonal classifications
(green) represent agreement between the classifier and manual annotation, off-diagonal
classifications (red) represent disagreement. (b) Mean platelet area and circularity calculated
across all platelets in a replicate (N=3, mean 805 platelets per replicate). (c) Percentage of

cells in each category; unspread, partially spread and spread. All statistical analyses by one-

way Anova and subsequent pair-wise comparison by two-sample t-test with Bonforonni

correction. ***P<0.001, **P<0.01, *P<0.05, error bars are mean * s.d.
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Supplementary Figure 1. Phase contrast images and segmentation results for a representative

385  acquisition where platelets were spread on fibrinogen. Full field of view and cropped images
are shown. Each cell segmentation is represented by a different colour. The workflow is able to

produce reasonable segmentation without using a florescent stain. Scale bar 10 um.
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