

1 **Transferability, development of Single Sequence Repeat (SSR) markers and application**
2 **to the analysis of genetic diversity and population structure of the African fan palm**
3 **(*Borassus aethiopum* Mart.) in Benin**

4

5 Mariano Joly Kpaténon^{1,2,3}, Valère Kolawolé Salako^{2,4}, Sylvain Santoni⁵, Leila Zekraoui³,
6 Muriel Latreille⁵, Christine Tollen-Cordet⁵, Cédric Mariac³, Estelle Jaligot ^{3,6} #, Thierry Beulé
7 ^{3,6} #, Kifouli Adéoti ^{1,2} #*

8

9 **Affiliations :**

10 1 Laboratoire de Microbiologie et de Technologie Alimentaire (LAMITA), Faculté des Sciences
11 et Techniques, Université d'Abomey-Calavi, Cotonou, Bénin

12 2 Biodiversité et Ecologie des Plantes (BDEP), Faculté des Sciences et Techniques, Université
13 d'Abomey-Calavi, Cotonou, Bénin

14 3 DIADE, Univ Montpellier, IRD, Montpellier, France,

15 4 Laboratoire de Biomathématiques et d'Estimations Forestières (LABEF), Faculté des Sciences
16 Agronomiques, Université d'Abomey-Calavi, Cotonou, Bénin

17 5 AGAP, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France

18 6 CIRAD, UMR DIADE, Montpellier, France

19

20 # equal contribution as last authors

21 * corresponding author

22 Email: zoulade@yahoo.fr (KA)

23

24 **Author contributions**

25 Conceptualization: VKS, EJ, TB, KA

26 Funding acquisition: VKS, EJ, TB, KA

27 Methodology: all authors
28 Investigation: MJK, SS, ML, CT, KA, VKS
29 Data processing and analysis: MJK, KA, SS, CM, LZ, TB
30 Writing - Original Draft Preparation: all authors
31
32

33 **Abstract:**

34 In Sub-Saharan Africa, the fan palm *Borassus aethiopum* Mart. is an important non-timber
35 forest product-providing palm that faces multiple anthropogenic threats to its genetic diversity.
36 However, this species is so far under-studied, which prevents its sustainable development as a
37 resource.

38 The present work is a first attempt at characterizing the genetic diversity of this palm species
39 as well as its spatial structuration in Benin, West Africa. During a first phase we implemented
40 a microsatellite markers-based approach relying on the reported transferability of primers
41 developed in other palm species and found that, in disagreement with previously published
42 results, only 22.5% of the 80 markers tested enabled amplification of African fan palm DNA
43 and polymorphism detection was insufficient. During a second phase, we therefore generated a
44 *B. aethiopum*-specific genomic dataset through high-throughput sequencing and used it for the
45 *de novo* detection of potential microsatellite markers. Among these, 11 enabled polymorphism
46 detection and were further used for analyzing genetic diversity in nine *B. aethiopum*
47 populations.

48 Our results show that genetic diversity of Beninese fan palm populations is low, with an overall
49 average expected heterozygosity (He) of 0.354. Moreover, the positive values of the fixation
50 index (F) in populations from both the Central (Soudano-Guinean) and the Southern (Guinean)
51 regions suggest limited gene flows. Our analysis show that sampled *B. aethiopum* populations
52 are clustered into two groups, one spanning populations from both the Southern and most of
53 the Central region, and the other including the Central population of Savè (which also has the
54 highest He) and populations from the North.

55 In light of our results, we discuss the use of inter-species transfer vs. *de novo* development of
56 microsatellite markers in genetic diversity analyses targeting under-studied species. We also
57 suggest future applications for the molecular resources generated through the present study.

58 **Introduction**

59 Many plant species remain under-studied due to their low economic importance, complicated
60 biology and/or the absence of available genome sequence information. Upon initiating a
61 research project aimed at characterizing the genetic diversity of such a species, researchers may
62 be confronted with the situation that some resources can be found in more or less distantly
63 related taxa. In such cases, the first step is often to assess whether some of these resources, such
64 as molecular markers, can be used to study the new species. Provided that the "source" species
65 display enough genetic similarities to the "target" species and that marker transferability has
66 been previously assessed, this first step may lead to quick progress in a cost-effective manner.
67 In many instances, transferring markers between species is therefore seen as a smarter
68 investment than developing and testing new markers, especially if the initial funding allocated
69 to the project is scarce.

70 Over the last three decades, molecular markers have been widely used to study genetic variation
71 among and within populations of various plant species [1–10]. Among the different types of
72 markers that are available, microsatellites or Single Sequence Repeats (SSRs) are often selected
73 because they are easy to use and their implementation has low resources (*i.e.* genomic, financial,
74 lab equipment) requirements. As a result, they are markers of choice for the assessment of
75 polymorphism among species, genetic structure within populations, phylogeny reconstruction,
76 genetic mapping, evolutionary analysis, and molecular breeding [11–14]. However, the steps
77 leading to the development of functional SSR markers, namely the initial identification of
78 microsatellite loci, primer selection and assessment of amplification/polymorphism detection,
79 require some prior knowledge of the genome of the target species and may prove to be
80 expensive and time-consuming [13,15]. In order to overcome this difficulty, approaches relying
81 on the transfer of SSR markers between species or genera have therefore been implemented.
82 They have been successful in many instances, as documented across *Prunus* species and among

83 members of the Rosaceae family [16,17]; between species of the *Hevea* genus and to other
84 Euphorbiaceae [18]; among Lamiaceae [19]; among Legumes belonging to the *Vicia* genus [20]
85 and from the *Phaseolus* genus to *Vigna* [21].

86 The African fan palm *Borassus aethiopum* Mart., also known as ron or toddy palm, is a
87 dioecious species belonging to the Arecaceae family. It is widely distributed across West and
88 Central Africa, where it is present as wild populations. The fan palm is classified as a non-
89 timber forest products (NTFPs)-providing plant [22,23], since the different parts of the plant
90 are used for various purposes by local populations: hypocotyls and fruits for food, fruit odor as
91 shrew repellent, stipe for construction, roots and leaves for traditional medicine, leaves for
92 crafts [24–28]

93 These multiple uses of products derived from *B. aethiopum* have put a strong anthropogenic
94 pressure on the species, thus contributing to both fragmentations of its populations and their
95 poor natural regeneration [24,29–32]. More specifically, the harvesting of *B. aethiopum* fruits
96 for hypocotyl production and trade has become, over the last two decades, one of the most
97 important household commercial activities associated with this species in Benin, West Africa
98 [33]. Further fragmentation of the species' habitat has been observed as result of land clearing
99 for agriculture or urban development [32,34,35]. As illustrated through similar examples in the
100 literature [39,40], such phenomena may lead to restricted gene flow and ultimately, to loss of
101 genetic diversity among *B. aethiopum* populations.

102 There is therefore an urgent need to define a sustainable management policy for *B. aethiopum*
103 populations, in order to ensure its sustainable use. As a consequence, acquiring information on
104 the genetic diversity of the species and on the spatial structuring of its populations is a major
105 touchstone towards defining sustainable management actions. At the time of writing the present
106 article, only a few chloroplastic sequences are publicly available for *B. aethiopum* through
107 NCBI (<https://www.ncbi.nlm.nih.gov/search/all/?term=borassus%20aethiopum>). By contrast,

108 abundant molecular resources, including genome assemblies or drafts, are available for model
109 palm species such as the African oil palm *Elaeis guineensis* Jacq. [41], the date palm *Phoenix*
110 *dactylifera* [42–44] and the coconut tree *Cocos nucifera* [42,43]. In each of these three palm
111 species, large numbers of SSR markers have been identified and for a fraction of them, cross-
112 species and cross-genera transferability tests among species belonging to the Palmaceae family
113 have been performed [47–53]. In several instances [48–51,53], these tests included samples
114 from the Asian relative of *B. aethiopum*, *B. flabellifer*.

115 In the present study, we describe how we first attempted to use SSR markers that had been
116 identified in these other palm species for the analysis of genetic diversity in *B. aethiopum*. Then,
117 in a second phase, we show how we performed a low-coverage sequencing of the fan palm
118 genome in the aim of developing the first set of specific SSR markers targeting this species. We
119 then used these to assess the genetic diversity of *B. aethiopum* populations in Benin, as a
120 preliminary step towards more comprehensive studies.

121

122 **Material and Methods**

123 **Plant material sampling and DNA extraction**

124 Nine distinct populations of *B. aethiopum* separated by at least 50 km were selected from the
125 three main climatic regions that are encountered in Benin (Fig 1): the Sudanian region in the
126 North (four populations), the Sudano-Guinean region in the Centre (three populations) and the
127 Guineo-Congolian region in the South (two populations). Additionally, among sampled
128 populations, three were located in protected areas and six in farmlands. Within each population,
129 we sampled young leaves from 20 male and female adult trees that were separated by at least
130 100 m, and stored them in plastic bags containing silica gel until further processing. The
131 complete list of leaf samples and their characteristics is available in S1 Table.

132

133 **Fig 1. Geo-climatic distribution of the Beninese *Borassus aethiopum* populations used in this study.**

134 Collection sites for each of the nine populations sampled are indicated; information for individual
135 samples are available in S1 Table. The three main geo-climatic regions of Benin are (from the lighter-
136 to the darker-colored): Guineo-Congolian, Sudano-Guinean and Sudanian, respectively.

137 Adapted from a map by the GingkoMaps project (<http://www.ginkgomaps.com/>), distributed under a
138 Creative Commons Attribution (CC-BY) 3.0 license (<https://creativecommons.org/licenses/by/3.0/>).

139

140 Genomic DNA was extracted from 250 mg of leaves ground to powder under liquid nitrogen
141 using the Chemagic DNA Plant Kit (Perkin Elmer, Germany), according to the manufacturer's
142 instructions on a KingFisher Flex™ (Thermo Fisher Scientific, USA) automated DNA
143 purification workstation. Final DNA concentration was assessed fluorometrically with the
144 GENios Plus reader (TECAN) using bis-benzimide H 33258 (Sigma-Aldrich) as a
145 fluorochrome.

146

147 **Transferability of palms microsatellite markers: selection and
148 amplification**

149 We selected a total of 80 SSR markers from previous studies: 44 were developed on *Phoenix*
150 *dactylifera*; 25 were identified in *Elaeis guineensis* and showed successful amplification on
151 *Borassus flabellifer* and *P. dactylifera* DNA; and 11 from *Cocos nucifera*. The respective
152 sequences and origins of these different primer sets are displayed in Table 1.

153

154 **Table 1:** Characteristics of the palm SSR markers tested for transferability on *B. aethiopum*.

Marker N°	Marker name	Primer	Sequence (5'-3' orientation)	Source palm species	Other palm cultivars or species tested for transferability	References
1	mEgCIR0230	F	CCCTGGCCCCGTTTTTC	<i>Elaeis guineensis</i>	<i>Elaeis oleifera</i> <i>Syragus sp.</i> <i>Cocos nucifera</i> <i>Phoenix roebelinii</i> <i>Phoenix canariensis</i> <i>Phoenix reclinata</i>	[51](
		R	AGCGCTATATGTGATTCTAA			
2	mEgCIR0326	F	GCTAACACAGGGAAAAACA			
		R	AAGCCGCACTAACATACACATC			
3	mEgCIR0465	F	TCCCCCACGACCCATTTC			
		R	GGCAGGAGAGGCAGCATTTC			

4	mEgCIR0476	F	TTCCTCGGCCCTCTC			
		R	TCGCGACCTCCACTG			
5	EgCSSR-5781	F	TTCACGCTACTGATGGTTGG	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[50]
		R	TCGATCCCTCTCTGGAAAC			
6	EgCSSR-1461	F	GTCCTCTCCTACGCCCTCTC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	ATGCGATCCGAGTCAGAAAG			
7	mEgCIR2332	F	GAAGAAGGACAAAGAGAAAG	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	GCTAGGTAAAAATAAAGTT			
	mEgCIR3295	F	TGCCTCCAGACAACTCAC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	GTAAGGCTTAACCAAGATAAC			
9	mEgCIR3311	F	AATCCAAGTGGCCTACAG	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CATGGCTTGCTCAGTCA			
10	mEgCIR3413	F	AAAGCTATGGGGTAAAGAT	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	TGGATAAGGGCGAGAAAGAGA			
11	mEgCIR3477	F	CCTCAAGCAAAGATACC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	GGCACCAAAACACAGTAA			
12	mEgCIR3592	F	GAGCCAAAACAGACTCAA	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	ACCGTATATGACCCCTCTC			
13	mEgCIR3755	F	GCTCACCAAAAGTGTAAAGTC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	AGTTCAACGGCAGGTATAT			
14	mEgCIR3788	F	TTGTATGACCAAAGACAGC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	AGCGCAACATCAGACTA			
15	ESSR75	F	AGATGGTTGGAGATTCATGGT	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	AACTTGAGGGTGCCATTACAAG			
16	ESSR76	F	CCATACCAGCAGAAGAGGATGT	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CTGAAGGTCTAGGGGTCTCTG			
17	ESSR82R	F	CCCTCGACACCCATAGTTATT	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CTCGATTTCTGGCCTCTACAC			
18	ESSR332	F	AGTTAATGTGTCAGGGCCAGTT	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CTTGGTTCACTGGGTGTGTC			
19	ESSR553	F	ATAAATTGTGCGAGGGAAAAC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	AGATCCGCGACAGGTCTAAC			
20	ESSR566	F	GTGTATCAAATTGGTCTCTT	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CGGTTCTCTGCTGCTCTACTT			
21	ESSR609	F	AGGCGGTGATGAAGATGAAG	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CTCCTCTCAAACAGAGTGGGAT			
22	ESSR650	F	GCCTTTCTGGTTATGGACTG	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	GTTCGTCTATGGATGATGTGAGG			
23	ESSR652	F	CATACCGTCAACCAACTCAGAAC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	GCCGTCAATTCTACCACTGTTGAG			
24	ESSR673	F	TTCTGGCTACGGCATAAGGA	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	TCAATAACCCCTGGCTAAACACA			
25	ESSR681	F	TCTGAATTGTGGAGTGGC	<i>Elaeis guineensis</i>	<i>Borassus flabellifer</i>	[45,46]
		R	CATCCTGCGTAAACAAAAGAG			
26	CNZ34	F	CATGTCGATAATTACCCAA	<i>Cocos nucifera</i>	<i>Borassus flabellifer</i>	[47,52]
		R	TGCAAATATGAATGAAACAC			
27	CN2A5	F	AAGGTGAAATCTATGAACACA	<i>Cocos nucifera</i>	<i>Borassus flabellifer</i>	[47,52]
		R	GGCAGTAACACATTACACATG			
28	CNZ 12	F	TAGCTTCTGAGATAAGATGC	<i>Cocos nucifera</i>	<i>B. flabellifer</i>	[47,53]
		R	GATCATGGAAACGAAACATTA			
29	CNZ 24	F	TCCTAAGCTCAATACTCACCA	<i>Cocos nucifera</i>	<i>Phoenix dactylifera</i>	[47,53]
		R	CGCATTGATAAAATACAAGCTT			
30	CNZ 18	F	ATGGTTCAGCCCTAATAAAC	<i>Cocos nucifera</i>	<i>Elaeis guineensis</i>	[47,53]
		R	GAACATTGAAAGCTCCATCAT			
31	CNZ 42	F	TGATACTCCTCTGTGATGCTT	<i>Cocos nucifera</i>	<i>Cocos nucifera</i>	[47,53]
		R	GTAGATITGTGGGAGAGGAATG			
32	CN2A4	F	CAGGATGGTTCAAGCCCTAA	<i>Cocos nucifera</i>	<i>B. flabellifer</i>	[54,55]
		R	GGTGGAAAGGGAGAGGATTGA			
33	CAC 21	F	AATTGTGTGACACGTAGCC	<i>Cocos nucifera</i>	<i>B. flabellifer</i>	[54,55]
		R	GCATAACTCTTCATAAGGGA			
34	CAC 71	F	ATAGCTCAAGTTGTTGCTAGG	<i>Cocos nucifera</i>	<i>B. flabellifer</i>	[54,55]
		R	ATATTGTCATGATTGAGCTC			
35	CAC 84	F	TTGGTTTTGTATGGAACCTCT	<i>Cocos nucifera</i>	<i>B. flabellifer</i>	[54]
		R	AAATGCTAACATCTAACAGC			
36	CN1H2	F	TTGATAGGAGAGCTTCATAAC	<i>Cocos nucifera</i>	<i>B. flabellifer</i>	[54]
		R	ATCTCTTAAATGCTCGGAGT			
37	PdAG-SSR	F	TCTGATTCGTTACTTCTAGGA	<i>Phoenix</i>	<i>Phoenix dactylifera</i>	[45]

		R	TTCATATTCAAGTGTGGGTGTA	<i>dactylifera</i>		
38	mPdCIR015	F	AGCTGGCTCTCCCTTCTTA			
		R	GCTCGGTTGGACTTGTCT			
39	mPdCIR063	F	CTTTATGTGGTCTGAGAGA	<i>Phoenix dactylifera</i>		[56]
		R	TCTCTGATCTGGTTCTGT			
40	mPdIRD1	F	CTCGGAAGGGTATGGACAAA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	TTGCTTCGACGTGGTAGTA			
41	mPdIRD3	F	CATTGATCCAACACCACAC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GCCAAAACAGCTCTGGTAAC			
42	mPdIRD4	F	TTGGTGGCCTTCTCAGAGT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	TGGGATCAAAGTAGGGTTGG			
43	mPdIRD5	F	CTATCAGGATGGGGTGATG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	ACCCATCTGCATAGCTCCAG			
44	mPdIRD7	F	TGCAATACGATGGCAGAGTC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCTTGCAAGTTTCCACACC			
45	mPdIRD8	F	CTATTGGTCCCTTGGTGAG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	TGACTGCTCGTCATCAGGTC			
46	mPdIRD10	F	ATGCGTTCATCTCCCTTGAG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GCTGCAAACATCATCCTCAC			
47	mPdIRD11	F	GAGTTGGAGGCAAAACAGA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCACAAAACCTTGTCTCC			
48	mPdIRD14	F	GAGGGGTTACGTTGTGTC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GCACCAAGCACAAGAGCAAT			
49	mPdIRD15	F	CCGAGTCTGGCGAAGTAAAC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CTCCCCCTCCTCATCCTCTC			
50	mPdIRD16	F	CTGTCCGATCGAATTCTGC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GGACATCTCTTGCAGGT			
51	mPdIRD17	F	GTGGGAGAAACCGAAGAAAT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CTGCTGCCTCATCTGCATT			
52	mPdIRD20	F	TTGAATGGTCCCCGTAGGT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GTCCCAGCATGATTGCAGTA			
53	mPdIRD22	F	GGCTGTATGGGAAAGACCTG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCTGCTGCATATTCTTCGTG			
54	mPdIRD24	F	GCTCCTGCAGAACCTGAAAC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GGACATCACCGTCCAATTCT			
55	mPdIRD25	F	CACTGGAAATTCAAGGGCTA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCCAATTCTCAGCCAAGAC			
56	mPdIRD26	F	CCTCCAGTTCATGCTTCTCC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GAGCAGACCCGACAGACAAAT			
57	mPdIRD28	F	GAAACGGTATCGGGATGTATG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	TTAACGACGCCGTTCCT			
58	mPdIRD29	F	GGCTCCACCATCATTGACA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	AAACAGCATCGACTGCCTTCT			
59	mPdIRD30	F	GCAGATGGTGAAAGCTCCT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCCCATTAACAGGATCAACG			
60	mPdIRD31	F	GCAGGTGGACTGCAAATCT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CTATTGGGTGCTGATCCAT			
61	mPdIRD32	F	AAGAAGACATTCCGGCTGGT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GGGGGTGTGTGATATTGATG			
62	mPdIRD33	F	GGAGCATACTGGGTTGC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CAGCCTGGGAATGAGGATAG			
63	mPdIRD35	F	CAGCCCCCTACTCAGACTGG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCCATAAAGCTGATTGTGCTG			
64	mPdIRD36	F	GACACGTGACGATGTGGAA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCATTGCTGTGAGGAGGAG			
65	mPdIRD37	F	TTTCTTGCTCGAAAGACACC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CTTAGCCAGCCTCCACACTC			
66	mPdIRD40	F	GAGAGATGCGTCAGGAATC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	CCAGAATCTTCCAAGCAAGC			
67	mPdIRD42	F	GAGGCAAAACTATGGGAAGC	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	TTCACTGGAGCAAGGGTAGG			
68	mPdIRD43	F	GCAGCCATTGCTTACAGTGA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	TAAGACTGCTGCCCTCTGG			
69	mPdIRD44	F	CAGATCCGGAGATGATGAA	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	AGCAGGAGCAGCTGCATAA			
70	mPdIRD45	F	TAGCCTGTGCATGTTCTG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	AACAGCAGCTGATGGTGATG			
71	mPdIRD46	F	ATGGGTCCATTGGAGGAACCT	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	[56]
		R	GACGGAGACCTTGACTGCTC			
72	mPcCIR10	F	ACCCCGGAGCTGAGGTG	<i>Phoenix dactylifera</i>	<i>P. reclinata</i> <i>P. roebelenii</i> <i>P. rupicola</i> T. <i>P. theophrasti</i> <i>Hyphaene thebaica</i> <i>Livistona carinensis</i> <i>Chamaerops humilis</i>	Cherif, Castillo and Aberlenc-Bertossi, unpublished data.
		R	CGTCGATCTCTCTTGTCTC			
73	mPcCIR20	F	GCACGAGAAAGGCTTATAGT			

		R	CCCCTCATTAGGATTCTAC			
74	mPcCIR32	F	CAAATCTTGCCGTGAG			
		R	GGTGTGGAGTAATCATGTAGTAG			
		F	ACAAACGGCGATGGGATTAC			
75	mPcCIR35	R	CCGCAGCTCACCTCTTCTAT			
		F	CTGCCATTCTCTGAC			
76	mPcCIR50	R	CACCATGCACAAAAATG			
		F	AAGCAGCAGCCCTCCGTAG			
77	mPcCIR57	R	GTTCTCACTCGCCCAAAATAC			
		F	GAGAGAGGGTGGTGTATT			
78	mPcCIR85	R	TTCATCCAGAACACAGTA			
		F	ATCTTCCATGCAGCCTCAAG			
79	mPdIRD41	R	CAGGTCGTCCCGTCTCTAAA			
		F	GTTGGCATCACTTCAGAGCA			
80	mPdIRD47	R	GCTCTTCGGTGCTAGTTGC			

155

156 F, R: forward and reverse primers, respectively.

157

158 Transferability of the 80 palm SSR markers was assessed on a representative subset of 20 of *B.*
159 *aethiopum* individuals sampled in the different populations, plus 4 positive controls from each
160 source species for these markers (*P. dactylifera*, *C. nucifera*, *E. guineensis*). Microsatellite
161 amplification was performed with a modification of the M13-tailed Primers protocol (Boutin-
162 Ganache et al., 2001) adapted to the use of fluorescent labelling. The PCR reaction was
163 performed on 20 ng of leaf DNA and a mix of 1X PCR buffer, 200 µM dNTP, 2 mM MgCl₂,
164 0.4 pmol M13-tailed forward primer fluorescently labeled in 5' with FAM, HEX or TAMR, 4
165 pmol reverse primer, and 0.5 U of *Taq* polymerase (Sigma), in a final volume of 20 µl. The
166 following program was used: 3 min of initial denaturation at 95°C, followed by 35 cycles of 30
167 s at 95°C, 30 s at 50°C and 72°C for 1 min and a final extension at 72°C for 5 min. The resulting
168 amplification products were then diluted to 1/10th mixed with 0.5 µL of an internal size standard
169 (GeneScan 500 ROX, Thermo Fisher Scientific) and denatured for 5 minutes at 94°C prior to
170 capillary electrophoresis (Applied Biosystems 3500 Genetic Analyzer, Thermo Fisher
171 Scientific).

172

173 ***De novo* identification of microsatellite loci in the *B. aethiopum***
174 **genome, marker selection and diversity analysis**

175 One *B. aethiopum* leaf sample was randomly selected and genomic DNA purification was
176 performed according to the protocol of [57]. This DNA extract was then used for the
177 construction of an Illumina paired-end library, as described in [58], before high-throughput
178 sequencing on a MiSeq v3 Illumina platform. Demultiplexing of the raw data output was
179 performed using the Maillol script (<https://github.com/maillol/demultadapt>), with a 0-
180 mismatch threshold. Adapters were eliminated using Cutadapt v1.10 (Martin, 2011)
181 (<http://code.google.com/p/cutadapt/>) with the following parameters: overlap length = 7,
182 minimum length = 35 and quality = 20. High-quality reads ($Q > 30$) were filtered using the
183 following script: https://github.com/SouthGreenPlatform/arcad-hts/blob/master/scripts/arcad_hts_2_Filter_Fastq_On_Mean_Quality.pl and the resulting
184 filtered reads were deposited into GenBank SRA under accession number PRJNA576413.
185 Paired-end reads were then merged using FLASH v1.2.11
186 (https://github.com/SouthGreenPlatform/arcad-hts/blob/master/scripts/arcad_hts_3_synchronized_paired_fastq.pl). Finally, microsatellite
187 motif detection and specific primer design were carried out after elimination of redundant
188 sequences using the QDD v3.1.2 software [59] with default settings.
189 Using selected primer pairs, test amplifications were performed with two randomly selected fan
190 palm DNA samples, then primers showing successful amplification were further tested for
191 polymorphism detection among seven randomly selected DNA samples. The M13 Tailed
192 Primers protocol described previously was used, with the following program: 3 min of initial
193 denaturation at 95°C, followed by 35 cycles of 30 s at 95°C, 30 s at 55°C and 72°C for 1 min
194 and a final extension at 72°C for 5 min. PCR products visualization was performed as
195 previously indicated. Finally, the primer pairs enabling successful amplification of
196

198 polymorphic, mono-locus bands were used for the analysis of genetic diversity among the
199 complete set of 180 *B. aethiopum* individuals with the same conditions.

200

201 **Data analysis**

202 Amplification products were scored using the GeneMapper software V3.7 and only
203 unambiguous amplification products were considered for data analysis. Genetic parameters
204 such as total number of alleles, allelic frequency, expected heterozygosity (He), observed
205 heterozygosity (Ho), were calculated for each locus and each population in the GenAIEx
206 software Version 6.502 [60]. The F-statistics analysis assessing genetic differentiation and the
207 Analysis of MOlecular VAriance (AMOVA) for estimation of genetic differentiation within
208 and among populations were performed with the same software.

209 A Principal Coordinates Analysis (PCoA) was also performed using GenAIEx software to
210 enable the visualization of genetic variation distribution across the individuals under study. We
211 used the STRUCTURE software version 2.3.4 [62] for the determination of the most probable
212 number of clusters for population structure (K value). Using the admixture model, eight
213 simulations were performed for each inferred K value, with a running length composed of
214 300,000 burning periods and 50,000 Markov chain Monte Carlo (MCMC) iterations to allocate
215 accessions to different populations. The output from this analysis was then used as input in the
216 Structure HARVESTER online program to determine the exact [62]. Based on this value, a
217 clustering analysis of the studied populations was performed and using the genetic distance
218 matrix obtained from previous analysis, a dendrogram was constructed with the
219 DendroUPGMA program accessible online at <http://genomes.urv.cat/UPGMA/> [63]

220

221 **Results**

222 **Assessment of palm SSR markers transferability to *B. aethiopum***

223 **and evaluation of their capacity for characterizing genetic**

224 **diversity**

225 Of the 80 microsatellite markers that have been selected from three palm species and tested for
226 amplification on African fan palm DNA, 18 (22.5 %) generate amplification products (Table
227 2). No amplification is observed using the 11 *C. nucifera* markers, whereas 7 (15.9 %) and 11
228 (44%) of the *P. dactylifera* and *E. guineensis* markers, respectively, show a successful
229 amplification. None of the amplification products generated with date palm primers display
230 genetic polymorphism in our *B. aethiopum* test panel. Among oil palm-derived SSR markers
231 however, two, namely ESSR566 and ESSR652, display polymorphism. However, it must be
232 noted that the ESSR566 primer pair amplifies two distinct loci, ESSR566A and ESSR566B.

233 **Table 2** : Summary of SSR markers transferability assessment

Species of origin	Number of SSR markers	Number of successful amplification (% of markers)	Number of polymorphic amplicons (% of amplifications)
<i>Cocos nucifera</i>	11	0 (0)	0 (0)
<i>Phoenix dactylifera</i>	44	7 (15.9)	0 (0)
<i>Elaeis guineensis</i>	25	11 (44.0)	2 (18.2)
Total	80	18 (22.5)	2 (11.1)

234

235 Overall, during this phase of the study we detect polymorphism in our *B. aethiopum* test panel
236 with only 2 (11.1% of successfully amplified markers, 2.5% of total) of the palm SSR primer
237 pairs that have been assayed. Only one of these markers proves to be both polymorphic and
238 monolocus in the African fan palm, and might therefore be used for studying genetic diversity
239 in this species.

240

241 ***De novo* identification of microsatellite sequences in the *B.***

242 ***aethiopum* genome and assessment of potential SSR markers**

243 In order to enable a more precise evaluation of genetic diversity among *B. aethiopum*
244 populations, we developed specific *B. aethiopum* markers from *de novo* sequencing data. A
245 total of 23,281,354 raw reads (average length 250 bp) have been generated from one MiSeq
246 run. Raw sequence reads have been trimmed and generated 21,636,172 cleaned-up reads,
247 yielding 493,636 high-quality reads after filtering ($Q > 30$) from which 216,475 contigs have
248 been assembled.

249 From this latter output, the QDD software identifies a total of 1,630 microsatellite loci (see S2
250 Table), of which 81.41 % are perfect (*i.e.* repeat size 4 bp or smaller and repeat number 10- 20).
251 Among these, 83.86 % of loci are composed of di-nucleotidic repeat units, 13.06 % of tri-
252 nucleotidic units, 2.39 % of tetra-nucleotidic repeats and 0.67 % of repeats with five nucleotides
253 and over. From these, we have selected SSR markers composed of di- (AG) or tri- nucleotide
254 repeats, using the following criteria for specific amplification of easily scorable bands: primer
255 lengths ranging from 18 to 22 bp, annealing temperatures 55–60°C and predicted amplicon
256 sizes 90-200 bp.

257 The characteristics of the 57 selected primer pairs and the results of the test amplifications are
258 presented in Table 3. Successful amplification of *B. aethiopum* DNA is obtained in most cases
259 (94.7%). However, 34 of the putative markers tested (63.0% of amplifying ones) show no
260 polymorphism. The remaining 20 putative markers are polymorphic and among them, nine
261 correspond to multiple loci. As a result, 11 putative African fan palm SSR markers (representing
262 20.4% of successful amplifications and 55.0% of polymorphic markers in our study) are both
263 polymorphic and mono-locus in our amplification test panel and may therefore be used for
264 further analyses.

265

266 **Table 3:** List of selected primer pairs targeting putative *B. aethiopum* microsatellite loci and assessment of their
267 polymorphism detection ability

268

Locus name	Repeat motif	Primers	Sequence (5'-3' orientation)	Expected amplicon size (bp)	Amplification product
MB01	[AGG]7	F	CCTATCCTTCCATCCCGATCG	90	multiple loci, polymorphic
		R	TTGCCGTGAATCAGCCTCAA		
MB02	[ATC]7	F	GGGAGAACAAAGGATAACAGCAG	115	single locus, monomorphic
		R	TCCATTTCATCACTAGCTCGGT		
MB03	[AGG]7	F	CTCCGAGCCCTAGCAACTTT	131	single locus, monomorphic
		R	TCTGGATGACGAAACCTTCACA		
MB04	[ACC]7	F	GATGTGGCCGCTCTGATCTC	192	single locus, monomorphic
		R	ACATGCTGGCAAGGTATTCT		
MB05	[AAG]7	F	GTCCTAGCACGCTGGCATT	202	single locus, monomorphic
		R	TGGGTTGCCAATGAACCTT		
MB06	[ATC]7	F	TGGCCATTCAACTGCTTCAC	202	single locus, monomorphic
		R	GAATCTAGCACCAGCAAACCC		
MB07	[AAG]7	F	GGCACTGGAGTCCACATCAA	239	single locus, monomorphic
		R	TCCTTCTGTACTGGCATCTCT		
MB08	[AGG]8	F	TGATTGTTCCCTTCCCCTCCT	90	single locus, monomorphic
		R	TTAATGAGCCGAAGAGGAGCC		
MB09	[AGG]8	F	TCCCTCACTCCCATCCTCTC	163	single locus, monomorphic
		R	ACTCCACTCCTCCCTCATACA		
MB010	[AAC]8	F	GTAAAGACGCAGGGCTGGA	166	single locus, monomorphic
		R	CCCACCTAGTGAGATAAGACTTGA		
MB011	[ATC]8	F	GCATCACATGGTTTCAGGCT	219	single locus, monomorphic
		R	GCTCAACCATCGGCAGTGT		
MB012	[ATC]9	F	GGAGGAAAGGTTGCCCTAGAA	102	single locus, monomorphic
		R	TCTAACCTGATGTCATTGCA		
MB013	[AAG]9	F	CAGGTTGCATGGCCCATT	103	multiple loci, polymorphic
		R	GGAGCCTAACATGCACCCAGAG		
MB014	[AAC]9	F	ATGGCCGATCCCACCTAGTG	117	single locus, monomorphic
		R	GAGAGAACGGCAATAATTATGCA		
MB015	[AAG]10	F	GCTGAAGAGGATGAAGAAGAAGC	92	multiple loci, monomorphic
		R	TCATCATCTCCCTCTCCTTCT		
MB016	[AGG]10	F	CAGCACTGGCCTCACAGC	118	single locus, monomorphic

		R	CCGTCGATCAGTTGGAGA		
MB ₀₁₇	[ATC]10	F	ACACAATGACCTTCGCTGA	124	single locus, monomorphic
		R	CCAAACAGGACCTTATGCCA		
MB ₀₁₈	[AAG]10	F	ACATCCTCTCCTTCATCTCCTT	187	multiple loci, polymorphic
		R	GTTCCTACAATGCTTGGCGC		
MB ₀₁₉	[AAG]10	F	TGCTATCACCCAAATATCTAGGCT	202	single locus, monomorphic
		R	ACAGTCAACAACTACCATACTGC		
MB ₀₂₀	[AAG]10	F	TGTGGTTAAAGCAATGGAAGCA	229	single locus, monomorphic
		R	GCCGAACCTCTACTCTCATACG		
MB ₀₂₁	[AAG]11	F	ACAACAGAAGATCAGTATACTGTTCT	171	single locus, monomorphic
		R	TTGAGGAATCATGCTTGTCACT		
MB ₀₂₂	[AAG]14	F	AGAAGAACATTGGTTAGGTACAA	108	single locus, monomorphic
		R	AGATAAACATGGTAAGAACATTGCCT		
MB ₀₂₃	[AAT]5	F	TGAGTTCTTGTCTTGTCTTCGT	100	single locus, monomorphic
		R	GGTTTGGGACACCCCTTCAGG		
MB ₀₂₄	[AAT]9	F	AAAGTCATGTCTGGGTGATGAA	90	single locus, monomorphic
		R	ATGATGAGCACAGCTACAACCT		
MB ₀₂₅	[AAT]6	F	TCTTCAGGTGACAAGCAACA	96	single locus, monomorphic
		R	CCTGGGCATGGAGATAGCAT		
MB ₀₂₆	[AAT]7	F	CCATAGGCCAGCCCACATA	134	single locus, monomorphic
		R	ACCCCTTCTTCTTCCTCATTTGT		
MB ₀₂₇	[AAT]7	F	TCTCTATTGCTTGGTGATCCC	103	single locus, monomorphic
		R	TCCAACAAGGGATGGTTATCATG		
MB ₀₂₈	[AAT]8	F	GCCTTGAGAGTGGAAAGAGGC	205	single locus, monomorphic
		R	TCTCTTCTTGCGCCCTCAT		
MB ₀₂₉	[AAT]16	F	AGACATGTAGAGGTGGACT	211	single locus, monomorphic
		R	TCTGTATGAGAGACGTGTTACAGT		
MB ₀₃₀	[AAT]8	F	TGACCATAACAAGCTACCAGGT	146	single locus, monomorphic
		R	GGTGGAAAGCTATTGATATTGCATGT		
MB ₀₃₁	[AAT]10	F	TGACAATGATGCATGCGATAACA	187	single locus, monomorphic
		R	GCATCACCCATGTCCTTTCAGC		
MB ₀₃₂	[AAT]10	F	TCCGAGGGCAGTATTGTCG	117	single locus, monomorphic
		R	CACTATTCGGAAACCTAACGCC		
MB ₀₃₃	[AAT]17	F	GCACACTTGTATCCGACGC	147	single locus, monomorphic
		R	CAGGGATAGTAACCGTCAGGG		
MB _{034*}	[AG]28	F	GTGGCACCTCTGCGGTTT	192	single locus, polymorphic
		R	CGAGATGGAAGCACCTGGAG		

MB035*	[AG]24	F	AGCATGCTTCTGCTTCATGTG	137	single locus, polymorphic
		R	CCTTCCCTGACTGCATTGC		
MB036	[AG]23	F	TCGGAAGTCGAATGTGGCAG	180	no amplification
		R	TCGGAAGAGTGGTCAATCATGG		
MB037	[AG]23	F	GCTCTACTCCCAGAGACGGA	142	multiple loci, polymorphic
		R	AACAGTCGACGGAATGCTCA		
MB038*	[AG]20	F	AGTCCTCACTGCTGGTGGTA	130	single locus, polymorphic
		R	TCCTTGAATAGTCCATCTTGCA		
MB039	[AG]19	F	AACGCAGGTTAACAGAGGCTCC	168	multiple loci, monomorphic
		R	CCTCCTGGTGCAACCCTTAC		
MB040	[AG]19	F	TGTGGAGTGTGAGTCGATGG	193	multiple loci, polymorphic
		R	GGCTGCATAATCTCATCACGCC		
MB041*	[AG]18	F	TTCTCCACCAGCCTCACAAAC	184	single locus, polymorphic
		R	ATACGGCCCATCAACCCTTC		
MB042	[AG]18	F	CCTGGTGGTACATGTGGTCA	136	multiple loci, polymorphic
		R	TGTGGCACATTCTTCTGAAGG		
MB043	[AG]18	F	AGTTTGTCTGTGTGTTGTCAC	137	no amplification
		R	GCACACATCTGCTTGAAGAC		
MB044	[AG]17	F	AACACACTTAAATCGACTTCTCA	193	multiple loci, polymorphic
		R	CACGGCTGCCATGTGAGG		
MB045	[AG]17	F	TAGATCGGAAGTCAGGCC	193	no amplification
		R	AGAGAAAGTGGGAGGGAGAGGTC		
MB046	[AG]17	F	GCCGATATTAGCTTCTTCTGGC	154	single locus, monomorphic
		R	GCCTTGTGATCCGTTTCAC		
MB047	[AG]16	F	GGCACCTGACGCCCTTT	188	single locus, monomorphic
		R	TCACCTCGACTCAATTGTATCCAT		
MB048	[AG]16	F	AGGACAAAGAGATGAGAACCT	92	multiple loci, polymorphic
		R	ACCAATTCCCAGTTAGTTGACCA		
MB049*	[AG]16	F	CATCACCCATTCTCTGCCT	141	single locus, polymorphic
		R	GAGAAACCATCCGCACCTCA		
MB050*	[AG]15	F	AGAAGTCATCTTGAGGGCCC	150	single locus, polymorphic
		R	TTGCTAGAATGATACACAAATTGCT		
MB051*	[AG]15	F	TGTGCTATTGTTGGGAATGCA	191	single locus, polymorphic
		R	GCAAGCTCATGTTCTAGTTCAAGT		
MB052*	[AG]15	F	ACACATCCTACATGAATAGACCTCC	122	single locus, polymorphic
		R	TCTTGTCTAGCCTAGATTCCCT		
MB053	[AG]15	F	AGGTTAACGGGTTGGGTTAGGG	131	single locus, monomorphic

		R	GGTGGAGTAAGTTGAGGGTCA		
MBo54*	[AG]11NNN[AG]15	F	CATATGCTGATACAAGAGAGAGGG	124	single locus, polymorphic
		R	ACCTTATAAGCAGGATCCAGACA		
MBo55	[AG]15	F	TGGAATCACCTTGGGTCTACA	198	multiple loci, polymorphic
		R	TCGTCGGTCTTCTAGCCACT		
MBo56*	[AG]15	F	ACCAAGATCAAGCACGAGGA	103	single locus, polymorphic
		R	AGGATCACCCCTTCTTCTTCT		
MBo57*	[AG]15	F	GGGTTCAATCCTGATGAGAGCA	136	single locus, polymorphic
		R	ACCGTTCGATCAACCATGGT		

269

270 Loci for which single-locus SSR polymorphism has been detected within our test panel of seven *B. aethiopum* individuals are
271 signaled by an asterisk (*). Expected amplicon size is as predicted by QDD.

272

273 **Microsatellite-based characterization of the genetic variation**

274 **within *B. aethiopum* populations of Benin**

275 The set of 11 *B. aethiopum*-specific SSR markers identified in the previous step has been used
276 for the characterization of genetic diversity in our full panel of nine populations (180
277 individuals) distributed across Benin. Among our sample set, the number of alleles per
278 microsatellite locus ranges from 2 for locus Mbo41 to 6 for loci Mbo34, Mbo35 and Mbo50,
279 with an average value of 4.27, whereas expected heterozygosity (He) values range from 0.031
280 (locus Mbo56) to 0.571 (locus Mbo35; Table 4). Using these markers, the analysis of genetic
281 diversity (Table 5) shows that the percentage of polymorphism detected at the microsatellite
282 loci investigated ranges from 72.73% (populations of Togbin and Malanville) to 90.91%
283 (populations of Savè, Agoua, Pendjari, Pingou and Trois Rivières), with a mean value of
284 84.85%. With the exception of the Savè, Hounviatouin and Malanville populations, 1 to 3
285 private alleles of the targeted microsatellite loci are observed in most populations. Regarding
286 the genetic parameters, the number of effective alleles (Ne) ranges from 1.447 to 2.069 with an
287 average number of 1.761. He values range from 0.263 (Hounviatouin) to 0.451 (Savè) with an

288 average value of 0.354 whereas the observed heterozygosity (H_o) varied from 0.234 (Togbin)
 289 to 0.405 (Pingou) with an average value of 0.335. Negative values of Fixation index (F) are
 290 obtained for the populations of Pingou, Malanville and Trois rivières whereas positives F values
 291 are observed in all other populations investigated, indicating a deficit of heterozygosity in the
 292 latter.

293

294 **Table 4:** Characteristics of 11 polymorphic microsatellites markers used for genetic diversity analysis of *B. aethiopum*

Locus name	Number of alleles scored/locus	Expected Heterozygosity (H_e)
Mbo34	6	0.520
Mbo35	6	0.571
Mbo38	5	0.458
Mbo41	2	0.343
Mbo49	4	0.167
Mbo50	6	0.548
Mbo51	3	0.320
Mbo52	3	0.201
Mbo54	4	0.26
Mbo56	3	0.031
Mbo57	5	0.296

295

296

297 **Table 5:** Mean diversity parameters for each of the nine *B. aethiopum* populations

Geo-climatic region	% polymorphic loci		Nb of alleles					
	Populations	private	Na	Ne	Ho	He	F	
Guineo-Congolian (South)	<i>Togbin</i>	72.73%	2.273	1.584	3	0.234	0.288	0.145
	<i>Hounviatouin</i>	81.82%	2.182	1.447	0	0.272	0.263	0.007
Soudano-Guinean (Centre)	<i>Savè</i>	90.91%	2.909	2.069	0	0.384	0.451	0.134
	<i>Biguina</i>	81.82%	2.364	1.770	2	0.345	0.374	0.064
	<i>Agoua</i>	90.91%	2.273	1.722	1	0.329	0.358	0.059

Sudanian (North)	<i>Pendjari</i>	90.91%	2.818	1.900	3	0.368	0.396	0.055
	<i>Pingou</i>	90.91%	2.364	1.906	1	0.405	0.390	-0.063
	<i>Malanville</i>	72.73%	2.455	1.627	0	0.302	0.303	-0.020
	<i>Trois rivières</i>	90.91%	2.545	1.822	2	0.373	0.360	-0.055
Overall mean		84.85±2.62%	2.465±0.103	1.761±0.065		0.335±0.023	0.354±0.023	0.035±0.022

298 Na : number of different alleles; Ne: Number of effective alleles; Ho= Observed Heterozygosity; He: Expected Heterozygosity; F: Fixation
299 index

300

301 **Genetic structure of the *B. aethiopum* populations under study**

302 The calculation of Nei's genetic distance among populations (Table 6) shows values ranging
303 from 0.073, as observed between Togbin and Hounviatouin (Guineo-Congolian region), to
304 0.577 between Togbin (Guineo-Congolian region) and Trois Rivières (Sudanian region).
305 Overall, genetic distances between the fan palm populations under study are lowest within the
306 same region, with the lowest genetic distances among populations of Savè, Pendjari, Pingou,
307 and Trois Rivières which are all located in the Northern part of the country. One interesting
308 exception is the Centre (Guineo-Sudanian) region of Benin, where we find that the most
309 genetically distant population from Savè is the one collected within the Agoua forest reserve
310 (0.339). Surprisingly, Savè displays its highest genetic identity value when compared to the
311 other two populations sampled in protected areas, namely Pendjari (0.870) and Trois Rivières
312 (0.882) which are both located in the Sudanian region. This is an unexpected finding
313 considering the important geographic distances that are involved.

314

315 **Table 6:** Pairwise Population Matrix of Nei's genetic distance and genetic identity values

	Togbin	Hounviatouin	Savè	Biguina	Agoua	Pendjari	Pingou	Malanville	Trois Rivières
Togbin	-	0.073	0.477	0.253	0.337	0.517	0.494	0.487	0.577
Hounviatouin	0.929	-	0.419	0.110	0.215	0.435	0.317	0.375	0.535
Savè	0.621	0.658	-	0.270	0.339	0.140	0.265	0.238	0.126
Biguina	0.776	0.896	0.763	-	0.152	0.241	0.161	0.186	0.316
Agoua	0.714	0.806	0.713	0.859	-	0.408	0.304	0.359	0.490
Pendjari	0.596	0.647	0.870	0.786	0.665	-	0.167	0.108	0.103

Pingou	0.610	0.728	0.767	0.851	0.738	0.846	-	0.174	0.175
Malanville	0.614	0.688	0.788	0.831	0.699	0.898	0.841	-	0.145
Trois Rivières	0.561	0.585	0.882	0.729	0.613	0.902	0.840	0.865	-

316

317 Above the diagonal: Nei's genetic distance; below: genetic identity.

318

319 A similar structuration of genetic distances emerges from the analysis of pairwise population
320 genetic differentiation (Fst) (Table 7), suggesting genetic differentiation according to
321 geographic distances between populations, with the notable exception of the lower genetic
322 differentiation between palms from Savè and those from either one of the forest reserves in the
323 Northern region.

324

325 **Table 7** : Pairwise populations Fst value

	Togbin	Hounviatouin	Savè	Biguina	Agoua	Pendjari	Pingou	Malanville	Trois
	Rivières								
Togbin	0.000								
Hounviatouin	0.072	0.000							
Savè	0.233	0.221	0.000						
Biguina	0.168	0.086	0.145	0.000					
Agoua	0.215	0.153	0.157	0.105	0.000				
Pendjari	0.247	0.212	0.077	0.120	0.188	0.000			
Pingou	0.252	0.181	0.138	0.103	0.169	0.100	0.000		
Malanville	0.301	0.246	0.149	0.121	0.197	0.072	0.119	0.000	
Trois Rivières	0.285	0.279	0.076	0.178	0.224	0.073	0.104	0.107	0.000

326

327 Our analysis of molecular variance (AMOVA; Table 8) shows that within-population variation
328 underlies the major part (53%) of total variance, whereas among-populations and among-
329 regions variations explain variance to a similar extent (23 and 24%, respectively).

330

331 **Table 8** : AMOVA results.

Source	df	SS	MS	Est. Var.	% total	P value
variance						

Among Regions	2	309.407	154.704	1.944	24%	<0.001
Among Populations	6	254.302	42.384	1.903	23%	<0.001
Within Populations	171	739.100	4.322	4.322	53%	<0.001
Total	179	1302.809		8.169	100%	

332 df=degree of freedom, SS=sum of squares, MS mean squares, Est. var.=estimated variance

333

334 In accordance with results from both the analysis of genetic distances and the AMOVA, the
335 Principal Coordinates Analysis (PCoA) of our 180 individual *B. aethiopum* samples shows that
336 the first axis (accounting for 24% of total variation) distinguishes roughly between two main
337 groups of populations (Fig 2). Likewise, the Bayesian analysis of our data indicates an optimal
338 value of K=2 for the clustering of the studied populations into two groups (Fig 3): one group
339 that includes palms belonging to the populations of Togbin and Hounviatouin from the Southern
340 part of the country, as well as most of the palms from Biguina and Agoua from the Western
341 (Togolese) border of the Centre region; and one group composed of the majority of the palms
342 collected in Savè (Eastern part of the Centre region) and palms from the Northern populations
343 of Pendjari, Pingou, Malanville and Trois Rivières. The dendrogram derived from the UPGMA
344 analysis of our data further shows that, within these two main groups, subgroups can be defined
345 based on geo-climatic regions, Savè being the only exception to this general trend (Fig 4).

346

347 **Fig 2. Principal Coordinates Analysis (PCoA) of individual *Borassus aethiopum* samples.**

348

349 **Fig 3. Bayesian cluster analysis**

350 A: Determination of the optimal value of K from Structure Harvester.

351 B: Bayesian STRUCTURE bar plot analysis of Beninese *B. aethiopum* samples with K=2. Red: group
352 1; green: group 2. Populations are numbered as in S1 Table and displayed along the horizontal axis.

353

354 **Fig 4. Genetic relationships among Beninese *B. aethiopum* populations.**

355 Branch ends with identical colors represent populations from the same geo-climatic region.

356

357 **Discussion**

358 In flowering plant, the efficiency of cross-species transfer of SSR markers is highly variable
359 among taxa, especially when important differences in genome complexity exist between the
360 marker source and the target [64]. Nevertheless, this method has been used successfully for
361 accelerating the analysis of genetic diversity in many plant species, including palms [13,68–70]

362 In the present study, we find that the transferability rate of microsatellite markers developed in
363 other palms genera to the African fan palm, *i.e.* their ability to successfully amplify genomic
364 DNA from the latter species, is very low. Indeed, among the 80 primer pairs designed on either
365 oil palm, date palm or coconut palm, we observe that only 22.5% produce amplicons from *B.*
366 *aethiopum*. This percentage is very low when compared to both the inter-species and inter-
367 genera transferability rates that have been found in similar studies targeting other palm species:

368 from 17 to 93% in a panel of 32 palm species [50], 75% from *E. oleifera* to *E. guineensis* [67],
369 86% between the wooly jelly palm *Butia eriospatha* and related species *B. catarinensis* [68]
370 and up to 100% in the licuri palm *Syagrus coronata* [70]. When considering other plant
371 families, our transferability rate is also markedly lower than both the average rate of 50% found
372 by [70] within the *Glycine* genus and among Legumes genera, and the overall rate of 35.2%
373 calculated by [71] for within-family transferability among Gymnosperms and Angiosperms.

374 The low transferability rate in our study might be explained in part by the fact that we used
375 markers originating from genomic sequences. Indeed, as pointed out by [72], such markers have
376 a lower transferability rate when compared to Expressed Sequence Tags (ESTs)-derived
377 microsatellites due to the higher inter-species sequence variability within non-coding *vs.* coding

378 sequences. Similarly, it is plausible that differences in genome size and complexity among palm
379 species and genera account for our difficulty to identify palm SSR markers that successfully
380 amplify in *B. aethiopum*. As a matter of fact, the size of the *B. aethiopum* genome, as determined
381 by flow cytometry (1C = 7.73 Gb; Jaume Pellicer, unpublished data), is 3.2 to 11.5 times larger
382 than those of the microsatellite source species used in the present study: the date palm genome
383 is estimated to be 671 Mb [40] whereas the oil palm genome is 1.8-1.9 Gb [41,74] and the
384 coconut genome is 2.42 Gb [46]. Most likely, these differences in genome sizes among related
385 diploid plant species rely on differences in Transposable Element contents and associated
386 structural variations such as copy number variants and homologous recombinations [75], which
387 might eventually affect the cross-species amplification ability of SSR primers. The illustration
388 of such a mechanism working at the intra-genus level has been provided by cultivated rice
389 species *Oryza sativa* and its wild relative *O. australiensis* [76]. More generally, gaining a better
390 understanding of genome structures within the *Borassus* genus could also help reconcile our
391 results with previous published reports of successful transfer of SSR markers developed from
392 other palm sources to *Borassus flabellifer* (see references cited in Table 1). Indeed, since the
393 genome size of *B. flabellifer* is only marginally smaller than that of *B. aethiopum* (7.58 Gb;
394 Jaume Pellicer, unpublished data), significant differences in genome composition may be
395 underlying the lack of SSR transferability between both species.

396 In any case, from the low number of successfully transferred microsatellite markers we could
397 only identify one displaying polymorphism in our fan palm test panel, making it impossible to
398 rely on for analysis of genetic diversity. Still, the fact that so little microsatellite polymorphism
399 (2 out of 18 amplifying primer pairs: 11.1%) could be detected in this subset of 20 palms
400 sampled across different locations throughout Benin is somewhat surprising and its reasons
401 remain to be elucidated. In addition to possibly being a symptom of habitat fragmentation and
402 low gene flow between populations, this low diversity might also result from the extremely

403 long juvenile phase that has been attributed to this palm species, for which authors have reported
404 floral maturity occurring 30 to 50 years after germination [77,78].

405 Compared to other studies in which high-throughput sequencing techniques have been used for
406 the development of new microsatellite markers in species with very little information available
407 [78,79], our results are similar. We identified 57 potential SSR markers, of which 11 displayed
408 polymorphism and were used to assess the genetic structure of *B. aethiopum* populations in
409 Benin. We find a low genetic diversity, with an average He value (0.354) that is substantially
410 below those reported for *Borassus flabellifer* [46] and for other non-timber forest products such
411 as *Khaya senegalensis* (He = 0.53; [80] and *Phyllanthus* sp [81]. The positive F value that we
412 observed in the majority (6 out of 9) of populations in the present study indicates an overall
413 deficiency of heterozygotes across population. This deviation from the Hardy-Weinberg
414 equilibrium (HWE) might reflect poor gene flows through pollen and seed dissemination,
415 leading to crosses between related individuals. Accordingly, our data reveal limited genetic
416 distances among populations, with values lower than those reported for others palm species.
417 Indeed for *B. flabellifer*, genetic distance ranged from 0.716 to 0.957 [82] and among natural
418 oil palm accessions an average of 0.769 was observed [84]. Both our Fst values and AMOVA
419 analysis point to intra-population differentiation as being the main source of genetic variation.
420 As illustrated by the agreement between our PCoA and Bayesian analyses, Beninese *B.*
421 *aethiopum* populations cluster globally according to geographic distances between the
422 collection sites. However, among the nine populations studied, the population from Savè
423 appears to be the most diversified (He= 0.451) and constitutes an exception to this general
424 distribution. This site located in the Sudano-Guinean transition zone of Benin is currently the
425 most active for the production of fan palm hypocotyls, and it acts as a supplier for the whole
426 national territory (VK Salako, personal communication), suggesting that it might be the largest
427 population of *B. aethiopum* in the country. Moreover, our sampling of Savè individuals appear

428 to be genetically distinct from palms belonging to other populations of the Central region and
429 closer from those of the Northern region, despite the important geographical distances involved
430 with the latter case. We postulate that seed dispersion by elephants might have played a major
431 role in the observed pattern of genetic diversity and explain the singularity observed in Savè.
432 As a matter of fact, [31,32] detected the presence of *B. aethiopum* seeds in elephant dungs and
433 hypothesized that elephants may have played important role in the seed dissemination for this
434 species through fruit consumption and long-distance herd migrations. In support to this
435 assumption, Savè is part of a continuous forest corridor connecting with the Northern region
436 that was used by elephants in their migrations. Up until 1982, the seasonal occurrence of the
437 animal has been reported in the Wari-Marø forest of Central Benin [84].
438 The use of the specific microsatellite markers developed in this study from genomic sequencing
439 of *B. aethiopum* appears to be efficient to assess the genetic diversity and population structure
440 of this species. These microsatellite loci with respect to our results represent potential molecular
441 marker set that can be used to elucidate the genetic diversity of *B. aethiopum* in other African
442 countries. Additionally, and provided that genome divergence is not too extensive to allow
443 marker transferability, our SSR markers may also be used in a palm species that belongs to
444 the same genus and that is reported to share parts of its distribution area, namely *Borassus*
445 *akeassii* B.O.G., which has long been confused with *B. aethiopum* due to its similar morphology
446 [85]. High-throughput sequencing proves to be a good, fast and effective way to develop new
447 microsatellite markers especially for plant species without published molecular data. The
448 increasing availability and affordability of this technology makes it possible, both technically
449 and financially, to overcome the difficulties arising in case studies such as ours, where marker
450 transfer has proven to be limited or ineffective. To our knowledge, the data presented in the
451 present article constitute the first sizeable molecular resource available for the African fan palm,
452 which we have made available to the scientific community at large in order to facilitate the

453 implementation of an increasing number of studies on this palm species. We have also
454 performed the first analysis of the genetic diversity of *B. aethiopum* in an African country,
455 which we see as a first step towards the elaboration of an evidence-based strategy for sustainable
456 resource management and preservation in Benin. As a complement, the acquisition of agro-
457 morphological data and the characterization of processes regulating the reproductive
458 development of the species are currently under way. Beyond that, we also aim to extend our
459 analysis of *B. aethiopum* diversity to the West African sub-region, and leverage the data
460 acquired to improve knowledge of both other species within the *Borassus* genus, and of palms
461 diversity as a whole.

462

463 **Acknowledgements**

464 The Authors wish to thank Emira Cherif, Carina Castillo and Frédérique Aberlenc (IRD, UMR
465 DIADE, Montpellier, France) for sharing their unpublished microsatellite markers data for
466 transferability tests, and Dr Jaume Pellicer (Comparative Plant & Fungal Biology, Jodrell
467 Laboratory, Royal Botanical Gardens, Kew, UK), for allowing us to use the palm flow
468 cytometry data.

469

470 **Funding statement**

471 The work described in this article was funded through travel grants to MJK and KA under the
472 framework of the MooSciTIC project granted to EJ by Agropolis Fondation (ID 1501-011,
473 "Investissements d'Avenir" Program - Labex Agro: ANR-10-LABX-0001-01). Additional
474 funding was provided by the Sud Expert Plantes - Développement Durable (SEP2D)
475 programme to KA (GenPhyB project, ID AAP3-64). MJK is the recipient of a PhD fellowship
476 from the French Embassy in Benin.

477

478 **Conflict of interest**

479 The authors declare no conflict of interest. The funders had no role in study design, data
480 collection and analysis, decision to publish, or preparation of the manuscript.

481

482 **Ethics statement**

483 In accordance with the Nagoya Protocol on Access and Benefit Sharing (ABS), a field permit
484 allowing access and non-commercial use for research purposes of the plant material used in the
485 present study has been submitted to the competent national authority (Direction Générale des
486 Eaux, Forêts et Chasse/Ministère du Cadre de Vie et du Développement Durable, Benin).

487

488 References

- 489 1. Huang XQ, Cöster H, Ganal MW, Röder MS. Advanced backcross QTL analysis for the
490 identification of quantitative trait loci alleles from wild relatives of wheat (*Triticum*
491 *aestivum* L.). *Theor Appl Genet.* 2003;106(8):1379-89. doi.org/10.1007/s00122-002-1179-7
- 492 2. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J. Genetic Structure and
493 Diversity Among Maize Inbred Lines as Inferred From DNA Microsatellites. *Genetics.*
494 2003;165:2117-28.
- 495 3. Liu S, Cantrell RG, McCarty JC, Stewart JM. Simple Sequence Repeat-Based Assessment
496 of Genetic Diversity in Cotton Race Stock Accessions. *Crop Science.*
497 2000;40(5):1459-69. doi.org/10.2135/cropsci2000.4051459x
- 498 4. Maughan PJ. Microsatellite and amplified sequence length polymorphisms in cultivated
499 and wild soybean. *Genome.* 1995; 38(4):715-23. doi.org/10.1139/g95-090
- 500 5. Milla SR, Isleib TG, Stalker HT. Taxonomic relationships among *Arachis* sect. *Arachis*
501 species as revealed by AFLP markers. *Genome.* 2005;48(1):1-11. doi.org/10.1139/g04-089
- 502 6. Mohamed A, García-Martínez S, Loumerem M, Carbonell P, Ruiz JJ, Boubaker M.
503 Assessment of genetic diversity among local pea (*Pisum sativum* L.) accessions cultivated
504 in the arid regions of Southern Tunisia using agro-morphological and SSR molecular
505 markers. *Genet Resour Crop Evol.* 2019;66(6):1189-203. doi.org/10.1007/s10722-019-00784-8
- 506 7. Moon HS, Nicholson JS, Lewis RS. Use of transferable *Nicotiana tabacum* L.
507 microsatellite markers for investigating genetic diversity in the genus *Nicotiana*. Belzile
508 F, éditeur. *Genome.* 2008;51(8):547-59. doi.org/10.1139/g08-039

512 8. Muriira NG, Muchugi A, Yu A, Xu J, Liu A. Genetic Diversity Analysis Reveals Genetic
513 Differentiation and Strong Population Structure in Calotropis Plants. *Sci Rep.*
514 2018;8(1):7832. doi.org/10.1038/s41598-018-26275-x

515 9. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, et al. The comparison
516 of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. *Mol*
517 *Breeding*. 1996;2(3):225-38. doi.org/10.1007/BF00564200

518 10. Yuan Q-J, Zhang Z-Y, Hu J, Guo L-P, Shao A-J, Huang L-Q. Impacts of recent cultivation
519 on genetic diversity pattern of a medicinal plant, *Scutellaria baicalensis* (Lamiaceae).
520 *BMC Genet.* 2010;11(1):29. doi.org/10.1186/1471-2156-11-29

521 11. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK. Microsatellite markers: an overview
522 of the recent progress in plants. *Euphytica*. 2011;177(3):309-34. doi.org/10.1007/s10681-010-0286-9

524 12. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, et al. DNA
525 molecular markers in plant breeding: current status and recent advancements in genomic
526 selection and genome editing. *Biotechnology & Biotechnological Equipment*.
527 2018;32(2):261-85. doi.org/full/10.1080/13102818.2017.1400401

528 13. Satya P, Paswan PK, Ghosh S, Majumdar S, Ali N. Confamiliar transferability of simple
529 sequence repeat (SSR) markers from cotton (*Gossypium hirsutum* L.) and jute (*Corchorus*
530 *olitorius* L.) to twenty two Malvaceous species. *3 Biotech.* 2016;6(1).
531 doi.org/10.1007/s13205-016-0392-z

532 14. Wang C, Jia G, Zhi H, Niu Z, Chai Y, Li W, et al. Genetic Diversity and Population
533 Structure of Chinese Foxtail Millet [*Setaria italica* (L.) Beauv.] Landraces.
534 *Genes|Genomes|Genetics*. 2012;2(7):769-77. [doi/10.1534/g3.112.002907](https://doi.org/10.1534/g3.112.002907)

535 15. Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, et al. How
536 much effort is required to isolate nuclear microsatellites from plants? *Molecular Ecology*.
537 2003;12(6):1339-48. [doi/abs/10.1046/j.1365-294X.2003.01825.x](https://doi.org/10.1046/j.1365-294X.2003.01825.x)

538 16. Mnejja M, Garcia-Mas J, Audergon J-M, Arús P. *Prunus* microsatellite marker
539 transferability across rosaceous crops. *Tree Genetics & Genomes*. 2010;6(5):689-700.
540 <https://doi.org/10.1007/s11295-010-0284-z>

541 17. Wünsch A. Cross-transferable polymorphic SSR loci in *Prunus* species. *Scientia
542 Horticulturae*. 2009;120(3):348-52. doi.org/10.1016/j.scienta.2008.11.012

543 18. Yu F, Wang B-H, Feng S-P, Wang J-Y, Li W-G, Wu Y-T. Development, characterization,
544 and cross-species/genera transferability of SSR markers for rubber tree (*Hevea
545 brasiliensis*). *Plant Cell Rep*. 2011;30(3):335-44. [https://doi.org/10.1007/s00299-010-0908-7](https://doi.org/10.1007/s00299-010-
546 0908-7)

547 19. Karaca M, Ince AG, Aydin A, Ay ST. Cross-genera transferable e-microsatellite markers
548 for 12 genera of the Lamiaceae family. *J Sci Food Agric*. 2013;93(8):1869-79.

549 20. Raveendar S, Lee G-A, Jeon Y-A, Lee YJ, Lee J-R, Cho G-T, et al. Cross-amplification
550 of *Vicia sativa* subsp. *sativa* microsatellites across 22 other *Vicia* species. *Molecules*.
551 2015;20(1):1543-50. doi.org/10.3390/molecules20011543

552 21. Pratap A, Gupta S, Tomar R, Malviya N, Maurya R, Pandey VR, et al. Cross-genera
553 amplification of informative microsatellite markers from common bean and scarlet runner
554 bean for assessment of genetic diversity in mungbean (*Vigna radiata*). *Plant Breeding*.
555 2016;135(4):499-505. [doi/abs/10.1111/pbr.12376](https://doi.org/10.1111/pbr.12376)

556 22. Blach-Overgaard A, Svenning J-C, Dransfield J, Greve M, Balslev H. Determinants of
557 palm species distributions across Africa: the relative roles of climate, non-climatic
558 environmental factors, and spatial constraints. *Ecography*. 2010;33(2):380-91.
559 [doi/abs/10.1111/j.1600-0587.2010.06273.x](https://doi.org/10.1111/j.1600-0587.2010.06273.x)

560 23. Gruca M, Yu W, Amoateng P, Nielsen MA, Poulsen TB, Balslev H. Ethnomedicinal
561 survey and in vitro anti-plasmodial activity of the palm *Borassus aethiopum* Mart. Journal
562 of Ethnopharmacology. 2015;175:356-69. doi.org/10.1016/j.jep.2015.09.010

563 24. Adomou CA, Agbani OP, Sinsin B. Plantes. In: Protection de la nature en Afrique de
564 l'Ouest: Une liste rouge pour le Bénin / Nature Conservation in West Africa: Red List for
565 Benin,. International Institute of Tropical Agriculture, Ibadan, Nigeria,: Neuenschwander
566 P. S., Sinsin B., Goergen G.,; 2011. 365 p.

567 25. Giffard PL. Le palmier rônier *Borassus aethiopum* Mart. Revue bois et forêt des tropiques.
568 1967;(116):3-13.

569 26. Michon L, Adéoti K, Koudouvo K, Ewédjè E-E, Stauffer F. Notes on *Borassus aethiopum*
570 Mart., a Multi-Purpose Palm in Togo. 2018;57-69.

571 27. Ohin BM, Adeoti K, Noumavo PA, Kouhounde SHS, Garba K, Tovide NS, et al.
572 Technological Processes Itinerary and Socio-economic Impact Assessment of *Borassus*
573 *aethiopum* Hypocotyles “Agonté” Produced in Centre of Benin Republic. Food and Public
574 Health. 2018;7.

575 28. Sambou B, Lawesson EJ, Barfod A. *Borassus aethiopum*, a threatened multiple purpose
576 palm in Senegal. Principes. 1992;36(3):148-55.

577 29. Gbesso F, Yedomonhan H, Tente B, Akoegninou A. Distribution géographique des
578 populations de rôniers (*Borassus aethiopum* Mart, Arecaceae) et caractérisation
579 phytoécologique de leurs habitats dans la zone soudano-guinéenne du Benin. Journal of
580 Applied Biosciences. 2014;74(1):6099. doi.org/10.4314/jab.v74i1.14

581 30. Ouinsavi C, Gbémavo C, Sokpon N. Ecological Structure and Fruit Production of African
582 Fan Palm (*Borassus aethiopum* Mart.) Populations. American Journal of Plant Sciences.
583 2011;02(06):733-43. doi.org/10.4236/ajps.2011.26088

584 31. Salako V, Assogbadjo A, Adomou A, Agbangla C, Glèlè Kakaï R. Latitudinal distribution,
585 co-occurring tree species and structural diversity of the threatened palm *Borassus*
586 *aethiopum* (Arecaceae) in Benin, West Africa. *Plant Ecology and Evolution*.
587 2015;148(3):335-49. doi.org/10.5091/plecevo.2015.1046

588 32. Salako , V, Houéhanou TH, Yessoufou K, Assogbadjo AE, Akoegninou A, Kakaï Glèlè
589 RL. Patterns of elephant utilization of *Borassus aethiopum* Mart. and its stand structure in
590 the Pendjari National Park, Benin, West Africa. *Tropical Ecology*. 2017;425-37.

591 33. Gbesso F, Akouehou G, Tente B. Aspects technico-économiques de la transformation de
592 *Borassus aethiopum* Mart (Arecaceae) au Centre-Bénin. 2013;15.

593 34. Agyarko K, Dartey E, Amankwah Kuffour R, Abum Sarkodie P. Assessment of Trace
594 Elements Levels in Sediment and Water in Some Artisanal and Small-Scale Mining
595 (ASM) Localities in Ghana. *Current World Environment*. 2014;9(1):7-16.

596 35. Ouédraogo A, Boussim J, Zongo J-D, Guinko S. Caractéristiques morphologiques des
597 rôniers (*Borassus* L.) du Burkina Faso. *Etudes flo. Vég. Burkina Faso*. 2002;(7):37-40.

598 36. Dixo M, Metzger JP, Morgante JS, Zamudio KR. Habitat fragmentation reduces genetic
599 diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest.
600 *Biological Conservation*. 2009;142(8):1560-9. doi.org/10.1016/j.biocon.2008.11.016

601 37. Jump AS, Penuelas J. Genetic effects of chronic habitat fragmentation in a wind-pollinated
602 tree. *Proceedings of the National Academy of Sciences*. 2006;103(21):8096-100.
603 [doi/10.1073/pnas.0510127103](https://doi.org/10.1073/pnas.0510127103)

604 38. Singh R, Ong-Abdullah M, Low E-TL, Manaf MAA, Rosli R, Nookiah R, et al. Oil palm
605 genome sequence reveals divergence of interfertile species in Old and New worlds.
606 *Nature*. 2013;500(7462):335-9. doi.org/10.1038/nature12309

607 39. Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, et al.
608 De novo genome sequencing and comparative genomics of date palm (*Phoenix*
609 *dactylifera*). *Nat Biotechnol*. 2011;29(6):521-7. doi.org/10.1038/nbt.1860

610 40. Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J, et al. Genome sequence of the date
611 palm *Phoenix dactylifera* L. *Nat Commun*. 2013;4(1):2274.
612 doi.org/10.1038/ncomms3274

613 41. He Z, Zhang C, Liu W, Lin Q, Wei T, Aljohi HA, et al. DRDB: An Online Date Palm
614 Genomic Resource Database. *Front Plant Sci*. 2017;8. doi.org/10.3389/fpls.2017.01889

615 42. Huang Y-Y, Matzke AJM, Matzke M. Complete Sequence and Comparative Analysis of
616 the Chloroplast Genome of Coconut Palm (*Cocos nucifera*). Candela H, éditeur. PLoS
617 ONE. 2013;8(8):e74736. doi.org/10.1371/journal.pone.0074736

618 43. Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, et al. The genome draft of coconut
619 (*Cocos nucifera*). *GigaScience*. 2017;6(11). [doi/10.1093/gigascience/gix095/4345653](https://doi.org/10.1093/gigascience/gix095/4345653)

620 44. Bazzo BR, de Carvalho LM, Carazzolle MF, Pereira GAG, Colombo CA. Development
621 of novel EST-SSR markers in the macaúba palm (*Acrocomia aculeata*) using
622 transcriptome sequencing and cross-species transferability in Arecaceae species. *BMC*
623 *Plant Biology*. 2018;18(1). [doi/10.1186/s12870-018-1509-9](https://doi.org/10.1186/s12870-018-1509-9)

624 45. Billotte N, Marseillac N, Risterucci A-M, Adon B, Brottier P, Baurens F-C, et al.
625 Microsatellite-based high density linkage map in oil palm (*Elaeis guineensis* Jacq.).
626 *Theoretical and Applied Genetics*. 2005;110(4):754-65. doi.org/10.1007/s00122-004-1901-8

628 46. Pipatchartlearnwong K, Swatdipong A, Vuttipongchaikij S, Apisitwanich S. Genetic
629 evidence of multiple invasions and a small number of founders of Asian Palmyra palm
630 (*Borassus flabellifer*) in Thailand. *BMC Genetics*. 2017;18(1). [doi/10.1186/s12863-017-0554-y](https://doi.org/10.1186/s12863-017-0554-y)

632 47. Rivera R, Edwards KJ, Barker JHA, Arnold GM, Ayad G, Hodgkin T, et al. Isolation and
633 characterization of polymorphic microsatellites in *Cocos nucifera* L. 1999;42:8.
634 doi.org/10.1139/gen-42-4-668

635 48. Ukoskit K, Chanroj V, Bhusudsawang G, Pipatchartlearnwong K, Tangphatsornruang S,
636 Tragoonrung S. Oil palm (*Elaeis guineensis* Jacq.) linkage map, and quantitative trait
637 locus analysis for sex ratio and related traits. Molecular Breeding. 2014;33(2):415-24.
638 doi.org/10.1007/s11032-013-9959-0

639 49. Wu Y, Yang Y, Qadri R, Iqbal A, Li J, Fan H, et al. Development of SSR Markers for
640 Coconut (*Cocos nucifera* L.) by Selectively Amplified Microsatellite (SAM) and Its
641 Applications. Tropical Plant Biology. 2019;12(1):32-43. doi.org/10.1007/s12042-018-9215-1

643 50. Xiao Y, Xia W, Ma J, Mason AS, Fan H, Shi P, et al. Genome-Wide Identification and
644 Transferability of Microsatellite Markers between Palmae Species. Frontiers in Plant
645 Science. 2016;7. doi.org/10.3389/fpls.2016.01578

646 51. Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC. Development,
647 characterisation, and across-taxa utility of oil palm (*Elaeis guineensis* Jacq.) microsatellite
648 markers. Genome. 2001;44(3):413-25. doi.org/10.1139/gen-44-3-413

649 52. Rao NM, Ramesha BT, Ravikanth G, Ganeshiah KN, Shaanker RU. Cross-Species
650 Amplification of Coconut Microsatellite Markers in Rattans. Silvae Genetica.
651 2007;56(1-6):282-6. doi.org/10.1515/sg-2007-0040

652 53. Anitha N, Jayaraj KL, Kumar EPA, George J, Rajesh MK. Assessment of cross-taxa utility
653 of coconut microsatellite markers. Indian Journal of Horticulture. 2008;6.

654 54. Meerow AW, Wisser RJ, Brown SJ, Kuhn DN, Schnell RJ, Broschat TK. Analysis of
655 genetic diversity and population structure within Florida coconut (*Cocos nucifera* L.)
656 germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar.

657 Theoretical and Applied Genetics. 2003;106(4):715-26. doi.org/10.1007/s00122-002-1121-z

658

659 55. Perera L, Russell JR, Provan J, McNicol JW, Powell W. Evaluating genetic relationships
660 between indigenous coconut (*Cocos nucifera* L.) accessions from Sri Lanka by means of
661 AFLP profiling. Theoretical and Applied Genetics. 1998;96(3-4):545-50.
662 [doi/10.1007/s001220050772](https://doi.org/10.1007/s001220050772)

663 56. Aberlenc-Bertossi F, Castillo K, Tranchant-Dubreuil C, Chérif E, Ballardini M,
664 Abdulkader S, et al. In Silico Mining of Microsatellites in Coding Sequences of the Date
665 Palm (Arecaceae) Genome, Characterization, and Transferability. Applications in Plant
666 Sciences. 2014;2(1):1300058. Disponible sur:
667 <http://doi.wiley.com/10.3732/apps.1300058>

668 57. Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M, et al. Diversity of wild
669 and cultivated pearl millet accessions (*Pennisetum glaucum* [L.] R. Br.) in Niger assessed
670 by microsatellite markers. Theoretical and Applied Genetics. 2006;114(1):49-58.
671 [doi/10.1007/s00122-006-0409-9](https://doi.org/10.1007/s00122-006-0409-9)

672 58. Mariac C, Scarcelli N, Pouzadou J, Barnaud A, Billot C, Faye A, et al. Cost-effective
673 enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for
674 population genetics and phylogeography studies. Molecular Ecology Resources.
675 2014;14(6):1103-13. <http://doi.wiley.com/10.1111/1755-0998.12258>

676 59. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, et al. QDD: a user-
677 friendly program to select microsatellite markers and design primers from large
678 sequencing projects. Bioinformatics. 2010;26(3):403-4.
679 doi.org/10.1093/bioinformatics/btp670

680 60. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic
681 software for teaching and research--an update. *Bioinformatics*. 2012;28(19):2537-9.
682 [doi/10.1093/bioinformatics/bts460](https://doi.org/10.1093/bioinformatics/bts460)

683 61. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus
684 genotype data. *Genetics*, 155(2), 945-959. *Genetics*. 2000;155(2):945-59.
685 doi.org/10.1534/genetics.116.195164

686 62. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the
687 software structure: a simulation study. *Molecular Ecology*. 2005;14(8):2611-20.
688 [doi/10.1111/j.1365-294X.2005.02553.x](https://doi.org/10.1111/j.1365-294X.2005.02553.x)

689 63. Garcia-Vallvé S, Palau J, Romeu A. Horizontal gene transfer in glycosyl hydrolases
690 inferred from codon usage in *Escherichia coli* and *Bacillus subtilis*. *Molecular Biology*
691 and Evolution. 1999;16(9):1125-34. doi.org/10.1093/oxfordjournals.molbev.a026203

692 64. Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C. Cross-species transfer
693 of nuclear microsatellite markers: potential and limitations. *Mol Ecol*.
694 2007;16(18):3759-67. [doi/10.1111/j.1365-294X.2007.03439.x](https://doi.org/10.1111/j.1365-294X.2007.03439.x)

695 65. Manju KP, Manimekalai R, Naganeeswaran SA. Microsatellites mining in date palm
696 (*Phoenix dactylifera* L.) and their cross transferability across Arecaceae family. *Plant*
697 *Omics*. 2016;9(3):191-7. doi.org/10.2147/poj.16.09.03.p7793

698 66. Viana MVC, Miranda EA, de Francisco AK, Carvalho CAL, Waldschmidt AM.
699 Transferability of microsatellite primers developed for stingless bees to four other species
700 of the genus *Melipona*. *Genet Mol Res*. 2011;10(4):3942-7.
701 doi.org/10.4238/2011.november.22.11

702 67. Zaki NM, Singh R, Rosli R, Ismail I. *Elaeis oleifera* Genomic-SSR Markers: Exploitation
703 in Oil Palm Germplasm Diversity and Cross-Amplification in Arecaceae. *IJMS*.
704 2012;13(4):4069-88. doi.org/10.3390/ijms13044069

705 68. Nazareno AG, Zucchi MI, dos Reis MS. Microsatellite markers for *Butia eriospatha*
706 (Arecaceae), a vulnerable palm species from the Atlantic Rainforest of Brazil. *Am J Bot.*
707 juill 2011;98(7):e198-200.

708 69. Simplicio RR, Pereira DG, Waldschmidt AM. Transferability of microsatellite markers in
709 *Syagrus coronata* (Mart.) Becc. (Arecaceae), an iconic palm tree from the Brazilian
710 semiarid region. *Genetics and Molecular Research.* 2017;16(2).
711 doi.org/10.4238/gmr16029699

712 70. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A. Cross-species amplification of
713 soybean (*Glycine max*) simple sequence repeats (SSRs) within the genus and other legume
714 genera: implications for the transferability of SSRs in plants. *Molecular Biology and*
715 *Evolution.* 1998;15(10):1275-87. doi.org/10.1093/oxfordjournals.molbev.a025856

716 71. Rossetto M. Sourcing of SSR markers from related plant species. In: Henry RJ, éditeur.
717 *Plant genotyping: the DNA fingerprinting of plants.* Wallingford: CABI; 2001. p. 211-24.
718 doi.org/10.1079/9780851995151.0211

719 72. Fan L, Zhang M-Y, Liu Q-Z, Li L-T, Song Y, Wang L-F, et al. Transferability of Newly
720 Developed Pear SSR Markers to Other Rosaceae Species. *Plant Molecular Biology*
721 *Reporter.* 2013;31(6):1271-82. [doi/10.1007/s11105-013-0586-z](https://doi.org/10.1007/s11105-013-0586-z)

722 73. Rival A, Beule T, Barre P, Hamon S, Duval Y, Noirot M. Comparative flow cytometric
723 estimation of nuclear DNA content in oil palm (*Elaeis guineensis* Jacq) tissue cultures and
724 seed-derived plants. *Plant Cell Reports.* 1997;16(12):884-7.
725 doi.org/10.1007/s002990050339

726 74. Chénais B, Caruso A, Hiard S, Casse N. The impact of transposable elements on
727 eukaryotic genomes: from genome size increase to genetic adaptation to stressful
728 environments. *Gene.* 2012;509(1):7-15. doi.org/10.1016/j.gene.2012.07.042

729 75. Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Saniyal A, et al. Doubling genome size
730 without polyploidization: dynamics of retrotransposition-driven genomic expansions in
731 *Oryza australiensis*, a wild relative of rice. *Genome Res.* 2006;16(10):1262-9.
732 doi.org/10.1101/gr.5290206

733 76. Cabannes Y, Chantry G, Willemin V. Le rônier et le palmier à sucre : production et mise
734 en œuvre dans l'habitat. 1987 p. 44.

735 77. Salako KV. Population ecology, pattern of uses and conservation of the dioecious palm
736 tree *Borassus aethiopum* Mart. (Arecaceae) in Benin, West Africa. [Faculty of Sciences
737 and Techniques (FAST)/ BENIN]: University of Abomey-Calavi (UAC); 2016.

738 78. Grubisha LC, Nelson BA, Dowie NJ, Miller SL, Klooster MR. Characterization of
739 Microsatellite Markers for Pinedrops, *Pterospora andromedea* (Ericaceae), from Illumina
740 MiSeq sequencing. *Applications in Plant Sciences.* 2014;2(11):1400072.
741 doi.org/10.3732/apps.1400072

742 79. Yamamoto M, Handa Y, Aihara H, Setoguchi H. Development and characterization of 43
743 microsatellite markers for the critically endangered primrose *Primula reinii* using MiSeq
744 sequencing. *Plant Divers.* 2018;40(1):41-4. doi.org/10.1016/j.pld.2017.09.003

745 80. Gaoue OG, Lemes MR, Ticktin T, Sinsin B, Eyog-Matig O. Non-timber Forest Product
746 Harvest does not Affect the Genetic Diversity of a Tropical Tree Despite Negative Effects
747 on Population Fitness. *Biotropica.* 2014;46(6):756-62. doi.org/10.1111/btp.12145

748 81. Geethika E, Triveni HN, Srirama R, Siva R, Setty S, Ravikanth G. Development and
749 characterization of microsatellite markers for *Phyllanthus emblica* Linn., important
750 nontimber forest product species. *J Genet.* 2018;97(4):1001-6. doi.org/10.1007/s12041-018-0979-8

752 82. Vinayagam P, Dhandapani J, Raman P, Alagarsamy RK, Muthusamy P, Balaraman SS.
753 Molecular Characterization for Genetic Diversity of Palmyrah (*Borassus flabellifer*)

754 Accessions using Inter Simple Sequence Repeat (ISSR) Markers. The Asian and
755 Australasian Journal of Plant Science and Biotechnology. 2009;3(1):11-5.

756 83. Bakoumé C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billotte N. Genetic
757 diversity of the world's largest oil palm (*Elaeis guineensis* Jacq.) field genebank
758 accessions using microsatellite markers. Genet Resour Crop Evol. 2015;62(3):349-60.
759 doi.org/10.1007/s10722-014-0156-8

760 84. Roth H.H., Douglas-Hamilton I. Distribution and status of elephants in West Africa (1).
761 Mamm. 1991;55(4):489-527. doi.org/10.1515/mamm.1991.55.4.489

762 85. Bayton RP, Ouédraogo A, Guinko S. The genus *Borassus* (Arecaceae) in West Africa,
763 with a description of a new species from Burkina Faso. Botanical Journal of the Linnean
764 Society. 2006;150(4):419-27. Disponible sur: doi.org/10.1111/j.1095-8339.2006.00485.x

765 Supporting information captions

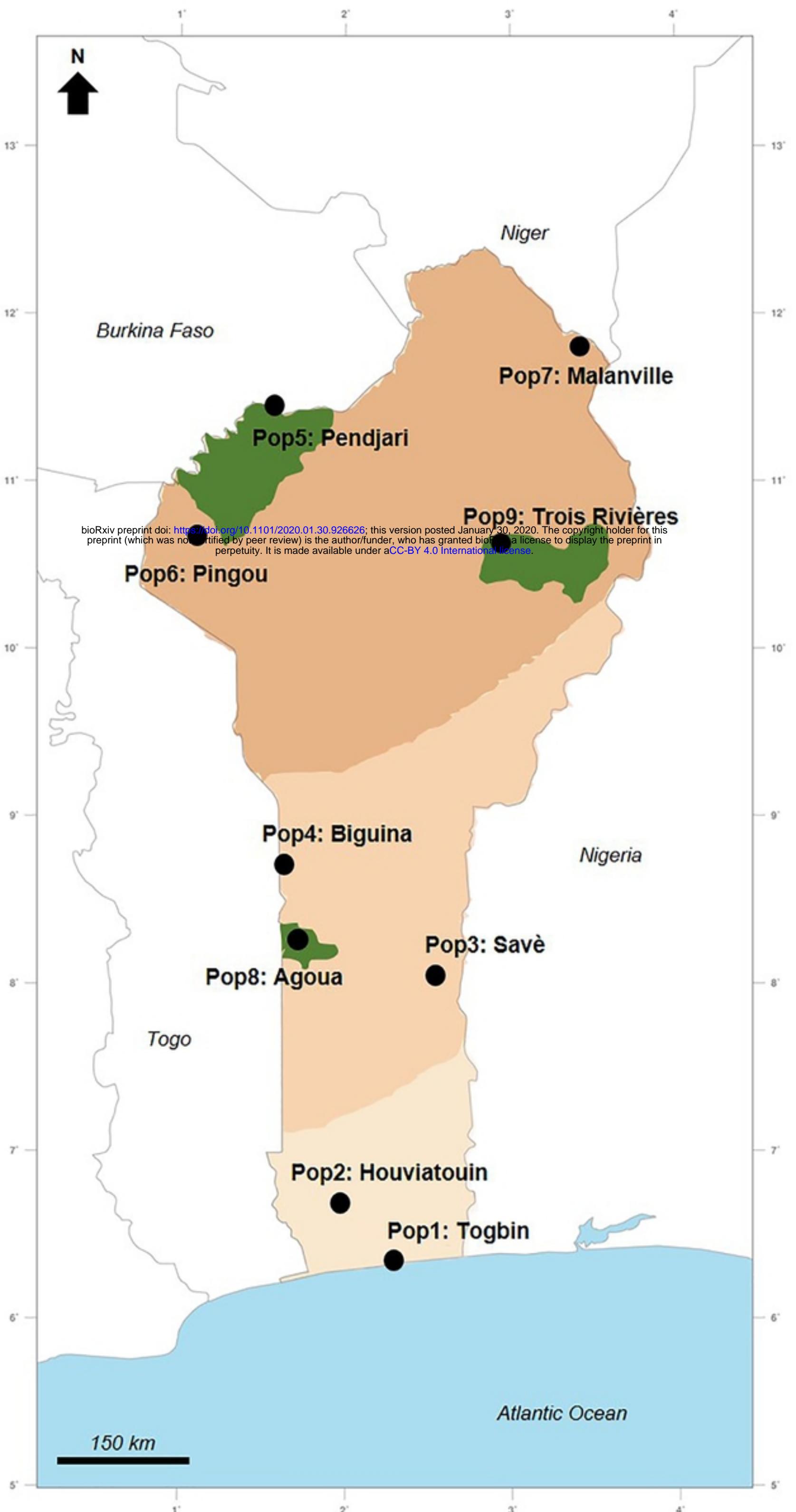
766 **S1 Table: List of sampled *B. aethiopum* individuals.**

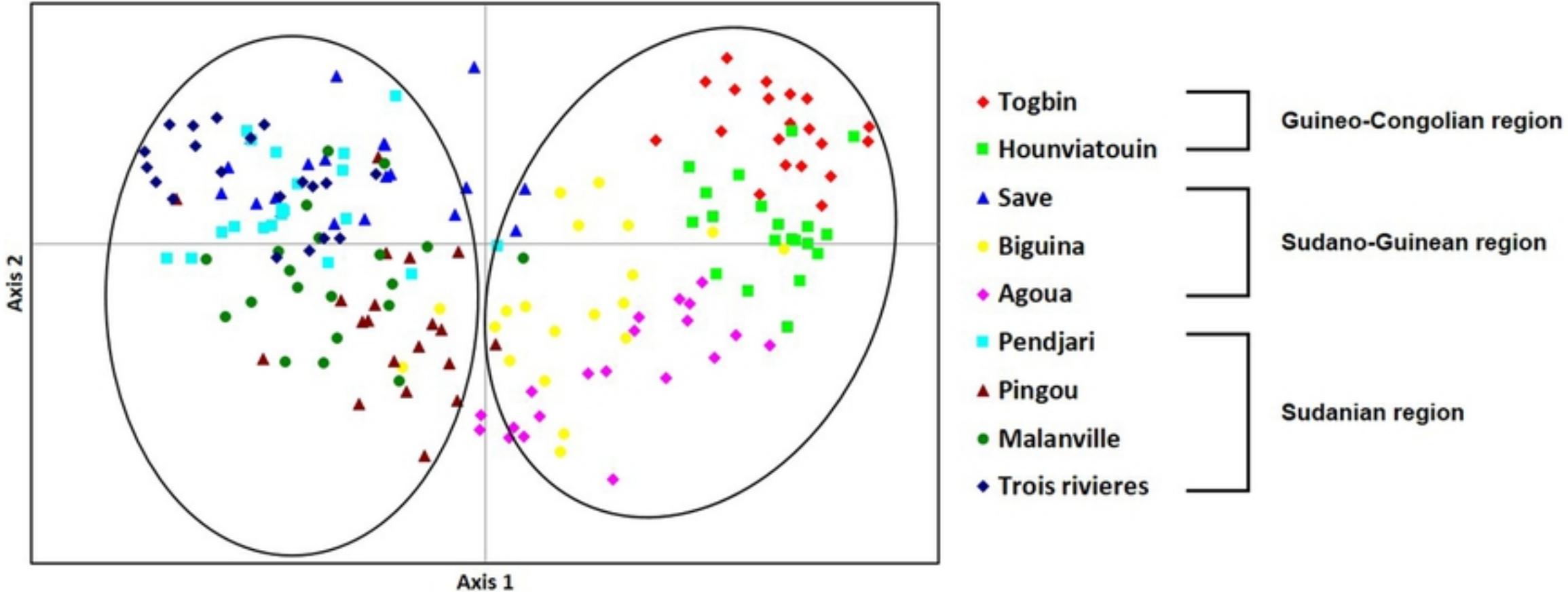
767 M, F: = male or female palm, respectively.

768 All geographic coordinates are provided as North from the Equator (latitude) and East from the

769 Greenwich meridian (longitude), respectively.

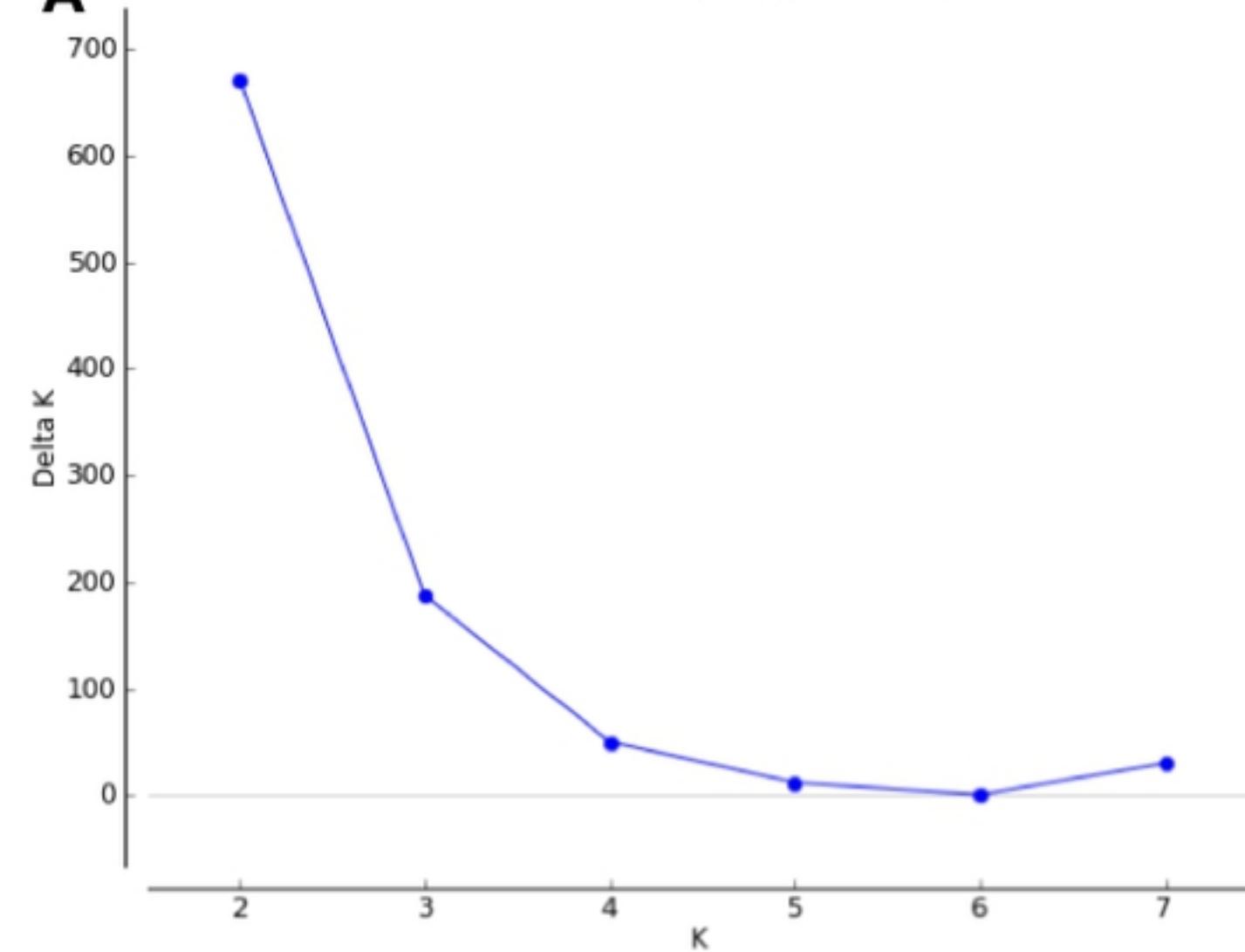
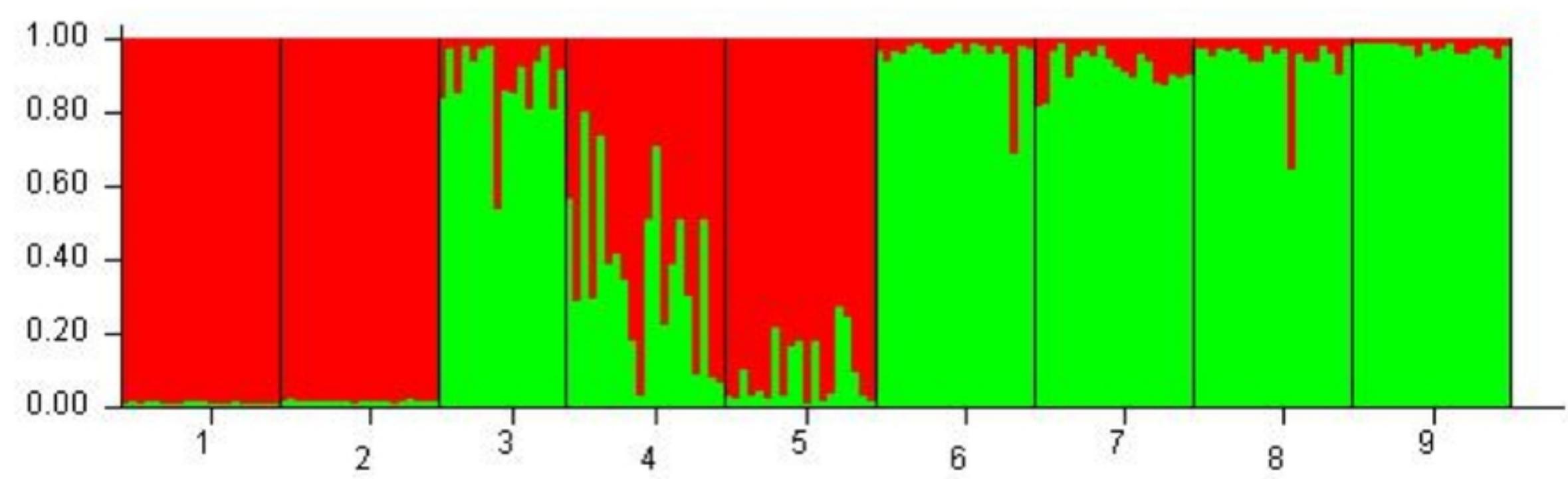
770 (DOCX)

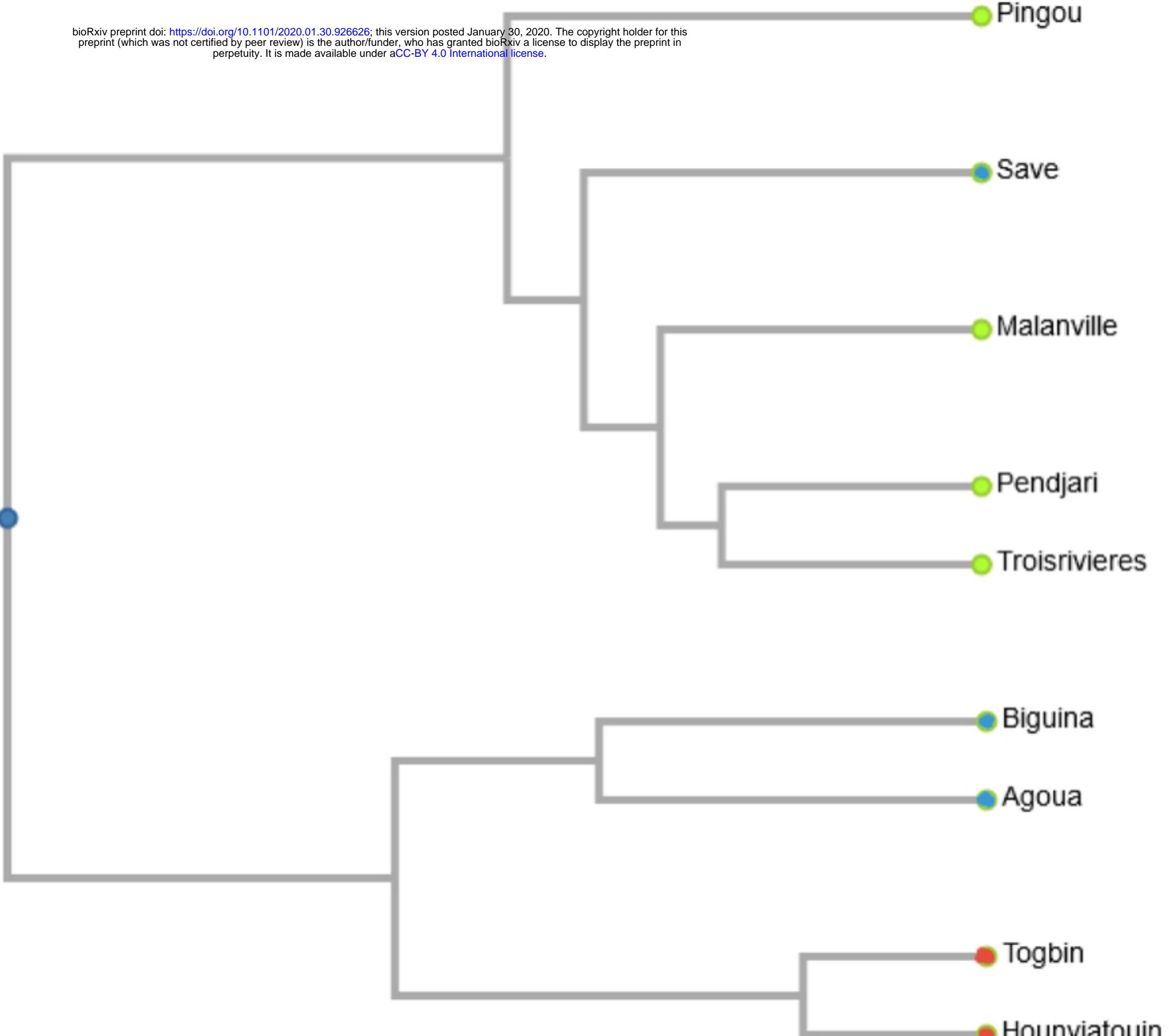

771


772 **S2 Table: List and characteristics of putative microsatellite loci identified in the genome of *B.***

773 ***aethiopum* through QDD analysis**

774 (XLSX)



775



Principal coordinates analysis

$$\Delta K = \text{mean}(|L''(K)|) / \text{sd}(L(K))$$

A**B**

Bayesian cluster analysis

Genetic relationship among Beninese *Borassus aethiopum* popu