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Abstract:

In Sub-Saharan Africa, the fan palm Borassus aethiopum Mart. is an important non-timber
forest product-providing palm that faces multiple anthropogenic threats to its genetic diversity.
However, this species is so far under-studied, which prevents its sustainable development as a
resource.

The present work is a first attempt at characterizing the genetic diversity of this palm species
as well as its spatial structuration in Benin, West Africa. During a first phase we implemented
a microsatellite markers-based approach relying on the reported transferability of primers
developed in other palm species and found that, in disagreement with previously published
results, only 22.5% of the 80 markers tested enabled amplification of African fan palm DNA
and polymorphism detection was insufficient. During a second phase, we therefore generated a
B. aethiopum-specific genomic dataset through high-throughput sequencing and used it for the
de novo detection of potential microsatellite markers. Among these, 11 enabled polymorphism
detection and were further used for analyzing genetic diversity in nine B. aethiopum
populations.

Our results show that genetic diversity of Beninese fan palm populations is low, with an overall
average expected heterozygosity (He) of 0.354. Moreover, the positive values of the fixation
index (F) in populations from both the Central (Soudano-Guinean) and the Southern (Guinean)
regions suggest limited gene flows. Our analysis show that sampled B. aethiopum populations
are clustered into two groups, one spanning populations from both the Southern and most of
the Central region, and the other including the Central population of Save (which also has the
highest He) and populations from the North.

In light of our results, we discuss the use of inter-species transfer vs. de novo development of
microsatellite markers in genetic diversity analyses targeting under-studied species. We also

suggest future applications for the molecular resources generated through the present study.
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Introduction

Many plant species remain under-studied due to their low economic importance, complicated
biology and/or the absence of available genome sequence information. Upon initiating a
research project aimed at characterizing the genetic diversity of such a species, researchers may
be confronted with the situation that some resources can be found in more or less distantly
related taxa. In such cases, the first step is often to assess whether some of these resources, such
as molecular markers, can be used to study the new species. Provided that the "source" species
display enough genetic similarities to the "target" species and that marker transferability has
been previously assessed, this first step may lead to quick progress in a cost-effective manner.
In many instances, transferring markers between species is therefore seen as a smarter
investment than developing and testing new markers, especially if the initial funding allocated
to the project is scarce.

Over the last three decades, molecular markers have been widely used to study genetic variation
among and within populations of various plant species [1-10]. Among the different types of
markers that are available, microsatellites or Single Sequence Repeats (SSRs) are often selected
because they are easy to use and their implementation has low resources (i.e. genomic, financial,
lab equipment) requirements. As a result, they are markers of choice for the assessment of
polymorphism among species, genetic structure within populations, phylogeny reconstruction,
genetic mapping, evolutionary analysis, and molecular breeding [11-14]. However, the steps
leading to the development of functional SSR markers, namely the initial identification of
microsatellite loci, primer selection and assessment of amplification/polymorphism detection,
require some prior knowledge of the genome of the target species and may prove to be
expensive and time-consuming [13,15]. In order to overcome this difficulty, approaches relying
on the transfer of SSR markers between species or genera have therefore been implemented.

They have been successful in many instances, as documented across Prunus species and among
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members of the Rosaceae family [16,17]; between species of the Hevea genus and to other
Euphorbiaceae [18]; among Lamiaceae [19]; among Legumes belonging to the Vicia genus [20]
and from the Phaseolus genus to Vigna [21].

The African fan palm Borassus aethiopum Mart., also known as ron or toddy palm, is a
dioecious species belonging to the Arecaceae family. It is widely distributed across West and
Central Africa, where it is present as wild populations. The fan palm is classified as a non-
timber forest products (NTFPs)-providing plant [22,23], since the different parts of the plant
are used for various purposes by local populations: hypocotyls and fruits for food, fruit odor as
shrew repellent, stipe for construction, roots and leaves for traditional medicine, leaves for
crafts [24-28]

These multiple uses of products derived from B. aethiopum have put a strong anthropogenic
pressure on the species, thus contributing to both fragmentations of its populations and their
poor natural regeneration [24,29-32]. More specifically, the harvesting of B. aethiopum fruits
for hypocotyl production and trade has become, over the last two decades, one of the most
important household commercial activities associated with this species in Benin, West Africa
[33]. Further fragmentation of the species' habitat has been observed as result of land clearing
for agriculture or urban development [32,34,35]. As illustrated through similar examples in the
literature [39,40], such phenomena may lead to restricted gene flow and ultimately, to loss of
genetic diversity among B. aethiopum populations.

There is therefore an urgent need to define a sustainable management policy for B. aethiopum
populations, in order to ensure its sustainable use. As a consequence, acquiring information on
the genetic diversity of the species and on the spatial structuring of its populations is a major
touchstone towards defining sustainable management actions. At the time of writing the present
article, only a few chloroplastic sequences are publicly available for B. aethiopum through

NCBI (https://www.ncbi.nlm.nih.gov/search/all/?term=borassus%20aethiopum). By contrast,
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108  abundant molecular resources, including genome assemblies or drafts, are available for model
109  palm species such as the African oil palm Elaeis guineensis Jacq. [41], the date palm Phoenix
110  dactylifera [42—44] and the coconut tree Cocos nucifera [42,43]. In each of these three palm
111 species , large numbers of SSR markers have been identified and for a fraction of them, cross-
112 species and cross-genera transferability tests among species belonging to the Palmaceae family
113 have been performed [47-53]. In several instances [48—51,53], these tests included samples
114  from the Asian relative of B. aethiopum, B. flabellifer.

115  In the present study, we describe how we first attempted to use SSR markers that had been
116  identified in these other palm species for the analysis of genetic diversity in B. aethiopum. Then,
117  in a second phase, we show how we performed a low-coverage sequencing of the fan palm
118  genome in the aim of developing the first set of specific SSR markers targeting this species. We
119  then used these to assess the genetic diversity of B. aethiopum populations in Benin, as a
120  preliminary step towards more comprehensive studies.

121

122 Material and Methods

123 Plant material sampling and DNA extraction

124  Nine distinct populations of B. aethiopum separated by at least 50 km were selected from the
125  three main climatic regions that are encountered in Benin (Fig 1): the Sudanian region in the
126  North (four populations), the Sudano-Guinean region in the Centre (three populations) and the
127  Guineo-Congolian region in the South (two populations). Additionally, among sampled
128  populations, three were located in protected areas and six in farmlands. Within each population,
129  we sampled young leaves from 20 male and female adult trees that were separated by at least
130 100 m, and stored them in plastic bags containing silica gel until further processing. The
131 complete list of leaf samples and their characteristics is available in S1 Table.

132
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Fig 1. Geo-climatic distribution of the Beninese Borassus aethiopum populations used in this study.
Collection sites for each of the nine populations sampled are indicated; information for individual
samples are available in S1 Table. The three main geo-climatic regions of Benin are (from the lighter-
to the darker-colored): Guineo-Congolian, Sudano-Guinean and Sudanian, respectively.

Adapted from a map by the GingkoMaps project (http://www.ginkgomaps.com/), distributed under a

Creative Commons Attribution (CC-BY) 3.0 license (https://creativecommons.org/licenses/by/3.0/).

Genomic DNA was extracted from 250 mg of leaves ground to powder under liquid nitrogen
using the Chemagic DNA Plant Kit (Perkin Elmer, Germany), according to the manufacturer’s
instructions on a KingFisher Flex™ (Thermo Fisher Scientific, USA) automated DNA
purification workstation. Final DNA concentration was assessed fluorometrically with the
GENios Plus reader (TECAN) using bis-benzimide H 33258 (Sigma-Aldrich) as a

fluorochrome.

Transferability of palms microsatellite markers: selection and

amplification

We selected a total of 80 SSR markers from previous studies: 44 were developed on Phoenix
dactylifera; 25 were identified in Elaeis guineensis and showed successful amplification on
Borassus flabellifer and P. dactylifera DNA; and 11 from Cocos nucifera. The respective

sequences and origins of these different primer sets are displayed in Table 1.

Table 1: Characteristics of the palm SSR markers tested for transferability on B. aethiopum.

Marker | Marker Primer | Sequence (5'-3' orientation) Source palm Other palm cultivars | References
Ne name species or species tested for
transferability
F T TTTTT 1 j
1 mEgCIR0230 CCCTGGCCCCG C Elaeis oleifera
R AGCGCTATATGTGATTCTAA Syragus sp.
2 mEgCIR0326 F GCTAACCACAGGCAAAAACA Elqe:s ) Cocos .nuctfera. B [511(
R AAGCCGCACTAACATACACATC guineensis Phoenix roebelinii
F TCCCCCACGACCCATTC Phoenix canariensis
3 mEgCIR0465 ; .
¢ R GGCAGGAGAGGCAGCATTC Phoenix reclinata
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F TTCCTCGGCCCCTTCTC
4 mEgCIR0476
R TCGCCGACCTTCCACTG
5 EgCSSR- F TTCACGCTACTGATGGTTGG FElaeis Borassus flabellifer [50]
5781 R TCGATCCCTTCTCTGGAAAC guineensis
6 EgCSSR- F GTCCTCTCCTACGCCTCCTC
1461 R ATGCGATCCGAGTTCAGAAG
F GAAGAAGAGCAAAAGAGAAG Elaeis Borassus flabellifer
! mEgCIR2332 R GCTAGGTGAAAAATAAAGTT guineensis. [45,46]
F TGCCTCCAGACAATCAC
mEgCIR3295 R GTAAGGCTTAACCAGATAAC
F AATCCAAGTGGCCTACAG
? mEgCIR3311 R CATGGCTTTGCTCAGTCA
F AAAGCTATGGGGTGAAAGAT
10 mEgCIR3413 R TGGATAAGGGCGAGAAGAGA
F CCTTCAAGCAAAGATACC
11 mEgCIR3477 R GGCACCAAACACAGTAA
F GAGCCAAAACAGACTTCAA
12 mEgCIR3592 R ACCGTATATGACCCCTCTC
F GCTCACCAAAAAGTGTTAAGTC
13 mEgCIR3755 R AGTTTCAACGGCAGGTATAT
F TTGTATGACCAAAGACAGC
14 mEgCIR3788 R AGCGCAACATCAGACTA
F AGATGGTTGGAGATTTCATGGT Elaeis Borassus flabellifer
15 ESSR75 . . y [45,46,48]
R AACTTGAGGGTGCCATTACAAG guineensis e
F CCATACCAGCAGAAGAGGATGT
16 ESSR76
R CTGAAGGTCATAGGGGTCTCTG
F CCCTCGACACCCATAGTTATTT
17 ESSR82R R CTCGATTTCTGGCCTCTCATAC
F AGTTAATGTGTCAGGGCCAGTT
18 ESSR332 R CTTGGTTCACTTGGGTGTGTC
F ATAAATTGTGCGAGGGGAAAAC
19 ESSRS53 R AGATCCGCGACAGGTCTTAAC
F GTGTCATCAAATTCGGTCCTTT
20 ESSR366 R CGGTTCTTCTGCTGCTCTACTT
F AGGCGGTGATGAAGATGAAG
2 ESSR609 R CTCCTCTCAAACAGAGTGGGAT
F GCCTTTTCTGGTTAATGGACTG
22 ESSR650 R GTTTGTCTATGGATGATTGTGAGG
F CATACCGTCACCACTCAGAAAC
23 ESSR652 R GCCGTCATTCTACCAGTTGAG
F TTCTGGCTACGAGCATAAGGA
24 ESSR673 R TCAATAACCCTGGCTAAACACA
F TCTGAATTGTCGGAGTGGC
25 ESSR681 R CATCCTTGCGTAAACAAAAGAG
F Cocos nucifera Borassus flabellifer
2 CNZ34 CATGTCGATAATTATACCCAA ife .ﬂ & w1521
R TGCAAATATGAATGCAAACAC Korthalsia laciniosa, ’
Zalacca zalacca,
F AAGGTGAAATCTATGAACACA Daemonorops
kurzianus
27 CN2AS5 Calamus simplicifolia,
R GGCAGTAACACATTACACATG C. mannan, C.
thwaitesii, C. erectus,
C. palustris
F Cocos nucifera B. flabellifer
28 CNZ 12 TAGCTTCCTGAGATAAGATGC ife S _ ' 47.53]
R GATCATGGAACGAAAACATTA Phoenix dactylifera >
29 CNZ 24 F TCCTAAGCTCAATACTCACCA Elaeis guineensis
R CGCATTGATAAATACAAGCTT Cocos nucifera
30 F ATGGTTCAGCCCTTAATAAAC
CNZ 18
R GAACTTTGAAGCTCCCATCAT
F
31 CNZ 42 TGATACTCCTCTGTGATGCTT
R GTAGATTGTGGGAGAGGAATG
2 F AGGATGGTTCAA TTAA
3 CN2A4 CAGGATGGTTCAAGCCC
R GGTGGAAGAGGGAGAGATTGA
33 CAC 21 F AATTGTGTGACACGTAGCC Cocos nucifera Cocos nucifera
R GCATAACTCTTTCATAAGGGA B. flabellifer (54,531
34 F ATAGCTCAAGTTGTTGCTAGG
CAC 171
R ATATTGTCATGATTGAGCCTC
35 F TTGGTTTTTGTATGGAACTCT
CAC 84
R AAATGCTAACATCTCAACAGC
36 CNIH2 F TTGATAGGAGAGCTTCATAAC Cocos nucifera | B. flabellifer [54]
R ATCTTCTTTAATGCTCGGAGT Phoenix dactylifera
37 PdAG-SSR F TCTGATTTCGTTTACTTCTTAGGA | Phoenix Phoenix dactylifera [45]
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R TTCATATTCAGTTGTCGGGTGTA dactylifera
38 F AGCT! TCCTCCCTTCTTA
mPACIRO1S GCTGGCTCCTCCCTTC
R GCTCGGTTGGACTTGTTCT
39 F
mPACIRO63 CTTTTATGTGGTCTGAGAGA
R TCTCTGATCTTGGGTTCTGT
40 PAIRDI F CTCGGAAGGGTATGGACAAA Phoenix P. reclinata [56]
m R TTGCCTTCGACGTGGTAGTA dactylifera P. roebelenii
41 F CATTGATCCAACACCACCAC P. rupicola T.
R GCCAAAACCAGCTCTGGTAAC . theophrasti
42 PdIRDA F TTGGTGGCCTTTCTCAGAGT Hyphaene thebaica
R TGGGATCAAAGTAGGGTTGG Livistona carinensis
43 F CTATCAGGATGGGGGTGATG Chamaerops humilis
mPdIRDS
R ACCCATCTGCATAGCTCCAG
44 F TGCAATACGATGGCAGAGTC
mPdIRD7 R CCTTGCAAGTTTTCCACACC
F CTATTGGGTCCCTTGGTGAG
45 mPdIRDS
R TGACTGCTCGTCATCAGGTC
46 F ATGCGTTCATCTCCCTTGAG
mPdIRD10 R GCTGCAAACATCATCCTCAC
47 F GAGTTGGAGGCAAAACCAGA
mPdIRDI1 R CCACAAAACCCTTGTCTTCC
F GAGGGGTTCACGTTTGTGTC
48 mPdIRD14 R GCACCAAGCACAAGAGCAAT
F CCGAGTCTGGCGAAGTAAAC
49 mPdIRD1S R CTCCCCTTCCTCATCCTCTC
F TGTCCGATCGAATTCT
50 mPdIRD16 CTGTCCGATCOAATICTGC
R GGACATCTCTTTGCGGTCAT
F GTGGGAGAAACCCGAAGAAT
51 mPdIRD17
R CTGCTGCCTCATCTGCATT
F TTGAATGGTCCCCTGTAGGT
52 mPdIRD20 R GTCCCAGCATGATTGCAGTA
F GGCTGTATGGGAAAGACCTG
53 mPdIRD22
R CCTGCTGCATATTCTTCGTG
F GCTCCTGCAGAACCTGAAAC
54 mPdIRD24 R GGACATCACCGTCCAATTCT
F ACTGGAAATTCA TA
55 mPdIRD25 CACTGG CAGGGEC
R CCCAATTTCTCAGCCAAGAC
F CCTCCAGTTCATGCTTCTCC
56 mPdIRD26 R GAGCAGACCCGACAGACAAT
F GAAACGGTATCGGGATGATG
57 mPdIRD28
R TTAACGACGCCGTTTCCT
F GGCTCCACCATCATTGACA
58 mPdIRD29
R AACAGCATCGACTGCCTTCT
F GCAGATGGTTGAAAGCTCCT
59 mPdIRD30 R CCCCATTAACAGGATCAACG
F
60 mPdIRD31 GCAGGTGGACTGCAAAATCT
R CTATTGGGGTGCTGATCCAT
F AAGAAGACATTCCGGCTGGT
61 mPdIRD32
R GCGGGTGTGTGATATTGATG
F
62 mPdIRD33 GGAGCATACAGTGGGTTTGC
R CAGCCTGGGAATGAGGATAG
F CAGCCCCTTACTCAGACTGG
63 mPdIRD35 R CCCATAAGCTGATTGTGCTG
F GACACGTTGACGATGTGGAA
64 mPdIRD36 R CCATTGCTGTTGAGGAGGAG
F TTTCCTGCTCGAAAGACACC
65 mPdIRD37 R CTTAGCCAGCCTCCACACTC
F GAGAGATGCGTCAGGGAATC
66 mPdIRD40
R CCAGAATCTTCCAAGCAAGC
F AGGCAAAACTATGGGAA:
67 mPdIRD42 GAGGCAAAACTATOGOAAGC
R TTCACTGGAGCAAGGGTAGG
F GCAGCCATTGCTTACAGTGA Phoenix P. reclinata [56]
68 mPdIRD43 . ..
R TAAACTGCTGCCTTCCTTGG dactylifera P. roebelenii
F CAGATCCGGGAGATGATGAA P. rupicola
69 mPdIRD44 .
R AGCAGGAGCAGCTGCATAA P. theophrasti
70 PAIRDAS F TAGCCTGTGCATGTTCGTTG Hyphaene thebaica
m R AACAGCAGCTGATGGTGATG Ll}‘:lswna Ca”}:le’@;f
F ATGGGTCCATTGGAGGAACT Chamaerops humilis
71 mPdIRD46
R GACGGAGACCTTGACTGCTC
F ACCCCGGACGTGAGGTG Phoenix Phoenix dactylifera Cherif, Castillo and
2 mPcCIR10 R CGTCGATCTCCTCCTTTGTCTC dactylifera ﬁ:;;;’i‘:lf;g:f:"
73 mPcCIR20 F GCACGAGAAGGCTTATAGT i
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R CCCCTCATTAGGATTCTAC
F CAAATCTTTGCCGTGAG
74 mPcCIR32
R GGTGTGGAGTAATCATGTAGTAG
F ACAAACGGCGATGGGATTAC
s mPeCIR35 R CCGCAGCTCACCTCTTCTAT
F CTGCCATTTCTTCTGAC
76 mPcCIR50
R CACCATGCACAAAAATG
F AAGCAGCAGCCCTTCCGTAG
7 mPeCIRS7 R GTTCTCACTCGCCCAAAAATAC
F GAGAGAGGGTGGTGTTATT
8 mPcCIRSS R TTCATCCAGAACCACAGTA
F ATCTTCCATGCAGCCTCAAG
79 mPdIRD41
R CAGGTCGTCCCGTCTCTAAA
F GTTGGCATCACTTCAGAGCA
80 mPdIRD47
R GCTCTTTCGGTGCTAGTTGC
155
156 F, R: forward and reverse primers, respectively.
157

158  Transferability of the 80 palm SSR markers was assessed on a representative subset of 20 of B.
159  aethiopum individuals sampled in the different populations, plus 4 positive controls from each
160  source species for these markers (P. dactylifera, C. nucifera, E. guineensis). Microsatellite
161  amplification was performed with a modification of the M13-tailed Primers protocol (Boutin-
162  Ganache et al., 2001) adapted to the use of fluorescent labelling. The PCR reaction was
163  performed on 20 ng of leaf DNA and a mix of 1X PCR buffer, 200 uM dNTP, 2 mM MgCl2,
164 0.4 pmol M13-tailed forward primer fluorescently labeled in 5' with FAM, HEX or TAMR, 4
165  pmol reverse primer, and 0.5 U of Taq polymerase (Sigma), in a final volume of 20 ul. The
166  following program was used: 3 min of initial denaturation at 95°C, followed by 35 cycles of 30
167 sat95°C, 30sat 50°C and 72°C for 1 min and a final extension at 72°C for 5 min. The resulting
168  amplification products were then diluted to 1/10" mixed with 0.5 uL of an internal size standard
169  (GeneScan 500 ROX, Thermo Fisher Scientific) and denatured for 5 minutes at 94°C prior to
170  capillary electrophoresis (Applied Biosystems 3500 Genetic Analyzer, Thermo Fisher
171  Scientific).

172

10
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173 De novo identification of microsatellite loci in the B. aethiopum

174 genome, marker selection and diversity analysis

175  One B. aethiopum leaf sample was randomly selected and genomic DNA purification was
176  performed according to the protocol of [57]. This DNA extract was then used for the
177  construction of an Illumina paired-end library, as described in [58], before high-throughput
178  sequencing on a MiSeq v3 Illumina platform. Demultiplexing of the raw data output was

179  performed using the Maillol script (https://github.com/maillol/demultadapt), with a O-

180  mistmatch threshold. Adapters were eliminated using Cutadapt v1.10 (Martin, 2011)

181  (http://code.google.com/p/cutadapt/) with the following parameters: overlap length = 7,

182  minimum length = 35 and quality = 20. High-quality reads (Q > 30) were filtered using the

183  following script: https://github.com/SouthGreenPlatform/arcad-

184  hts/blob/master/scripts/arcad_hts_2_Filter Fastg On_Mean_Quality.pl and the resulting

185 filtered reads were deposited into GenBank SRA under accession number PRINAS576413.
186  Paired-end reads were then merged using FLASH vl.2.11

187  (https://github.com/SouthGreenPlatform/arcad-

188  hts/blob/master/scripts/arcad_hts_3_synchronized paired fastq.pl). Finally, microsatellite

189  motif detection and specific primer design were carried out after elimination of redundant
190  sequences using the QDD v3.1.2 software [59] with default settings.

191  Using selected primer pairs, test amplifications were performed with two randomly selected fan
192  palm DNA samples, then primers showing successful amplification were further tested for
193  polymorphism detection among seven randomly selected DNA samples. The M13 Tailed
194  Primers protocol described previously was used, with the following program: 3 min of initial
195  denaturation at 95°C, followed by 35 cycles of 30 s at 95°C, 30 s at 55°C and 72°C for 1 min
196 and a final extension at 72°C for 5 min. PCR products visualization was performed as

197  previously indicated. Finally, the primer pairs enabling successful amplification of
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198  polymorphic, mono-locus bands were used for the analysis of genetic diversity among the
199  complete set of 180 B. aethiopum individuals with the same conditions.

200

200 Data analysis

202  Amplification products were scored using the GeneMapper software V3.7 and only
203  unambiguous amplification products were considered for data analysis. Genetic parameters
204  such as total number of alleles, allelic frequency, expected heterozygosity (He), observed
205  heterozygosity (Ho), were calculated for each locus and each population in the GenAIEx
206  software Version 6.502 [60]. The F-statistics analysis assessing genetic differentiation and the
207  Analysis of MOlecular VAriance (AMOVA) for estimation of genetic differentiation within
208  and among populations were performed with the same software.

209 A Principal Coordinates Analysis (PCoA) was also performed using GenAlIEx software to
210  enable the visualization of genetic variation distribution across the individuals under study. We
211 used the STRUCTURE software version 2.3.4 [62] for the determination of the most probable
212 number of clusters for population structure (K value). Using the admixture model, eight
213 simulations were performed for each inferred K value, with a running length composed of
214 300,000 burning periods and 50,000 Markov chain Monte Carlo (MCMC) iterations to allocate
215  accessions to different populations. The output from this analysis was then used as input in the
216  Structure HARVESTER online program to determine the exact [62]. Based on this value, a
217 clustering analysis of the studied populations was performed and using the genetic distance
218 matrix obtained from previous analysis, a dendrogram was constructed with the
219  DendroUPGMA program accessible online at http://genomes.urv.cat/UPGMA/ [63]

220
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Results

Assessment of palm SSR markers transferability to B. aethiopum
and evaluation of their capacity for characterizing genetic

diversity

Of the 80 microsatellite markers that have been selected from three palm species and tested for
amplification on African fan palm DNA, 18 (22.5 %) generate amplification products (Table
2). No amplification is observed using the 11 C. nucifera markers, whereas 7 (15.9 %) and 11
(44%) of the P. dactylifera and E. guineensis markers, respectively, show a successful
amplification. None of the amplification products generated with date palm primers display
genetic polymorphism in our B. aethiopum test panel. Among oil palm-derived SSR markers
however, two, namely ESSR566 and ESSR652, display polymorphism. However, it must be

noted that the ESSR566 primer pair amplifies two distinct loci, ESSR566A and ESSR566B.

Table 2 : Summary of SSR markers transferability assessment

Species of origin Number of SSR markers Number of successful Number of polymorphic
amplification (% of amplicons (% of
markers) amplifications)
Cocos nucifera 11 0(0) 0(0)
Phoenix dactylifera 44 7(15.9) 0(0)
Elaeis guineensis 25 11 (44.0) 2(18.2)
Total 80 18 (22.5) 2 (11.1)

Overall, during this phase of the study we detect polymorphism in our B. aethiopum test panel
with only 2 (11.1% of successfully amplified markers, 2.5% of total) of the palm SSR primer
pairs that have been assayed. Only one of these markers proves to be both polymorphic and
monolocus in the African fan palm, and might therefore be used for studying genetic diversity

in this species.
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240

241 De novo identification of microsatellite sequences in the B.

242 aethiopum genome and assessment of potential SSR markers

243  In order to enable a more precise evaluation of genetic diversity among B. aethiopum
244  populations, we developed specific B. aethiopum markers from de novo sequencing data. A
245  total of 23,281,354 raw reads (average length 250 bp) have been generated from one MiSeq
246 run. Raw sequence reads have been trimmed and generated 21,636,172 cleaned-up reads,
247  yielding 493,636 high-quality reads after filtering (Q > 30) from which 216,475 contigs have
248  been assembled.

249  From this latter output, the QDD software identifies a total of 1,630 microsatellite loci (see S2
250 Table), of which 81.41 % are perfect (i.e. repeat size 4 bp or smaller and repeat number 10- 20).
251  Among these, 83.86 % of loci are composed of di-nucleotidic repeat units, 13.06 % of tri-
252 nucleotidic units, 2.39 % of tetra-nucleotidic repeats and 0.67 % of repeats with five nucleotides
253  and over. From these, we have selected SSR markers composed of di- (AG) or tri- nucleotide
254  repeats, using the following criteria for specific amplification of easily scorable bands: primer
255  lengths ranging from 18 to 22 bp, annealing temperatures 55-60°C and predicted amplicon
256 sizes 90-200 bp.

257  The characteristics of the 57 selected primer pairs and the results of the test amplifications are
258  presented in Table 3. Successful amplification of B. aethiopum DNA is obtained in most cases
259  (94.7%). However, 34 of the putative markers tested (63.0% of amplifying ones) show no
260  polymorphism. The remaining 20 putative markers are polymorphic and among them, nine
261  correspond to multiple loci. As aresult, 11 putative African fan palm SSR markers (representing
262 20.4% of successful amplifications and 55.0% of polymorphic markers in our study) are both
263 polymorphic and mono-locus in our amplification test panel and may therefore be used for

264  further analyses.
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265

266 Table 3: List of selected primer pairs targeting putative B. aethiopum microsatellite loci and assessment of their

267 polymorphism detection ability

268

Primers Expected

Locus name Repeat motif Sequence (5'-3' orientation) amplicon size | Amplification product

(bp)

F CCTATCCTTCCATCCCGATCG

MBo01 [AGG]7 90 multiple loci, polymorphic
R TTGCCGTGAATCAGCCTCAA
F GGGAGAACAAGGATAACAGCAG

MBo02 [ATC]7 115 single locus, monomorphic
R TCCATTTCATCACTAGCTCGGT
F CTCCGAGCCCTAGCAACTTT

MBo03 [AGG]7 131 single locus, monomorphic
R TCTGGATGACGAAACCTTCACA
F GATGTGGCCGCTCTGATCTC

MBo04 [ACC]7 192 single locus, monomorphic
R ACATGCTGGCAAGGTATTCT
F GTCCTAGCACGCTGGCATTA

MBo05 [AAG]7 202 single locus, monomorphic
R TGGGTTGCCAATGAACCCTT
F TGGCCATTCAACTGCTTCAC

MBo06 [ATC]7 202 single locus, monomorphic
R GAATCTAGCACCAGCAAACCC
F GGCACTGGAGTCCACATCAA

MBo07 [AAG]7 239 single locus, monomorphic
R TCCTTCTGTACTGGCATCTCT
F TGATTGTTTCCTCTTCCCTCCT

MBo08 [AGG]8 90 single locus, monomorphic
R TTAATGAGCCGAAGAGGAGCC
F TCCCTCACTCCCATCCTCTC

MBo09 [AGG]8 163 single locus, monomorphic
R ACTCCACTCCTTCCCTCATACA
F GTTAAAGACGCAGGGCTGGA

MBo10 [AAC]S 166 single locus, monomorphic
R CCCACTTAGTGAGATAAGACTTGA
F GCATCACATGGTTTCAGGCT

MBoll [ATC]8 219 single locus, monomorphic
R GCTCAACCATCGGCAGTGTA
F GGAGGAAAGGTTGCCCTAGAA

MBo12 [ATC]9 102 single locus, monomorphic
R TCTCAACCTGATGTCATTGCA
F CAGGTTGCATCGGCCCATT

MBo13 [AAG]9 103 multiple loci, polymorphic
R GGAGCCTAATGCACCCAGAG
F ATGGCCGATCCCACTTAGTG

MBol4 [AAC]9 117 single locus, monomorphic
R GAGAGAACGGCAATAATTTATGCA
F GCTGAAGAGGATGAAGAAGAAGC

MBol5 [AAG]10 92 multiple loci, monomorphic
R TCATCATCTCCCTCTCCTTCT

MBol6 [AGG]10 F CAGCACTGGCCTCACAGC 118 single locus, monomorphic
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R CCGTCGATCAGTTGTTGGAGA
F ACACAATGACCTTTCGCTGA

MBol7 [ATC]10 124 single locus, monomorphic
R CCAAACAGGACCTTATGCCA
F ACATCCTCTCCTTCATCTCCTT

MBo18 [AAG]10 187 multiple loci, polymorphic
R GTTCCTACAATGCTTGGCGC
F TGCTATCACCCAATATCTAGGCT

MBo19 [AAG]10 202 single locus, monomorphic
R ACAGTCAACAACTACCATACTGC
F TGTGGTTAAAGCAATGGAAGCA

MBo20 [AAG]10 229 single locus, monomorphic
R GCCGAACTCCTACTCTCATACG
F ACAACAGAAGATCAGTATACGTTCT

MBo21 [AAG]11 171 single locus, monomorphic
R TTGAGGAATCATGCTTGTCAGT
F AGAAGAATTCGGTTAGGTCACAA

MBo22 [AAG]14 108 single locus, monomorphic
R AGATAACATGGGTAAGAATTGCCT
F TGAGTTCTTGTCTTGTCTTCGT

MBo23 [AAT]S 100 single locus, monomorphic
R GGTTTGGGACACCCTTCAGG
F AAAGTCATGTCTGGGTGATGAA

MBo24 [AAT]9 90 single locus, monomorphic
R ATGATGAGCACAGCTACAACTCT
F TCTTCAGGTGACAAGCAACA

MBo25 [AAT]6 96 single locus, monomorphic
R CCTGGGCATGGAGATAGCAT
F CCATAGGCCAGCCCACTATA

MBo26 [AAT]7 134 single locus, monomorphic
R ACCCTTTCTTCTTCCTCATTTGT
F TCTCTATTGCTTGGTGATCCC

MBo27 [AAT]7 103 single locus, monomorphic
R TCCAACAAGGGATGGTTATCATG
F GCCTTGAGAGTGGAAGAGGC

MBo28 [AATI]8 205 single locus, monomorphic
R TCTCTTCTTTGCGCCCTCAT
F AGACATGTAGAGGTGGGACT

MBo29 [AAT]16 211 single locus, monomorphic
R TCTGTATGAGAGACGTGTTACAGT
F TGACCATAACAAGCTACCAGGT

MBo30 [AAT]8 146 single locus, monomorphic
R GGTGGAAGCTATTGATATTGCATGT
F TGACAATGATGCATGCGATAACA

MBo31 [AAT]10 187 single locus, monomorphic
R GCATCACCCATGTCCTTTAGC
F TCCGAGGGCAGTATTTGTCG

MBo32 [AAT]10 117 single locus, monomorphic
R CACTATTTCGGAAACCTAAGCCC
F GCACACTTTGTATCCGACGC

MBo33 [AAT]17 147 single locus, monomorphic
R CAGGGATAGTAACCGTCAGGG
F GTGGCACCTCTGCGGTTT

MBo34* [AG]28 192 single locus, polymorphic
R CGAGATGGAAGCACCTGGAG
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AGCATGCTTTCTGCTTCATGTG

MBo35* [AG]24 137 single locus, polymorphic
CCTTTCCCTGACTGCATTGC
TCGGAAGTCGAATGTGGCAG

MBo36 [AG]23 180 no amplification
TCGGAAGAGTGGTCAATCATGG
GCTCTACTCCCAGAGACGGA

MBo37 [AG]23 142 multiple loci, polymorphic
AACAGTCGACGGAATGCTCA
AGTCCTCACTGCTGGTGGTA

MBo38* [AG]20 130 single locus, polymorphic
TCCTTGAATAGTCCATCTTGCA
AACGCAGGTTAAGAGGCTCC

MBo39 [AG]19 168 multiple loci, monomorphic
CCTCCTGGTGCAACCCTTAC
TGTGGAGTGTGAGTCGATGG

MBo40 [AG]19 193 multiple loci, polymorphic
GGCTGCATAATCTCATCACGC
TTCTCCACCAGCCTCACAAC

MBo41* [AG]18 184 single locus, polymorphic
ATACGGCCCATCAACCCTTC
CCTGGTGGTACATGTGGTCA

MBo42 [AG]18 136 multiple loci, polymorphic
TGTGGCACATTCATTTCTGAAGG
AGTTTGTTCTGTGTGTTGTCAC

MBo43 [AG]18 137 no amplification
GCACACATCTTGCTTTGAAGAC
AACACACTTTAAATCGACTTCTTCA

MBo44 [AG]17 193 multiple loci, polymorphic
CACGGCTGCCATGTGAGG
TAGATCGGAAGTCAGGCCC

MBo45 [AG]17 193 no amplification
AGAGAAGTGGGAGGAGAGGTC
GCCGATATTAGCTTCTTCTTGGC

MBo46 [AG]17 154 single locus, monomorphic
GCCTTGTTGATCCCGTTTCAC
GGCACCTGACGCCTCTTT

MBo47 [AG]16 188 single locus, monomorphic
TCACTTCGACTCAATTGTATCCAT
AGGACAAAGAGATGAGAAGCCT

MBo48 [AG]16 92 multiple loci, polymorphic
ACCAATTCCCAGTTAGTTGACCA
CATCACCCATTCTCTCTGCCT

MBo49* [AG]16 141 single locus, polymorphic
GAGAAACCATCCGCACCTCA
AGAAGTCATCTTGAGGGCCC

MBo50* [AG]15 150 single locus, polymorphic
TTGCTAGAATGATACACAAATTGCT
TGTGCTATTTGTTGGGAATGCA

MBo51* [AG]15 191 single locus, polymorphic
GCAAGCTCATGTTCTAGTTTCAAGT
ACACATCCTACATGAATAGACCTCC

MBo52* [AG]15 122 single locus, polymorphic
TCTTGTCATAGCCTAGATTCCCT

MBo53 [AG]15 AGGTTTAAGGGTTTGGGTTAGGG 131 single locus, monomorphic

g Ip
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R GGTGGAGTAAGTTTGAGGGTCA
F CATATGCTGATACAAGAGAGAGGG
MBo54* ,[f(? ]1151NNN[ 124 single locus, polymorphic
1 R ACCTTATAAGCAGGATCCAGACA
F TGGAATCAACCTTGGGTCTACA
MBo55 [AG]15 198 multiple loci, polymorphic
R TCGTCGGTCTTCTAGCCACT
F ACCAAGATCAAGCACGAGGA
MBo56* [AG]15 103 single locus, polymorphic
R AGGATCACCCTTTCTTTCTTTCT
F GGGTTCAATCCTGATGAGAGCA
MBo57* [AG]15 136 single locus, polymorphic
R ACCGTTCGATCAACCATGGT
269
270 Loci for which single-locus SSR polymorphism has been detected within our test panel of seven B. aethiopum individuals are

271 signaled by an asterisk (*). Expected amplicon size is as predicted by QDD.

272

273 Microsatellite-based characterization of the genetic variation

274 within B. aethiopum populations of Benin

275  The set of 11 B. aethiopum-specific SSR markers identified in the previous step has been used
276  for the characterization of genetic diversity in our full panel of nine populations (180
277  individuals) distributed across Benin. Among our sample set, the number of alleles per
278  microsatellite locus ranges from 2 for locus Mbo41 to 6 for loci Mbo34, Mbo35 and Mbo50,
279  with an average value of 4.27, whereas expected heterozygosity (He) values range from 0.031
280  (locus Mbo56) to 0.571 (locus Mbo35; Table 4). Using these markers, the analysis of genetic
281  diversity (Table 5) shows that the percentage of polymorphism detected at the microsatellite
282  loci investigated ranges from 72.73% (populations of Togbin and Malanville) to 90.91%
283  (populations of Save, Agoua, Pendjari, Pingou and Trois Riviéres), with a mean value of
284  84.85%. With the exception of the Save, Hounviatouin and Malanville populations, 1 to 3
285  private alleles of the targeted microsatellite loci are observed in most populations. Regarding
286  the genetic parameters, the number of effective alleles (Ne) ranges from 1.447 to 2.069 with an

287  average number of 1.761. He values range from 0.263 (Hounviatouin) to 0.451 (Save) with an
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288  average value of 0.354 whereas the observed heterozygosity (Ho) varied from 0.234 (Togbin)
289  to 0.405 (Pingou) with an average value of 0.335. Negative values of Fixation index (F) are
290  obtained for the populations of Pingou, Malanville and Trois riviéres whereas positives F values

291  are observed in all other populations investigated, indicating a deficit of heterozygosity in the

292 latter.
293
294 Table 4: Characteristics of 11 polymorphic microsatellites markers used for genetic diversity analysis of B. aethiopum
Locus name Number of alleles Expected
scored/locus Heterozygosity
(He)
Mbo34 6 0.520
Mbo35 6 0.571
Mbo38 5 0.458
Mbo41 2 0.343
Mbo49 4 0.167
Mbo50 6 0.548
Mbo51 3 0.320
Mbo52 3 0.201
Mbo54 4 0.26
Mbo56 3 0.031
Mbo57 5 0.296
295
296
297 Table 5: Mean diversity parameters for each of the nine B. aethiopum populations
Geo- % Nb of
climatic Populations  polymorphic Na Ne private Ho He F
region loci alleles
Guineo- Togbin 72.73% 2.273 1.584 3 0.234 0.288 0.145
Congolian
Hounviatouin 81.82% 2.182 1.447 0 0.272 0.263 0.007
(South)
Soudano- Save 90.91% 2.909 2.069 0 0.384 0.451 0.134
Guinean Biguina 81.82% 2.364 1.770 2 0.345 0.374 0.064
(Centre) Agoua 90.91% 2.273 1.722 1 0.329 0.358 0.059
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Pendjari 90.91% 2.818 1.900 3 0.368 0.396 0.055
Sudanian Pingou 90.91% 2.364 1.906 1 0.405 0.390 -0.063
(North) Malanville 72.73% 2.455 1.627 0 0.302 0.303 -0.020
Trois rivieres 90.91% 2.545 1.822 2 0.373 0.360 -0.055
Overall
84.85+2.62%  2.465+0.103  1.761+0.065 0.335+0.023  0.354+0.023  0.035+0.022
mean

298 Na : number of different alleles; Ne: Number of effective alleles; Ho= Observed Heterozygosity; He: Expected Heterozygosity; F: Fixation

299 index

300

301 Genetic structure of the B. aethiopum populations under study

302  The calculation of Nei's genetic distance among populations (Table 6) shows values ranging
303 from 0.073, as observed between Togbin and Hounviatouin (Guineo-Congolian region), to
304  0.577 between Togbin (Guineo-Congolian region) and Trois Riviéres (Sudanian region).
305  Overall, genetic distances between the fan palm populations under study are lowest within the
306  same region, with the lowest genetic distances among populations of Save, Pendjari, Pingou,
307 and Trois Riviéres which are all located in the Northern part of the country. One interesting
308 exception is the Centre (Guineo-Sudanian) region of Benin, where we find that the most
309 genetically distant population from Save is the one collected within the Agoua forest reserve
310  (0.339). Surprisingly, Save displays its highest genetic identity value when compared to the
311  other two populations sampled in protected areas, namely Pendjari (0.870) and Trois Riviéres
312 (0.882) which are both located in the Sudanian region. This is an unexpected finding
313  considering the important geographic distances that are involved.

314

315 Table 6: Pairwise Population Matrix of Nei’s genetic distance and genetic identity values

Togbin Hounviatouin Savée Biguina Agoua Pendjari Pingou Malanville Trois Riviéres

Togbin - 0.073 0.477 0.253 0.337 0.517 0.494 0.487 0.577
Hounviatouin 0.929 - 0.419 0.110 0.215 0.435 0.317 0.375 0.535
Saveé 0.621 0.658 - 0.270 0.339 0.140 0.265 0.238 0.126
Biguina 0.776 0.896 0.763 - 0.152 0.241 0.161 0.186 0.316
Agoua 0.714 0.806 0.713 0.859 - 0.408 0.304 0.359 0.490
Pendjari 0.596 0.647 0.870 0.786 0.665 - 0.167 0.108 0.103
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Pingou 0.610 0.728 0.767 0.851 0.738 0.846 - 0.174 0.175
Malanville 0.614 0.688 0.788 0.831 0.699 0.898 0.841 - 0.145
Trois Rivieres  0.561 0.585 0.882 0.729 0.613 0.902 0.840 0.865 -

316

317 Above the diagonal: Nei's genetic distance; below: genetic identity.

318

319 A similar structuration of genetic distances emerges from the analysis of pairwise population
320 genetic differentiation (Fst) (Table 7), suggesting genetic differentiation according to
321  geographic distances between populations, with the notable exception of the lower genetic
322 differentiation between palms from Save and those from either one of the forest reserves in the

323 Northern region.

324

325 Table 7 : Pairwise populations Fst value

Togbin Hounviatouin Save Biguina Agoua Pendjari Pingou Malanville Trois
Riviéres
Togbin 0.000
Hounviatouin 0.072 0.000
Save 0.233 0.221 0.000
Biguina 0.168 0.086 0.145 0.000
Agoua 0.215 0.153 0.157 0.105 0.000
Pendjari 0.247 0.212 0.077 0.120 0.188 0.000
Pingou 0.252 0.181 0.138 0.103 0.169 0.100 0.000
Malanville 0.301 0.246 0.149 0.121 0.197 0.072 0.119 0.000
Trois Riviéres 0.285 0.279 0.076 0.178 0.224 0.073 0.104 0.107 0.000

326

327  Our analysis of molecular variance (AMOVA; Table 8) shows that within-population variation
328 underlies the major part (53%) of total variance, whereas among-populations and among-
329  regions variations explain variance to a similar extent (23 and 24%, respectively).

330

331 Table 8 : AMOVA results.

Source df SS MS Est. Var. % total P value

variance
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Among Regions 2 309.407 154.704 1.944 24% <0.001
Among Populations 6 254.302 42.384 1.903 23% <0.001
Within Populations 171 739.100 4322 4.322 53% <0.001
Total 179 1302.809 8.169 100%

df=degree of freedom, SS=sum of squares, MS mean squares, Est. var.=estimated variance

In accordance with results from both the analysis of genetic distances and the AMOVA, the
Principal Coordinates Analysis (PCoA) of our 180 individual B. aethiopum samples shows that
the first axis (accounting for 24% of total variation) distinguishes roughly between two main
groups of populations (Fig 2). Likewise, the Bayesian analysis of our data indicates an optimal
value of K=2 for the clustering of the studied populations into two groups (Fig 3): one group
that includes palms belonging to the populations of Togbin and Hounviatouin from the Southern
part of the country, as well as most of the palms from Biguina and Agoua from the Western
(Togolese) border of the Centre region; and one group composed of the majority of the palms
collected in Save (Eastern part of the Centre region) and palms from the Northern populations
of Pendjari, Pingou, Malanville and Trois Riviéres. The dendrogram derived from the UPGMA
analysis of our data further shows that, within these two main groups, subgroups can be defined

based on geo-climatic regions, Save being the only exception to this general trend (Fig 4).

Fig 2. Principal Coordinates Analysis (PCoA) of individual Borassus aethiopum samples.

Fig 3. Bayesian cluster analysis
A: Determination of the optimal value of K from Structure Harvester.
B: Bayesian STRUCTURE bar plot analysis of Beninese B. aethiopum samples with K=2. Red: group

1; green: group 2. Populations are numbered as in S1 Table and displayed along the horizontal axis.
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353
354  Fig 4. Genetic relationships among Beninese B. aethiopum populations.
355  Branch ends with identical colors represent populations from the same geo-climatic region.

356

357 Discussion

358 In flowering plant, the efficiency of cross-species transfer of SSR markers is highly variable
359 among taxa, especially when important differences in genome complexity exist between the
360 marker source and the target [64]. Nevertheless, this method has been used successfully for
361 accelerating the analysis of genetic diversity in many plant species, including palms [13,68-70]
362 In the present study, we find that the transferability rate of microsatellite markers developed in
363  other palms genera to the African fan palm, i.e. their ability to successfully amplify genomic
364  DNA from the latter species, is very low. Indeed, among the 80 primer pairs designed on either
365  oil palm, date palm or coconut palm, we observe that only 22.5% produce amplicons from B.
366  aethiopum. This percentage is very low when compared to both the inter-species and inter-
367  genera transferability rates that have been found in similar studies targeting other palm species:
368  from 17 to 93% in a panel of 32 palm species [50], 75% from E. oleifera to E. guineensis [67],
369  86% between the wooly jelly palm Butia eriospatha and related species B. catarinensis [68]
370 and up to 100% in the licuri palm Syagrus coronata [70]. When considering other plant
371  families, our transferability rate is also markedly lower than both the average rate of 50% found
372 by [70] within the Glycine genus and among Legumes genera, and the overall rate of 35.2%
373  calculated by [71] for within-family transferability among Gymnosperms and Angiosperms.
374  The low transferability rate in our study might be explained in part by the fact that we used
375  markers originating from genomic sequences. Indeed, as pointed out by [72], such markers have
376  a lower transferability rate when compared to Expressed Sequence Tags (ESTs)-derived

377  microsatellites due to the higher inter-species sequence variability within non-coding vs. coding
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378  sequences. Similarly, it is plausible that differences in genome size and complexity among palm
379  species and genera account for our difficulty to identify palm SSR markers that successfully
380 amplify in B. aethiopum. As a matter of fact, the size of the B. aethiopum genome, as determined
381 by flow cytometry (1C = 7.73 Gb; Jaume Pellicer, unpublished data), is 3.2 to 11.5 times larger
382  than those of the microsatellite source species used in the present study: the date palm genome
383 s estimated to be 671 Mb [40] whereas the oil palm genome is 1.8-1.9 Gb [41,74] and the
384  coconut genome is 2.42 Gb [46]. Most likely, these differences in genome sizes among related
385  diploid plant species rely on differences in Transposable Element contents and associated
386  structural variations such as copy number variants and homologous recombinations [75], which
387  might eventually affect the cross-species amplification ability of SSR primers. The illustration
388  of such a mechanism working at the intra-genus level has been provided by cultivated rice
389  species Oryza sativa and its wild relative O. australiensis [76]. More generally, gaining a better
390 understanding of genome structures within the Borassus genus could also help reconcile our
391  results with previous published reports of successful transfer of SSR markers developed from
392 other palm sources to Borassus flabellifer (see references cited in Table 1). Indeed, since the
393  genome size of B. flabellifer is only marginally smaller than that of B. aethiopum (7.58 Gb;
394  Jaume Pellicer, unpublished data), significant differences in genome composition may be
395  underlying the lack of SSR transferability between both species.

396 In any case, from the low number of successfully transferred microsatellite markers we could
397  only identify one displaying polymorphism in our fan palm test panel, making it impossible to
398 rely on for analysis of genetic diversity. Still, the fact that so little microsatellite polymorphism
399 (2 out of 18 amplifying primer pairs: 11.1%) could be detected in this subset of 20 palms
400  sampled across different locations throughout Benin is somewhat surprising and its reasons
401 remain to be elucidated. In addition to possibly being a symptom of habitat fragmentation and

402  low gene flow between populations, this low diversity might also result from the extremely
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403  long juvenile phase that has been attributed to this palm species, for which authors have reported
404  floral maturity occurring 30 to 50 years after germination [77,78].

405  Compared to other studies in which high-throughput sequencing techniques have been used for
406  the development of new microsatellite markers in species with very little information available
407  [78,79], our results are similar. We identified 57 potential SSR markers, of which 11 displayed
408  polymorphism and were used to assess the genetic structure of B. aethiopum populations in
409  Benin. We find a low genetic diversity, with an average He value (0.354) that is substantially
410  below those reported for Borassus flabellifer [46] and for other non-timber forest products such
411  as Khaya senegalensis (He = 0.53; [80] and Phyllanthus sp [81]. The positive F value that we
412 observed in the majority (6 out of 9) of populations in the present study indicates an overall
413  deficiency of heterozygotes across population. This deviation from the Hardy-Weinberg
414  equilibrium (HWE) might reflect poor gene flows through pollen and seed dissemination,
415 leading to crosses between related individuals. Accordingly, our data reveal limited genetic
416  distances among populations, with values lower than those reported for others palm species.
417  Indeed for B. flabellifer, genetic distance ranged from 0.716 to 0.957 [82] and among natural
418  oil palm accessions an average of 0.769 was observed [84]. Both our Fst values and AMOVA
419  analysis point to intra-population differentiation as being the main source of genetic variation.
420  As illustrated by the agreement between our PCoA and Bayesian analyses, Beninese B.
421  aethiopum populations cluster globally according to geographic distances between the
422 collection sites. However, among the nine populations studied, the population from Save
423  appears to be the most diversified (He= 0.451) and constitutes an exception to this general
424  distribution. This site located in the Sudano-Guinean transition zone of Benin is currently the
425  most active for the production of fan palm hypocotyls, and it acts as a supplier for the whole
426  national territory (VK Salako, personal communication), suggesting that it might be the largest

427  population of B. aethiopum in the country. Moreover, our sampling of Save individuals appear
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428  to be genetically distinct from palms belonging to other populations of the Central region and
429  closer from those of the Northern region, despite the important geographical distances involved
430  with the latter case. We postulate that seed dispersion by elephants might have played a major
431  role in the observed pattern of genetic diversity and explain the singularity observed in Save.
432  As a matter of fact, [31,32] detected the presence of B. aethiopum seeds in elephant dungs and
433 hypothesized that elephants may have played important role in the seed dissemination for this
434  species through fruit consumption and long-distance herd migrations. In support to this
435  assumption, Save is part of a continuous forest corridor connecting with the Northern region
436  that was used by elephants in their migrations. Up until 1982, the seasonal occurrence of the
437  animal has been reported in the Wari-Maro forest of Central Benin [84].

438  The use of the specific microsatellite markers developed in this study from genomic sequencing
439  of B. aethiopum appears to be efficient to assess the genetic diversity and population structure
440  ofthis species. These microsatellite loci with respect to our results represent potential molecular
441  marker set that can be used to elucidate the genetic diversity of B. aethiopum in other African
442  countries. Additionally, and provided that genome divergence is not too extensive to allow
443 marker transferability, our SSR markers may also been used in a palm species that belongs to
444  the same genus and that is reported to share parts of its distribution area, namely Borassus
445  akeassii B.O.G., which has long been confused with B. aethiopum due to its similar morphology
446  [85]. High-throughput sequencing proves to be a good, fast and effective way to develop new
447  microsatellite markers especially for plant species without published molecular data. The
448  increasing availability and affordability of this technology makes it possible, both technically
449  and financially, to overcome the difficulties arising in case studies such as ours, where marker
450 transfer has proven to be limited or ineffective. To our knowledge, the data presented in the
451  present article constitute the first sizeable molecular resource available for the African fan palm,

452  which we have made available to the scientific community at large in order to facilitate the
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453  implementation of an increasing number of studies on this palm species. We have also
454  performed the first analysis of the genetic diversity of B. aethiopum in an African country,
455  which we see as a first step towards the elaboration of an evidence-based strategy for sustainable
456  resource management and preservation in Benin. As a complement, the acquisition of agro-
457  morphological data and the characterization of processes regulating the reproductive
458  development of the species are currently under way. Beyond that, we also aim to extend our
459  analysis of B. aethiopum diversity to the West African sub-region, and leverage the data
460  acquired to improve knowledge of both other species within the Borassus genus, and of palms
461  diversity as a whole.

462
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