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Abstract

Large-scale cancer genomic studies enable the systematic identification of mutations that
lead to the genesis and progression of tumors, uncovering the underlying molecular
mechanisms and potential therapies. While some such mutations are recurrently found in
many tumors, many others exist solely within a few samples, precluding detection by
conventional recurrence-based statistical approaches. Integrated analysis of somatic
mutations and RNA expression data across 12 tumor types reveals that mutations of cancer
genes are usually accompanied by substantial changes in expression. We use topological
data analysis to leverage this observation and uncover 38 elusive candidate cancer-
associated genes, including inactivating mutations of the metalloproteinase ADAMTS12
in lung adenocarcinoma. We show that ADAMTS12”- mice have a five-fold increase in the
susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor
suppressor gene. Our results demonstrate that data integration through topological
techniques can increase our ability to identify previously unreported cancer-related

alterations.
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Introduction

A critical foundation for targeted cancer therapies is the identification of molecular
mechanisms that are necessary for tumor development and maintenance. Large-scale cross-
sectional cancer molecular studies, such as The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium, enable this identification by systematically
compiling genetic alterations across many tumors®?. Tumors that present recurrently
altered genes or pathways are suspected to be driven by common molecular mechanisms.
By leveraging computational approaches that seek signatures of positive selection®, these
studies have produced extensive catalogues of frequently-mutated, cancer-associated
genes®. These studies have also revealed that most cancer mutations occur at low

frequencies (< 10% of samples), including potentially actionable therapeutic targets®.

The identification of low-prevalence cancer-associated mutations using recurrence-based
methods is challenging because of the large number of samples needed to achieve statistical
power and the inherent complexity in modeling the background mutation rates. The rate of
neutral mutations within a cancer type can dramatically differ among patients, genomic
regions, or mutation types®, limiting the power of recurrence-based methods. It is estimated
that for the current size of ongoing cross-sectional studies (typically consisting of less than
1,000 patients) only cancer-associated mutations that occur at intermediate or high

frequencies (> 15%) are fully accessible to recurrence-based methods®*. This is consistent
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with the observation that patients in these studies often completely lack mutations in known
cancer-associated genes®. These results highlight the need of recurrence-based methods
that can model rare events®’ or, alternatively, methods for the identification of cancer-

associated genes that are not based on recurrence.

An approach to the identification of cancer-associated genes that is not based on modeling
the mutation rate is the integration of other types of data from the tumor®®. If a mutation is
accompanied by consistent changes in copy number, gene expression, and/or methylation,
it is possible to leverage these changes to relate the mutation event to cancer progression.
Several studies have utilized changes in the copy number, expression, or methylation of
the mutated gene (cis-effects) to identify novel cancer-associated mutations'®*?, However,
the identification of cancer-associated mutations based on changes in genes other than the
mutated gene (trans-effects) is more challenging and usually requires providing
information about known gene-gene relationships to reduce the number of false positives.
DriverNet!3, OncolMPACT, CaMoDi®®, and Xseq!® utilize trans-effects in gene
expression to identify cancer-associated mutations. To limit the dimensionality of the
expression space, these methods use expression modules (sets of co-expressed genes,
functionally related genes, or gene networks). However, an approach that fully takes into

account the complexity of the expression space is currently lacking.
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Current approaches for the identification of cancer-associated mutations using expression
data are sensitive to several confounding effects. Genomic regions with open chromatin
can be more easily accessed by DNA repair enzymes, leading to anti-correlations between
gene expression levels and mutation rates®. Furthermore, tumors with different expression
signatures, such as genomically unstable tumors, can have different mutation rates!’8,
These effects lead to spurious correlations between mutations and expression signatures

and are a source of false positives for current algorithms.

To address these problems, we have devised an approach to identify cancer-associated
mutated genes using expression data from multiple tumors. Our approach makes use of
topological data analysis'®?° (TDA) to reconstruct the structure of the expression space,
and takes into account the above spurious effects when assessing the significance of a
mutated gene. Its application to mutation and expression data of 4,476 patients from 12
tumor types leads to the identification of 95 mutated cancer genes, out of which 38 are
previously unreported low-prevalence genes (average prevalence within the same tumor
cohort = 5%) . We hence propose a complementary approach to recurrence-based methods,
enabling the identification of elusive, but potentially clinically-relevant, mutated cancer

genes.
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Results

Topological reconstruction of the expression space of low grade gliomas

The expression profile of a tumor can be mathematically described as a point in a high-
dimensional expression space, where each dimension represents the mRNA level of a gene
and the dimensionality of the space is given by the number of expressed genes. Points that
lie close to each other in this space correspond to tumors with similar expression profiles.
The set of all possible tumors of a cancer type spans a sub-space of the expression space.
Measuring the expression profiles of individual tumors in a cross-sectional study is

equivalent to sampling a finite set of points from this sub-space.

We considered 513 primary low grade glioma (LGG) tumors from TCGA for which both
RNA-seq and whole-exome DNA-seq data were available?!. To infer the structure of the
expression space of LGG from this RNA-seq data, we used a topological approach®?°,
Topology is the mathematical field that studies how different parts of a space are connected
to each other. TDA generalizes some of the notions of topology to sets of points and
pairwise distances. Thus, TDA aims to infer and summarize the topological structure of a
space given only a finite sample of points. TDA has been recently used to study viral re-
assortment??, human recombination?24, cell differentiation®, breast cancer?, and other

complex genetic diseases?”.
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We used the TDA algorithm Mapper?® to build a low-dimensional representation of the
expression space of LGG using the expression data of the TCGA cohort (Fig. 1a). Mapper
generates a network representation of the expression space, in which each node
corresponds to a set of tumors with similar expression profile. A given tumor can appear
in more than one node, and if two nodes have one or more tumors in common they are
connected by an edge. Contrary to other methods for dimensionality reduction, such as
principal component analysis and multi-dimensional scaling®®, the topological
representations produced by Mapper preserve local relationships of the high-dimensional
expression space. Any two tumors close to each other in the topological representation (as
measured by the number of edges contained in the shortest path that connects the two
tumors) are ensured to be close to each other in the original high-dimensional expression
space. We used Pearson’s correlation as a measure of similarity between the expression
profiles of individual tumors. The topological representation of the LGG expression space
consisted of three regions (Fig. 1a), consistent with the expression sub-types found in
clustering analyses?'. These regions, however, were bridged by thin structures in the
topological representation, indicating that some tumors have an expression profile

characteristic of multiple expression sub-types (Fig. 1a).

Identification of cancer-associated mutated genes in LGG
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We hypothesized that if a mutated gene appears localized in the expression space, it is
associated with consistent global expression patterns across a subset of tumors, and is
therefore a candidate driver of tumor progression (Fig. 1b). On the other hand, if mutations
of a gene are clonally expanded as a result of being in the same genome as a positively-
selected mutation, but are not cancer-related, they will appear randomly scattered in the

expression sub-space (Fig. 1b).

To test this hypothesis, we implemented a computational approach that assesses the
localization of non-synonymous somatic mutations in the expression space of tumors
(Methods). To control for the presence of spurious correlations between the mutation rate
and the tumor expression profile, we assessed the localization of the mutational tumor
burden (defined as the total number of somatic mutations in each tumor) in the
reconstructed expression space (Supplementary Fig. 1a, Methods). Based on this analysis,
we sub-sampled mutations in two hyper-mutated tumors (nmut > 102°) that were present in
the LGG cohort. In addition, we assessed the similarity between the expression and the
mutation profile of each individual gene in the reconstructed expression space (Methods).
After correcting for these spurious correlations, 16 mutated genes were significantly
localized in the reconstructed expression space of LGG (Fig. 1c, g-value <0.15, Benjamini-
Hochberg procedure). These included well-known high-prevalence (> 15%) driver genes,
like IDH1, TP53, ATRX, and CIC, in addition to several low-prevalence mutated genes,

like NIPBL (mutated in 4% of the tumors) and ZNF292 (mutated in 3% of the tumors),
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which have been recently reported in a larger cohort of gliomas?!. In total, 15 out of the 16
significant mutated genes were previously reported-3°, with SYNE1 (mutated in 2% of the
tumors) the only new candidate. We did not observe a significant correlation between the
significance and prevalence of statistically significant genes (Pearson’s correlation
coefficient between prevalence and g-value, r = -0.34, p-value = 0.19). In particular, some
of the most significant genes according to our approach, like FUBP1, NOTCH1, PTEN,
EGFR, and NF1, were mutated in less than 10% of the patients within that tumor type (Fig.
1c), indicating that mutations in these genes are strongly associated with global changes in
expression. These results were stable across the parameter space of the Mapper algorithm

(Fig. 1c, Supplementary Fig. 1b, Methods).

The location of significant genes in the reconstructed expression space of LGG was
consistent with the known molecular subtypes of adult diffuse gliomas® (Fig. 1d,
Supplementary Fig. 2). Of particular note, IDH2-mutant tumors were localized within the
expression space of oligodendrogliomas, indicating a distinct expression profile from that
of IDH1-mutant oligodendrogliomas (Fig. 1d, Supplementary Fig. 2a). This observation is

consistent with a recent study based on genomic variations®!.

Neuronal marker expression has been reported in malignant (grade I11/1V) gliomas other
than classical anaplastic gangliogliomas®?2. In our cohort, tumors expressing canonical

neuronal markers like neurofilament (NEFL, NEFM, and NEFH) and synaptophysin (SYP)
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were significantly localized within the expression space of oligodendrogliomas (g-value <
0.015, Supplementary Fig. 3). These tumors harbored frequent deletions of the
chromosome arm 19q, in addition to molecular alterations characteristic of astrocytic
gliomas, such as TP53 and ATRX mutations (Fisher’s exact test p-value < 0.01,
Supplementary Fig. 3). Although the average estimated tumor purity®* in this group was
significantly lower than for the rest of the oligodendroglioma expression group (Mann-
Whitney U-test p-value = 0.001, average estimated tumor purities = 92% and 96%,
respectively), the estimated tumor content was in many cases (n = 7) above 98%,

suggesting that the expression of neuronal markers is not due to a poor tumor purity.

Computational benchmarking

To assess the number cancer-associated genes identified by our approach as a function of
the size of the cohort, we repeated the same analysis in smaller cohorts generated by
randomly sampling patients from the original LGG cohort (Fig 1e). We also assessed the
number of false positives by generating randomized datasets, where we permuted the labels
of the patients in the expression data. We observed that our approach requires a minimum
cohort size of approximately 100 tumors. For larger cohorts, the expected number of false

positives was between 1 and 2 (Fig. 1e).

Next, we sought to compare our results against current algorithms for the identification of

cancer-associated genes using expression data. To that end, we analyzed the same LGG
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cohort using the recently published algorithm Xseq'® (Methods). Xseq implements a
hierarchical Bayes statistical model to quantify the impact of somatic mutations on
expression profiles using a pre-computed ‘influence graph’ that encodes whether two genes
are known to be functionally related. The analysis of the LGG cohort with Xseq led to only
2 significant genes (posterior probability, P(D) > 0.80), of which only one (PTEN) has
been previously reported in LGG. These results reveal the high sensitivity of our

topological approach compared to state-of-the-art algorithms.

In addition to Xseq, we compared the results of our integrative topological approach to
those produced by MutSig2CV on the same cohort (Fig. 1f). MutSig2CV models the
neutral background mutation rate, taking into account genomic variations due to
differences in expression level and replication time®. We observed a significant overlap
between the results of MutSig2CV and those of our approach, with 15 out of 23 mutated
genes that were significant (g-value < 0.15) according to MutSig2CV, being also
significant according to our approach (65% overlap, Fisher’s exact test p-value = 10™2).
Some of the most significant cancer genes identified by MutSig2CV based on recurrence,
such as PIK3R1 (mutated in 4% of the tumors), were not selected by our expression-based
approach, highlighting the independence of recurrence- and expression-based approaches.
Combining the results of MutSig2CV with those of our integrative topological approach
(Fig. 1f) singled out new low-prevalence mutated genes, such as NOTCH2, as potential

drivers of tumor progression in LGG.
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Seeking a more systematic comparison with existing methods, we performed a similar
study to that of Bertrand et al.*® across multiple tumor types (Methods). We estimated the
precision, recall, and F1 score of our integrative topological approach, Xseq, MutSig2CV,
OncodriveFML®®, and 20/20+%" based on the overlap of their top 15 predictions with a
gold-standard list of cancer-associated genes®. In addition to the LGG cohort, we analyzed
two cohorts of 208 colorectal adenocarcinoma (COAD) and 930 breast invasive carcinoma
(BRCA) tumors from TCGA, respectively. In each of the three cohorts, the precision,
recall, and F1 score of our integrative topological approach were the highest or second
highest among the 5 algorithms (Supplementary Table 1), highlighting its utility for the

identification of mutated cancer-associated genes.

Identification of cancer-associated genes across 12 tumor types

Based on the above results, we decided to extend our analysis to other tumor types. We
considered 12 tumor types from TCGA for which there were sufficient samples (n > 140)
with RNA-seq and whole-exome data available (Table 1). The complete results of our
analysis can be accessed through an online database (Methods). In total, our approach
identified 95 mutated cancer genes (g-value < 0.15), out of which 16 genes were significant
in two or more tumor types (Fig. 2a, Supplementary Figs. 4 — 15, and Supplementary Table
2). Some of the most common genes were TP53, KRAS, HRAS, PIK3CA, ATRX, EGFR,

and NF1. The number of significant genes in each tumor type was correlated with the size
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of the cohort (Fig. 2b, Spearman’s correlation coefficient r = 0.67, p-value = 0.02),
consistently with the results of the computational benchmarking. We observed a large
degree of consistency between the list of significant genes and curated databases of cancer
genes. Specifically, 61% of the significant genes in our analysis were present in the Cancer
Gene Census® or OncoKB*° databases (Fig. 2c, Fisher’s exact test p-value < 10°° for each
database). Overall, 75% of the patients carried a mutation in a significant gene, out of which
24% carried mutations in actionable genes with approved drugs® (Supplementary Table

3).

The results were largely consistent with those of MutSig2CV on the same TCGA cohorts
(Fig. 2a, Supplementary Fig. 16, and Table 1), adding further support to some of the cancer
genes identified in our analysis. Out of the 95 significant genes in the integrative
topological analysis, 38 genes were not significant according to MutSig2CV (Fig. 2a, g-
value < 0.15). However, these putative elusive cancer genes did often displayed a tendency
towards significance in the MutSig2CV analysis, likely reflecting a limitation of the cohort
size (Supplementary Fig. 16). They also had a significant overlap with the Cancer Gene
Census (8 out of 38 genes, Fisher’s exact test p-value = 2.10°, Fig. 2d) and OncoKB (6
out of 38 genes, Fisher’s exact test p-value = 3-10*, Fig. 2d) databases, as well as with
genes involved in developmental processes (27 out of 38 genes, g:SCS g-value = 107%).
Elusive genes included NOTCH2 mutations in breast invasive carcinoma (mutated in 2%

of the tumors), which have been recently reported by manual inspection?’; inactivating
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mutations of the tumor-suppressor genes KMT2A*! (also known as MLL1) and CUX1% in
head and neck squamous cell carcinoma (each present in 1% of the tumors); inactivating
mutations of the tumor-suppressor gene ADAMTS12 in lung adenocarcinoma (present in
4% of the tumors); mutations in the kinase domain of CHEK2 in thyroid carcinoma (present
in 1% of the tumors), which have been associated with increased susceptibility to this
cancer type*; inactivating mutations of the putative tumor-suppressor gene USP9X in
thyroid carcinoma (present in 1% of the tumors), which codes for a deubiquitinase
regulating the TGFB* and hippo signaling pathways*®; and inactivating mutations of ATRX
in pheochromocytoma and paraganglioma*’ (present in 2% of the tumors). These genes,
except CHEK2, encode long proteins (>1,500 amino-acids) and are expected to contain
numerous passenger mutations, complicating the identification of low-prevalence cancer-

associated mutations using recurrence-based methods.

Additionally, the combination of the results of our analysis with those of MutSig2CV
allowed us to prioritize the study of mutated genes in colon adenocarcinoma, where the
number of significant genes according to MutSig2CV is too large (n = 1,698 genes, g-value
< 0.15) (Supplementary Fig. 16). In particular, our analysis highlighted ARHGAP5 and
ARFGEF1 as previously unreported putative driver genes of tumor progression in this

cancer type.
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Truncating mutations of ADAMTS12 in lung adenocarcinoma (LUAD) are associated

to poor survival in humans and increased tumor susceptibility in mice

Using TCGA survival data we found that, among the previously unreported cancer-
associated genes, inactivating mutations of ADAMTS12 were associated with poor
survival (Fig. 3a). ADAMTS12 is a metalloproteinase with thrombospondin motif that can
block the activation of the Ras-MAPK signaling pathway*. Immunodeficient mice
injected with A549 lung adenocarcinoma cells overexpressing ADAMTS12 had a
deficiency of tumor growth in comparison with tumors formed from parental A549 cells*,
The ADAMTS12 gene is in chromosomal arm 5p, which is entirely amplified in over 60%
of lung adenocarcinoma tumors®, It has been suggested that the TERT gene, coding for the
telomerase catalytic subunit, may be the target of this amplification®®. Consistent with the
suggested anti-tumorgenic properties of ADAMTS12, we observed that LUAD patients
with chromosome 5p amplification and unaltered ADAMTS12 gene have better overall
survival than those without chromosome 5p amplification (Fig. 3a, median overall survival
4.2 years versus 3.4 years respectively, Kaplan-Meier p-value = 0.05). To the contrary,
patients with chromosome 5p amplification and truncating mutations in ADAMTS12 have
a reduced survival with respect to patients that harbor the amplification without mutations
in ADAMTS12 (Fig. 3a, median overall survival 2.4 years, Kaplan-Meier p-value = 0.015).
Additionally, truncating mutations in ADAMTS12 tend to co-occur with chromosome 5p

amplification (Fig. 3a, one-tailed Fisher’s exact test p-value = 2-10°3).
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To validate ADAMTS12 inactivation as a driver of progression in lung carcinoma, we
investigated the effect of silencing ADAMTS12 in the lung carcinoma cell line LL/2-luc-
M38 using a shRNA plasmid. In vitro proliferation and invasion assays revealed a
significant increase in the proliferative and invasive potential of the cells that were
transfected with the shRNA plasmid compared to the control cells (Figs. 3b, ¢, Mann-

Whitney U-test p-value < 102 in both assays).

In addition to these in vitro studies, we assessed the effect of ADAMTS12 inactivation in
vivo. To that end, we generated ADAMTS127 mice as previously described*® and treated
ADAMTS12 knockout and control mice with urethane (ethyl carbamate), a carcinogen that
typically induces lung adenomas after several months of treatment>°!, After 20 weeks of
treatment, ADAMTS12 knockout mice showed a 5-fold enrichment on the number of lung
tumors compared to control mice (Fig. 3d, Mann-Whitney U-test p-value = 3-10°). The
enrichment in the number of tumors was still significant after disaggregating tumors by
their size (Supplementary Fig. 17). We did not find a significant difference between the
observed tumor size in control and ADAMTS12 knockout mice. Immunohistochemistry
staining of tumor sections from these mice revealed some level of expression of
ADAMTS12 in the region surrounding the adenoma, but not in the highly-proliferative Ki-
67" cells (Supplementary Fig. 18). A similar pattern of ADAMTS12 expression has been

observed in human colon adenocarcinoma®. Taken together our results suggest
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ADAMTS12 has a tumor suppressor role in lung cancer, consistently with the results of

our computational analysis.

Discussion

To identify which somatic mutations are relevant to the progression of tumors, most
genomic analyses focus on the recurrence of mutations and define candidate cancer-
associated genes as those mutated at a higher frequency than expected under a modeled
local neutral mutation rate. This definition has proven to be particularly powerful for
commonly mutated genes. However, it is limiting for low prevalence mutations or tumors
with a higher mutation burden. Here, we have adopted an alternative definition for
candidate cancer-associated gene based on the assumption that mutations in these genes
are accompanied by consistent global expression patterns in the tumor. Remarkably, these
two fundamentally different definitions are in practice highly consistent with each other,
as we find that most mutations occurring at a high frequency compared to the local neutral
mutation rate are associated with consistent global mRNA expression patterns in the tumor.
As expected, there are numerous exceptions to this rule and utilizing our approach we are
able to identify multiple candidate cancer genes that remained elusive to other methods.
One example of such elusive cancer-associated mutations are truncating mutations of the

PEST domain of NOTCH2 occurring in breast invasive carcinoma®. These rare events are
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easily masked by the large number of passenger mutations that this long gene accumulates.
However, we find these alterations are consistently accompanied by global changes in the
expression profile of the tumor. Although they affect a small fraction of all breast cancer
patients, the availability of pharmacological inhibitors of the Notch signaling pathway
makes them a promising therapeutic target for the treatment of these patients®®. Among the
less studied, elusive candidate cancer-associated mutations identified with our approach,
we have studied the inactivating mutations of ADAMTS12 occurring in lung
adenocarcinoma. We have provided evidence of the tumor suppressor role of ADAMTS12
in this cancer type both in vitro and in vivo. Specifically, our experiments reveal that lung
carcinoma LL/2-luc-M38 cells display a higher proliferative and invasive potential in vitro
when transfected with an ADAMTS12 shRNA. Additionally, we have shown that mice
treated with urethane have a several fold increase in the susceptibility to develop lung
adenomas when ADAMTS12 is knocked out. These results are consistent with the
observation that patients of lung adenocarcinoma with tumors harboring truncating
mutations of ADAMTS12 have poor survival. Our work demonstrates that the combination
of recurrence-based methods with integrative approaches as we describe here can be a
valuable tool to systematically identify potentially actionable, low-prevalence mutations

that escape standard methods of detection.
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Methods

Sample collection and preprocessing

We collected gene expression levels and somatic mutation data of 12 tumor types from the

TCGA repository (http://cancergenome.nih.gov/) (Table 1 and Supplementary Table 4).

We only considered patients for which both types of data were available. RNA-seq
expression levels were retrieved in RSEM format® and estimated relative abundances (x)
were transformed according to the formula = log, (1 + 10° - x) for each gene. Curated
somatic mutations were retrieved from the Broad Institute TCGA GDAC Firehose Portal

(http://gdac.broadinstitute.org/). Gene names were adapted to comply with those in the

NCBI Entrez ID database as of July 7, 2015.

Topological representations

We used the algorithm Mapper?®®, implemented in the Ayasdi software

(https://www.ayasdi.com/platform/), to build topological representations of the RNA-seq

data of each cancer cohort. Mapper builds upon any dimensional reduction algorithm (also
known as “filter function”) to produce a new low-dimensional network representation on
which local relationships are preserved. To that end, Mapper covers the low dimensional
representation with overlapping bins and performs single-linkage clustering of the points

in the high-dimensional space. The number of bins and their overlap are specified by the
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“resolution” and “gain” parameters respectively. The number of clusters in each bin is
determined by the method described in Singh et al.?®. A low-dimensional network is then
built by assigning a node to each cluster, and if a sample appears in two nodes they are
connected by an edge. A more detailed description of the Mapper algorithm for biologists

can be found in the Methods section and Supplementary Note of Rizvi et al.?,

The output of Mapper is sensitive to several algorithmic choices. In our application, the

following choices were made:

- Metric. We used Pearson’s correlation distance using the top 4,500 genes with
highest variance as a measure of the similarity among the expression profile of
tumors. We did not observed substantial differences between using Pearson’s and
Spearman’s correlation distance in our analyses. We therefore used Pearson’s

correlation distance given its reduced computation time in large datasets.

- Filter function. We built a k = 30 nearest neighbors graph using Pearson's
correlation distances between the samples and used a 2-dimensional embedding of
the shortest path distances on this graph as the filter function. This choice filter
function was based on the ability to capture biological proxies, such as the
separation between the expression profiles of normal and tumor samples and the

identification of known driver genes. Other choices of 2-dimensional filter


https://doi.org/10.1101/2020.01.30.922310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.922310; this version posted January 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

21

functions, such as Principal Component Analysis or Multidimensional Scaling led

to consistent results.

- “Resolution” and “gain” parameters. We covered the low-dimensional
representation with overlapping squared bins. We scanned across the entire
“resolution” and “gain” parameter space of the cover, as described in the paragraph

“Parameter scan and selection”, obtaining stable results.

Statistical analysis

We used the notions of topological association introduced in Rizvi et al.?® to identify
features associated to localized regions of a phenotypic space. Our approach is closely
related to the Laplacian score of He, Cai, and Niyogi®>®®, and complementary to other
statistical methods for network analysis®’. In our case, the features that we tested were the
somatic mutations in the tumor cohort, and the phenotypic space was the expression space
of the tumor cohort. More specifically, for each mutated gene g in the cohort, we defined
the following score:

N Yijerei(g)Aijei(9)
N—-1 (kerex(9))?

Clg) =

where I' denotes the set of nodes in the topological representation, 4;; its adjacency matrix,

N the number of nodes in the representation, and e;(g) the average frequency of non-
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synonymous mutations of g for the samples in node i. The score C(g) is therefore a sum
over the edges of the network, where the contribution of each edge is proportional to the
product of the fraction of tumors that harbor the mutated gene in each of the two nodes
connected by the edge. To be able to compare the score of mutated genes with different
prevalence, we introduced a permutation test for each gene. A null distribution was built
for C(g) by randomly permuting the patient id’s in the exome data and a p-value was
assigned to the score of each gene g according to its null distribution. We performed 10*
permutations to build the null distribution of each gene. We controlled the false discovery
rate (FDR) using the Benjamini-Hochberg (BH) procedure®. To avoid too large
corrections due to multiple hypothesis testing, we only considered mutated genes with a
prevalence in the cohort above a given threshold. The thresholds used in each cohort are
summarized in Supplementary Table 4. In addition, we limited the number of genes in each
analysis to the 350 genes with highest ratio between non-synonymous and total number of
mutations. These thresholds were empirically determined for each cohort by looking at the
size of the BH correction that resulted at different choices of the thresholds. For some
cancer types, avoiding a large BH correction required relatively stringent thresholds
(Supplementary Table 4), possibly reflecting noisier expression networks, e.g. due to

differences in tumor purity among patients.
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Parameter scan and selection

To optimize the sensitivity of our approach at a fixed false discovery rate and control for
the stability of the results against parameter choices, we generated 49 topological
representations for the expression data of each tumor type by scanning over the parameter
space of the Mapper algorithm. The resolution parameter was taken in the range 10 to 80,
in intervals of 10, and the gain parameter 1.5-8.5, in intervals of 1. For each topological
network, the statistical analysis performed in the previous paragraph was performed
independently. We then selected a finer region in the parameter space for each cohort based

on the following criteria:

- Alarge number of mutated genes with a significant score (g-value < 0.15) at a fixed
FDR.
- Absence of significant spurious correlations and batch effects (as described in next

paragraph).

For each selected region in the parameter space, we performed a finer scan across the

resolution and gain parameters, taking intervals of 5 and 0.5 respectively.

Control of spurious associations with expression

Hypermutated tumors often have a distinctive expression signature. In those cases, some

localized regions of the expression space will consist of tumors with a higher mutation rate.
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Those localized regions will harbor an accumulation of passenger mutations that may
confound our approach. To control for associations between global expression patterns and
the tumor mutation rate, we assessed the localization of the mutational tumor burden on
the topological representations using the same approach as described in the paragraph
“Statistical analysis”’, where e; is now the average frequency of somatic mutations for the
samples in node i. If the localization of the mutational burden was significant (p-value <
0.05), we manually set a threshold on the mutational burden to split the cohort into
hypermutated and non-hypermutated tumors. This process could have been automated,
however we found it unnecessary as small changes in the threshold do not affect
substantially the results. The thresholds used in each cohort are summarized in
Supplementary Table 4. We randomly subsampled mutations from each of the
hypermutated tumors so that after subsampling the median mutational burden for
hypermutated tumors in the cohort was equal to the median mutational burden for non-
hypermutated tumors. We reassessed the significance of the localization of the mutational
burden using the down sampled data. If the degree of localization of the mutational tumor
burden was not significant, we continued the analysis using the down sampled mutation
data. Otherwise, if the degree of localization was still significant after subsampling, we did

not include the cohort in our study.

To control for associations between expression and mutation rates within the same gene,

such as those due to transcription-coupled DNA repair, we assessed the similarity between
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the profiles of somatic mutation and mMRNA expression on the topological representations.
To that end, we computed the Jensen-Shannon divergence between the expression and

mutation profiles of each gene in the topological representations using the formula

1@ =3 |~(@o) + o) tog (L) 1 6 ) 0g(en0)

ier

+ 7;(g) log(F; (g))l

where €;(g) and 7;(g) are respectively the fraction of tumors with gene g somatically
mutated and the average expression of gene g in the tumors associated to the i-th node of
the topological representation, normalized such that

Dalg) =) i) =1

ier ier

The significance of J(g) was assessed for each gene independently by means of a
permutation test. To that end, for each gene the labels of the samples on the mutation data
were randomly permuted 2,000 times, and J(g) was computed in each permutation. A p-
value was estimated by counting the fraction of permutations that led to a value of J(g)
smaller than the original value. Genes with a p-value for J(g) closed to O displayed a large
degree of correlation between expression and mutation in the topological representation,

whereas genes with a p-value for J(g) closed to 1 displayed a large degree of anti-
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correlation between expression and mutation in the topological representation. After
adjusting for multiple hypothesis testing using Benjamini-Hochberg procedure to control
the false discovery rate, we removed genes from the analysis for which the median g-value
for J(g) across the parameter space of the topological representation was above 0.8, as
those are potentially related to spurious anti-correlations between gene expression and

mutation.

Last, to control for the presence of batch effects due to differences among mutation calling
centers, we assessed the degree of localization of batches in the topological representation
using the same approach as described in the paragraph “Statistical analysis”, with e; now
represents the fraction of tumors in node i that were processed by a given center. We
removed the contribution of batches whose degree of localization was significant (p-value

< 0.05) according to this procedure.

Computational benchmarking

We generated smaller LGG datasets by randomly sampling 50, 100, 200, 300, and 400
patients from the original LGG cohort. For each of these sizes, we generated a null data set
by randomly permuting the labels of the patients on the expression data. We ran the
integrative topological analysis in each of these new data sets using the same parameters

than in the original analysis of the LGG cohort (Supplementary Table 4).
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To benchmark the performance of algorithms based on a gold-standard list of cancer-
associated genes, we followed the same approach as in Bertrand et al.>>. We considered the
same gold-standard list as in that reference. For each of the algorithms evaluated, we
computed the precision (P), recall (R), and F1 score based the top min(15, G) significant

genes (g-value < 0.15)

p=__T R=L F1=2. LR
~ min(15,6)’ 15’ - " P+R

where G is the total number of significant genes and T the number of top min(15, G)
significant genes present in the gold-standard. We run Xseq, OncodriveFML and 20/20+

with default parameters, as described in their documentation.
MutSig2CV analyses

We downloaded from the Broad Institute TCGA GDAC Firehose Portal

(http://gdac.broadinstitute.org/) the MutSig2CV v3.1 analyses of each of the 12 TCGA

cohorts (Supplementary Table 4).

Online database

Representative topological representations and pre-computed statistics were deposited in

an online database for each of the 12 tumor types considered in this study
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(https://rabadan.c2b2.columbia.edu/pancancer). The interface of the database allows to

explore the results of the analysis interactively.

Induction of lung tumors in mice

Mouse experiments were performed following the institutional guidelines of the University
of Oviedo (Comité de Etica en Experimentacion Animal). Adamts127- mice were generated
in a C57BL/6J genetic background and genotyped as in EI Hour et al.*°. Lung tumors were
induced in 6-8 weeks old mice by intraperitoneal injection of 8 doses of 1 g/kg of urethane
(ethyl carbamate; Sigma); second dose was given 48h after the initial one and then once a
week to reach a total of 8 doses. Mice were sacrificed 20 weeks after the first urethane
injection and during this time mice were fed ad libitum. Left lungs were fixed in 4%
paraformaldehyde, paraffin-embedded and sectioned every 100 um in of 10 um slices.
These were then stained with hematoxylin/eosin for morphological examination by
experienced pathologists (Unidad de Histopatologia Molecular en Modelos Animales de
Céancer, IUOPA). Tumors were quantified and classified according to their diameter in

large (> 400 um), medium (200-400 um) and small (<200 um) tumors.

Generation of ShADAMTS12 LL/2-luc-M38 cells

We used an Adamtsl2 Mouse shRNA Plasmid (OriGene, Locus ID: 239337) and

transfected LLC/2-luc-M38 (Caliper) cells with lipofectamine/plus (ThermoFisher
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Scientific) following the recommendations of manufacturer. We checked transfected cells
for ADAMTS12 expression by western-blot for ADAMTS12 (Santa Cruz Biotechnology
H-142) and B-actin (Sigma-Aldrich AC-15) in 10% polyacrylamide gels. Immunoreactive
proteins were visualized using HRP-peroxidase-labeled anti-rabbit or anti-mouse

secondary antibodies and the ECL detection system (Pierce).

Proliferation assay

Cell proliferation was measured using the CellTiter 96 Non-radiactive Cell Proliferation
Assay kit (Promega). LL/2-luc-M38 cells (3x10%well) were seeded into 96-well plates in
six replicates. Cell proliferation rates were determined on five consecutive days using the

automated microtiter plate reader Power Wave WS (BioTek).

Invasion assay

In-vitro invasion potential was assessed using 24-well Matrigel-coated invasion chambers
with 8 um pore size (BD Biosciences). A total of 5x10* cells were allowed to migrate for
24 h using 10 % fetal bovine serum as chemoattractant. Cells that reached the lower surface
were stained with crystal violet. At least three independent experiments were performed
with triplicates for each condition. Cells were counted in 8 randomly selected microscopic

fields.
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Immunohistochemistry

Lungs were fixed in 4% formalin for 24 h. After fixation, samples were dehydrated and
embedded in paraffin. Sections of 4-um thick were stained with hematoxylin and eosin for
microscopy examination and consecutive sections were used for immunohistochemical
labeling. Sections were incubated with anti-ADAMTS12 (H-142, Santa Cruz
Biotechnologies, 1h at 37 °C) or with anti-Ki67 (ab66155, Abcam, o/n at 4°C) primary
antibodies. Sections were then incubated 30 minutes with EnVision™+/HRP (Dako) and

5 minutes with Liquid DAB (Dako). Samples were counterstained with hematoxilin.

Code availability

The source code and scripts used in the paper have been deposited in GitHub

(https://github.com/CamaralLab/TDA-TCGA)).
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Tables

Samples Samples

Cancer Type Cohort (TDA)  (MutSig2CV)
Bladder urothelial carcinoma BLCA 391 395
Breast invasive carcinoma BRCA 930 978
Cervical and endocervical cancers CESC 184 194
Colon adenocarcinoma COAD 208 367
Glioblastoma multiforme GBM 142 283
?aeri?nir::aneck squamous cell HNSC 501 511
Brain lower grade glioma LGG 513 516
Lung adenocarcinoma LUAD 470 533
Egre:gcahr:;?;‘;:;'toma and PCPG 181 179
Stomach adenocarcinoma STAD 263 393
Testicular germ cell tumors TGCT 149 147
Thyroid carcinoma THCA 403 496
Total: 4,335 4,992

Table 1 | Number of patients in each of the cohorts analyzed using topological (TDA) and

recurrence-based (MutSig2CV) approaches.
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Figure 1| Identification of mutated cancer genes in LGG using an integrative topological
approach. (a) Topological representation of the expression space of LGG based on the
expression data of 513 tumors. Each node represents a set of tumors with similar global

expression patterns. The size of each node represents the number of tumors in the set. Edges


https://doi.org/10.1101/2020.01.30.922310
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.922310; this version posted January 31, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

34

connect nodes that share at least one tumor. Three large expression groups are clearly visible in
the representation. (b) The localization of each mutated gene in the topological representation is
assessed statistically. Mutated genes significantly localized in the expression space are candidate
drivers of tumor progression. The topological representation of the expression space of LGG
labeled by the frequency of somatic mutations of the CIC (top) and TTN (bottom) genes is
displayed as an example. CIC mutations are significantly localized in the expression space of
LGG, consistently with being a driver of tumor progression. (c) List of significantly (q-value <
0.15) localized mutated genes in the reconstructed expression space of LGG. The prevalence of
mutations in the cohort and the distribution of the statistical significance across the parameter
space of the topological representation are also displayed. Box-plot elements: center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (d) The
topological representation of the expression space of LGG is labeled according to the prevalence
of some of the significantly localized mutations. The three large expression groups in the
topological representation are identified with oligodendrogliomas (enriched for CIC and IDH2
mutations), IDH1-mutant astrocytomas (enriched for TP53 mutations), and IDH1-wild-type
astrocytomas (enriched for EGFR mutations). IDH1-mutant astrocytomas with a low G-C island
methylation phenotype (G-CIMP low) form a flare of IDH1-wild-type astrocytomas. (¢) Number
of significant mutated genes as a function of the cohort size, for the original (red) and a
randomized (blue) version of the LGG cohort. Our integrative topological approach produces
significant results for tumor cohorts above ~100 patients. (f) Comparison of the results of the
integrative topological approach with those of MutSig2CV on the same cohort. Represented is the

rank of each gene according to their significance in the topological (horizontal axis) and
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MutSig2CV (vertical axis) analyses in logarithmic scale. Genes that are significant (g-value <
0.15) according to our topological approach are marked in red. Genes below the red dashed line
are significant (g-value < 0.15) according to the MutSig2CV analysis. Horizontal bars indicate
the 16% and 84% percentiles of the ranks across the parameter space of the topological
representation. Besides being radically different approaches, the results of our topological
approach and MutSig2CV display a large degree of consistency, with most cancer-associated

mutated genes sitting across the diagonal.
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Figure 2 | Identification of mutated cancer genes across 12 tumor types using an integrative
topological approach. (a) Significant genes (g-value < 0.15) in the integrative topological
analysis of the 12 tumor types considered in Table 1. From top to bottom, the frequency of non-
synonymous mutations, the fraction of missense versus truncating mutations, and the distribution
of g-values across the parameter space is shown for each gene. Genes that are also significant (g-
value < 0.15) based on MutSig2CV are shown in orange. Box-plot elements: center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (b) Plot

of the number of significant genes (g-value < 0.15) against the number of tumors in the cohort,
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for each tumor type. A linear fit is shown, where outliers (marked in cyan) where not taken into
account in the fit (Pearson’s r = 0.94, p-value = 5-10). (c) Venn diagram showing the overlap
between significant genes (TDA) and the curated databases of cancer genes OncoKB (Fisher’s
exact test p-value < 10°°°) and the Cancer Gene Census (Fisher’s exact test p-value < 10°°). (d)
Venn diagram showing the overlap between genes that are significant in the integrative
topological analysis but not in the MutSig2CV analysis (TDA only), and the curated databases of
cancer genes OncoKB (Fisher’s exact test p-value = 3-10™) and the Cancer Gene Census

(Fisher’s exact test p-value = 2-107°).
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Figure 3 | Truncating mutations of ADAMTS12 are associated to increased tumor
susceptibility and poor survival in LUAD. (a) Left: Kaplan-Meier survival curves for the
LUAD cohort, where patients have been stratified according to whether their tumors have
chromosome 5p amplification and absence of truncating mutations in ADAMTS12 (red),
chromosome 5p amplification and presence of truncating mutations in ADAMTS12 (blue), and
absence of both chromosome 5p amplification and truncating mutations in ADAMTS12 (green).
Kaplan-Meier p-values of blue and green survival curves with respect to red survival curve are
0.015 and 0.05 respectively. Right: Venn diagram showing the overlap between tumors with
chromosome 5p amplification (red) and tumors with truncating mutations in ADAMTS12 (blue)
(one-tailed Fisher’s exact test p-value = 2-10°%). (b) Left: Western-blot showing the expression of
ADAMTS12 and B-Actin in control and ShADAMTS12 LL/C-luc-M38 cells. Right: In-vitro

proliferation assay of control and ShADAMTS12 cells. (c) Left: Number of control and
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shADAMTS12 cells with invasive potential in an in-vitro invasion assay. Right: Representative
images of fields used for quantification after invasion assay. (d) Left: Number of lung tumors
observed in control (n = 17) and ADAMTS12-deficient (n = 17) mice treated with urethane after
20 weeks of treatment. ADAMTS12-deficient mice show a 5-fold enrichment in the number of
lung tumors as compared to control mice. Right: Hematoxylin-eosin stained tissue section of
ADAMTS12-deficient mice treated with urethane displaying a lung adenocarcinoma tumor. Box-
plot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x

interquartile range; points, outliers. Source data are provided as a Source Data file.
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