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Abstract 

Large-scale cancer genomic studies enable the systematic identification of mutations that 

lead to the genesis and progression of tumors, uncovering the underlying molecular 

mechanisms and potential therapies. While some such mutations are recurrently found in 

many tumors, many others exist solely within a few samples, precluding detection by 

conventional recurrence-based statistical approaches. Integrated analysis of somatic 

mutations and RNA expression data across 12 tumor types reveals that mutations of cancer 

genes are usually accompanied by substantial changes in expression. We use topological 

data analysis to leverage this observation and uncover 38 elusive candidate cancer-

associated genes, including inactivating mutations of the metalloproteinase ADAMTS12 

in lung adenocarcinoma. We show that ADAMTS12-/- mice have a five-fold increase in the 

susceptibility to develop lung tumors, confirming the role of ADAMTS12 as a tumor 

suppressor gene. Our results demonstrate that data integration through topological 

techniques can increase our ability to identify previously unreported cancer-related 

alterations. 
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Introduction 

A critical foundation for targeted cancer therapies is the identification of molecular 

mechanisms that are necessary for tumor development and maintenance. Large-scale cross-

sectional cancer molecular studies, such as The Cancer Genome Atlas (TCGA) and the 

International Cancer Genome Consortium, enable this identification by systematically 

compiling genetic alterations across many tumors1,2. Tumors that present recurrently 

altered genes or pathways are suspected to be driven by common molecular mechanisms. 

By leveraging computational approaches that seek signatures of positive selection3, these 

studies have produced extensive catalogues of frequently-mutated, cancer-associated 

genes4. These studies have also revealed that most cancer mutations occur at low 

frequencies (< 10% of samples), including potentially actionable therapeutic targets4.  

The identification of low-prevalence cancer-associated mutations using recurrence-based 

methods is challenging because of the large number of samples needed to achieve statistical 

power and the inherent complexity in modeling the background mutation rates. The rate of 

neutral mutations within a cancer type can dramatically differ among patients, genomic 

regions, or mutation types3, limiting the power of recurrence-based methods. It is estimated 

that for the current size of ongoing cross-sectional studies (typically consisting of less than 

1,000 patients) only cancer-associated mutations that occur at intermediate or high 

frequencies (> 15%) are fully accessible to recurrence-based methods4. This is consistent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.30.922310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.922310
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

 

   

 

with the observation that patients in these studies often completely lack mutations in known 

cancer-associated genes5. These results highlight the need of recurrence-based methods 

that can model rare events6,7 or, alternatively, methods for the identification of cancer-

associated genes that are not based on recurrence.  

An approach to the identification of cancer-associated genes that is not based on modeling 

the mutation rate is the integration of other types of data from the tumor8,9. If a mutation is 

accompanied by consistent changes in copy number, gene expression, and/or methylation, 

it is possible to leverage these changes to relate the mutation event to cancer progression. 

Several studies have utilized changes in the copy number, expression, or methylation of 

the mutated gene (cis-effects) to identify novel cancer-associated mutations10-12. However, 

the identification of cancer-associated mutations based on changes in genes other than the 

mutated gene (trans-effects) is more challenging and usually requires providing 

information about known gene-gene relationships to reduce the number of false positives. 

DriverNet13, OncoIMPACT14, CaMoDi15, and Xseq16 utilize trans-effects in gene 

expression to identify cancer-associated mutations. To limit the dimensionality of the 

expression space, these methods use expression modules (sets of co-expressed genes, 

functionally related genes, or gene networks). However, an approach that fully takes into 

account the complexity of the expression space is currently lacking. 
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Current approaches for the identification of cancer-associated mutations using expression 

data are sensitive to several confounding effects. Genomic regions with open chromatin 

can be more easily accessed by DNA repair enzymes, leading to anti-correlations between 

gene expression levels and mutation rates3. Furthermore, tumors with different expression 

signatures, such as genomically unstable tumors, can have different mutation rates17,18. 

These effects lead to spurious correlations between mutations and expression signatures 

and are a source of false positives for current algorithms.  

To address these problems, we have devised an approach to identify cancer-associated 

mutated genes using expression data from multiple tumors. Our approach makes use of 

topological data analysis19,20 (TDA) to reconstruct the structure of the expression space, 

and takes into account the above spurious effects when assessing the significance of a 

mutated gene. Its application to mutation and expression data of 4,476 patients from 12 

tumor types leads to the identification of 95 mutated cancer genes, out of which 38 are 

previously unreported low-prevalence genes (average prevalence within the same tumor 

cohort = 5%) . We hence propose a complementary approach to recurrence-based methods, 

enabling the identification of elusive, but potentially clinically-relevant, mutated cancer 

genes. 
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Results 

Topological reconstruction of the expression space of low grade gliomas 

The expression profile of a tumor can be mathematically described as a point in a high-

dimensional expression space, where each dimension represents the mRNA level of a gene 

and the dimensionality of the space is given by the number of expressed genes. Points that 

lie close to each other in this space correspond to tumors with similar expression profiles. 

The set of all possible tumors of a cancer type spans a sub-space of the expression space. 

Measuring the expression profiles of individual tumors in a cross-sectional study is 

equivalent to sampling a finite set of points from this sub-space. 

We considered 513 primary low grade glioma (LGG) tumors from TCGA for which both 

RNA-seq and whole-exome DNA-seq data were available21. To infer the structure of the 

expression space of LGG from this RNA-seq data, we used a topological approach19,20. 

Topology is the mathematical field that studies how different parts of a space are connected 

to each other. TDA generalizes some of the notions of topology to sets of points and 

pairwise distances. Thus, TDA aims to infer and summarize the topological structure of a 

space given only a finite sample of points. TDA has been recently used to study viral re-

assortment22, human recombination23,24, cell differentiation25, breast cancer26, and other 

complex genetic diseases27. 
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We used the TDA algorithm Mapper28 to build a low-dimensional representation of the 

expression space of LGG using the expression data of the TCGA cohort (Fig. 1a). Mapper 

generates a network representation of the expression space, in which each node 

corresponds to a set of tumors with similar expression profile. A given tumor can appear 

in more than one node, and if two nodes have one or more tumors in common they are 

connected by an edge. Contrary to other methods for dimensionality reduction, such as 

principal component analysis and multi-dimensional scaling29, the topological 

representations produced by Mapper preserve local relationships of the high-dimensional 

expression space. Any two tumors close to each other in the topological representation (as 

measured by the number of edges contained in the shortest path that connects the two 

tumors) are ensured to be close to each other in the original high-dimensional expression 

space. We used Pearson’s correlation as a measure of similarity between the expression 

profiles of individual tumors. The topological representation of the LGG expression space 

consisted of three regions (Fig. 1a), consistent with the expression sub-types found in 

clustering analyses21. These regions, however, were bridged by thin structures in the 

topological representation, indicating that some tumors have an expression profile 

characteristic of multiple expression sub-types (Fig. 1a). 

Identification of cancer-associated mutated genes in LGG 
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We hypothesized that if a mutated gene appears localized in the expression space, it is 

associated with consistent global expression patterns across a subset of tumors, and is 

therefore a candidate driver of tumor progression (Fig. 1b). On the other hand, if mutations 

of a gene are clonally expanded as a result of being in the same genome as a positively-

selected mutation, but are not cancer-related, they will appear randomly scattered in the 

expression sub-space (Fig. 1b).  

To test this hypothesis, we implemented a computational approach that assesses the 

localization of non-synonymous somatic mutations in the expression space of tumors 

(Methods). To control for the presence of spurious correlations between the mutation rate 

and the tumor expression profile, we assessed the localization of the mutational tumor 

burden (defined as the total number of somatic mutations in each tumor) in the 

reconstructed expression space (Supplementary Fig. 1a, Methods). Based on this analysis, 

we sub-sampled mutations in two hyper-mutated tumors (nmut > 102.5) that were present in 

the LGG cohort. In addition, we assessed the similarity between the expression and the 

mutation profile of each individual gene in the reconstructed expression space (Methods). 

After correcting for these spurious correlations, 16 mutated genes were significantly 

localized in the reconstructed expression space of LGG (Fig. 1c, q-value < 0.15, Benjamini-

Hochberg procedure). These included well-known high-prevalence (> 15%) driver genes, 

like IDH1, TP53, ATRX, and CIC, in addition to several low-prevalence mutated genes, 

like NIPBL (mutated in 4% of the tumors) and ZNF292 (mutated in 3% of the tumors), 
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which have been recently reported in a larger cohort of gliomas21. In total, 15 out of the 16 

significant mutated genes were previously reported21,30, with SYNE1 (mutated in 2% of the 

tumors) the only new candidate. We did not observe a significant correlation between the 

significance and prevalence of statistically significant genes (Pearson’s correlation 

coefficient between prevalence and q-value, r = -0.34, p-value = 0.19). In particular, some 

of the most significant genes according to our approach, like FUBP1, NOTCH1, PTEN, 

EGFR, and NF1, were mutated in less than 10% of the patients within that tumor type (Fig. 

1c), indicating that mutations in these genes are strongly associated with global changes in 

expression. These results were stable across the parameter space of the Mapper algorithm 

(Fig. 1c, Supplementary Fig. 1b, Methods).  

The location of significant genes in the reconstructed expression space of LGG was 

consistent with the known molecular subtypes of adult diffuse gliomas21 (Fig. 1d, 

Supplementary Fig. 2). Of particular note, IDH2-mutant tumors were localized within the 

expression space of oligodendrogliomas, indicating a distinct expression profile from that 

of IDH1-mutant oligodendrogliomas (Fig. 1d, Supplementary Fig. 2a). This observation is 

consistent with a recent study based on genomic variations31.  

Neuronal marker expression has been reported in malignant (grade III/IV) gliomas other 

than classical anaplastic gangliogliomas32,33. In our cohort, tumors expressing canonical 

neuronal markers like neurofilament (NEFL, NEFM, and NEFH) and synaptophysin (SYP) 
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were significantly localized within the expression space of oligodendrogliomas (q-value < 

0.015, Supplementary Fig. 3). These tumors harbored frequent deletions of the 

chromosome arm 19q, in addition to molecular alterations characteristic of astrocytic 

gliomas, such as TP53 and ATRX mutations (Fisher’s exact test p-value < 0.01, 

Supplementary Fig. 3). Although the average estimated tumor purity34 in this group was 

significantly lower than for the rest of the oligodendroglioma expression group (Mann-

Whitney U-test p-value = 0.001, average estimated tumor purities = 92% and 96%, 

respectively), the estimated tumor content was in many cases (n = 7) above 98%, 

suggesting that the expression of neuronal markers is not due to a poor tumor purity.  

Computational benchmarking  

To assess the number cancer-associated genes identified by our approach as a function of 

the size of the cohort, we repeated the same analysis in smaller cohorts generated by 

randomly sampling patients from the original LGG cohort (Fig 1e). We also assessed the 

number of false positives by generating randomized datasets, where we permuted the labels 

of the patients in the expression data. We observed that our approach requires a minimum 

cohort size of approximately 100 tumors. For larger cohorts, the expected number of false 

positives was between 1 and 2 (Fig. 1e). 

Next, we sought to compare our results against current algorithms for the identification of 

cancer-associated genes using expression data. To that end, we analyzed the same LGG 
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cohort using the recently published algorithm Xseq16 (Methods). Xseq implements a 

hierarchical Bayes statistical model to quantify the impact of somatic mutations on 

expression profiles using a pre-computed ‘influence graph’ that encodes whether two genes 

are known to be functionally related. The analysis of the LGG cohort with Xseq led to only 

2 significant genes (posterior probability, P(D) > 0.80), of which only one (PTEN) has 

been previously reported in LGG. These results reveal the high sensitivity of our 

topological approach compared to state-of-the-art algorithms. 

In addition to Xseq, we compared the results of our integrative topological approach to 

those produced by MutSig2CV on the same cohort (Fig. 1f). MutSig2CV models the 

neutral background mutation rate, taking into account genomic variations due to 

differences in expression level and replication time3. We observed a significant overlap 

between the results of MutSig2CV and those of our approach, with 15 out of 23 mutated 

genes that were significant (q-value < 0.15) according to MutSig2CV, being also 

significant according to our approach (65% overlap, Fisher’s exact test p-value = 10-42). 

Some of the most significant cancer genes identified by MutSig2CV based on recurrence, 

such as PIK3R1 (mutated in 4% of the tumors), were not selected by our expression-based 

approach, highlighting the independence of recurrence- and expression-based approaches. 

Combining the results of MutSig2CV with those of our integrative topological approach 

(Fig. 1f) singled out new low-prevalence mutated genes, such as NOTCH2, as potential 

drivers of tumor progression in LGG. 
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Seeking a more systematic comparison with existing methods, we performed a similar 

study to that of Bertrand et al.35 across multiple tumor types (Methods). We estimated the 

precision, recall, and F1 score of our integrative topological approach, Xseq, MutSig2CV, 

OncodriveFML36, and 20/20+37 based on the overlap of their top 15 predictions with a 

gold-standard list of cancer-associated genes35. In addition to the LGG cohort, we analyzed 

two cohorts of 208 colorectal adenocarcinoma (COAD) and 930 breast invasive carcinoma 

(BRCA) tumors from TCGA, respectively. In each of the three cohorts, the precision, 

recall, and F1 score of our integrative topological approach were the highest or second 

highest among the 5 algorithms (Supplementary Table 1), highlighting its utility for the 

identification of mutated cancer-associated genes. 

Identification of cancer-associated genes across 12 tumor types  

Based on the above results, we decided to extend our analysis to other tumor types. We 

considered 12 tumor types from TCGA for which there were sufficient samples (n > 140) 

with RNA-seq and whole-exome data available (Table 1). The complete results of our 

analysis can be accessed through an online database (Methods). In total, our approach 

identified 95 mutated cancer genes (q-value < 0.15), out of which 16 genes were significant 

in two or more tumor types (Fig. 2a, Supplementary Figs. 4 – 15, and Supplementary Table 

2). Some of the most common genes were TP53, KRAS, HRAS, PIK3CA, ATRX, EGFR, 

and NF1. The number of significant genes in each tumor type was correlated with the size 
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of the cohort (Fig. 2b, Spearman’s correlation coefficient r = 0.67, p-value = 0.02), 

consistently with the results of the computational benchmarking. We observed a large 

degree of consistency between the list of significant genes and curated databases of cancer 

genes. Specifically, 61% of the significant genes in our analysis were present in the Cancer 

Gene Census38 or OncoKB39 databases (Fig. 2c, Fisher’s exact test p-value < 10-50 for each 

database). Overall, 75% of the patients carried a mutation in a significant gene, out of which 

24% carried mutations in actionable genes with approved drugs35 (Supplementary Table 

3). 

The results were largely consistent with those of MutSig2CV on the same TCGA cohorts 

(Fig. 2a, Supplementary Fig. 16, and Table 1), adding further support to some of the cancer 

genes identified in our analysis. Out of the 95 significant genes in the integrative 

topological analysis, 38 genes were not significant according to MutSig2CV (Fig. 2a, q-

value < 0.15). However, these putative elusive cancer genes did often displayed a tendency 

towards significance in the MutSig2CV analysis, likely reflecting a limitation of the cohort 

size (Supplementary Fig. 16). They also had a significant overlap with the Cancer Gene 

Census (8 out of 38 genes, Fisher’s exact test p-value = 2·10-5, Fig. 2d) and OncoKB (6 

out of 38 genes, Fisher’s exact test p-value = 3·10-4, Fig. 2d) databases, as well as with 

genes involved in developmental processes (27 out of 38 genes, g:SCS q-value = 10-3). 

Elusive genes included NOTCH2 mutations in breast invasive carcinoma (mutated in 2% 

of the tumors), which have been recently reported by manual inspection40; inactivating 
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mutations of the tumor-suppressor genes KMT2A41 (also known as MLL1) and CUX142 in 

head and neck squamous cell carcinoma (each present in 1% of the tumors); inactivating 

mutations of the tumor-suppressor gene ADAMTS1243 in lung adenocarcinoma (present in 

4% of the tumors); mutations in the kinase domain of CHEK2 in thyroid carcinoma (present 

in 1% of the tumors), which have been associated with increased susceptibility to this 

cancer type44; inactivating mutations of the putative tumor-suppressor gene USP9X in 

thyroid carcinoma (present in 1% of the tumors), which codes for a deubiquitinase 

regulating the TGF and hippo signaling pathways46; and inactivating mutations of ATRX 

in pheochromocytoma and paraganglioma47 (present in 2% of the tumors). These genes, 

except CHEK2, encode long proteins (>1,500 amino-acids) and are expected to contain 

numerous passenger mutations, complicating the identification of low-prevalence cancer-

associated mutations using recurrence-based methods. 

Additionally, the combination of the results of our analysis with those of MutSig2CV 

allowed us to prioritize the study of mutated genes in colon adenocarcinoma, where the 

number of significant genes according to MutSig2CV is too large (n = 1,698 genes, q-value 

< 0.15) (Supplementary Fig. 16). In particular, our analysis highlighted ARHGAP5 and 

ARFGEF1 as previously unreported putative driver genes of tumor progression in this 

cancer type. 
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Truncating mutations of ADAMTS12 in lung adenocarcinoma (LUAD) are associated 

to poor survival in humans and increased tumor susceptibility in mice 

Using TCGA survival data we found that, among the previously unreported cancer-

associated genes, inactivating mutations of ADAMTS12 were associated with poor 

survival (Fig. 3a). ADAMTS12 is a metalloproteinase with thrombospondin motif that can 

block the activation of the Ras-MAPK signaling pathway43. Immunodeficient mice 

injected with A549 lung adenocarcinoma cells overexpressing ADAMTS12 had a 

deficiency of tumor growth in comparison with tumors formed from parental A549 cells43. 

The ADAMTS12 gene is in chromosomal arm 5p, which is entirely amplified in over 60% 

of lung adenocarcinoma tumors48. It has been suggested that the TERT gene, coding for the 

telomerase catalytic subunit, may be the target of this amplification48. Consistent with the 

suggested anti-tumorgenic properties of ADAMTS12, we observed that LUAD patients 

with chromosome 5p amplification and unaltered ADAMTS12 gene have better overall 

survival than those without chromosome 5p amplification (Fig. 3a, median overall survival 

4.2 years versus 3.4 years respectively, Kaplan-Meier p-value = 0.05). To the contrary, 

patients with chromosome 5p amplification and truncating mutations in ADAMTS12 have 

a reduced survival with respect to patients that harbor the amplification without mutations 

in ADAMTS12 (Fig. 3a, median overall survival 2.4 years, Kaplan-Meier p-value = 0.015). 

Additionally, truncating mutations in ADAMTS12 tend to co-occur with chromosome 5p 

amplification (Fig. 3a, one-tailed Fisher’s exact test p-value = 2·10-3). 
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To validate ADAMTS12 inactivation as a driver of progression in lung carcinoma, we 

investigated the effect of silencing ADAMTS12 in the lung carcinoma cell line LL/2-luc-

M38 using a shRNA plasmid. In vitro proliferation and invasion assays revealed a 

significant increase in the proliferative and invasive potential of the cells that were 

transfected with the shRNA plasmid compared to the control cells (Figs. 3b, c, Mann-

Whitney U-test p-value < 10-3 in both assays).  

In addition to these in vitro studies, we assessed the effect of ADAMTS12 inactivation in 

vivo. To that end, we generated ADAMTS12-/- mice as previously described49 and treated 

ADAMTS12 knockout and control mice with urethane (ethyl carbamate), a carcinogen that 

typically induces lung adenomas after several months of treatment50,51. After 20 weeks of 

treatment, ADAMTS12 knockout mice showed a 5-fold enrichment on the number of lung 

tumors compared to control mice (Fig. 3d, Mann-Whitney U-test p-value = 3·10-5). The 

enrichment in the number of tumors was still significant after disaggregating tumors by 

their size (Supplementary Fig. 17). We did not find a significant difference between the 

observed tumor size in control and ADAMTS12 knockout mice. Immunohistochemistry 

staining of tumor sections from these mice revealed some level of expression of 

ADAMTS12 in the region surrounding the adenoma, but not in the highly-proliferative Ki-

67+ cells (Supplementary Fig. 18). A similar pattern of ADAMTS12 expression has been 

observed in human colon adenocarcinoma52. Taken together our results suggest 
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ADAMTS12 has a tumor suppressor role in lung cancer, consistently with the results of 

our computational analysis. 

 

Discussion 

To identify which somatic mutations are relevant to the progression of tumors, most 

genomic analyses focus on the recurrence of mutations and define candidate cancer-

associated genes as those mutated at a higher frequency than expected under a modeled 

local neutral mutation rate. This definition has proven to be particularly powerful for 

commonly mutated genes. However, it is limiting for low prevalence mutations or tumors 

with a higher mutation burden. Here, we have adopted an alternative definition for 

candidate cancer-associated gene based on the assumption that mutations in these genes 

are accompanied by consistent global expression patterns in the tumor. Remarkably, these 

two fundamentally different definitions are in practice highly consistent with each other, 

as we find that most mutations occurring at a high frequency compared to the local neutral 

mutation rate are associated with consistent global mRNA expression patterns in the tumor. 

As expected, there are numerous exceptions to this rule and utilizing our approach we are 

able to identify multiple candidate cancer genes that remained elusive to other methods. 

One example of such elusive cancer-associated mutations are truncating mutations of the 

PEST domain of NOTCH2 occurring in breast invasive carcinoma40. These rare events are 
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easily masked by the large number of passenger mutations that this long gene accumulates. 

However, we find these alterations are consistently accompanied by global changes in the 

expression profile of the tumor. Although they affect a small fraction of all breast cancer 

patients, the availability of pharmacological inhibitors of the Notch signaling pathway 

makes them a promising therapeutic target for the treatment of these patients53. Among the 

less studied, elusive candidate cancer-associated mutations identified with our approach, 

we have studied the inactivating mutations of ADAMTS12 occurring in lung 

adenocarcinoma. We have provided evidence of the tumor suppressor role of ADAMTS12 

in this cancer type both in vitro and in vivo. Specifically, our experiments reveal that lung 

carcinoma LL/2-luc-M38 cells display a higher proliferative and invasive potential in vitro 

when transfected with an ADAMTS12 shRNA. Additionally, we have shown that mice 

treated with urethane have a several fold increase in the susceptibility to develop lung 

adenomas when ADAMTS12 is knocked out. These results are consistent with the 

observation that patients of lung adenocarcinoma with tumors harboring truncating 

mutations of ADAMTS12 have poor survival. Our work demonstrates that the combination 

of recurrence-based methods with integrative approaches as we describe here can be a 

valuable tool to systematically identify potentially actionable, low-prevalence mutations 

that escape standard methods of detection. 
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Methods 

Sample collection and preprocessing 

We collected gene expression levels and somatic mutation data of 12 tumor types from the 

TCGA repository (http://cancergenome.nih.gov/) (Table 1 and Supplementary Table 4). 

We only considered patients for which both types of data were available. RNA-seq 

expression levels were retrieved in RSEM format54 and estimated relative abundances (𝑥) 

were transformed according to the formula 𝑟 = log2(1 + 106 · 𝑥) for each gene. Curated 

somatic mutations were retrieved from the Broad Institute TCGA GDAC Firehose Portal 

(http://gdac.broadinstitute.org/). Gene names were adapted to comply with those in the 

NCBI Entrez ID database as of July 7, 2015.  

Topological representations 

We used the algorithm Mapper28, implemented in the Ayasdi software 

(https://www.ayasdi.com/platform/), to build topological representations of the RNA-seq 

data of each cancer cohort. Mapper builds upon any dimensional reduction algorithm (also 

known as “filter function”) to produce a new low-dimensional network representation on 

which local relationships are preserved. To that end, Mapper covers the low dimensional 

representation with overlapping bins and performs single-linkage clustering of the points 

in the high-dimensional space. The number of bins and their overlap are specified by the 
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“resolution” and “gain” parameters respectively. The number of clusters in each bin is 

determined by the method described in Singh et al.28. A low-dimensional network is then 

built by assigning a node to each cluster, and if a sample appears in two nodes they are 

connected by an edge. A more detailed description of the Mapper algorithm for biologists 

can be found in the Methods section and Supplementary Note of Rizvi et al.25.  

The output of Mapper is sensitive to several algorithmic choices. In our application, the 

following choices were made: 

- Metric. We used Pearson’s correlation distance using the top 4,500 genes with 

highest variance as a measure of the similarity among the expression profile of 

tumors. We did not observed substantial differences between using Pearson’s and 

Spearman’s correlation distance in our analyses. We therefore used Pearson’s 

correlation distance given its reduced computation time in large datasets.  

- Filter function. We built a k = 30 nearest neighbors graph using Pearson's 

correlation distances between the samples and used a 2-dimensional embedding of 

the shortest path distances on this graph as the filter function. This choice filter 

function was based on the ability to capture biological proxies, such as the 

separation between the expression profiles of normal and tumor samples and the 

identification of known driver genes. Other choices of 2-dimensional filter 
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functions, such as Principal Component Analysis or Multidimensional Scaling led 

to consistent results. 

- “Resolution” and “gain” parameters. We covered the low-dimensional 

representation with overlapping squared bins. We scanned across the entire 

“resolution” and “gain” parameter space of the cover, as described in the paragraph 

“Parameter scan and selection”, obtaining stable results. 

Statistical analysis 

We used the notions of topological association introduced in Rizvi et al.25 to identify 

features associated to localized regions of a phenotypic space. Our approach is closely 

related to the Laplacian score of He, Cai, and Niyogi55,56, and complementary to other 

statistical methods for network analysis57. In our case, the features that we tested were the 

somatic mutations in the tumor cohort, and the phenotypic space was the expression space 

of the tumor cohort. More specifically, for each mutated gene 𝑔 in the cohort, we defined 

the following score: 

𝐶(𝑔) =
𝑁

𝑁 − 1

∑ 𝑒𝑖(𝑔)𝐴𝑖𝑗𝑒𝑗(𝑔)𝑖,𝑗∈Γ

(∑ 𝑒𝑘(𝑔)𝑘∈Γ )2
 

where Γ denotes the set of nodes in the topological representation, 𝐴𝑖𝑗 its adjacency matrix, 

𝑁 the number of nodes in the representation, and 𝑒𝑖(𝑔) the average frequency of non-
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synonymous mutations of 𝑔 for the samples in node 𝑖. The score 𝐶(𝑔) is therefore a sum 

over the edges of the network, where the contribution of each edge is proportional to the 

product of the fraction of tumors that harbor the mutated gene in each of the two nodes 

connected by the edge. To be able to compare the score of mutated genes with different 

prevalence, we introduced a permutation test for each gene. A null distribution was built 

for 𝐶(𝑔) by randomly permuting the patient id’s in the exome data and a p-value was 

assigned to the score of each gene 𝑔 according to its null distribution. We performed 104 

permutations to build the null distribution of each gene. We controlled the false discovery 

rate (FDR) using the Benjamini-Hochberg (BH) procedure58. To avoid too large 

corrections due to multiple hypothesis testing, we only considered mutated genes with a 

prevalence in the cohort above a given threshold. The thresholds used in each cohort are 

summarized in Supplementary Table 4. In addition, we limited the number of genes in each 

analysis to the 350 genes with highest ratio between non-synonymous and total number of 

mutations. These thresholds were empirically determined for each cohort by looking at the 

size of the BH correction that resulted at different choices of the thresholds. For some 

cancer types, avoiding a large BH correction required relatively stringent thresholds 

(Supplementary Table 4), possibly reflecting noisier expression networks, e.g. due to 

differences in tumor purity among patients. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.30.922310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.922310
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

 

   

 

Parameter scan and selection 

To optimize the sensitivity of our approach at a fixed false discovery rate and control for 

the stability of the results against parameter choices, we generated 49 topological 

representations for the expression data of each tumor type by scanning over the parameter 

space of the Mapper algorithm. The resolution parameter was taken in the range 10 to 80, 

in intervals of 10, and the gain parameter 1.5-8.5, in intervals of 1. For each topological 

network, the statistical analysis performed in the previous paragraph was performed 

independently. We then selected a finer region in the parameter space for each cohort based 

on the following criteria: 

- A large number of mutated genes with a significant score (q-value < 0.15) at a fixed 

FDR. 

- Absence of significant spurious correlations and batch effects (as described in next 

paragraph). 

For each selected region in the parameter space, we performed a finer scan across the 

resolution and gain parameters, taking intervals of 5 and 0.5 respectively. 

Control of spurious associations with expression 

Hypermutated tumors often have a distinctive expression signature. In those cases, some 

localized regions of the expression space will consist of tumors with a higher mutation rate. 
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Those localized regions will harbor an accumulation of passenger mutations that may 

confound our approach. To control for associations between global expression patterns and 

the tumor mutation rate, we assessed the localization of the mutational tumor burden on 

the topological representations using the same approach as described in the paragraph 

“Statistical analysis”, where 𝑒𝑖 is now the average frequency of somatic mutations for the 

samples in node 𝑖. If the localization of the mutational burden was significant (p-value < 

0.05), we manually set a threshold on the mutational burden to split the cohort into 

hypermutated and non-hypermutated tumors. This process could have been automated, 

however we found it unnecessary as small changes in the threshold do not affect 

substantially the results. The thresholds used in each cohort are summarized in 

Supplementary Table 4. We randomly subsampled mutations from each of the 

hypermutated tumors so that after subsampling the median mutational burden for 

hypermutated tumors in the cohort was equal to the median mutational burden for non-

hypermutated tumors. We reassessed the significance of the localization of the mutational 

burden using the down sampled data. If the degree of localization of the mutational tumor 

burden was not significant, we continued the analysis using the down sampled mutation 

data. Otherwise, if the degree of localization was still significant after subsampling, we did 

not include the cohort in our study. 

To control for associations between expression and mutation rates within the same gene, 

such as those due to transcription-coupled DNA repair, we assessed the similarity between 
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the profiles of somatic mutation and mRNA expression on the topological representations. 

To that end, we computed the Jensen-Shannon divergence between the expression and 

mutation profiles of each gene in the topological representations using the formula 

𝐽(𝑔) =
1

2
∑ [−(𝑒̃𝑖(𝑔) + 𝑟̃𝑖(𝑔)) log (

𝑒̃𝑖(𝑔) + 𝑟̃𝑖(𝑔)

2
) + 𝑒̃𝑖(𝑔) log(𝑒̃𝑖(𝑔))

𝑖∈Γ

+ 𝑟̃𝑖(𝑔) log(𝑟̃𝑖(𝑔))] 

where 𝑒̃𝑖(𝑔) and 𝑟̃𝑖(𝑔) are respectively the fraction of tumors with gene 𝑔 somatically 

mutated and the average expression of gene 𝑔 in the tumors associated to the 𝑖-th node of 

the topological representation, normalized such that  

∑ 𝑒̃𝑖(𝑔)

𝑖∈Γ

= ∑ 𝑟̃𝑖(𝑔)

𝑖∈Γ

= 1 

The significance of 𝐽(𝑔) was assessed for each gene independently by means of a 

permutation test. To that end, for each gene the labels of the samples on the mutation data 

were randomly permuted 2,000 times, and 𝐽(𝑔) was computed in each permutation. A p-

value was estimated by counting the fraction of permutations that led to a value of 𝐽(𝑔) 

smaller than the original value. Genes with a p-value for 𝐽(𝑔) closed to 0 displayed a large 

degree of correlation between expression and mutation in the topological representation, 

whereas genes with a p-value for 𝐽(𝑔) closed to 1 displayed a large degree of anti-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.30.922310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.922310
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 

   

 

correlation between expression and mutation in the topological representation. After 

adjusting for multiple hypothesis testing using Benjamini-Hochberg procedure to control 

the false discovery rate, we removed genes from the analysis for which the median q-value 

for 𝐽(𝑔) across the parameter space of the topological representation was above 0.8, as 

those are potentially related to spurious anti-correlations between gene expression and 

mutation.     

Last, to control for the presence of batch effects due to differences among mutation calling 

centers, we assessed the degree of localization of batches in the topological representation 

using the same approach as described in the paragraph “Statistical analysis”, with 𝑒𝑖 now 

represents the fraction of tumors in node 𝑖 that were processed by a given center. We 

removed the contribution of batches whose degree of localization was significant (p-value 

< 0.05) according to this procedure. 

Computational benchmarking 

We generated smaller LGG datasets by randomly sampling 50, 100, 200, 300, and 400 

patients from the original LGG cohort. For each of these sizes, we generated a null data set 

by randomly permuting the labels of the patients on the expression data. We ran the 

integrative topological analysis in each of these new data sets using the same parameters 

than in the original analysis of the LGG cohort (Supplementary Table 4). 
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To benchmark the performance of algorithms based on a gold-standard list of cancer-

associated genes, we followed the same approach as in Bertrand et al.35. We considered the 

same gold-standard list as in that reference. For each of the algorithms evaluated, we 

computed the precision (P), recall (R), and F1 score based the top min(15, 𝐺) significant 

genes (q-value < 0.15)  

𝑃 =
𝑇

min(15, 𝐺)
,          𝑅 =

𝑇

15
,          𝐹1 = 2 ∙

𝑃 ∙ 𝑅

𝑃 + 𝑅
 

where 𝐺 is the total number of significant genes and 𝑇 the number of top min(15, 𝐺) 

significant genes present in the gold-standard. We run Xseq, OncodriveFML and 20/20+ 

with default parameters, as described in their documentation. 

MutSig2CV analyses 

We downloaded from the Broad Institute TCGA GDAC Firehose Portal 

(http://gdac.broadinstitute.org/) the MutSig2CV v3.1 analyses of each of the 12 TCGA 

cohorts (Supplementary Table 4). 

Online database 

Representative topological representations and pre-computed statistics were deposited in 

an online database for each of the 12 tumor types considered in this study 
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(https://rabadan.c2b2.columbia.edu/pancancer). The interface of the database allows to 

explore the results of the analysis interactively. 

Induction of lung tumors in mice 

Mouse experiments were performed following the institutional guidelines of the University 

of Oviedo (Comité de Ética en Experimentación Animal). Adamts12-/- mice were generated 

in a C57BL/6J genetic background and genotyped as in El Hour et al.49. Lung tumors were 

induced in 6-8 weeks old mice by intraperitoneal injection of 8 doses of 1 g/kg of urethane 

(ethyl carbamate; Sigma); second dose was given 48h after the initial one and then once a 

week to reach a total of 8 doses. Mice were sacrificed 20 weeks after the first urethane 

injection and during this time mice were fed ad libitum. Left lungs were fixed in 4% 

paraformaldehyde, paraffin-embedded and sectioned every 100 m in of 10 m slices. 

These were then stained with hematoxylin/eosin for morphological examination by 

experienced pathologists (Unidad de Histopatología Molecular en Modelos Animales de 

Cáncer, IUOPA). Tumors were quantified and classified according to their diameter in 

large (> 400 m), medium (200-400 m) and small (<200 m) tumors. 

Generation of shADAMTS12 LL/2-luc-M38 cells 

We used an Adamts12 Mouse shRNA Plasmid (OriGene, Locus ID: 239337) and 

transfected LLC/2-luc-M38 (Caliper) cells with lipofectamine/plus (ThermoFisher 
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Scientific) following the recommendations of manufacturer. We checked transfected cells 

for ADAMTS12 expression by western-blot for ADAMTS12 (Santa Cruz Biotechnology 

H-142) and β-actin (Sigma-Aldrich AC-15) in 10% polyacrylamide gels. Immunoreactive 

proteins were visualized using HRP-peroxidase-labeled anti-rabbit or anti-mouse 

secondary antibodies and the ECL detection system (Pierce). 

Proliferation assay 

Cell proliferation was measured using the CellTiter 96 Non-radiactive Cell Proliferation 

Assay kit (Promega). LL/2-luc-M38 cells (3×104/well) were seeded into 96-well plates in 

six replicates. Cell proliferation rates were determined on five consecutive days using the 

automated microtiter plate reader Power Wave WS (BioTek). 

Invasion assay 

In-vitro invasion potential was assessed using 24-well Matrigel-coated invasion chambers 

with 8 µm pore size (BD Biosciences). A total of 5×104 cells were allowed to migrate for 

24 h using 10 % fetal bovine serum as chemoattractant. Cells that reached the lower surface 

were stained with crystal violet. At least three independent experiments were performed 

with triplicates for each condition. Cells were counted in 8 randomly selected microscopic 

fields. 
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Immunohistochemistry 

Lungs were fixed in 4% formalin for 24 h. After fixation, samples were dehydrated and 

embedded in paraffin. Sections of 4-µm thick were stained with hematoxylin and eosin for 

microscopy examination and consecutive sections were used for immunohistochemical 

labeling. Sections were incubated with anti-ADAMTS12 (H-142, Santa Cruz 

Biotechnologies, 1h at 37 ºC) or with anti-Ki67 (ab66155, Abcam, o/n at 4ºC) primary 

antibodies. Sections were then incubated 30 minutes with EnVision™+/HRP (Dako) and 

5 minutes with Liquid DAB (Dako). Samples were counterstained with hematoxilin. 

 

Code availability 

The source code and scripts used in the paper have been deposited in GitHub 

(https://github.com/CamaraLab/TDA-TCGA/). 
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Tables 

Cancer Type Cohort 
Samples 

(TDA) 
Samples 

(MutSig2CV) 

Bladder urothelial carcinoma BLCA 391 395 

Breast invasive carcinoma BRCA 930 978 

Cervical and endocervical cancers CESC 184 194 

Colon adenocarcinoma COAD 208 367 

Glioblastoma multiforme GBM 142 283 

Head and neck squamous cell 
carcinoma 

HNSC 501 511 

Brain lower grade glioma LGG 513 516 

Lung adenocarcinoma LUAD 470 533 

Pheochromocytoma and 
paraganglioma 

PCPG 181 179 

Stomach adenocarcinoma STAD 263 393 

Testicular germ cell tumors TGCT 149 147 

Thyroid carcinoma THCA 403 496 

Total:  4,335 4,992 

 

Table 1 | Number of patients in each of the cohorts analyzed using topological (TDA) and 

recurrence-based (MutSig2CV) approaches. 
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Figures 

 

Figure 1 | Identification of mutated cancer genes in LGG using an integrative topological 

approach. (a) Topological representation of the expression space of LGG based on the 

expression data of 513 tumors. Each node represents a set of tumors with similar global 

expression patterns. The size of each node represents the number of tumors in the set. Edges 
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connect nodes that share at least one tumor. Three large expression groups are clearly visible in 

the representation. (b) The localization of each mutated gene in the topological representation is 

assessed statistically. Mutated genes significantly localized in the expression space are candidate 

drivers of tumor progression. The topological representation of the expression space of LGG 

labeled by the frequency of somatic mutations of the CIC (top) and TTN (bottom) genes is 

displayed as an example. CIC mutations are significantly localized in the expression space of 

LGG, consistently with being a driver of tumor progression. (c) List of significantly (q-value < 

0.15) localized mutated genes in the reconstructed expression space of LGG. The prevalence of 

mutations in the cohort and the distribution of the statistical significance across the parameter 

space of the topological representation are also displayed. Box-plot elements: center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (d) The 

topological representation of the expression space of LGG is labeled according to the prevalence 

of some of the significantly localized mutations. The three large expression groups in the 

topological representation are identified with oligodendrogliomas (enriched for CIC and IDH2 

mutations), IDH1-mutant astrocytomas (enriched for TP53 mutations), and IDH1-wild-type 

astrocytomas (enriched for EGFR mutations). IDH1-mutant astrocytomas with a low G-C island 

methylation phenotype (G-CIMP low) form a flare of IDH1-wild-type astrocytomas. (e) Number 

of significant mutated genes as a function of the cohort size, for the original (red) and a 

randomized (blue) version of the LGG cohort. Our integrative topological approach produces 

significant results for tumor cohorts above ~100 patients. (f) Comparison of the results of the 

integrative topological approach with those of MutSig2CV on the same cohort. Represented is the 

rank of each gene according to their significance in the topological (horizontal axis) and 
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MutSig2CV (vertical axis) analyses in logarithmic scale. Genes that are significant (q-value < 

0.15) according to our topological approach are marked in red. Genes below the red dashed line 

are significant (q-value < 0.15) according to the MutSig2CV analysis. Horizontal bars indicate 

the 16% and 84% percentiles of the ranks across the parameter space of the topological 

representation. Besides being radically different approaches, the results of our topological 

approach and MutSig2CV display a large degree of consistency, with most cancer-associated 

mutated genes sitting across the diagonal. 
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Figure 2 | Identification of mutated cancer genes across 12 tumor types using an integrative 

topological approach. (a) Significant genes (q-value < 0.15) in the integrative topological 

analysis of the 12 tumor types considered in Table 1. From top to bottom, the frequency of non-

synonymous mutations, the fraction of missense versus truncating mutations, and the distribution 

of q-values across the parameter space is shown for each gene. Genes that are also significant (q-

value < 0.15) based on MutSig2CV are shown in orange. Box-plot elements: center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. (b) Plot 

of the number of significant genes (q-value < 0.15) against the number of tumors in the cohort, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2020. ; https://doi.org/10.1101/2020.01.30.922310doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.30.922310
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

 

   

 

for each tumor type. A linear fit is shown, where outliers (marked in cyan) where not taken into 

account in the fit (Pearson’s r = 0.94, p-value = 5·10-4). (c) Venn diagram showing the overlap 

between significant genes (TDA) and the curated databases of cancer genes OncoKB (Fisher’s 

exact test p-value < 10-50) and the Cancer Gene Census (Fisher’s exact test p-value < 10-50). (d) 

Venn diagram showing the overlap between genes that are significant in the integrative 

topological analysis but not in the MutSig2CV analysis (TDA only), and the curated databases of 

cancer genes OncoKB (Fisher’s exact test p-value = 3·10-4) and the Cancer Gene Census 

(Fisher’s exact test p-value = 2·10-5). 
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Figure 3 | Truncating mutations of ADAMTS12 are associated to increased tumor 

susceptibility and poor survival in LUAD. (a) Left: Kaplan-Meier survival curves for the 

LUAD cohort, where patients have been stratified according to whether their tumors have 

chromosome 5p amplification and absence of truncating mutations in ADAMTS12 (red), 

chromosome 5p amplification and presence of truncating mutations in ADAMTS12 (blue), and 

absence of both chromosome 5p amplification and truncating mutations in ADAMTS12 (green). 

Kaplan-Meier p-values of blue and green survival curves with respect to red survival curve are 

0.015 and 0.05 respectively. Right: Venn diagram showing the overlap between tumors with 

chromosome 5p amplification (red) and tumors with truncating mutations in ADAMTS12 (blue) 

(one-tailed Fisher’s exact test p-value = 2·10-3). (b) Left: Western-blot showing the expression of 

ADAMTS12 and -Actin in control and shADAMTS12 LL/C-luc-M38 cells. Right: In-vitro 

proliferation assay of control and shADAMTS12 cells. (c) Left: Number of control and 
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shADAMTS12 cells with invasive potential in an in-vitro invasion assay. Right: Representative 

images of fields used for quantification after invasion assay. (d) Left: Number of lung tumors 

observed in control (n = 17) and ADAMTS12-deficient (n = 17) mice treated with urethane after 

20 weeks of treatment. ADAMTS12-deficient mice show a 5-fold enrichment in the number of 

lung tumors as compared to control mice. Right: Hematoxylin-eosin stained tissue section of 

ADAMTS12-deficient mice treated with urethane displaying a lung adenocarcinoma tumor. Box-

plot elements: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, outliers. Source data are provided as a Source Data file. 
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