

1 Title:

2 **The role of group I p21-activated kinases in contraction-stimulated skeletal muscle glu-**
3 **cose transport**

4 Lisbeth L. V. Møller¹, Ida L. Nielsen¹, Jonas R. Knudsen¹, Nicoline R. Andersen¹, Thomas E.
5 Jensen¹, Lykke Sylow^{1*} and Erik A. Richter^{1*}

6 ¹ Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University
7 of Copenhagen, Denmark

8

9 *Authors contributed equally.

10

11 **Corresponding author and person to who reprint requests should be addressed:**

12 Erik Arne Richter, Erichter@nexs.ku.dk, phone +4528751626
13 Universitetsparken 13, 2100 Copenhagen Oe, Denmark

14

15 Short title: PAKs in contraction-stimulated glucose transport

16

17 Number of figures: 3

18

19

20 **Abstract**

21 **Aim:** Muscle contraction stimulates skeletal muscle glucose transport. Since it occurs inde-
22 pendently of insulin, it is an important alternative pathway to increase glucose uptake in insu-
23 lin-resistant states, but the intracellular signalling mechanisms are not fully understood. Muscle
24 contraction activates group I p21-activated kinases (PAKs) in mouse and human skeletal mus-
25 cle. PAK1 and PAK2 are downstream targets of Rac1, which is a key regulator of contraction-
26 stimulated glucose transport. Thus, PAK1 and PAK2 could be downstream effectors of Rac1
27 in contraction-stimulated glucose transport. The current study aimed to test the hypothesis that
28 PAK1 and/or PAK2 regulate contraction-induced glucose transport. **Methods:** Glucose
29 transport was measured in isolated soleus and extensor digitorum longus (EDL) mouse skeletal
30 muscle incubated either in the presence or absence of a pharmacological inhibitor (IPA-3) of
31 group I PAKs or originating from whole-body PAK1 knockout (KO), muscle-specific PAK2
32 (m)KO or double whole-body PAK1 and muscle-specific PAK2 knockout mice. **Results:** IPA-
33 3 attenuated (-22%) the increase in muscle glucose transport in response to electrically-stimu-
34 lated contraction. PAK1 was dispensable for contraction-stimulated glucose uptake in both so-
35 leus and EDL muscle. Lack of PAK2, either alone (-13%) or in combination with PAK1 (-
36 14%), reduced contraction-stimulated glucose transport compared to control littermates in
37 EDL, but not soleus muscle. **Conclusion:** Contraction-stimulated glucose transport in isolated
38 glycolytic mouse EDL muscle is partly dependent on PAK2, but not PAK1.

39 **Keywords**

40 Contraction; Glucose uptake, Metabolism; p21-activated kinase; Skeletal muscle.

41 **Introduction**

42 Muscle contraction increases skeletal muscle glucose uptake independently of insulin ¹⁻³. Ac-
43 cordingly, muscle contraction increases glucose uptake in both insulin-sensitive and insulin-
44 resistant skeletal muscle ⁴⁻⁶. Additionally, insulin sensitivity is improved after cessation of
45 muscle contraction ⁷⁻¹⁰, making muscle contraction during acute exercise a non-pharmacolog-
46 ical treatment for insulin resistance ¹¹. However, while muscle contraction is known to promote
47 the translocation of the glucose transporter (GLUT)-4 to the plasma membrane, which facili-
48 tates glucose entry into the muscle, the intracellular signalling regulating this process is not
49 completely understood.

50 Upon muscle contraction, multiple intracellular signalling pathways are activated that promote
51 GLUT4 translocation and a subsequent increase in muscle glucose transport. Redundant Ca^{+2} -
52 dependent signalling, metabolic stress signalling, and mechanical stress signalling are proposed
53 to regulate distinct steps important for glucose transport in response to muscle contraction ¹².
54 The group I p21-activated kinase (PAK)-1 and PAK2 are activated in response to electrical
55 pulse stimulation in C2C12 myotubes ^{13,14} and muscle contraction/acute exercise in mouse and
56 human skeletal muscle ¹⁵. Group I PAKs (PAK1-3) are downstream targets of the Rho family
57 GTPases Cdc42 and Rac1 ¹⁶. Rac1 plays a key role in mediating glucose uptake in response to
58 muscle contraction and acute exercise in skeletal muscle ^{15,17,18}. Additionally, the contraction-
59 stimulated increase in PAK1/2 activity is blunted in muscles from muscle-specific Rac1 knock-
60 out (KO) mice ¹⁵, suggesting a potential role for PAK1 and/or PAK2 in regulating muscle
61 glucose uptake during muscle contraction. However, the significance of the increased activity
62 of group I PAKs downstream of Rac1 in response to muscle contraction is unknown. We hy-
63 pothesized that PAK1 and PAK2 participate in the regulation of glucose uptake in response to
64 contraction, due to their well-described role as Rac1 effector proteins. Our results identify

65 PAK2, but not PAK1, as a partial requirement for contraction-stimulated glucose transport in
66 mouse skeletal muscle.

67

68 **Results**

69 *Contraction-stimulated glucose transport is partially inhibited by pharmacological inhibition*
70 *of PAK1/2.* To investigate the role of group I PAKs in the regulation of contraction-stimulated
71 glucose transport, we first analyzed 2-deoxyglucose (2DG) transport in isolated soleus and
72 extensor digitorum (EDL) muscle in the presence or absence of a pharmacological group I PAK
73 inhibitor, IPA-3. Contractions increased 2DG transport in DMSO-treated soleus (2.9-fold) and
74 EDL (3.0-fold) muscle (Fig. 1A+B). IPA-3 partly inhibited contraction-stimulated 2DG
75 transport in soleus (-22%) and EDL (-22%; Fig. 1A+B). The reduction in contraction-stimu-
76 lated 2DG transport upon IPA-3 treatment was not associated with reduced initial force devel-
77 opment in IPA-3 treated muscles (Fig 1C). While phosphorylated (p)AMPK α T172 was unaf-
78 fected by IPA-3 in soleus muscle (Fig. 1D), contraction-stimulated pAMPK α T172 was re-
79 duced (-46%) in IPA-3-treated EDL muscle (Fig. 1E). However, AMPKs downstream target
80 pACC1/2 S79/212 was normally phosphorylated in response to contraction in both muscles
81 (Fig. 1F+G), suggesting that the AMPK-ACC signalling pathway was largely unaffected by
82 IPA-3 treatment. Altogether, these data suggest that contraction-stimulated glucose transport
83 partly relies on group I PAKs in skeletal muscles.

84 *Contraction-stimulated glucose transport partially relies on PAK2, but not PAK1, in mouse*
85 *EDL muscle.* IPA-3 is a pharmacological inhibitor of group I PAKs (PAK1-3) of which PAK1
86 and PAK2 are detectable in skeletal muscle ¹⁹⁻²¹. To identify the relative role of PAK1 and

87 PAK2 in the regulation of contraction-stimulated glucose transport, we investigated contrac-
88 tion-stimulated glucose transport in isolated soleus and EDL muscles from a cohort of PAK1
89 KO, PAK2 mKO, and double knockout mice with whole-body knockout of PAK1 and muscle-
90 specific knockout of PAK2 (1/m2 dKO) compared to control littermates (Fig. 2A+B). The
91 whole-body metabolic characteristics of this cohort of mice have previously been described²².
92 In soleus muscle, contraction-stimulated glucose transport was unaffected by the lack of PAK1,
93 PAK2 or both PAKs combined (Fig. 2C). In contrast, in EDL lack of PAK2, either alone or in
94 combination with PAK1 KO, partially reduced contraction-stimulated glucose transport com-
95 pared to PAK1 KO mice (PAK2 mKO: -21%; 1/m2 dKO: -22%) and control littermates (PAK2
96 mKO: -13%; 1/m2 dKO: -14%; Fig. 2D). Lack of PAK2 decreased initial force development
97 in soleus compared to PAK1 KO mice (PAK2 mKO: -30%; 1/m2 dKO: -38%) and control
98 littermates (1/m2 dKO: -27%; Fig. 2E). In EDL, lack of PAK1 (+40%) or PAK2 (+38%) in-
99 creased initial force development, while combined knockout of PAK1 and PAK2 decreased
100 initial force development compared to PAK1 KO mice (-31%) and PAK2 mKO mice (-30%;
101 Fig. 2F). The reduction in initial force development in 1/m2 dKO muscle could be ascribed to
102 muscle wasting (-13%; Fig. 2G) as also previously reported for several distinct muscles in this
103 mouse model^{20,23}. However, the decrease in force development over time was similar between
104 all four genotypes in both soleus and EDL muscle (Fig. 2H+I). Thus, similar to insulin-stimu-
105 lated glucose uptake²², PAK1 is dispensable for contraction-stimulated glucose transport,
106 while contraction-stimulated glucose transport partially relies on PAK2 in glycolytic EDL
107 muscle.

108 *Canonical contraction signalling is largely unaffected by the lack of PAK1 and PAK2.* Next,
109 we investigated the effects of lack of PAK1 and/or PAK2 on contraction-stimulated molecular
110 signalling. Lack of PAK2 tended (p=0.052) to reduce pAMPK α T172 in soleus (PAK2 mKO:
111 -17%; 1/m2 dKO: -12%), but not EDL muscle (Fig. 3A+B). However, pACC1/2 S79/212 was

112 normally phosphorylated in response to contractions in both muscles (Fig. 3C+D). Another
113 contraction-stimulated downstream target of AMPK α 2, pTBC1D1 S231 was unaffected by
114 lack of PAK1 and/or PAK2 in soleus muscle (Fig. 3E), but was reduced (-39%) in 1/m2 dKO
115 EDL muscle compared to muscle from PAK1 KO mice (Fig. 3F). Protein expression of
116 AMPK α 2, ACC and TBC1D1 was unaffected by lack of PAK1 and/or PAK2 (representative
117 blots in Fig. 2K+L). We next analyzed the total protein content of proteins involved in glucose
118 handling. Previously, in a slightly younger cohort (10-16 weeks of age vs. 26-35 weeks of age),
119 we reported that GLUT4 protein expression was normal in soleus but mildly reduced in EDL
120 in PAK2 mKO mice compared to littermate control ²². In contrast, GLUT4 protein expression
121 was presently reduced in 1/m2 dKO soleus muscle from soleus compared to control muscle (-
122 29%; Fig. 3G). In EDL muscle GLUT4 protein expression was unaffected by lack of PAK1
123 and/or PAK2 (Fig. 3H). Protein expression of hexokinase II (HKII), a key enzyme converting
124 glucose to glucose-6-phosphate after uptake, was unaffected in soleus muscle (Fig. 3I), while
125 higher (+34%) in 1/m2 dKO EDL muscle compared to PAK2 mKO muscle (Fig. 3J). Taken
126 together, the reduced contraction-stimulated glucose transport in 1/m2 dKO EDL muscle was
127 accompanied by impaired pTBC1D1 S237 phosphorylation (potentially decreasing glucose up-
128 take) but also upregulation of HKII (potentially enhancing capacity for glucose uptake although
129 a previous study suggest that in isolated muscles, HKII overexpression is not sufficient to in-
130 crease neither basal nor insulin-stimulated glucose transport ²⁴). Thus, the mechanism/s by
131 which genetic ablation of PAK2 reduces contraction-stimulated glucose transport remain un-
132 clear.

133

134 **Discussion**

135 The present study is, to our knowledge, the first to investigate the requirement of PAK1 and
136 PAK2 in contraction-stimulated glucose transport in mouse skeletal muscle. By undertaking a
137 systematic investigation, including pharmacological as well as genetic interventions, we show
138 that contraction-stimulated glucose transport in isolated skeletal muscle partially requires
139 PAK2, but not PAK1, in glycolytic EDL muscle.

140 In the current study, IPA-3 attenuated the increase in muscle glucose transport in response to
141 electrically-stimulated contraction in both soleus and EDL muscle, whereas genetically tar-
142 geted knockout revealed an effect of PAK2 in glycolytic EDL only. It is not unusual that phar-
143 macological inhibition and genetically targeted mutations produce different phenotypes²⁵. This
144 likely means that the effect of the IPA-3 on glucose transport in soleus is unspecific or alterna-
145 tively, that the absent effect of genetic ablation of PAK1 and/or PAK2 in soleus is due to com-
146 pensation by other mechanisms. It is important to stress that any possible compensatory mech-
147 anisms cannot be via redundancy with PAK3, as even in 1/m2 dKO muscle, PAK3 cannot be
148 detected at the protein level²⁰.

149 The limited role of group I PAKs in contraction-induced glucose transport is in accordance
150 with our recent finding that group I PAKs were largely dispensable for insulin-stimulated glu-
151 cose transport in isolated mouse skeletal muscle with only a modest reduction in EDL muscles
152 lacking PAK2²². Thus, group I PAKs are not major essential components in the regulation of
153 muscle glucose transport. Based on recent emerging evidence, the role for group I PAKs in
154 skeletal muscle seems instead to be related to myogenesis and muscle mass regulation^{20,23}.
155 Additionally, in embryonic day 18.5 diaphragm, combined genetic ablation of PAK1 and
156 PAK2 was associated with reduced acetylcholine receptor clustering at the neuromuscular
157 junction²⁰ suggesting defects in the neuromuscular synapses.

158 This relatively modest requirement of group I PAKs in contraction-induced muscle glucose
159 uptake is in contrast to the marked glucoregulatory role of Rac1^{15,17,18}, the upstream regulator
160 of group I PAKs. Rac1 is an essential component in the activation of the reactive oxygen-
161 producing NADPH oxidase (NOX)-2 complex^{26,27}. Recently, it was reported that NOX2 is
162 required for exercise-stimulated glucose uptake²⁸. Moreover, it was shown that exercise-in-
163 duced NOX2 activation was completely abrogated in TA from muscle-specific Rac1 KO mice
164²⁸, suggesting that Rac1 mainly regulates muscle glucose uptake through activation of NOX2
165 in response to exercise. Alternatively, the Ral family GTPase, RalA could signal downstream
166 of Rac1. Overexpression of a constitutively activated Rac1 mutant activated RalA in L6 myo-
167 tubes²⁹ and GLUT4 translocation induced by a constitutively active Rac1 mutant was attenu-
168 ated in L6-GLUT4myc myoblasts upon RalA knockdown²⁹. The RalA GTPase-activating pro-
169 tein GARNL1 is phosphorylated in response to in situ contraction of mouse muscle³⁰, but so
170 far no linkage between Rac1 and RalA has been reported in relation to contraction-stimulated
171 glucose transport.

172 In conclusion, contraction-stimulated glucose transport in isolated mouse skeletal muscle par-
173 tially requires PAK2, but not PAK1, in glycolytic EDL muscle. Together with our previous
174 study showing that insulin-stimulated glucose transport also partially requires PAK2, but not
175 PAK1²², this suggests that group I PAKs play at most a minor role in the regulation skeletal
176 muscle glucose transport.

177

178 **Materials and Methods**

179 **Animal experiments.** All animal experiments complied with the European Convention for the
180 protection of vertebrate animals used for experimental and other scientific purposes (No. 123,

181 Strasbourg, France, 1985; EU Directive 2010/63/EU for animal experiments) and were ap-
182 proved by the Danish Animal Experimental Inspectorate. All mice were maintained on a 12:12-
183 hour light-dark cycle and housed at 22°C (with allowed fluctuation of $\pm 2^\circ\text{C}$) with nesting ma-
184 terial. Female C57BL/6J mice (Taconic, Denmark) were used for the inhibitor incubation
185 study. The mice received a standard rodent chow diet (Altromin no. 1324; Brogaarden, Den-
186 mark) and water ad libitum. The mice were group-housed.

187 *Double PAK1^{-/-};PAK2^{fl/fl};MyoD^{iCre/+} mice.* Double knockout mice with whole-body knockout
188 of PAK1 and conditional, muscle-specific knockout of PAK2, PAK1^{-/-};PAK2^{fl/fl};MyoD^{iCre/+}
189 were generated as previously described ²⁰. The mice were on a mixed C57BL/6/FVB back-
190 ground. PAK1^{-/-};PAK2^{fl/fl};MyoD^{iCre/+} were crossed with PAK1^{+/+};PAK2^{fl/fl};MyoD^{+/+} to gener-
191 ate littermate PAK1^{-/-};PAK2^{fl/fl};MyoD^{iCre/+} (referred to as 1/m2 dKO), PAK1^{-/-}
192 ;PAK2^{fl/fl};MyoD^{+/+} (referred to as PAK1 KO), PAK1^{+/+};PAK2^{fl/fl};MyoD^{iCre/+} (referred to as
193 PAK2 mKO), and PAK1^{+/+};PAK2^{fl/fl};MyoD^{+/+} (referred to as controls) used for experiments as
194 previously described ²². At 26-35 weeks of age, female and male mice were used for the meas-
195 urement of contraction-stimulated glucose transport in isolated muscle. Number of mice in
196 each group: Control, $n = 6/4$ (female/male); PAK1 KO, $n = 6/6$, PAK2 mKO, $n = 6/7$, 1/m2
197 dKO, $n = 6/7$. Additional mice included for measurement of muscle mass: Control, $n = 0/0$
198 (female/male); PAK1 KO, $n = 0/1$, PAK2 mKO, $n = 3/0$, 1/m2 dKO, $n = 2/2$. Mice received
199 standard rodent chow diet and water ad libitum. The mice were single-caged 4-7 weeks prior
200 to the isolation of muscles. The whole-body metabolic characteristics for this cohort of mice,
201 including insulin and glucose tolerance, have previously been described ²².

202 **Incubation of isolated muscles.** Soleus and EDL muscles were dissected from anaesthetized
203 mice (6 mg pentobarbital sodium 100 g⁻¹ body weight i.p.) and suspended at resting tension (4-
204 5 mN) in incubations chambers (Multi Myograph System, Danish Myo Technology, Denmark)

205 in Krebs-Ringer-Henseleit buffer with 2 mM pyruvate and 8 mM mannitol at 30°C, as de-
206 scribed previously³¹. Additionally, the Krebs-Ringer-Henseleit buffer was supplemented with
207 0.1% BSA (v/v). Isolated muscles from female C57BL/6J mice were pre-incubated with 40
208 μM IPA-3 (Sigma-Aldrich) or a corresponding amount of DMSO (0.11%) for 45 minutes fol-
209 lowed by 15 minutes of electrically-stimulated contractions. Isolated muscles from whole-body
210 PAK1 KO, PAK2 mKO, 1/m2 dKO, or littermate controls were pre-incubated 10-20 minutes
211 followed by 15 minutes of electrically-stimulated contractions. Contractions were induced by
212 electrical stimulation every 15 sec with 2-sec trains of 0.2 msec pulses delivered at 100 Hz
213 (~35V) for 15 minutes. 2DG transport was measured together with 1 mM 2DG during the last
214 10 min of the contraction stimulation period using 0.60-0.75 μCi mL⁻¹ [³H]-2DG and 0.180-
215 0.225 μCi mL⁻¹ [¹⁴C]-mannitol radioactive tracers (Perkin Elmer) as described previously³¹.
216 Tissue-specific [³H]-2DG accumulation with [¹⁴C]-mannitol as an extracellular marker was
217 determined as previously described³².

218 **Protein extraction.** All muscles were homogenized 2 x 30 sec at 30 Hz using a Tissuelyser II
219 (Qiagen, USA) in ice-cold homogenization buffer (10% (v/v) Glycerol, 1% (v/v) NP-40, 20
220 mM Na-pyrophosphate, 150 mM NaCl, 50 mM HEPES (pH 7.5), 20 mM β-glycerophosphate,
221 10 mM NaF, 2mM PMSF, 1 mM EDTA (pH 8.0), 1 mM EGTA (pH 8.0), 2 mM Na3VO4, 10
222 μg mL⁻¹ Leupeptin, 10 μg mL⁻¹ Aprotinin, 3 mM Benzamidine). After rotation end-over-end
223 for 30 min at 4°C, lysate supernatants were collected by centrifugation (10,854-15,630 x g) for
224 15-20 min at 4°C.

225 **Immunoblotting.** Lysate protein concentration was determined using the bicinchoninic acid
226 method using bovine serum albumin (BSA) standards and bicinchoninic acid assay reagents
227 (Pierce). Immunoblotting samples were prepared in 6X sample buffer (340 mM Tris (pH 6.8),
228 225 mM DTT, 11% (w/v) SDS, 20% (v/v) Glycerol, 0.05% (w/v) Bromphenol blue). Protein
229 phosphorylation (p) and total protein expression were determined by standard immunoblotting

230 technique loading equal amounts of protein. The polyvinylidene difluoride membrane (Immuno-
231 bilon Transfer Membrane; Millipore) was blocked in Tris-Buffered Saline with added Tween20
232 (TBST) and 2% (w/v) skim milk or 3% (w/v) BSA protein for 15 minutes at room temperature,
233 followed by incubation overnight at 4°C with a primary antibody (Table 1). Next, the mem-
234 brane was incubated with horseradish peroxidase-conjugated secondary antibody (Jackson Im-
235 muno Research) at 4°C overnight. Total ACC was detected without the use of antibodies. In-
236 stead, the membrane was incubated with horseradish peroxidase-conjugated streptavidin
237 (P0397; Dako; 1:3000, 3% BSA) at 4°C overnight. Bands were visualized using Bio-Rad
238 ChemiDocTM MP Imaging System and enhanced chemiluminescence (ECL+; Amersham Bi-
239 osciences). Coomassie brilliant blue staining was used as a loading control ³³. Densitometric
240 analysis was performed using Image LabTM Software, version 4.0 (Bio-Rad, USA; RRID:
241 SCR_014210).

242 **Statistical analyses.** Data are presented as mean \pm S.E.M. or when applicable, mean \pm S.E.M.
243 with individual data points shown. Statistical tests varied according to the dataset being ana-
244 lyzed and the specific tests used are indicated in the figure legends. Datasets were normalized
245 by square root, log10 or inverse transformation if not normally distributed or failed equal var-
246 iance test. If the null hypothesis was rejected, Tukey's post hoc test was used to evaluate sig-
247 nificant main effects of genotype and significant interactions in ANOVAs. P < 0.05 was con-
248 sidered statistically significant. P < 0.1 was considered a tendency. Except for mixed-effects
249 model analyses performed in GraphPad Prism, version 8.2.1. (GraphPad Software, La Jolla,
250 CA, USA; RRID: SCR_002798), all statistical analyses were performed using Sigma Plot, ver-
251 sion 13 (Systat Software Inc., Chicago, IL, USA; RRID: SCR_003210). Due to missing data
252 points, differences between genotypes and the effect of electrically-stimulated contraction were
253 assessed with a mixed-effects model analysis in Fig. 2H+I.

255 **Data availability**

256 The datasets generated and analyzed during the current study are available from the corre-
257 sponding author upon reasonable request. No novel applicable resources were generated or
258 analyzed during the current study.

259

260 **Acknowledgements**

261 We thank our colleagues at the Section of Molecular Physiology, Department of Nutrition,
262 Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, for fruitful dis-
263 cussions on this topic. We acknowledge the skilled technical assistance of Betina Bolmgren
264 and Mona Ali (Section of Molecular Physiology, NEXS, Faculty of Science, University of
265 Copenhagen, Denmark). The PAK1/m2 dKO founder mice were a kind gift from Giselle A.
266 Joseph and Robert S. Krauss (Department of Cell, Developmental, and Regenerative Biology,
267 Icahn School of Medicine at Mount Sinai, New York, USA).

268

269 **Author contributions**

270 **LLVM:** Conceptualization; Methodology; Formal analysis; Investigation; Writing - Original
271 Draft; Writing - Review & Editing; Visualization; Project administration; Funding acquisition.

272 **ILN:** Investigation; Writing - Review & Editing. **JRK:** Investigation; Writing - Review & Ed-
273 iting; Funding acquisition. **NRA:** Investigation; Writing - Review & Editing. **TEJ:** Investiga-

274 tion; Writing - Review & Editing; Funding acquisition. **LS:** Conceptualization; Methodology;
275 Investigation; Writing - Original Draft; Writing - Review & Editing; Supervision; Project ad-
276 ministration; Funding acquisition. **EAR:** Conceptualization; Methodology; Writing - Original

277 Draft; Writing - Review & Editing; Supervision; Project administration; Funding acquisition.
278 EAR is the guarantor of this work and takes responsibility for the integrity of the data and the
279 accuracy of the data analysis.

280

281 **Grants**

282 This study was supported by a PhD fellowship from The Lundbeck Foundation (grant 2015-
283 3388 to LLVM); PhD scholarship from The Danish Diabetes Academy, funded by The Novo
284 Nordisk Foundation (JRK); The Danish Council for Independent Research, Medical Sciences
285 (grant DFF-4004-00233 to LS, grant 6108-00203 to EAR); The Novo Nordisk Foundation
286 (grant 10429 to EAR, grant 15182 to TEJ, grant NNF16OC0023418 and NNF18OC0032082
287 to LS).

288

289 **Disclosure summary**

290 No potential conflicts of interest relevant to this article were reported.

291 **References**

292 1 Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose
293 transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. *Proc
294 Natl Acad Sci U S A*. 1995;92(13):5817–21.

295 2 Wallberg-Henriksson H, Holloszy JO. Activation of glucose transport in diabetic muscle:
296 responses to contraction and insulin. *Am J Physiol*. 1985;249(3 Pt 1):C233-7.

297 3 Ploug T, Galbo H, Richter EA. Increased muscle glucose uptake during contractions: no need
298 for insulin. *Am J Physiol Metab*. 1984;247(6):E726–E731.

299 4 Kennedy JW, Hirshman MF, Gervino E V et al. Acute exercise induces GLUT4 translocation
300 in skeletal muscle of normal human subjects and subjects with type 2 diabetes. *Diabetes*.
301 1999;48(5):1192–1197.

302 5 Martin IK, Katz A, Wahren J. Splanchnic and muscle metabolism during exercise in NIDDM
303 patients. *Am J Physiol Metab*. 1995;269(3):E583–E590.

304 6 Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. *Physiol
305 Rev*. 2013;93(3):993–1017.

306 7 Richter EA, Garetto LP, Goodman MN, Ruderman NB. Muscle glucose metabolism following
307 exercise in the rat: increased sensitivity to insulin. *J Clin Invest*. 1982;69(4):785–93.

308 8 Richter EA, Mikines KJ, Galbo H, Kiens B. Effect of exercise on insulin action in human
309 skeletal muscle. *J Appl Physiol*. 1989;66(2):876–885.

310 9 Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on
311 sensitivity and responsiveness to insulin in humans. *Am J Physiol Metab*. 1988;254(3):E248–
312 E259.

313 10 Wojtaszewski JF, Hansen BF, Kiens B, Richter EA. Insulin signaling in human skeletal
314 muscle: Time course and effect of exercise. *Diabetes*. 1997;46(11):1775–1781.

315 11 Sylow L, Richter EA. Current advances in our understanding of exercise as medicine in

316 metabolic disease. *Curr Opin Physiol.* 2019;12:12–19.

317 12 Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake —
318 regulation and implications for glycaemic control. *Nat Rev Endocrinol.* 2017;13(3):133–148.

319 13 Hu F, Li N, Li Z et al. Electrical pulse stimulation induces GLUT4 translocation in a Rac-Akt-
320 dependent manner in C2C12 myotubes. *FEBS Lett.* 2018;592(4):644–654.

321 14 Yue Y, Zhang C, Zhang X et al. An AMPK/Axin1-Rac1 Signaling Pathway Mediates
322 Contraction-regulated Glucose Uptake in Skeletal Muscle Cells. *Am J Physiol Metab.*
323 2019;:ajpendo.00272.2019.

324 15 Sylow L, Jensen TE, Kleinert M et al. Rac1 Is a Novel Regulator of Contraction-Stimulated
325 Glucose Uptake in Skeletal Muscle. *Diabetes.* 2013;62(4):1139–1151.

326 16 Manser E, Leung T, Salihuddin H, Zhao Z, Lim L. A brain serine/threonine protein kinase
327 activated by Cdc42 and Rac1. *Nature.* 1994;367(6458):40–46.

328 17 Sylow L, Nielsen IL, Kleinert M et al. Rac1 governs exercise-stimulated glucose uptake in
329 skeletal muscle through regulation of GLUT4 translocation in mice. *J Physiol.*
330 2016;594(17):4997–5008.

331 18 Sylow L, Møller LLV, Kleinert M et al. Rac1 and AMPK Account for the Majority of Muscle
332 Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. *Diabetes.*
333 2017;66(6):1548–1559.

334 19 Tunduguru R, Chiu TT, Ramalingam L, Elmendorf JS, Klip A, Thurmond DC. Signaling of
335 the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose
336 uptake in skeletal muscle cells. *Biochem Pharmacol.* 2014;92(2):380–388.

337 20 Joseph GA, Lu M, Radu M et al. Group I Paks Promote Skeletal Myoblast Differentiation In
338 Vivo and In Vitro. *Mol Cell Biol.* 2017;37(4):e00222-16.

339 21 Arias-Romero LE, Chernoff J. A tale of two Paks. *Biol Cell.* 2008;100(2):97–108.

340 22 Moller LLV, Jaurji M, Kjobsted R et al. Insulin-stimulated glucose uptake partly relies on p21-

341 activated kinase (PAK)-2, but not PAK1, in mouse skeletal muscle. *bioRxiv*. 2019;:543736.

342 23 Joseph GA, Hung M, Goel AJ et al. Late-onset megaconial myopathy in mice lacking group I
343 Paks. *Skelet Muscle*. 2019;9(1):5.

344 24 Hansen PA, Marshall BA, Chen M, Holloszy JO, Mueckler M. Transgenic Overexpression of
345 Hexokinase II in Skeletal Muscle Does Not Increase Glucose Disposal in Wild-type or Glut1-
346 overexpressing Mice. *J Biol Chem*. 2000;275(29):22381–22386.

347 25 Knight ZA, Shokat KM. Chemical Genetics: Where Genetics and Pharmacology Meet. *Cell*.
348 2007;128(3):425–430.

349 26 Bedard K, Krause K-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology
350 and Pathophysiology. *Physiol Rev*. 2007;87(1):245–313.

351 27 Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase
352 involves the small GTP-binding protein p21rac1. *Nature*. 1991;353(6345):668–670.

353 28 Henríquez-Olguin C, Knudsen JR, Raun SH et al. Cytosolic ROS production by NADPH
354 oxidase 2 regulates muscle glucose uptake during exercise. *Nat Commun*. 2019;10(1):4623.

355 29 Nozaki S, Ueda S, Takenaka N, Kataoka T, Satoh T. Role of RalA downstream of Rac1 in
356 insulin-dependent glucose uptake in muscle cells. *Cell Signal*. 2012;24(11):2111–2117.

357 30 Chen Q, Quan C, Xie B et al. GARNL1, a major RalGAP α subunit in skeletal muscle,
358 regulates insulin-stimulated RalA activation and GLUT4 trafficking via interaction with 14-3-
359 3 proteins. *Cell Signal*. 2014;26(8):1636–1648.

360 31 Viollet B, Andreelli F, Jørgensen SB et al. The AMP-activated protein kinase $\alpha 2$ catalytic
361 subunit controls whole-body insulin sensitivity. *J Clin Invest*. 2003;111(1):91–98.

362 32 Kjøbsted R, Treebak JT, Fentz J et al. Prior AICAR stimulation increases insulin sensitivity in
363 mouse skeletal muscle in an AMPK-dependent manner. *Diabetes*. 2015;64(6):2042–2055.

364 33 Welinder C, Ekblad L. Coomassie Staining as Loading Control in Western Blot Analysis. *J
365 Proteome Res*. 2011;10(3):1416–1419.

366 **Tables**

Table 1. Antibody Table

Antibody name	Antibody ID (RRID)	Manufacturer; Catalog Number;	Species Raised in; Monoclonal or Polyclonal	Antibody dilution	Blocking buffer
pACC1/2 S79/212 [#]	AB_330337	Cell Signaling Technology; 3661	Rabbit; Polyclonal antibody	1:500	2% milk
Actin	AB_476693	Sigma-Aldrich; A2066	Rabbit; Polyclonal antibody	1:10,000	2% milk
AMPK α 2	AB_2169716	Santa Cruz Biotechnology; sc-19131	Goat; Polyclonal antibody	1:1000	2% milk
pAMPK T172	AB_330330	Cell Signaling Technology; 2531	Rabbit, Polyclonal antibody	1:1000	2% milk
GLUT4	AB_2191454	Thermo Fisher Scientific; PA1-1065	Rabbit; Polyclonal antibody	1:1000	2% milk
HKII	AB_2295219	Santa Cruz Biotechnology; Sc-130358	Mouse; Monoclonal antibody	1:1000	2% milk
PAK1	AB_330222	Cell Signaling Technology; 2602	Rabbit; Polyclonal antibody	1:500	2% milk
PAK2	AB_2283388	Cell Signaling Technology; 2608	Rabbit; Polyclonal antibody	1:500	2% milk
TBC1D1	AB_2814949	Abcam; ab229504	Rabbit; Polyclonal	1 μ g/ μ L	2% milk
pTBC1D1 S231 [#]	AB_10807809	Millipore; 07-2268	Rabbit; Polyclonal antibody	1:1000	2% milk

367

368 **Table 1: Antibody Table.** [#]Mouse nomenclature was used for pACC1/2 S79/212 (equivalent
369 to human S80/221) and pTBC1D1 S231 (equivalent to human S237).

370

371

Figure Legends

Figure 1: Contraction-stimulated glucose transport is partially inhibited by pharmacological inhibition of PAK1/2. **(a-b)** Contraction-stimulated (2 sec/15 sec, 100 Hz) 2-deoxyglucose (2DG) transport in isolated soleus (a) and extensor digitorum longus (EDL; b) muscle \pm 40 μ M IPA-3 or a corresponding amount of DMSO (0.11%). Isolated muscles were pre-incubated for 45 minutes followed by 15 minutes of electrically-stimulated contraction with 2DG transport measured for the final 10 minutes of stimulation. Data were evaluated with a two-way repeated measures (RM) ANOVA. **(c)** Initial force development during electrically-stimulated contraction. Data were evaluated with a Student's t-test. **(d-g)** Quantification of phosphorylated (p)AMPK α T172 and pACC1/2 S79/212 in contraction-stimulated soleus (d and f) and EDL (e and g) muscle. Data were evaluated with a two-way RM ANOVA. Some of the data points were excluded due to the quality of the immunoblot, and the number of determinations was $n = 5/6$ (DMSO/IPA-3) for pACC1/2 S79/212 in soleus muscle. **(h-i)** Representative blots showing pAMPK α T172 and pACC S212 and actin protein expression as a loading control in soleus (h) and EDL (i) muscle. Main effects are indicated in the panels. Interactions in two-way RM ANOVA were evaluated by Tukey's post hoc test: Contraction vs. basal **/*** ($p<0.01/0.001$); IPA-3 vs. DMSO ## ($p<0.01$). Unless stated previously in the figure legend, the number of determinations in each group: Soleus, $n = 8/9$ (DMSO/IPA-3); EDL, $n = 8/9$. Data are presented as mean \pm S.E.M. with individual data points shown. Paired data points are connected with a straight line. A.U., arbitrary units.

Figure 2: Contraction-stimulated glucose transport partially requires PAK2, but not PAK1, in mouse EDL muscle. **(a-b)** Representative blots showing PAK1 and PAK2 protein expression in soleus (a) and extensor digitorum longus (EDL; b) muscle from whole-body PAK1 knockout (KO), muscle-specific PAK2 (mKO), PAK1/2 double KO (1/m2 dKO) mice or control littermates. **(c-d)**

Contraction-stimulated (2 sec/15 sec, 100 Hz) 2-deoxyglucose (2DG) transport in isolated soleus (c) and EDL (d) muscle from PAK1 KO, PAK2 mKO, 1/m2 dKO mice or control littermates. Isolated muscles were pre-incubated for 10-20 minutes followed by 15 minutes of electrically-stimulated contraction with 2DG transport measured for the final 10 minutes of stimulation. The number of determinations in each group for soleus: Control, $n = 4/8$ (Basal/Contraction); PAK1 KO, $n = 6/10$; PAK2 mKO, $n = 6/12$; 1/m2 dKO, $n = 6/10$, and for EDL: Control, $n = 3/6$ (Basal/Contraction); PAK1 KO, $n = 6/8$; PAK2 mKO, $n = 6/9$; 1/m2 dKO, $n = 6/7$. Data were evaluated with two two-way ANOVAs to test the factors ‘PAK1’ (PAK1^{+/−} vs. PAK^{−/−}) and ‘PAK2’ (PAK2^{fl/fl};MyoD^{+/+} vs. PAK2^{fl/fl};MyoD^{iCre/+}) in the basal and contraction-stimulated state, respectively, thereby assessing the relative contribution of PAK1 and PAK2. Differences between genotypes and the effect of contraction were assessed with a two-way ANOVA to test the factors ‘Genotype’ (Control vs. PAK1 KO vs. PAK2 mKO vs. d1/2 KO) and ‘Stimuli’ (Basal vs. Contraction). **(e-f)** Initial force development during electrically-stimulated contractions in soleus (e) and EDL (f) muscle. The number of determinations in each group: Control, $n = 8/6$ (soleus/EDL); PAK1 KO, $n = 10/8$; PAK2 KO, $n = 12/9$; 1/m2 dKO, $n = 10/8$. Data were evaluated with a two-way ANOVA to test the factors ‘PAK1’ and ‘PAK2’, thereby assessing the relative contribution of PAK1 and PAK2. Differences between genotypes were evaluated with a one-way ANOVA. **(g)** Tibialis anterior (TA) muscle mass in PAK1 KO, PAK2 mKO, 1/m2 dKO mice or control littermates. The number of determinations in each group: Control, $n = 10$; PAK1 KO, $n = 13$; PAK2 KO, $n = 16$; 1/m2 dKO, $n = 17$. Data were evaluated with a two-way ANOVA to test the factors ‘PAK1’ and ‘PAK2’, thereby assessing the relative contribution of PAK1 and PAK2. Differences between genotypes were evaluated with a one-way ANOVA. **(h-i)** Force development relative to initial force development in soleus (H) and EDL (I) muscle from whole-body PAK1 KO, PAK2 mKO, 1/m2 dKO mice or control littermates. Data points relative to initial force development is an average of the values at

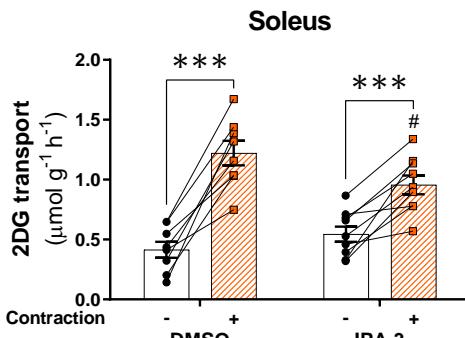

four consecutive time points. Original force development data inserted in the upper right corner. The number of determinations in each group: Control, $n = 8/6$ (soleus/EDL); PAK1 KO, $n = 10/8$; PAK2 KO, $n = 12/9$; 1/m2 dKO, $n = 10/8$. Due to missing data points, differences between genotypes and the effect of electrically-stimulated contraction were assessed with a mixed-effects model analysis to test the factors ‘Genotype’ and ‘Time point’. Main effects are indicated in the panels. Significant one-way ANOVA and interactions in two-way (RM when applicable) ANOVA were evaluated by Tukey’s post hoc test: Control vs. PAK1 KO \ddagger ($p < 0.05$); Control vs. PAK2 mKO \ddagger ($p < 0.05$); Control vs. d1/2 KO \dagger ($p < 0.05$); PAK1 KO vs. PAK2 mKO $\ddagger\ddagger\ddagger$ ($p < 0.001$); PAK1 KO vs. d1/2 KO $\ddagger\ddagger\ddagger/\ddagger\ddagger\ddagger$ ($p < 0.05/0.01/0.001$); PAK2 mKO vs. d1/2 KO $\$/\$$ ($p < 0.05/0.01$). Data are presented as mean \pm S.E.M. with individual data points shown.

Figure 3: Canonical contraction signalling is largely unaffected by the lack of PAK1 and PAK2. (a-j) Quantification of phosphorylated (p)AMPK α T172, pACC1/2 S79/212, pTBC1D1 S231 and total GLUT4 and HKII protein expression in response to electrically-stimulated contractions (2 sec/15 sec, 100 Hz) in soleus (a, c, e, g, and i) and extensor digitorum longus (EDL; b, d, f, h, and j) muscle from whole-body PAK1 knockout (KO), muscle-specific PAK2 (m)KO, PAK1/2 double KO (1/m2 dKO) mice or control littermates. Total protein expression is an average of the two muscles from the same mouse. Protein phosphorylation was evaluated with two two-way ANOVAs to test the factors ‘PAK1’ (PAK1 $^{+/+}$ vs. PAK $^{-/-}$) and ‘PAK2’ (PAK2 $^{fl/fl}$; MyoD $^{+/+}$ vs. PAK2 $^{fl/fl}$; MyoD $^{iCre/+}$) in basal and contraction-stimulated samples, respectively, thereby assessing the relative contribution of PAK1 and PAK2. Differences between genotypes and the effect of contraction stimulation were assessed with a two-way ANOVA to test the factors ‘Genotype’ (Control vs. PAK1 KO vs. PAK2 mKO vs. 1/m2 dKO) and ‘Stimuli’ (Basal vs. Contraction). Total protein expression was evaluated with a two-way ANOVA to test the factors ‘PAK1’ and ‘PAK2’ thereby assessing the relative contribution of PAK1 and PAK2, respectively. Differences between

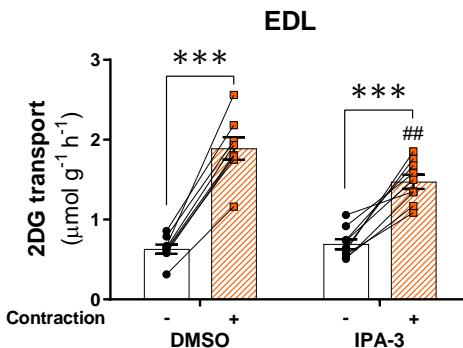
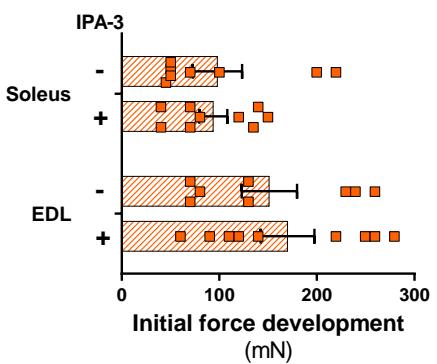
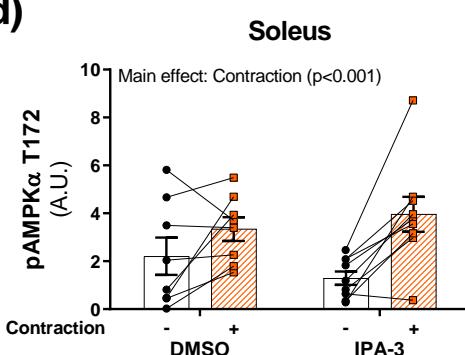
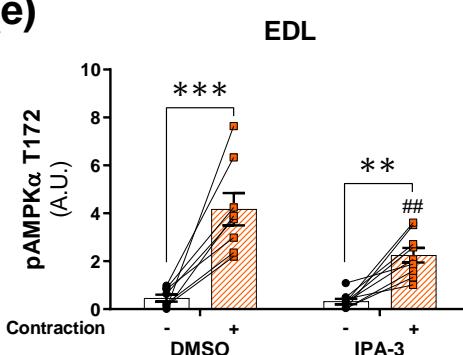
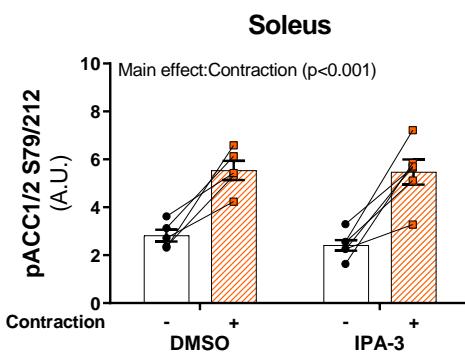

genotypes were evaluated with a one-way ANOVA. **(k-l)** Representative blots showing pAMPK α T172, pACC1/2 S79/212, pTBC1D1 S231 and total AMPK α 2, ACC, TBC1D1, GLUT4 and HKII protein expression and coomassie staining as a loading control in soleus (k) and EDL (l) muscle. Main effects are indicated in the panels. Significant one-way ANOVA and interactions in two-way ANOVA were evaluated by Tukey's post hoc test: Control vs. d1/2 KO ††† (p<0.001); PAK1 KO vs. d1/2 KO ‡/‡‡‡ (p<0.05/0.001); PAK2 mKO vs. d1/2 KO \$ (p<0.05). The number of determinations in each group for soleus: Control, $n = 4/8$ (Basal/Contraction); PAK1 KO, $n = 6/10$; PAK2 mKO, $n = 6/12$; 1/m2 dKO, $n = 6/10$. The number of determinations in each group for EDL: Control, $n = 3/6$ (Basal/Contraction); PAK1 KO, $n = 6/8$; PAK2 mKO, $n = 6/9$; 1/m2 dKO, $n = 6/8$. For EDL, one data point from 1/m2 dKO contraction-stimulated pTBC1D1 S237 is missing due to a lack of sample. For total protein expression, the number of determinations in each group: Control, $n = 10/10$ (soleus/EDL); PAK1 KO, $n = 12/11$; PAK2 KO, $n = 13/13$; 1/m2 dKO, $n = 13/13$. Data are presented as mean \pm S.E.M. with individual data points shown. A.U., arbitrary units.

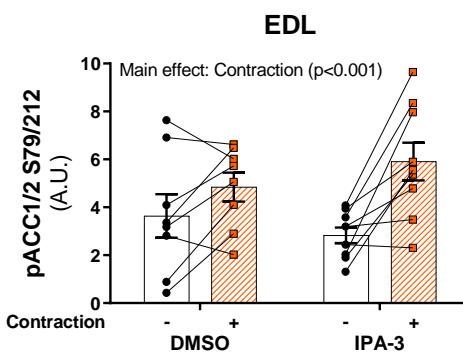
Figure 1

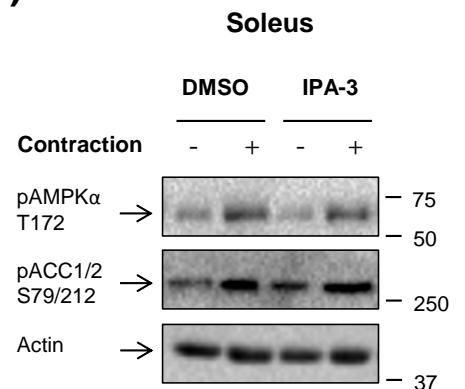

(a)

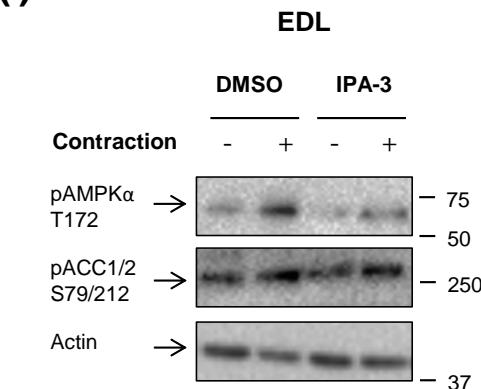

(b)


(c)

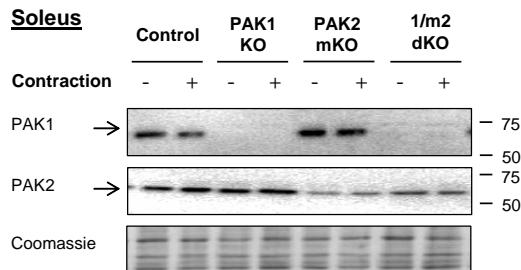

(d)


(e)


(f)


(g)

(h)



(i)

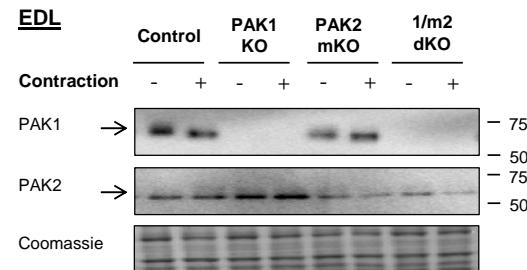
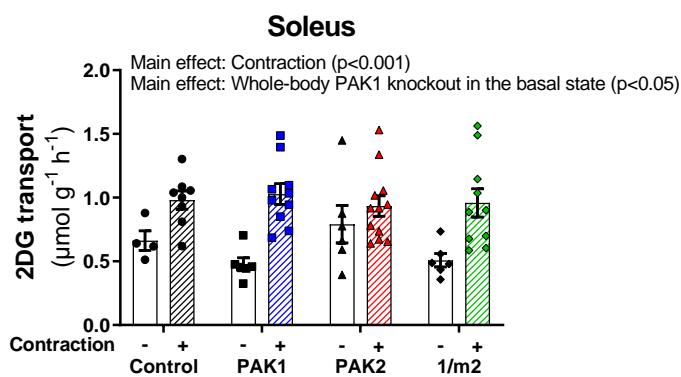
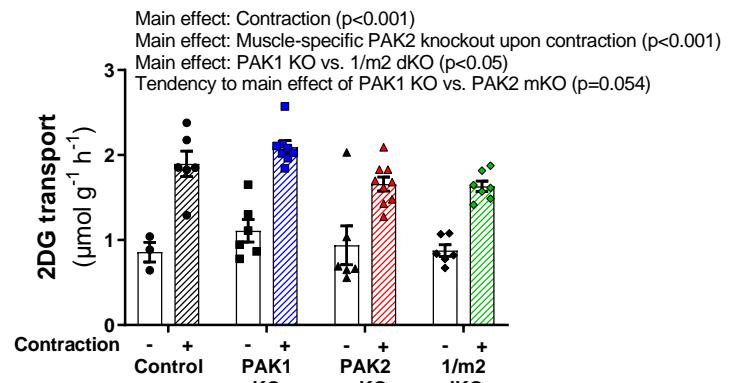
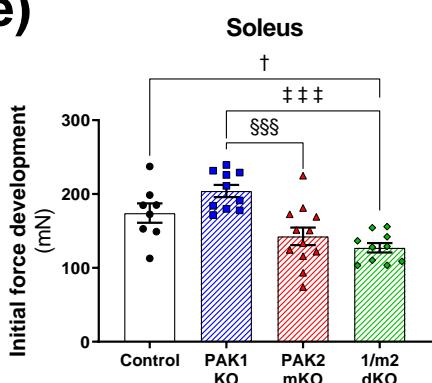
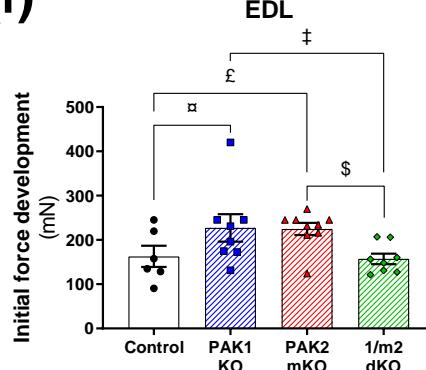


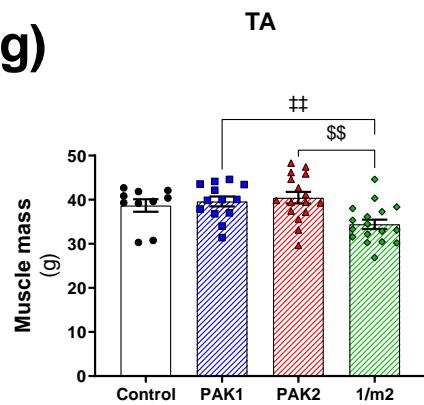
Figure 2

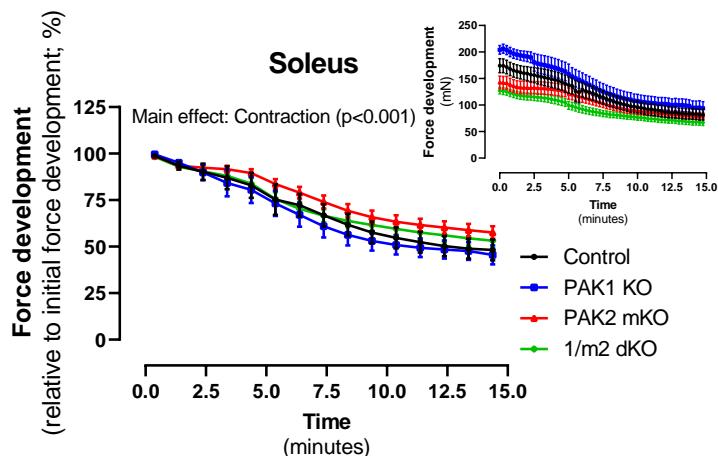

(a)

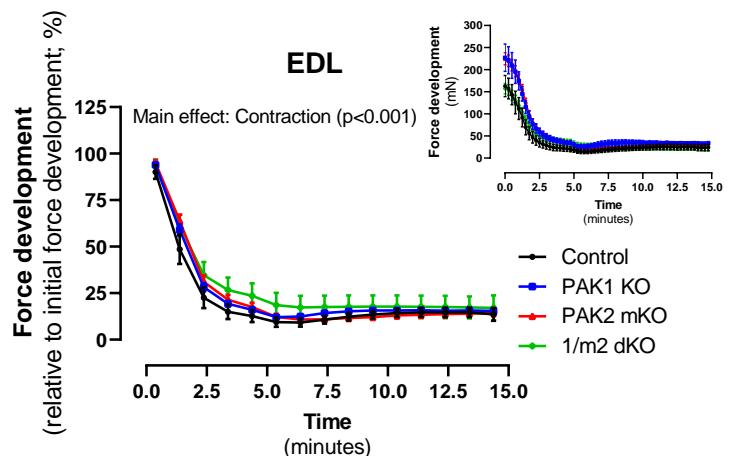

(b)


(c)

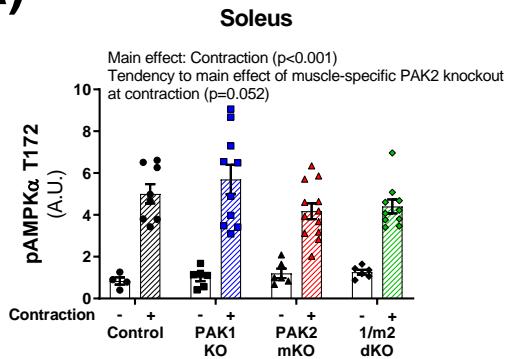

(d)


(e)


(f)


(g)

(h)



(i)

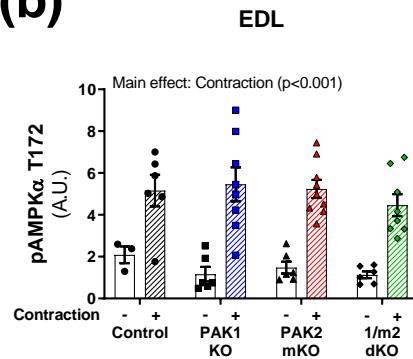
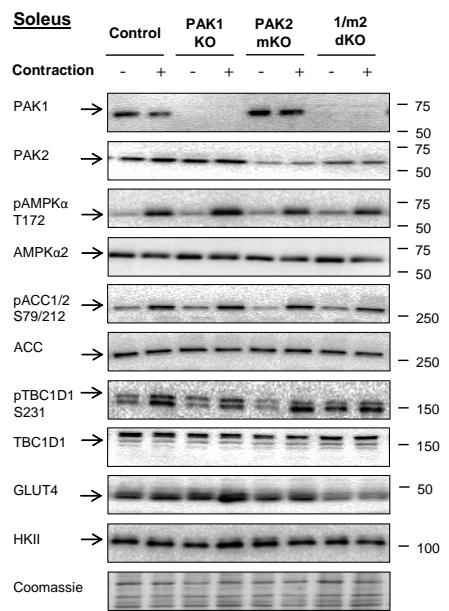
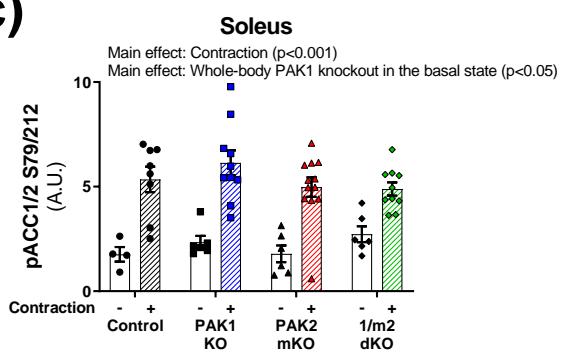
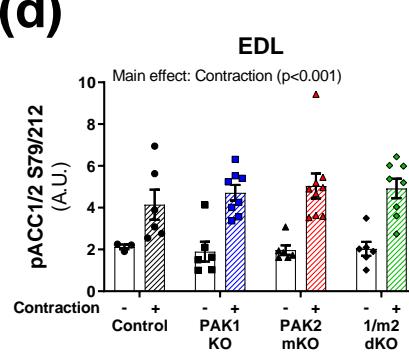
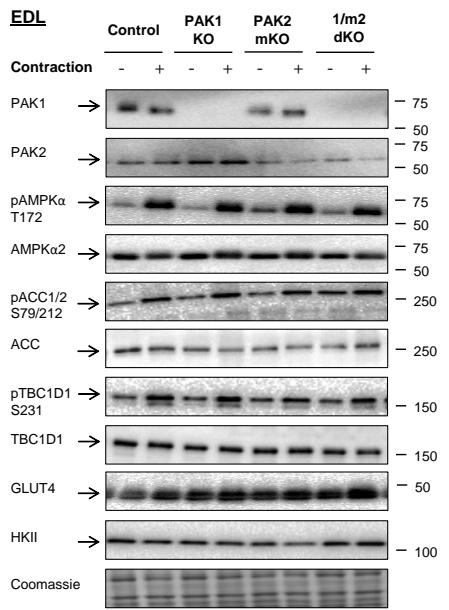


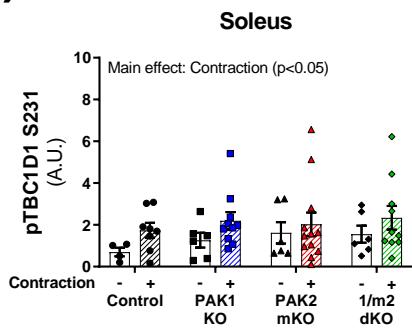
Figure 3

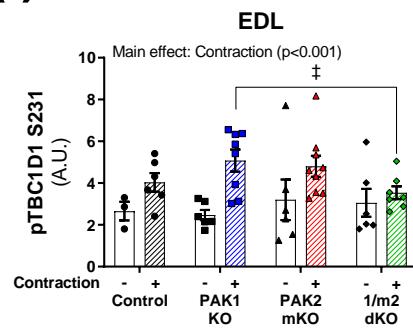

(a)

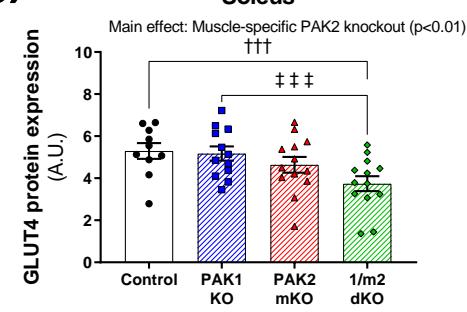

(b)

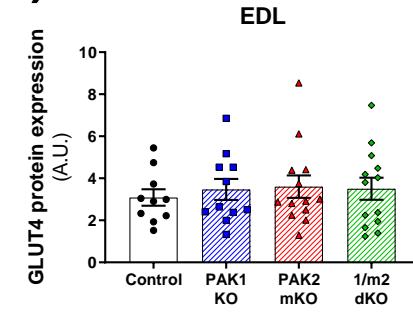

(k)

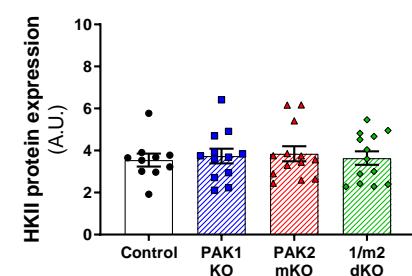

(c)

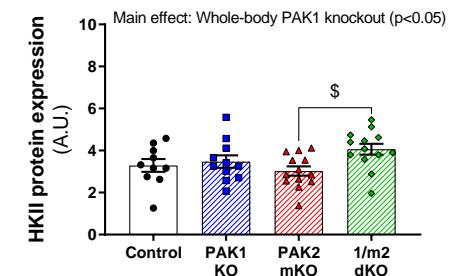

(d)


(l)


(e)


(f)


(g)


(h)

(i)

(j)

