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1 Abdract

2 Many methods for rare variant association studies require permutations to assess the significance of
3  tedts. Standard permutations assume that all individuals are exchangeable and do not take population
4  dratification (PS), a known confounding factor in genetic studies, into account. We propose a novel
5 strategy, LocPerm, in which individuas are permuted only with their closest ancestry-based
6 neighbors. We performed a simulation study, focusing on small samples, to evauate and compare
7  LocPerm with standard permutations and classical adjustment on first principal components. Under
8 the null hypothesis, LocPerm was the only method providing an acceptable type | error, regardless of
9 sample size and level of dratification. The power of LocPerm was similar to that of standard
10  permutation in the absence of PS, and remained gtable in different PS scenarios. We conclude that
11 LocPerm is a method of choice for taking PS and/or small sample size into account in rare variant

12 association studies.
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14 I ntroduction

15  Population sratification (PS) is a classic confounding factor in genetic association studies of common
16  variants (1). It also affects association studies involving rare variants in the context of next-generation
17  sequencing (NGS) analyses (2—4). Principal component analysis (PCA) is the most widely used
18  approach to correction for dratification. The use of principal components (PCs) computed from
19 common variants as covariates in a regression framework to test for association has been widely
20 investigated (1,5,6). This strategy provides a satisfactory correction in a number of settings, but is
21 subject to several limitations, particularly in cases of complex population structure (4,7). In addition,
22 the regression framework implicitly assumes an asymptotic distribution of the test datistics, which is
23 rarely achieved when sample size is small (8), and few studies of PC-based correction in this context

24 have been published (9).

25  Permutation methods (particularly the derivation of an empiric distribution by the random permutation
26 of phenotype labels) are classically used in strategies for deriving p-values from a test statistic with a
27  probability distribution that is unknown or from which it is difficult to sample (10). However, this
28  approach assumes that all individuals are equally interchangeable under the null hypothesis, an
29  assumption that is not valid in the presence of PS (11). When ancestry is known, it is reasonable to
30 ensure that permutations result exclusively in the exchange of individuals of the same ancestry, but
31 thisinformationisrarely available in practice. We investigated the impact of PS on association studies
32 based on NGS data in the context of limited sample sizes, a situation frequently observed in rare
33  disorders. We propose a new method, LocPerm, based on population-adapted permutation and taking
34  into account the genetic distance between individuals. We describe a detailed analysis of its properties

35  withrespect to PC adjustment and standard permutation.
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37 M aterialsand methods

38  We propose a new approach, LocPerm, in which permutation is restricted such that each individual
39  can be exchanged only with one of its nearest neighbors in terms of a PC-based genetic distance
40  (Supplementary note). Here, we focused on a binary phenotype and the cohort allelic sum test (CAST)
41  approach (12) implemented in a logistic regression framework, using the likelihood ratio test (LRT)
42  datistic. The LocPerm p-value can be caculated by either the usual full empiric (FE) approach (in
43 which the p-value is equal to the number of permutation samples with atest statistic as extreme as that
44  observed, divided by the total number of permutation samples), or a semi-empiric (SE) approach. In
45  the SE approach, a limited number of permuted statistics are used to estimate the mean (m) and
46  standard deviation (o) of the test statistic under the null hypothesis, and the p-value is calculated from

47  the N(m, o?) distribution (Supplementary note).

48  We performed a simulation study based on real NGS data, to assess the type | error and power of the
49  LocPerm procedure in the context of small sample sizes. We compared LocPerm to the asymptotic
50 CAST approach with (CAST-3PC) and without (CAST) inclusion of the three principal components
51  (PCs) in the regression model, and to standard permutations applied to CAST. We extracted 1,523
52  individuals — 745 of Southern European ancestry, 651 of Central European ancestry and 127 of
53  Northern European ancestry (eFigurel) — from our in-house HGID (Human Genetic of Infectious
54  Diseases) whole-exome sequencing dataset and the public 1000 Genomes Phase 3 whole-genome
55  sequencing dataset (Supplementary note). Under the null hypothesis, cases and controls were
56 randomly drawn from the source population according to three PS scenarios (absence of PS,
57  intermediate and extreme stratification, supplementary note). For power analysis, we selected one gene
58  with a cumulative frequency of rare variants of 6.2%, for which we simulated a binary phenotype in
59  the source population, assuming arelative risk of the disease of 4 for individuals carrying at least one
60 rarevariant. We then conducted a sensitivity analysis to investigate the effect on the type | error of the

61  number of neighborsin the LocPerm procedure.
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62 Results

63  Theresults of the simulation study under the null hypothesis (Ho) for the three stratification scenarios
64  and various sample sizes are shown in Table 1 (for a=0.01) and eTable 1 (for a=0.05). In the absence
65  of PS, methods based on test statistics following an asymptotic distribution (CAST and CAST-3PC)
66  had inflated type | errors for small sample sizes. Stronger inflation was observed for CAST-3PC than
67 for CAST (eg. type | error=0.0124 vs. 0.0114 at a=0.01 for samples of 30 cases and 180 controls).
68  Methods based on permutation (standard and LocPerm) gave correct type | errors. In the presence of
69 PS, the strongest type | error inflation was observed for CAST. The addition of the first three PCsto
70  the model took PS into account only partially. Inflated type | errors were also observed for standard
71  permutations in the presence of PS. Type | error inflation increased with the degree of PS and with
72  sample size for CAST and standard permutation, whereas small sample size appeared to be the main
73 source of inflation for CAST-3PC. The LocPerm procedures (FE and SE) provided type | errors close
74 to the expected o threshold across all sample sizes and PS scenarios, despite being dlightly

75  conservative in the presence of extreme stratification, particularly for LocPerm-SE.

76  We further investigated the sensitivity of the LocPerm procedure to the number of neighbors under Ho
77  (Figure 2). With an o threshold of 0.01, the type | error of the LocPerm procedure remained stable
78  over awide range of numbers of neighbors (from 20 to 170 for atotal sample of 210 individuals), and
79  the use of 30 neighbors appeared to be a reasonable choice. The results of the simulation study under
80 thealternative hypothesis are shown in Figure 1 for methods providing anon-inflated type | error rate
81 (i.e. standard permutation in the absence of stratification and LocPerm-SE and LocPerm-FE with and
82  without sratification). In the absence of dratification, a similar power was achieved for standard
83  permutation, LocPerm-FE and LocPerm-SE (43%, 42% and 42% at a=0.01 for standard permutation,
84  LocPerm-FE and LocPerm-SE, respectively). In the presence of extreme stratification, the power of
85  LocPerm-FE was well conserved, whereas that of LocPerm-SE decreased slightly, consistent with its

86  conservativetype |l error ratein this scenario.
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87 Discussion

88  Theinclusion of the first few PCs in the association model is a popular strategy for taking population
89  dructure into account. However, it is suitable only for methods implemented in a regression
90 framework and requires large sample sizes. We found that, in small samples, inclusion of the firs
91 three PCs in CAST failed to control the type | error in the presence of PS. In situations in which
92  permutations were required, the LocPerm procedure proposed here took PS into account effectively,
93  with no significant power loss relative to other methods in the absence of PS. The SE approximation
94  peformed well in al scenarios, being only dightly conservative in the context of extreme PS and
95 reducing the computational cost by a factor 10 relative to the FE approach. We did not include
96  adaptive permutation (13), in which the number of permutation samples decreases as the observed p-
97  vaueincreases, in our comparison. However, we would expect the SE approximation to be faster than
98  adaptive permutation because it requires only 500 permutation samples, whatever the observed p-

99  value.

100 A permutation approach handling PS was proposed in a previous study (14). The odds of disease
101  conditional on covariates were estimated under a null model of no genetic association, and individual
102  phenotypes were resampled, using these disease probabilities as individual weights, to obtain
103  permuted data with a similar PS. However, subsequent studies showed that this procedure was less
104  efficient than regular PC correction for dealing with fine-scale population structure (15). We show
105  here that LocPerm, which uses the first 10 PCs weighted by their eigenvalues to compute a genetic
106  distance matrix, handles complex and extreme PS more effectively than the standard PC-based
107  correction approach, particularly in the context of small sample size. We focused here on binary traits
108 and the CAST approach, but it should be straightforward to extend the LocPerm approach to
109  quantitative traits and other rare variant association tests, particularly for adaptive burden tests

110  requiring permutations.
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Figurelegends

Figure 1. Power a 1% significance level for different PS scenarios, permutation procedures and

number of cases and controls in the sample

Figure 2: Influence of the number of neighbors for the generation of local permutation (x axis) on

type | error (y axis) for the scenario with 30 cases and 180 controls.

The situation with 210 neighbors corresponds to standard permutation.
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176  Tablel. Typel error ratesof the different approaches and stratification scenarios at a nominal alphalevel of 1% . Typel error rates above the upper

177  bound of the 95% prediction interval in bold.

Stratification N cases Ncontrols N genes* CAST CAST-3PC Std. Perm LocPerm FE LocPerm SE
30 60 136932 1.09 1.32 0.97 0.96 1.06
30 120 186513 12 137 0.99 0.97 0.98
30 180 210287 114 124 0.96 0.98 0.94
60 60 167621 1.06 125 1 1 1.02
Absence 60 120 200883 1.08 12 0.98 0.99 1.02
60 180 217518 114 1.26 0.96 0.99 1.03
120 120 217319 1.05 1.16 1 1.02 1.04
120 180 227650 1.02 111 0.97 1 1
381 1142 265365 1.02 1.04 1 0.98 0.97
30 60 135896 152 143 13 0.99 0.99
30 120 187282 1.62 141 1.33 1.01 0.93
30 180 210510 1.48 1.28 1.29 0.94 0.84
60 60 166912 158 117 1.45 0.97 0.92
Intermediate 60 120 200578 1.74 124 1.58 0.98 0.94
60 180 217720 1.87 123 161 0.92 0.89
120 120 218007 2 112 191 0.98 0.9
120 180 228317 217 1.08 2.05 0.93 0.85
381 1142 265365 2.09 113 2.04 1.03 0.9
30 60 135054 157 153 1.37 0.87 0.74
30 120 187267 176 1.63 147 0.92 0.78
30 180 210373 1.68 154 147 0.98 0.81
60 60 167433 174 12 1.64 0.81 0.63
60 120 201217 197 1.35 1.81 0.9 0.75
60 180 218030 221 141 19 0.87 0.77
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0.88 0.71
0.94 0.79
0.91 0.74

1.09 2.32
12 2.59
14 3.52

246
2.73
3.59

218063
228643
265365

120
180
1142

120
120
381
* N protein coding genes with at least 10 carriers of rare variants over 15 replicates
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