

1 **Prophylactic and therapeutic HBV vaccination by an HBs-expressing**
2 **cytomegalovirus vector lacking an interferon antagonist**

3

4 Hongming Huang^{1*}, Meike Rückborn^{2*}, Vu Thuy Khanh Le-Trilling², Dan Zhu¹,
5 Shangqing Yang¹, Wenqing Zhou¹, Xuecheng Yang¹, Xuemei Feng¹, Yinping Lu¹,
6 Mengji Lu², Ulf Dittmer², Dongliang Yang¹, Mirko Trilling^{2#}, Jia Liu^{1#}

7

8 *¹ Department of Infectious Diseases, Union Hospital, Tongji Medical College,*
9 *Huazhong University of Science and Technology, Wuhan 430022, China*

10 *² Institute for Virology, University Hospital of Essen, University of Duisburg-Essen,*
11 *Essen 45147, Germany*

12

13 * # These authors contributed equally to this article.

14

15 **Correspondence to:**

16 Prof. Dr. Jia Liu, e-mail: jiali77@hust.edu.cn

17 Tel: +8618696159826

18 Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong
19 University of Science and Technology, Wuhan 430022, China

20

21 Prof. Dr. Mirko Trilling, e-mail: mirko.trilling@uk-essen.de

22 Tel.: +49020172383830

23 Institute for Virology, University Hospital of Essen, University of Duisburg-Essen,
24 Essen 45147, Germany

25

26 **Financial support:**

27 This work was supported by the National Natural Science Foundation of China
28 (81861138044 and 91742114), the National Scientific and Technological Major Project
29 of China (2017ZX10202203), and the Sino-German Virtual Institute for Viral
30 Immunology. MT received funding from the Deutsche Forschungsgemeinschaft (DFG)
31 through RTG1949 (project 13), TR1208/1-1, and TR1208/2-1. MT also received
32 support from the Kulturstiftung Essen.

33

34 **Conflict of interest:**

35 The authors disclose no conflicts of interest.

36

37 **Authors contributions:**

38 Conceived and designed the experiments: LVTK, UD, ML, MT, JL. Performed the
39 experiments :HH, MR, XY, XF, DZ, SY, WZ, LVTK, JL. Analyzed and interpreted the
40 data: HH, MR, LVTK, MT, JL. Contributed reagents/materials/analysis tools: DY, YL,
41 JL. Drafted the manuscript: HH, MR, MT, JL.

42

43 **Keywords:** hepatitis B virus, cytomegalovirus, vaccine, HBsAg, interferon, STAT2
44 antagonist

45

46 **ABSTRACT**

47 Cytomegalovirus (CMV)-based vaccines show promising effects against chronic
48 infections in non-human primates. Therefore, we examined the potential of HBV
49 vaccines based on mouse CMV (MCMV) vectors expressing the small HBsAg.
50 Immunological consequences of vaccine virus attenuation were addressed by either
51 replacing the dispensable gene *m157* ('MCMV-HBs') or the gene *M27* ('ΔM27-HBs'),
52 the latter encodes a potent interferon antagonist targeting the transcription factor
53 STAT2. *M27* was chosen, since human cytomegalovirus (HCMV) encodes an
54 analogous gene product, which also induced proteasomal STAT2 degradation by
55 exploiting Cullin RING ubiquitin ligases. Vaccinated mice were challenged with HBV
56 through hydrodynamic injection. MCMV-HBs and ΔM27-HBs vaccination achieved
57 accelerated HBV clearance in serum and liver as well as robust HBV-specific CD8+ T
58 cell responses. When we explored the therapeutic potential of MCMV-based vaccines,
59 especially the combination of ΔM27-HBs prime and DNA boost vaccination resulted
60 in increased intrahepatic HBs-specific CD8+ T cell responses and HBV clearance in
61 persistently infected mice. Our results demonstrated that vaccines based on a replication
62 competent MCMV attenuated through the deletion of an interferon antagonist targeting
63 STAT2 elicit robust anti-HBV immune responses and mediate HBV clearance in mice
64 in prophylactic and therapeutic immunization regimes.

65

66 INTRODUCTION

67 More than 2 billion individuals have been infected with hepatitis B virus (HBV)
68 worldwide. The prophylactic HBV vaccine is a tremendous medical success, which
69 saved countless lives. However, due to its inability to confer therapeutic protection,
70 chronic HBV infections remain a major public health issue affecting approximately 250
71 million individuals (1). Persisting HBV predisposes to end-stage liver diseases, such as
72 liver cirrhosis and hepatocellular carcinoma. According to the WHO, HBV is
73 responsible for more than 850,000 deaths per year (<https://www.who.int/news-room/fact-sheets/detail/hepatitis-b>) (2). Two types of antiviral strategies are currently
74 available for chronic hepatitis B (CHB): PEGylated interferon alpha 2 (PEG-IFN α 2)
75 and nucleot(s)ide analogues (NUC), such as Entecavir and Tenofovir. However, both
76 are suboptimal. The treatment with PEG-IFN α 2 is associated with significant side
77 effects (e.g., flu-like symptoms, mood disorders, and depression), and long-term virus
78 clearance is limited to approximately one third of treated patients (3). NUC medication
79 selects for viral resistance mutations and is hampered by frequent episodes of
80 rebounding viremia after cessation of antiviral therapy (4). Therefore, alternative
81 strategies for the treatment of chronic HBV infection are urgently needed.

83 The clearance of HBV by the immune system relies on a potent and broad T cell
84 immune response, which usually becomes dysregulated during chronic HBV infection
85 (5-7). This exhaustion of HBV-specific T cells is believed to be one major reason for
86 the inability of the host to eliminate the persisting pathogen. Aiming to enhance the
87 patient's own antiviral cellular immune response by therapeutic vaccination, is
88 considered a promising strategy. During the last two decades, countless attempts have
89 been made to establish an effective therapeutic vaccine against CHB (8). For example,
90 existing protein-based prophylactic vaccines have been given to chronically infected

91 patients in order to restore HBV-specific immunity. Unfortunately, it turned out to be
92 unsuccessful (9, 10). An antigen-antibody (HBsAg-HBIG) immune complex termed
93 YIC initially showed promising results in preclinical models and in phases IIA and IIB
94 clinical trials (11, 12). However, the results of a phase III clinical trial enrolling 450
95 patients were disappointing (13). A number of DNA-based vaccine regimens have
96 shown promising efficacy in pre-clinical animal models, but also failed to generate
97 effective therapeutic responses in humans (8, 14). Therefore, replicating virus-based
98 vectors, which stimulate a broad range of immune responses including T cell-mediated
99 immunity, gained increasing attention in the field of therapeutic HBV vaccine
100 development. In particular, vectors based on adenoviruses (15), modified vaccinia virus
101 Ankara (MVA) (16), and recombinant vesicular stomatitis virus (VSV) (17) are under
102 investigation for treatment of CHB.

103 Recently, cytomegalovirus (CMV)-based vectors emerged as exciting platform for
104 vaccines against infectious diseases and cancer (18). Rhesus CMV (RhCMV)-based
105 vaccines provided protective immunity to rhesus macaques against simian
106 immunodeficiency virus (SIV), ebolavirus (19), and tuberculosis (20). In successfully
107 RhCMV-vaccinated animals, even a CD8+ T cell depletion did not result in detectable
108 SIV rebound, indicating very efficient virus control (21, 22). Vaccination with RhCMV
109 vectors elicits robust and long-lasting cellular immune responses against pathogens
110 mediated by effector-memory CD8+ T cells (23). Importantly, RhCMV-based vaccines
111 demonstrated their efficacy even in the presence of preexisting immunity against CMV
112 (24). These findings prompted us to evaluate the potential of CMV as platform for
113 prophylactic and therapeutic vaccines against CHB in the established HBV
114 hydrodynamic injection (HDI) mouse model. Our recent findings indicate that the
115 interferon (IFN) antagonism of CMVs relies on viral proteins targeting the transcription

116 factor STAT2 for proteasomal degradation by exploiting the adapter protein DDB1 and
117 cellular Cullin RING ubiquitin ligases(25-27). Virus mutants lacking these immune
118 evasins are replication competent but highly attenuated *in vivo*(28). The protein pM27
119 mediates STAT2 degradation in the MCMV context, while HCMV encodes the protein
120 pUL145 which acts as a functional analog of pM27 (Le-Trilling & Becker *et al.*,
121 *provisionally accepted*). The proteins pM27 and pUL145 share a functionally relevant
122 H-box motif present in viral and cellular DDB1 Cullin-associated factors (DCAF).
123 Based on these findings, we reasoned that the attenuation of CMVs through the loss of
124 STAT2 antagonists may represent a promising approach to establish novel platforms
125 for the vaccination against viruses such as HBV.

126

127 **RESULTS**

128 **Construction and characterization of a recombinant MCMV expressing the HBV**
129 **small surface antigen.**

130 In order to evaluate the vaccine performance of CMV-based vaccine vectors in small
131 animal models, we inserted an expression cassette comprising the coding sequence of
132 the small HBsAg (sHBsAg; YP_009173871.1; corresponding to serotype ‘ayw’ HBV
133 genotype D) under the control of the strong eukaryotic EF1 promoter into the mouse
134 CMV (MCMV) genome by site-specific recombination. The expression cassette was
135 introduced into an MCMV bacterial artificial chromosome (BAC) harboring a deletion
136 of the coding sequences (CDS) of *m157* as schematically depicted in Fig. 1A and
137 described in the Methods section. The gene *m157* is dispensable for MCMV replication
138 *in vitro* and *in vivo* (29). To generate a live-attenuated vaccine virus, the expression
139 cassette was also inserted into an MCMV mutant genome lacking the gene coding for
140 the interferon antagonist pM27. The protein M27 interferes with interferon signaling
141 by inducing ubiquitination and proteasomal degradation of STAT2 (26). *M27*-deficient
142 MCMVs (‘ΔM27-Ctrl ’) exhibit a slightly impaired (~10-fold) replication in the
143 absence of exogenous interferon treatment *in vitro*, but are severely attenuated *in*
144 *vivo*(30, 31) in a STAT2-dependent manner (28). Correct mutagenesis was verified and
145 HBsAg expression was confirmed by immunoblotting (Fig. 1B). As expected from
146 previous work(32, 33) and the presence of an N-glycosylation site within the S domain
147 of sHBsAg (Asn-146; sequence NcT), we observed two sHBsAg protein forms (Fig.
148 1B), most likely reflecting the previously described non-glycosylated p24 and the
149 glycosylated gp27. The insertion of sHBsAg did not impair the replication of MCMV
150 in cell culture (Fig. 1C). *In vivo*, we observed a trend towards reduced MCMV
151 replication upon insertion of the sHBsAg expression cassette (Fig. 1D). As expected

152 from our previous work, the deletion of *M27* resulted in a reduced replication *in vitro*
153 (Fig. 1C) and a pronounced attenuation *in vivo* (Fig. 1D). Taken together, we generated
154 two MCMV-based vectors expressing sHBsAg, one of which is severely attenuated *in*
155 *vivo* due to the deletion of the MCMV-encoded STAT2 antagonist *M27*.

156

157 **Vaccination with a recombinant MCMV expressing HBsAg protects mice against**
158 **HBV challenge**

159 We explored the protective effects of MCMV-HBs vaccination against an HBV
160 challenge in the established HBV HDI mouse model. As schematically depicted in Fig.
161 2A, C57BL/6 mice were inoculated twice with MCMV-HBs, and then challenged with
162 an HBV-expressing plasmid through HDI (see the Methods section for experimental
163 details). Since the MCMV infection itself can negatively influence other infections (34)
164 including HBV (35), the parental MCMV ('MCMV') devoid of the HBsAg expression
165 cassette was included as negative control. While mice infected with empty MCMV
166 exhibited continuous HBV viremia, the clearance of serum HBsAg, HBeAg, and HBV
167 DNA was significantly accelerated in mice that received the MCMV-HBs vaccine (Fig.
168 2B). All MCMV-HBs-vaccinated mice became negative for serum HBsAg and HBeAg.
169 Eighty percent of mice even became HBV DNA-negative at 9 days post HDI (dpi),
170 while all control mice remained viremic for HBsAg, HBeAg, and HBV DNA (Fig. 2B
171 and 2C). The MCMV-HBs-vaccinated mice also cleared HBsAg and HBcAg from the
172 liver at 10 dpi, while the control mice expressed high levels of HBsAg and HBcAg, as
173 evident by immune-histochemical staining (Fig. 2D and 2E).

174

175 **Vaccination with a recombinant MCMV expressing HBsAg raises potent CD8+ T**
176 **cell responses**

177 Next, we examined the impact of MCMV-HBs vaccination on immune responses. No
178 anti-HBsAg antibodies were detectable in serum until day 7 after HDI for MCMV-HBs
179 vaccination and day 9 after HDI for wt-MCMV vaccination (data not shown). However,
180 since the HBV challenge is administered in form of a DNA molecule in the HDI mouse
181 model, we reasoned that protection cannot be explained by neutralizing antibodies.
182 Therefore, we focused our attention on T cell responses. We addressed intrahepatic T
183 cell infiltration, activation, and HBV-specific CD8 T cell immune responses. In terms
184 of frequency and absolute numbers, MCMV-HBs-vaccinated mice showed
185 significantly higher CD8+ T cell numbers in the liver, while CD4+ T cells remained
186 largely unaffected (Fig. 3A). A phenotypic analysis revealed that PD-1, but not CD43,
187 expression on CD8+ T cells in the liver of MCMV-HBs-vaccinated mice was
188 significantly increased compared to control mice (Fig. 3B and 3C). Since PD-1 is an
189 activation marker for CD8+ T cells during acute HBV infection (36), this result suggests
190 that MCMV-HBs vaccination enhanced the CD8+ T cell activation in the liver of HBV-
191 challenged mice. In the liver, the MCMV-HBs-vaccinated mice showed a significant
192 increase in absolute numbers and frequencies of CD8+ T cells specific for HBsAg, but
193 not HBcAg, compared to control mice, as indicated by cytometry using Env190- and
194 Core93-dimers, respectively (Fig. 3D and 3E). Accordingly, significantly higher
195 percentages and absolute numbers of CD8 T cells in the livers of MCMV-HBs-
196 vaccinated mice produced IFN γ or IL-2 in response to stimulation with the HBsAg
197 epitope peptide (Env190), but not HBcAg epitope peptide (Core93) (Fig. 3F and 3G),
198 suggesting that MCMV-HBs specifically enhanced HBsAg-specific CD8+ T cell
199 responses.

200

201 **Vaccination with an HBsAg-expressing MCMV attenuated through the deletion**

202 **of the interferon antagonist pM27 protects mice against HBV challenge.**

203 Even if cytomegaloviral vectors may be excellent vectors based on their ability to
204 induce very strong T cell responses against foreign antigens, the use of replication
205 competent HCMV-based vectors in humans is limited by their pathogenicity especially
206 for immunocompromised individuals. One option to circumvent this safety issue is the
207 use of live-attenuated CMV mutants(37), which may be achieved by different means.
208 Therefore, we explored the potential of an HBsAg-expressing MCMV vector, which is
209 replication-competent in cell culture, but highly attenuated *in vivo* due to the inability
210 to counteract STAT2-dependent IFN signaling resulting from the lack of the gene
211 product pM27 (28, 30, 31). C57BL/6 mice were inoculated twice with either empty
212 ΔM27-MCMV ('ΔM27-Ctrl') or ΔM27-MCMV expressing HBsAg, for convenience
213 denoted 'ΔM27-HBs' thereafter, and then challenged with an HBV-expressing plasmid
214 through HDI. We also included PBS-treated mice as negative control to evaluate the
215 protective effect of ΔM27-HBs (Fig. 4A). The clearance of serum HBsAg, HBeAg, and
216 HBV DNA was significantly accelerated in mice vaccinated with ΔM27-HBs as
217 compared to those which received PBS or the empty ΔM27-Ctrl (Fig. 4B and 4C). All
218 ΔM27-HBs-vaccinated mice became serum HBsAg negative at 9 dpi, while the PBS-
219 treated and ΔM27-Ctrl-infected mice remained 100% positive for serum HBsAg at this
220 time point (Fig. 4B). Eighty percent of ΔM27-HBs-vaccinated mice also became
221 HBeAg negative and 60% became serum HBV DNA negative at 9 dpi. In contrast, none
222 of the mice from the PBS-treated or ΔM27-Ctrl-infected control groups cleared HBeAg
223 or HBV DNA (Fig. 4C). The ΔM27-HBs-vaccinated mice were also the only animals
224 that cleared HBsAg and HBcAg from the liver as evident by diminished
225 immunohistochemical staining (Fig. 4D and 4E).

226

227 **Vaccination with an HBsAg-expressing MCMV attenuated through the deletion
228 of the interferon antagonist pM27 induces potent CD8+ T cell responses.**

229 Compared to the PBS-treated control mice, the livers of Δ M27-HBs-vaccinated mice
230 showed significantly higher percentages and absolute numbers of CD8 T cells, but not
231 CD4+ cells (Fig. 5A). Interestingly, the Δ M27-Ctrl-infected mice also showed a
232 significant increase in both percentages and absolute numbers of CD8+ T cells in the
233 liver as compared to PBS-treated control mice (Fig. 5A, right panel), but the effect was
234 more pronounced in Δ M27-HBs-vaccinated mice. Consistent with the above mentioned
235 observation in the MCMV-HBs-vaccinated mice, PD-1 expression on CD8+ T cells in
236 the liver of Δ M27-HBs-vaccinated mice was significantly increased compared to the
237 PBS-treated or Δ M27-Ctrl-infected mice (Fig. 5B). Both Δ M27-Ctrl and Δ M27-HBs
238 led to an increase in absolute numbers of CD43+ CD8+ T cells infiltrating the liver as
239 compared to PBS-treated mice (Fig. 5C). These results suggest that the MCMV
240 infection by itself results in enhanced infiltration of activated CD8+ T cells into the
241 liver. Compared to the controls, the Δ M27-HBs-vaccinated mice showed a significant
242 increase of both absolute numbers and frequencies of HBsAg-specific CD8+ T cells
243 (Fig. 5D).

244 The Core-specific CD8+ T cells were significantly increased in numbers but not in
245 percentages in the liver of Δ M27-HBs vaccinated mice ten days after the challenge (Fig.
246 5E). When C57BL/6 mice were inoculated only once with MCMV-HBs or Δ M27-HBs,
247 mice were also protected against a challenge with an HBV-expressing plasmid applied
248 by HDI 3 weeks later (data not shown). Like in case of the prime-boost vaccination
249 regime, single round vaccination with MCMV-HBs or Δ M27-HBs induced enhanced
250 intrahepatic anti-HBV CD8+ T cell responses *in vivo* (data not shown).

251 Significantly higher percentages and absolute numbers of CD8+ T cells in the livers of

252 ΔM27-HBs-vaccinated mice produced IFN γ in response to stimulation with the Env190
253 peptide than stimulated cells from the control groups (Fig. 5F). Additionally, the
254 absolute numbers of IL-2-producing CD8+ T cells in the liver of ΔM27-HBs-
255 vaccinated mice were also significantly increased in response to both Env190 and
256 Core93 peptide stimulations (Fig. 5G).

257 Taken together, these results demonstrate that an HBsAg vaccination based on an
258 MCMV vector incapable to interfere with STAT2-dependent IFN signaling enhances
259 intrahepatic anti-HBV CD8 T cell responses *in vivo* and prophylactically protects mice
260 against HBV challenges.

261

262 **MCMV-based HBsAg vaccination accelerates HBV clearance and enhances
263 intrahepatic anti-HBV CD8 T cell responses in HBV persistent mice.**

264 After these promising results in prophylactic vaccination regimens, we examined the
265 therapeutic capacity of MCMV-based HBsAg vaccination for the treatment of a
266 previously established persistent HBV infection. The efficacy of MCMV-based HBV
267 vaccine vectors was investigated by applying the established pAAV/HBV1.2 HDI
268 mouse model, which mimics persistent HBV infections in humans (38). C57BL/6 mice
269 were hydrodynamically injected with pAAV/HBV1.2. We chose a strategy, which
270 combines an MCMV-based priming with a DNA-based booster immunization. The
271 experimental setup is depicted in Fig. 6A. Treatment with MCMV-HBs prime and DNA
272 boost resulted in a substantial reduction in HBsAg and HBV DNA levels in the serum
273 (Fig. 6B and 6C). Eighty percent of MCMV-HBs-vaccinated mice became serum
274 HBsAg negative and 60% became HBV DNA negative at 42 dpi. In contrast, only 20%
275 of the wt-MCMV-infected control mice became serum HBsAg negative and none
276 cleared the HBV DNA viremia (Fig. 6B and 6C). The MCMV-HBs-vaccinated mice

277 also cleared HBsAg and HBcAg from the liver at 43 dpi, while the wt-MCMV-infected
278 control mice still harbored high levels of HBsAg and HBcAg in the liver (Fig. 6D and
279 6E).

280 Next, we examined the impact of MCMV-HBs vaccination on the intrahepatic anti-
281 HBV CTL response. The percentages and absolute numbers of HBsAg-specific CD8 T
282 cells were significantly increased in the liver of MCMV-HBs-vaccinated mice as
283 compared to mice, which received the empty wt-MCMV (Fig. 6F). Moreover,
284 significantly higher percentages and absolute numbers of liver CD8+ T cells of
285 MCMV-HBs-vaccinated mice were capable of producing IFN γ and TNF α in response
286 to Env190 peptide stimulation than cells derived from control treated mice (Fig. 6G).

287 The same experimental setup was also applied to explore the therapeutic effect of
288 Δ M27-HBs for the treatment of already-established persistent HBV replication (Fig.
289 7A). Interestingly, the attenuated Δ M27-HBs demonstrated even superior effects on
290 accelerating HBV clearance than the more virulent and higher titer replicating MCMV-
291 HBs in the HBV persistent pAAV/HBV1.2 HDI mouse model. All Δ M27-HBs-
292 vaccinated mice became serum HBsAg and HBV DNA negative at 42 dpi, while the
293 Δ M27-Ctrl-infected and PBS-treated mice remained 100% positive for serum HBsAg
294 and HBV DNA at the time point (Fig. 7B and 7C). The Δ M27-HBs-vaccinated mice
295 also cleared HBsAg and HBcAg from the liver at 43 dpi, while mice from the three
296 control groups exhibited high levels of HBsAg and HBcAg in liver sections (Fig. 7D
297 and 7E). Accordingly, Δ M27-HBs vaccination resulted in significantly increased
298 infiltration of HBsAg-specific CD8+ T cells in the liver as compared to PBS treatment
299 and Δ M27-Ctrl infection (Fig. 7F). Significantly higher percentages and absolute
300 numbers of liver CD8+ T cells of Δ M27-HBs-vaccinated mice were capable of

301 producing IFN γ in response to Env190 peptide stimulation than cells of control mice
302 (Fig. 7G).

303 Taken together, our results suggest that HBsAg expression by an MCMV-based vector
304 attenuated through the loss of the STAT2-specific IFN antagonist pM27 combined with
305 a plasmid-based booster immunization could overcome HBV-specific CD8+ T cell
306 dysfunction and induce HBV clearance in mice that previously established a persistent
307 infection.

309 **DISCUSSION**

310 HCMV is a betaherpesvirus that usually causes subclinical infections in healthy adults.
311 However, HCMV elicits and sustains extraordinarily high numbers of antigen-specific
312 T cells and is emerging as an exciting platform for vaccines against infectious diseases
313 and cancers. To our knowledge, CMV-based vaccines against HBV have not been
314 reported so far. Colleagues previously constructed an HBsAg-expressing MCMV (39),
315 but seemingly did not approach the immunogenicity or vaccine potential. In the current
316 study, we constructed two different recombinant MCMV vectors expressing HBsAg
317 and explored their ability to induce HBV-specific CD8+ T cell responses and to inhibit
318 HBV replication in HBV HDI mouse models. Our findings reveal that vaccination with
319 the virulent MCMV-HBs and the attenuated ΔM27-HBs provided protection to mice
320 against HBV challenges. The vaccinated mice quickly cleared HBV antigens and DNA
321 from the serum and the liver, and generated robust intrahepatic HBsAg-specific CD8 T
322 cell responses. Importantly, MCMV prime DNA boost vaccination strategies based on
323 both recombinant MCMVs could even break HBsAg tolerance, elicit intrahepatic anti-
324 HBV CD8+ T cell responses and lead to viral clearance in the serum and liver in
325 persistently HBV-infected mice, suggesting that CMV-based vaccines possess
326 therapeutic potential for treatment of chronic HBV infection in patients. In this respect,
327 HCMV mutants lacking the pM27 analogous STAT2 antagonist pUL145 may
328 constitute interesting candidates for live-attenuated vaccine platforms.
329 Prophylactic HBV vaccines that are currently in use rely on the induction of humoral
330 immune responses against HBsAg, and thus neutralize infectious HBV particles before
331 viral entry into hepatocytes. While antibodies are indispensable for prophylactic
332 vaccination against HBV, this immune mechanism alone is most likely insufficient to
333 eliminate HBV-infected cells in case vaccines are applied therapeutically, as indicated

334 by the failures of approved prophylactic vaccines in therapeutic vaccination attempts.

335 This assumption is consistent with our finding that the prophylactic HBV vaccine

336 Engerix-B showed no protective effects in the acute HBV HDI mouse model (data not

337 shown). However, this model is particularly biased against neutralizing antibodies since

338 they are bypassed by unpackaged HBV genomes during direct transfection into

339 hepatocytes through HDI. In case of a previously established infection, a potent cellular

340 immune response mainly based on CD8+ T cells is essential for the elimination of

341 infected cells (40). CMV infection causes an extraordinary strong T cell response. It

342 has been estimated that CMV-specific T cell populations comprise an average 10% of

343 the memory CD8+ T lymphocytes of infected individuals (41). In some cases, even up

344 to 50% of all CD8+ T cells recognize a single epitope derived from the HCMV antigen

345 pp65/pUL83 (42). Certain CMV-induced CD8+ T cell responses even show a so-called

346 memory inflation, which means that their frequency continuously increases over time

347 (43, 44). These inflationary CD8+ T cells are maintained as effector or effector-memory

348 T cells, retaining the ability to produce inflammatory cytokines and to kill target cells

349 (45, 46). In line with these reports, our findings demonstrate that vaccination with

350 MCMV vectors induced significantly increased numbers of

351 activated HBsAg-specific CD8+ T cells infiltrating the livers of HBV-infected mice.

352 These cells were capable of producing antiviral cytokines and led to accelerated HBV

353 clearance. Interestingly, control MCMVs also induced increased infiltration of

354 activated total, but not HBV-specific, CD8+ T cells in the liver. Since MCMV replicates

355 efficiently in primary hepatocytes *in vitro* (see e.g., (47)) and the liver *in vivo* (see e.g.,

356 (28)), these results most likely reflect the effector nature of CMV in activating T cells

357 and eliciting robust T cell responses against endogenous antigens. Such MCMV-

358 specific T cell responses may explain why MCMV-HBs increases the absolute number

359 of core-specific CD8+ T cells, but not the frequency (Fig. 5E). In addition, CMV
360 possesses other features favorable for a vaccine vector. Firstly, HCMV can superinfect
361 pre-immune hosts (23, 48). Thus, CMV-based vaccines may be applicable regardless
362 of preexisting immune responses raised by naturally acquired CMVs, which would be
363 favorable due to the high sero-prevalence of HCMV in countries with high incidences
364 of CHB. Secondly, the large genome of CMVs allows CMV to take up large segments
365 of foreign DNA at several different genomic loci. Another advantage might be the
366 prolonged period of productive CMV replication, which can last several month in case
367 of MCMV in mice (49), resulting in continuous antigen expression. The ability of
368 herpesviruses to reactivate locally and spontaneously (50), leading to sequential rounds
369 of immune stimulation, might further enhance potent immunogenicity.

370 Although most primary and recurrent HCMV infections progress subclinically in
371 healthy adults, severe cases do occur (51). Additionally, HCMV causes morbidity and
372 mortality in immune-immature, immune-compromised and immune-senescent
373 individuals. Therefore, it is hard to envisage that authorities such as the FDA would
374 approve vaccines based on virulent HCMVs. Thus, it will be necessary to increase the
375 safety by attenuation. One appealing strategy for the generation of immunogenic and
376 safe vaccines is the use of mutants lacking immune antagonists. Such viruses are by
377 definition attenuated and therefore less likely to cause disease. Due to the inability to
378 counteract a given aspect of immunity, such vectors may even induce superior immune
379 responses. Here, we evaluated the effect of the lack the IFN antagonist pM27. Δ M27-
380 MCMV is replication competent *in vitro* in the absence of IFN treatment but highly
381 attenuated *in vivo* (28, 30, 31). Interestingly, the vaccination with the attenuated Δ M27-
382 HBs showed superior protection compared to MCMV-HBs in terms of breaking the
383 HBV tolerance in HBV persistent mice. Thus, the residual and temporary replication of

384 the attenuated Δ M27-HBs vaccine generated sufficient numbers of HBsAg-specific
385 CD8+ T cells to protect mice from the HBV challenge. Interferons stimulate the
386 expression of several proteins involved in antigen processing and MHC presentation
387 (see e.g., (52)). In conjunction with TCR activation and co-stimulatory molecules, IFNs
388 can also serve as third signal for T cell activation (53). Thus, it is tempting to speculate
389 that the inability of the MCMV vector to counteract STAT2-dependent IFN signaling
390 is beneficial in terms of raising HBsAg-specific CD8 responses.

391 Altogether, our data corroborate the concept that CMV-based vectors are promising
392 candidates for the development of new therapeutic vaccines for CHB treatment. The
393 results of our study warrant more detailed investigations of HCMV-based vaccines to
394 induce protective CD8 T cell responses against chronic HBV infection in patients.

395

396 **METHODS**

397 **Genetic engineering of MCMV vaccine vectors**

398 MCMV vectors were constructed by bacterial artificial chromosome (BAC) technology
399 as described (54, 55). The coding sequence of the sHBsAg was amplified by PCR using
400 the following primers, which introduce a C-terminal HA tag and harbour flanking
401 restriction sites: MR-*Nhe*I-sHBsAg-fw (5'-tat *gct agc* atg gag aac atc aca tca gga ttc c-
402 3') and MR-sHBsAgHA-*Xho*I-rev (5'-ata *ctc gag* tta agc gta atc tgg aac atc gta tgg gta
403 aat gta tac cca aag aca aaa gaa aat tgg-3'). The PCR product was cloned into the
404 insertion plasmid pFRTZ-hEF1. The resulting pFRTZ-hEF1-sHBsAgHA harbours the
405 HA-tagged sHBsAg gene under the control of the human elongation factor-1 α (hEF1)
406 promoter. Correct cloning was verified by restriction fragment analysis and sequencing
407 (data not shown). pFRTZ-hEF1-sHBsAg was cleaved by *Xba*I which cleaves the two
408 *frt* sites flanking the expression cassette and the *Zeo*^R gene. This fragment was religated,
409 giving rise to a circular DNA element harbouring one *frt* site, the *Zeo*^R gene, and hEF1-
410 sHBsAg, but lacking the plasmid backbone. The element was introduced into the *MCK*-
411 2 repaired MCMV-BACs (56) either harbouring an *frt* site instead of the gene *m157* or
412 *M27* (28) by FLP-mediated homologous recombination in *E. coli* DH10B using the
413 FLP-expressing plasmid pCP20. Correct mutagenesis was confirmed by restriction
414 digest analysis, Southern blot and PCR analysis (data not shown). MCMV mutants were
415 reconstituted by transfection of BAC DNA into permissive mouse newborn cells (57).

416

417 **Western Blot Analysis**

418 Western blotting was performed as described previously (58) using the following
419 antibodies: α - β -actin, α -HA (both from Sigma-Aldrich) and α -pp89-IE1 (CROMA101,
420 generously provided by Stipan Jonjić, Rijeka, Croatia). Proteins were visualized using

421 peroxidase-coupled secondary antibodies and an enhanced chemiluminescence system
422 (Cell Signaling Technology).

423

424 **Mouse newborn cells (MNC)**

425 MNC were prepared as described previously (57). In all experiments, MNC were used
426 in passage 3. Cell culture media and supplements were obtained from Gibco/Life
427 technologies and HyClone (Logan, UT). MNCs were used to propagate the MCMV
428 viruses.

429

430 **MCMV propagation, titration, and replication analysis**

431 MCMV stocks were generated as described (59). *In vitro* infections and titrations were
432 enhanced by centrifugation (900g for 30 min). For the *in vivo* MCMV replication
433 analysis, mice were infected intraperitoneally (i. p.). Organs of infected mice were
434 harvested, snap-frozen in liquid nitrogen, and stored at -80°C until titration was
435 performed.

436

437 **Mice**

438 Male, 6- to 8-week-old wild-type C57BL/6J mice and timed pregnant 10- to 20-week-
439 old female mice were purchased from Hunan Slack King Laboratory Animal Co., Ltd.
440 (Changsha, China) and housed under specific pathogen-free (SPF) conditions in the
441 Animal Care Center of Tongji Medical College or obtained from Charles River or
442 Harlan and housed in the animal facility of the Institute for Virology of the University
443 Hospital Essen. Timed pregnant 10- to 20-week-old female mice were used for
444 generation of mouse newborn cells (MNC). Mice were sacrificed on the indicated days

445 after vaccination and livers were harvested for analysis by IHC and flow cytometry.
446 Procedures in Essen were conducted in accordance with regulations of the European
447 Union and with permission of local authorities (the Landesamt für Natur, Umwelt, und
448 Verbraucherschutz) in North Rhine Westphalia, Germany (permit numbers 84-
449 02.04.2014.A390 & 84-02.04.2013.A414).

450

451 **Intraperitoneal injection in mice**

452 Intraperitoneal injection in mice was performed using $2*10^5$ tissue culture infective
453 dose affecting 50% of wells (TCID50) 50/ml of recombinant virus in 200 μ L (Δ m157-
454 MCMV ['MCMV'], Δ m157-MCMV: EF1-HBsAg ['MCMV-HBs'], Δ M27-MCMV
455 [' Δ M27-Ctrl'], or Δ M27-MCMV: EF1-HBsAg [' Δ M27-HBs']). Identical volume of
456 phosphate buffered saline (PBS) served as control.

457

458 **Hydrodynamic injection in mice**

459 Hydrodynamic injection was performed as described previously using the replicating
460 HBV plasmids pSM2 (generously provided by Dr. Hans Will, Heinrich-Pette-Institute,
461 Hamburg, Germany) or pAAV/HBV1.2 (generously provided by Professor Pei-Jer
462 Chen, National Taiwan University College of Medicine, Taipei, Taiwan) to establish
463 HBV replication in mice (60-62). In brief, male mice (6 to 8 weeks of age) were injected
464 with 10 μ g pSM2 or AAV/HBV1.2 in a volume of normal saline solution equivalent to
465 0.1 ml/g of the mouse body weight through the tail vein within 8 seconds (63, 64).

466

467 **Detection of serological HBV markers**

468 Sera were prepared from blood collected at the indicated time points from the retro-
469 orbital sinus of mice. Serum levels of HBsAg and HBeAg were measured by the

470 corresponding ELISA kits (Kehua, Shanghai, China) according to manufacturer's
471 instructions. HBV DNA copies were determined by a diagnostic kit (Sansure, Changsha,
472 China) using a quantitative real-time PCR according to manufacturer's instructions.

473

474 **Cell isolation**

475 Preparation of single-cell suspensions of murine intrahepatic lymphocytes was
476 performed as described previously (64, 65).

477

478 **Flow cytometry**

479 Surface and intracellular staining for flow cytometry analysis were performed as
480 described previously (66). The following antibodies were used for surface and
481 intracellular staining: FITC-anti-CD3, APC-Cy7-anti-CD4, Pacific Blue-anti-CD8,
482 FITC-anti-CD43, PE-anti-PD1, and FITC-anti-IgG1 (all BD Biosciences, USA). For
483 intracellular cytokine staining, we used the following antibodies: APC-anti-IFN γ ,
484 PerCP-Cy5.5-anti-IL-2, or FITC-anti-TNF α (BD Biosciences, USA). For HBV-
485 specific CD8+ T cell detection, soluble DimerX H-2Kb: Ig fusion protein technology
486 (BD Biosciences, USA) was applied. In brief, cells were incubated with CD16/CD32
487 anti-mouse antibody (clone 2.4G2; BD Pharmingen) to block FcRs. After washing,
488 dimer staining was performed by incubation of dimer (which has been loaded with HBV
489 Cor93-100 or Env190-197 peptide) and cells for 1 hour at 4°C. The cells were washed
490 and incubated with anti-IgG1 antibody (BD Biosciences, USA) for 30 minutes at 4°C.
491 Data were acquired on a BD FACS Canto II flow cytometer. Cell debris and dead cells
492 were excluded from the analysis based on scatter signals and Fixable Viability Dye
493 eFluor 506 (eBioscience). Isolated murine intrahepatic lymphocytes were used for all
494 assays, and approximately 20,000-40,000 T cells were acquired for each sample using

495 a BD FACS Canto II flow cytometer. Data analysis was performed using FlowJo
496 software V10.0.7 (Tree Star, Ashland, OR, USA).

497

498 **Statistical analysis**

499 Statistical data were derived by using the GraphPad Prism software (GraphPad
500 Software). Data were analyzed using Log-rank test, unpaired t test and one-way
501 ANOVA. As described in each figure legend.

502

503 **Ethics statement**

504 All animal procedures were approved by the Institutional Animal Care and Use
505 Committee Tongji Medical College, Huazhong University of Science and Technology
506 in accordance with the recommendations in the National Advisory Committee for
507 Laboratory Animal Research (NACLAR) guidelines. IACUC Number 2019-S1016.
508 The experiments were performed under isoflurane anesthesia, and all efforts were made
509 to minimize suffering.

510

511

512 **Acknowledgments:**

513 We thank Professor Pei-Jer Chen for providing the pAAV/HBV1.2 plasmid. This work
514 was supported by the National Natural Science Foundation of China (91742114,
515 91642118, and 81861138044 and 91742114), the National Scientific and Technological
516 Major Project of China (2017ZX10202203), and the Sino-German Virtual Institute for
517 Viral Immunology. MT received funding from the Deutsche Forschungsgemeinschaft
518 (DFG) through RTG1949 (project 13), TR1208/1-1, and TR1208/2-1. MT also received
519 support from the Kulturstiftung Essen.

520

521

522

523 **REFERENCES**

- 524 1. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of
525 worldwide prevalence of chronic hepatitis B virus infection: a systematic review of
526 data published between 1965 and 2013. *Lancet*. 2015;386(10003):1546-55.
- 527 2. Dienstag JL. Hepatitis B virus infection. *The New England journal of
528 medicine*. 2008;359(14):1486-500.
- 529 3. European Association For The Study Of The L. EASL clinical practice
530 guidelines: Management of chronic hepatitis B virus infection. *Journal of hepatology*.
531 2012;57(1):167-85.
- 532 4. Liu J, Kosinska A, Lu M, Roggendorf M. New therapeutic vaccination
533 strategies for the treatment of chronic hepatitis B. *Virol Sin*. 2014;29(1):10-6.
- 534 5. Thimme R, Wieland S, Steiger C, Ghayeb J, Reimann KA, Purcell RH, et al.
535 CD8(+) T cells mediate viral clearance and disease pathogenesis during acute
536 hepatitis B virus infection. *J Virol*. 2003;77(1):68-76.
- 537 6. Jung MC, Spengler U, Schraut W, Hoffmann R, Zachoval R, Eisenburg J, et
538 al. Hepatitis B virus antigen-specific T-cell activation in patients with acute and
539 chronic hepatitis B. *J Hepatol*. 1991;13(3):310-7.
- 540 7. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis
541 C virus infection. *Nat Rev Immunol*. 2005;5(3):215-29.
- 542 8. Dembek C, Protzer U, Roggendorf M. Overcoming immune tolerance in
543 chronic hepatitis B by therapeutic vaccination. *Current opinion in virology*.
544 2018;30:58-67.
- 545 9. Pol S, Nalpas B, Driss F, Michel ML, Tiollais P, Denis J, et al. Efficacy and
546 limitations of a specific immunotherapy in chronic hepatitis B. *Journal of hepatology*.
547 2001;34(6):917-21.
- 548 10. Vandepapeliere P, Lau GK, Leroux-Roels G, Horsmans Y, Gane E, Tawandee
549 T, et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression
550 by antiviral therapy: a randomized, controlled study of co-administration of
551 HBsAg/AS02 candidate vaccine and lamivudine. *Vaccine*. 2007;25(51):8585-97.
- 552 11. Xu DZ, Zhao K, Guo LM, Li LJ, Xie Q, Ren H, et al. A randomized controlled
553 phase IIb trial of antigen-antibody immunogenic complex therapeutic vaccine in
554 chronic hepatitis B patients. *PloS one*. 2008;3(7):e2565.
- 555 12. Yao X, Zheng B, Zhou J, Xu DZ, Zhao K, Sun SH, et al. Therapeutic effect of
556 hepatitis B surface antigen-antibody complex is associated with cytolytic and non-
557 cytolytic immune responses in hepatitis B patients. *Vaccine*. 2007;25(10):1771-9.
- 558 13. Xu DZ, Wang XY, Shen XL, Gong GZ, Ren H, Guo LM, et al. Results of a
559 phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic
560 vaccine for chronic hepatitis B patients: experiences and findings. *Journal of
561 hepatology*. 2013;59(3):450-6.
- 562 14. Kosinska AD, Bauer T, Protzer U. Therapeutic vaccination for chronic
563 hepatitis B. *Current opinion in virology*. 2017;23:75-81.
- 564 15. Martin P, Dubois C, Jacquier E, Dion S, Mancini-Bourgine M, Godon O, et al.
565 TG1050, an immunotherapeutic to treat chronic hepatitis B, induces robust T cells and
566 exerts an antiviral effect in HBV-persistent mice. *Gut*. 2015;64(12):1961-71.
- 567 16. Backes S, Jager C, Dembek CJ, Kosinska AD, Bauer T, Stephan AS, et al.
568 Protein-prime/modified vaccinia virus Ankara vector-boost vaccination overcomes
569 tolerance in high-antigenemic HBV-transgenic mice. *Vaccine*. 2016;34(7):923-32.

570 17. Moshkani S, Chiale C, Lang SM, Rose JK, Robek MD. A Highly Attenuated
571 Vesicular Stomatitis Virus-Based Vaccine Platform Controls Hepatitis B Virus
572 Replication in Mouse Models of Hepatitis B. *Journal of virology*. 2019;93(5).

573 18. Wilski NA, Snyder CM. From Vaccine Vector to Oncomodulation:
574 Understanding the Complex Interplay between CMV and Cancer. *Vaccines*.
575 2019;7(3).

576 19. Tsuda Y, Parkins CJ, Caposio P, Feldmann F, Botto S, Ball S, et al. A
577 cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola
578 virus challenge after a single dose. *Vaccine*. 2015;33(19):2261-6.

579 20. Hansen SG, Zak DE, Xu G, Ford JC, Marshall EE, Malouli D, et al.
580 Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine.
581 *Nature medicine*. 2018;24(2):130-43.

582 21. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L,
583 et al. Profound early control of highly pathogenic SIV by an effector memory T-cell
584 vaccine. *Nature*. 2011;473(7348):523-7.

585 22. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, et al.
586 Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. *Science*.
587 2013;340(6135):1237874.

588 23. Mendez AC, Rodriguez-Rojas C, Del Val M. Vaccine vectors: the bright side
589 of cytomegalovirus. *Medical microbiology and immunology*. 2019;208(3-4):349-63.

590 24. Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond
591 DD, et al. Effector memory T cell responses are associated with protection of rhesus
592 monkeys from mucosal simian immunodeficiency virus challenge. *Nature medicine*.
593 2009;15(3):293-9.

594 25. Landsberg CD, Megger DA, Hotter D, Ruckborn MU, Eilbrecht M, Rashidi-
595 Alavijeh J, et al. A Mass Spectrometry-Based Profiling of Interactomes of Viral
596 DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF- κ B Inhibitory
597 Activity of the HIV-2-Encoded Vpx. *Frontiers in immunology*. 2018;9:2978.

598 26. Trilling M, Le VTK, Fiedler M, Zimmermann A, Bleifuß E, Hengel H.
599 Identification of DNA-Damage DNA-Binding Protein 1 as a Conditional Essential
600 Factor for Cytomegalovirus Replication in Interferon- γ -Stimulated Cells. *PLoS
601 Pathogens*. 2011;7(6):e1002069.

602 27. Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin
603 Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. *International
604 journal of molecular sciences*. 2019;20(7).

605 28. Le-Trilling VTK, Wohlgemuth K, Ruckborn MU, Jagnjic A, Maassen F,
606 Timmer L, et al. STAT2-Dependent Immune Responses Ensure Host Survival despite
607 the Presence of a Potent Viral Antagonist. *Journal of virology*. 2018;92(14).

608 29. Bubic I, Wagner M, Krmpotic A, Saulig T, Kim S, Yokoyama WM, et al.
609 Gain of virulence caused by loss of a gene in murine cytomegalovirus. *Journal of
610 virology*. 2004;78(14):7536-44.

611 30. Zimmermann A, Trilling M, Wagner M, Wilborn M, Bubic I, Jonjic S, et al. A
612 cytomegaloviral protein reveals a dual role for STAT2 in IFN- $\{\gamma\}$ signaling and
613 antiviral responses. *The Journal of experimental medicine*. 2005;201(10):1543-53.

614 31. Abenes G, Lee M, Haghjoo E, Tong T, Zhan X, Liu F. Murine
615 cytomegalovirus open reading frame M27 plays an important role in growth and
616 virulence in mice. *Journal of virology*. 2001;75(4):1697-707.

617 32. Peterson DL, Nath N, Gavilanes F. Structure of hepatitis B surface antigen.
618 Correlation of subtype with amino acid sequence and location of the carbohydrate
619 moiety. *Journal of Biological Chemistry*. 1982;257(17):10414-20.

620 33. Wang CJ, Sung SY, Chen DS, Chen PJ. N-linked glycosylation of hepatitis B
621 surface antigens is involved but not essential in the assembly of hepatitis delta virus.
622 *Virology*. 1996;220(1):28-36.

623 34. Beverley PC, Ruzsics Z, Hey A, Hutchings C, Boos S, Bolinger B, et al. A
624 novel murine cytomegalovirus vaccine vector protects against *Mycobacterium*
625 tuberculosis. *Journal of immunology*. 2014;193(5):2306-16.

626 35. Victoria J, Cavanaugh LGG, Francis V, Chisari. Inhibition of Hepatitis B
627 Virus Replication during Adenovirus and Cytomegalovirus Infections in Transgenic
628 Mice. *Journal of virology*. 1998;Vol. 72, No. 4.

629 36. Zelinskyy G, Myers L, Dietze KK, Gibbert K, Roggendorf M, Liu J, et al.
630 Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute
631 friend retrovirus infection but are highly cytotoxic and control virus replication.
632 *Journal of immunology*. 2011;187(7):3730-7.

633 37. Caposio P, van den Worm S, Crawford L, Perez W, Kreklywich C, Gilbride
634 RM, et al. Characterization of a live-attenuated HCMV-based vaccine platform.
635 *Scientific reports*. 2019;9(1):19236.

636 38. Huang LR, Wu HL, Chen PJ, Chen DS. An immunocompetent mouse model
637 for the tolerance of human chronic hepatitis B virus infection. *Proceedings of the*
638 *National Academy of Sciences of the United States of America*. 2006;103(47):17862-
639 7.

640 39. Wolfram Brune IB, Stipan Jonjic, Milena Hasan and Ulrich H. Koszinowski
641 Mattha "us Krych. Secreted Virus-Encoded Proteins Reflect Murine Cytomegalovirus
642 Productivity in Organs. *The Journal of Infectious Diseases*. 2001;184:1320-4.

643 40. Yang PL, Althage A, Chung J, Maier H, Wieland S, Isogawa M, et al. Immune
644 effectors required for hepatitis B virus clearance. *Proceedings of the National*
645 *Academy of Sciences of the United States of America*. 2010;107(2):798-802.

646 41. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al.
647 Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate
648 the memory compartments of exposed subjects. *The Journal of experimental*
649 *medicine*. 2005;202(5):673-85.

650 42. K. S. Langa AM, C. Gouttefangeas, S. Walter a, V. Teichgräber, M. Müller a,
651 D. Wernet, K. Hamprecht H.-G. Rammensee and S. Stevanovic. High frequency of
652 human cytomegalovirus (HCMV)-specific CD8+T cells detected in a healthy CMV-
653 seropositive donor. *Cell Mol Life Sci*. 2002;Vol. 59.

654 43. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, et al.
655 Memory inflation: continuous accumulation of antiviral CD8+ T cells over time.
656 *Journal of immunology*. 2003;170(4):2022-9.

657 44. Karrer U, Wagner M, Sierro S, Oxenius A, Hengel H, Dumrese T, et al.
658 Expansion of protective CD8+ T-cell responses driven by recombinant
659 cytomegaloviruses. *Journal of virology*. 2004;78(5):2255-64.

660 45. Snyder CM, Cho KS, Bonnett EL, van Dommelen S, Shellam GR, Hill AB.
661 Memory inflation during chronic viral infection is maintained by continuous
662 production of short-lived, functional T cells. *Immunity*. 2008;29(4):650-9.

663 46. Hertoghs KM, Moerland PD, van Stijn A, Remmerswaal EB, Yong SL, van de
664 Berg PJ, et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell
665 differentiation. *The Journal of clinical investigation*. 2010;120(11):4077-90.

666 47. Schupp AK, Trilling M, Rattay S, Le-Trilling VTK, Haselow K, Stindt J, et al.
667 Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus
668 Replication in Hepatocytes. *Journal of virology*. 2016;90(15):6686-98.

669 48. Meyer-Konig U, Ebert K, Schrage B, Pollak S, Hufert FT. Simultaneous
670 infection of healthy people with multiple human cytomegalovirus strains. *Lancet*.
671 1998;352(9136):1280-1.

672 49. Reddehase MJ BM, Rapp M, Jonjić S, Pavić I, Koszinowski UH,. The
673 Conditions of Primary Infection Define the Load of Latent Viral Genome in Organs
674 and the Risk of Recurrent Cytomegalovirus Disease. *J Exp Med.* 1994;Volume 179
675 January 1994 185-193.

676 50. Kurz SK RM. Patchwork pattern of transcriptional reactivation in the lungs
677 indicates sequential checkpoints in the transition from murine cytomegalovirus
678 latency to recurrence. *J Virol* 1999;73(10).

679 51. Rafailidis PI, Mourtzoukou EG, Varbobitis IC, Falagas ME. Severe
680 cytomegalovirus infection in apparently immunocompetent patients: a systematic
681 review. *Virology journal.* 2008;5:47.

682 52. Megger DA, Philipp J, Le-Trilling VTK, Sitek B, Trilling M. Deciphering of
683 the Human Interferon-Regulated Proteome by Mass Spectrometry-Based Quantitative
684 Analysis Reveals Extent and Dynamics of Protein Induction and Repression. *Frontiers*
685 in immunology. 2017;8:1139.

686 53. Curtsinger JM, Valenzuela JO, Agarwal P, Lins D, Mescher MF. Type I IFNs
687 provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation.
688 *Journal of immunology.* 2005;174(8):4465-9.

689 54. Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated
690 recombination for versatile high-efficiency markerless DNA manipulation in
691 *Escherichia coli*. *BioTechniques.* 2006;40(2):191-7.

692 55. Tischer BK, Smith GA, Osterrieder N. En passant mutagenesis: a two step
693 markerless red recombination system. *Methods in molecular biology.* 2010;634:421-
694 30.

695 56. Jordan S, Krause J, Prager A, Mitrovic M, Jonjic S, Koszinowski UH, et al.
696 Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr
697 show reduced growth in salivary Glands due to a fixed mutation of MCK-2. *Journal of*
698 *virology.* 2011;85(19):10346-53.

699 57. Le-Trilling VTK, Trilling M. Mouse newborn cells allow highly productive
700 mouse cytomegalovirus replication, constituting a novel convenient primary cell
701 culture system. *Plos One.* 2017;12(3):e0174695.

702 58. Trilling M, Le VT, Zimmermann A, Ludwig H, Pfeffer K, Sutter G, et al.
703 Gamma interferon-induced interferon regulatory factor 1-dependent antiviral response
704 inhibits vaccinia virus replication in mouse but not human fibroblasts. *Journal of*
705 *virology.* 2009;83(8):3684-95.

706 59. Brizic I, Lisnic B, Brune W, Hengel H, Jonjic S. Cytomegalovirus Infection:
707 Mouse Model. *Current protocols in immunology.* 2018:e51.

708 60. Zhang X, Zhang E, Ma Z, Pei R, Jiang M, Schlaak JF, et al. Modulation of
709 hepatitis B virus replication and hepatocyte differentiation by MicroRNA-1.
710 *Hepatology.* 2011;53(5):1476-85.

711 61. Huang LR, Wu HL, Chen PJ, Chen DS. An immunocompetent mouse model
712 for the tolerance of human chronic hepatitis B virus infection. *Proceedings of the*
713 *National Academy of Sciences of the United States of America.* 2006;103(47):17862-
714 7.

715 62. Francis Galibert EM, Françoise Fitoussi, Pierre Tiollais, Patrick Charnay
716 Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in *E. coli*.
717 *Nature.* 1979; 281:646-50.

718 63. Huang LR, Gabel YA, Graf S, Arzberger S, Kurts C, Heikenwalder M, et al.
719 Transfer of HBV genomes using low doses of adenovirus vectors leads to persistent
720 infection in immune competent mice. *Gastroenterology*. 2012;142(7):1447-50 e3.
721 64. Dietze KK, Schimmer S, Kretzmer F, Wang J, Lin Y, Huang X, et al.
722 Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic
723 Injection Mouse Model. *PLoS One*. 2016;11(3):e0151717.
724 65. Crispe IN. Isolation of mouse intrahepatic lymphocytes. *Curr Protoc Immunol*.
725 2001;Chapter 3:3.21.
726 66. Wang Q, Pan W, Liu Y, Luo J, Zhu D, Lu Y, et al. Hepatitis B Virus-Specific
727 CD8+ T Cells Maintain Functional Exhaustion after Antigen Reexposure in an Acute
728 Activation Immune Environment. *Frontiers in immunology*. 2018;9:219.
729

730

731 **Figure legends**

732 **Figure 1. Generation and validation of HBsAg-expressing MCMV vectors.**

733 (A) Schematic overview of the cloning strategy for the generation of the HBsAg-
734 expressing MCMV vectors. Please, see the M&M section for details. (B) HBsAg
735 expression was confirmed by immunoblot. (C) The *in vitro* replication competence of
736 MCMV vectors as well as corresponding parental viruses was determined by classic
737 plaque titration. Mouse newborn cells were infected (0.05 PFU/cell) with indicated
738 MCMVs. At indicated time points, cells and supernatants were frozen and stored at -
739 80°C until all samples were titrated simultaneously. Titrations were performed in
740 triplicates. (D) The *in vivo* replication competence of the HBsAg-expressing MCMVs
741 and wt-MCMV was compared in salivary glands at 21d post i. p. infection of C57BL/6
742 mice (n=6 mice per group).

743

744 **Figure 2. An HBsAg-expressing MCMV protects mice against HBV challenge.** (A)

745 Schematic overview of the experimental setup: C57BL/6J naïve mice were immunized
746 intraperitoneally with 2*10⁵ PFU of wt-MCMV or MCMV-HBs at day 0 and day 21
747 and were challenged with HBV plasmid pSM2 via hydrodynamic injection (HI) at day
748 42. The mice were sacrificed after HBV clearance in serum at 52dpi, 10 days after HI.
749 (n=5). (B) The kinetics of serum HBsAg and HBeAg levels were monitored by ELISA
750 at indicated time points. (C) The kinetics of serum HBV DNA levels were monitored
751 by real-time PCR at indicated time points. (D) Immunohistochemical staining of
752 HBsAg in the livers of wt-MCMV and MCMV-HBs immunized mice. Left: calculation
753 of the average numbers of HBsAg-positive hepatocytes per field of vision. Right:
754 representative staining of a liver section (original magnification: 200×) (E)
755 Immunohistochemical staining of HBcAg in the livers of wt-MCMV- and MCMV-

756 HBs-immunized mice. Left: calculation of the average numbers of HBcAg-positive
757 hepatocytes per field of vision. Right: representative staining of a liver section (original
758 magnification: 200×) Data are depicted as arithmetic means ± SEM, and experiments
759 were repeated three times (n=5-6 mice per group). The statistical analysis was
760 performed by Log-rank test (B-C) or unpaired t test (D-E). dpi, days post infection

761

762 **Figure 3. MCMV-HBs vaccination enhances the intrahepatic HBsAg-specific CD8
763 T cell responses.** (A) Numbers, frequencies, and representative cytometry plots of
764 CD4+ and CD8+ T cells among liver infiltrating lymphocytes in mice immunized with
765 MCMV-HBs or MCMV. (B) Numbers, frequencies, and representative cytometry plots
766 of PD1+ cells among CD8+ T cells in mice immunized with MCMV-HBs or wt-
767 MCMV. (C) Numbers, frequencies, and representative cytometry plots of
768 CD43+CD8+T cells among CD8+ T cells in mice immunized with MCMV-HBs or
769 MCMV. (D) Numbers, frequencies, and representative cytometry plots of HBV
770 Env190-specific CD8+ T cells. (E) Numbers, frequencies, and representative cytometry
771 plots of HBV Core93-specific CD8+ T cells. (F) Numbers, frequencies, and
772 representative cytometry plots of Env190-specific cytokine-positive CD8+ T cells after
773 *in vitro* stimulation with Env190 peptide. (G) Numbers, frequencies, and representative
774 cytometry plots of Core93-specific cytokine-positive CD8+ T cells after *in vitro*
775 stimulation with Core93 peptide. Data were replicated in at least 2 independent
776 experiments. Data are depicted as arithmetic mean ± SEM; *p <0.05, **p <0.01, ***p
777 <0.001, ****p <0.0001; A unpaired t test was used to assess statistical significance;
778 Core93, core93-100; Env190, env190-197;

779

780 **Figure 4. Δ M27-HBs vaccination protects mice against HBV challenge in mice. (A)**
781 Schematic overview of the experimental setup: C57BL/6J naïve mice were immunized
782 intraperitoneally with $2*10^5$ PFU of Δ M27-Ctrl, Δ M27-HBs or PBS in a volume of
783 100 μ L at day 0 and day 21, and were challenged with the HBV plasmid pSM2 via
784 hydrodynamic injection (HI) at day 42. The mice were sacrificed after HBV clearance
785 in serum at 52dpi, 10 days after HI. (n=5). (B) The kinetics of serum HBsAg and
786 HBeAg levels were monitored by ELISA at indicated time points. (C) The kinetics of
787 serum HBV DNA levels were monitored by real-time PCR at indicated time points. (D)
788 Immunohistochemical staining of HBsAg in the livers of PBS-, Δ M27-Ctrl-, and
789 Δ M27-HBs-immunized mice. Left: calculation of the average numbers of HBsAg-
790 positive hepatocytes per field of vision. Right: representative staining of a liver section
791 (original magnification: 200 \times) (E) Immunohistochemical staining of HBcAg in the
792 livers of PBS-, Δ M27-Ctrl, and Δ M27-HBs-immunized mice. Left: calculation of the
793 average numbers of HBcAg-positive hepatocytes per field of vision. Right:
794 representative staining of a liver section (original magnification: 200 \times). Data are
795 depicted as arithmetic means \pm SEM, and experiments were repeated three times
796 (n=5~6 mice per group). The statistical analyses were performed by Log-rank test (B-
797 C) or one-way ANOVA (D-E).

798

799

800 **Figure 5. Δ M27-HBs vaccination enhances the intrahepatic anti-HBsAg CD8 T**
801 **cell response. (A)** Numbers, frequencies, and representative cytometry plots of CD4+
802 and CD8+ T cells among liver infiltrating lymphocytes in mice immunized with PBS,
803 Δ M27-Ctrl, or Δ M27-HBs. (B) Numbers, frequencies, and representative cytometry
804 plots of PD1+ cells among CD8+ T cells in mice immunized with PBS, Δ M27-Ctrl or

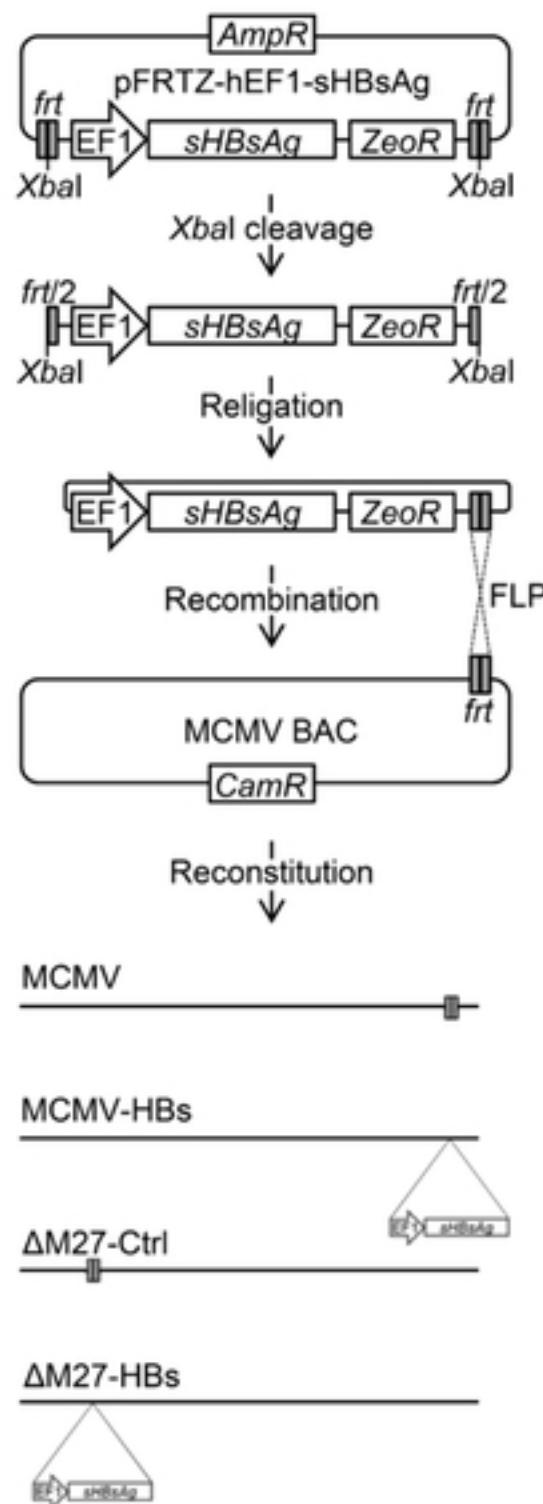
805 ΔM27-HBs. (C) Numbers, frequencies, and representative cytometry plots of CD43+
806 cells among CD8+ T cells in mice immunized with PBS, ΔM27-Ctrl or ΔM27-HBs.
807 (D) Numbers, frequencies, and representative cytometry plots of HBV Env190-specific
808 CD8+ T cells. (E) Numbers, frequencies, and representative cytometry plots of HBV
809 Core93-specific CD8+ T cells. (F) Numbers, frequencies, and representative cytometry
810 plots of Env190-specific cytokine-positive CD8+ T cells after *in vitro* stimulation with
811 Env190 peptide. (G) Numbers, frequencies, and representative cytometry plots of
812 Core93-specific cytokine-positive CD8+ T cells after *in vitro* stimulation with Core93
813 peptide. Data were replicated in at least 2 independent experiments. Data are depicted
814 as arithmetic mean \pm SEM; *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001;
815 Statistical significance was assessed using the one-way ANOVA test; Core93, core93-
816 100; Env190, env190-197;
817

818 **Figure 6. MCMV-HBs vaccination accelerates HBV clearance and enhances the**
819 **intrahepatic anti-HBV CD8 T cell response in HBV persistent mice.**

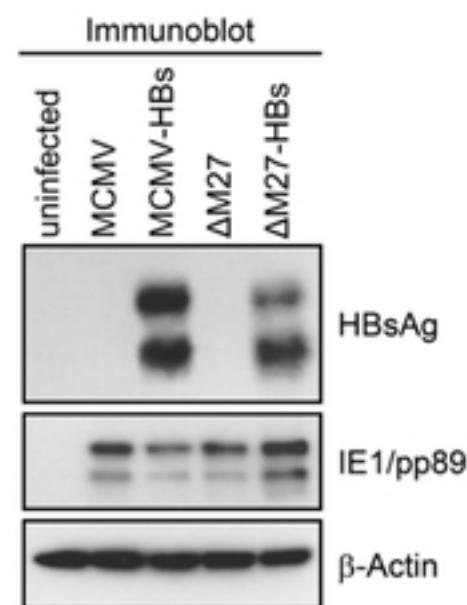
820 (A) Schematic overview of the experimental setup: C57BL/6J naïve mice were
821 hydrodynamically injected with pAAV-HBV1.2 (day 0) and immunized (primed) one
822 week later (day 7) by intraperitoneal injection with MCMV-HBs or wt-MCMV and
823 subsequently boosted with HBV plasmid pSM2 at week 4 (day 28). The mice were
824 sacrificed after HBV clearance in serum at week 6, 42 days after HI. (n=5). (B) The
825 kinetics of serum HBsAg levels were monitored by ELISA at indicated time points. (C)
826 The kinetics of serum HBV DNA levels were monitored by real-time PCR at indicated
827 time points. (D) Immunohistochemical staining of HBsAg in the livers of wt-MCMV-
828 and MCMV-HBs-immunized mice. Left: calculation of the average numbers of
829 HBsAg-positive hepatocytes per field of vision. Right: representative staining of a liver

830 section (original magnification: 200 \times). (E) Immunohistochemical staining of HBcAg
831 in the livers of MCMV- and MCMV-HBs-immunized mice. Left: calculation of the
832 average numbers of HBcAg-positive hepatocytes per field of vision. Right:
833 representative staining of a liver section (original magnification: 200 \times). (F) Numbers,
834 frequencies, and representative cytometry plots of HBV Env190-specific CD8+ T cells.
835 (G) Numbers, frequencies, and representative cytometry plots of Env190-specific
836 cytokine-positive CD8+ T cells after *in vitro* stimulation with Env190 peptide. Data are
837 depicted as arithmetic mean \pm SEM, and experiments were repeated three times (n=5-
838 6 mice per group). Statistical analyses were performed by Log-rank test (B-C) or
839 unpaired t test (D-F).

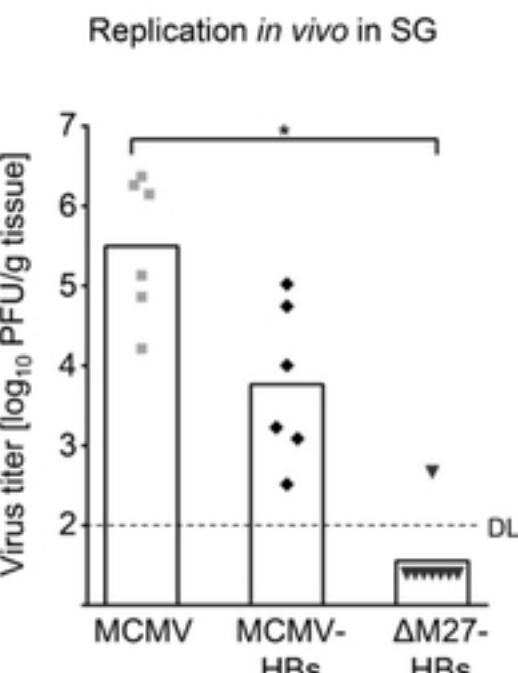
840


841

842 **Figure 7. Δ M27-HBs vaccination accelerates HBV clearance and enhances the**
843 **intrahepatic anti-HBV CD8+ T cell responses in HBV persistent mice.** (A)
844 C57BL/6J naïve mice were hydrodynamically injected with pAAV-HBV1.2 (day 0)
845 and immunized (primed) one week later (day 7) intraperitoneally with 2*10⁵ PFU of
846 Δ M27-Ctrl, Δ M27-HBs, PBS in a volume of 100 μ L, and subsequently boosted with
847 HBV plasmid pSM2 at week 4 (day 28). Mice were sacrificed after HBV clearance in
848 serum at week 6, 42 days after HI. (n=5). (B) The kinetics of serum HBsAg levels were
849 monitored by ELISA at indicated time points. (C) The kinetics of serum HBV DNA
850 levels were monitored by real-time PCR at indicated time points. (D)
851 Immunohistochemical staining of HBsAg in the livers of PBS-, Δ M27-Ctrl - or Δ M27-
852 HBs-immunized mice. Left: calculation of the average numbers of HBsAg-positive
853 hepatocytes per field of vision. Right: representative staining of a liver section (original
854 magnification: 200 \times). (E) Immunohistochemical staining of HBcAg in the livers of


855 PBS-, ΔM27-Ctrl - or ΔM27-HBs-immunized mice. Left: calculation of the average
856 numbers of HBcAg-positive hepatocytes per field of vision. Right: representative
857 staining of a liver section (original magnification: 200×). (F) Numbers, frequencies, and
858 representative cytometry plots of HBV Env190-specific CD8+ T cells. (G) Numbers,
859 frequencies, and representative cytometry plots of Env190-specific cytokine-positive
860 CD8+ T cells after *in vitro* stimulation with Env190 peptide. Data are depicted as
861 arithmetic mean ± SEM, and experiments were repeated three times (n=5-6 mice per
862 group). Statistical analyses were performed by Log-rank test (B-C) or one-way
863 ANOVA (D-F).

864


A

B

D

C

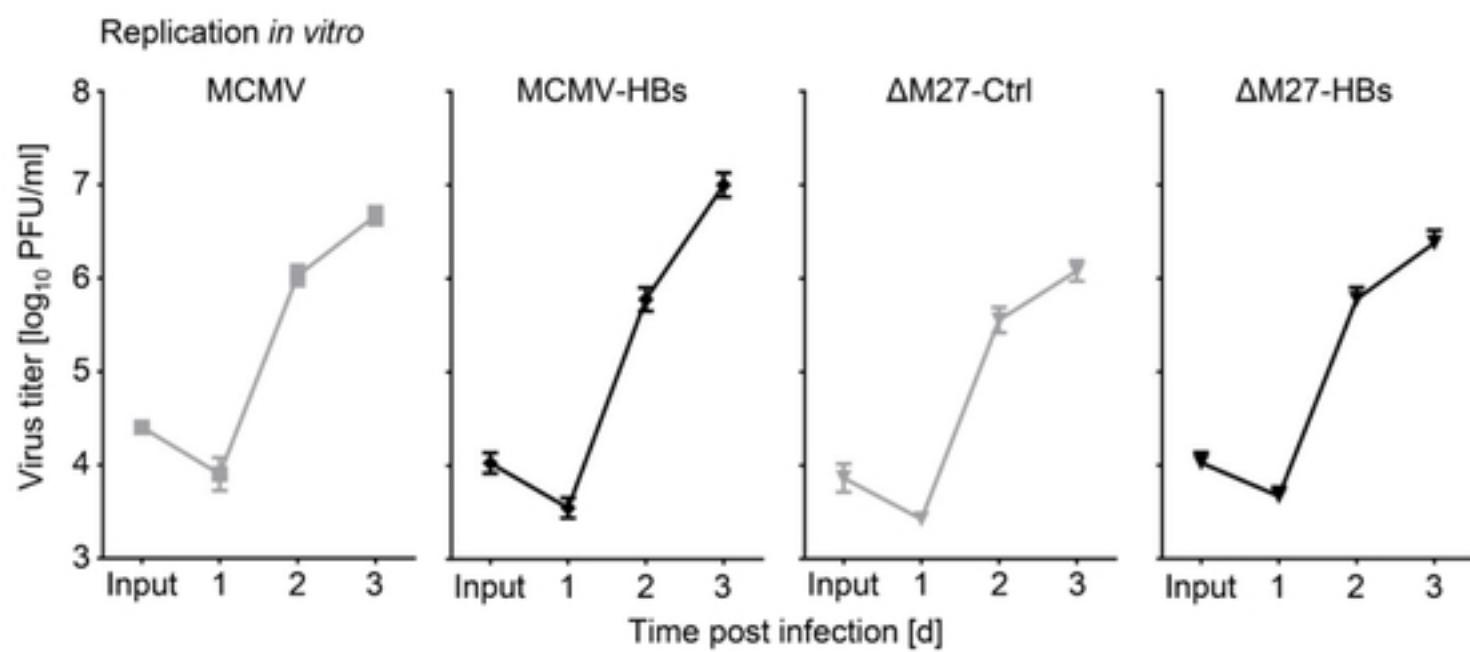


Figure 1

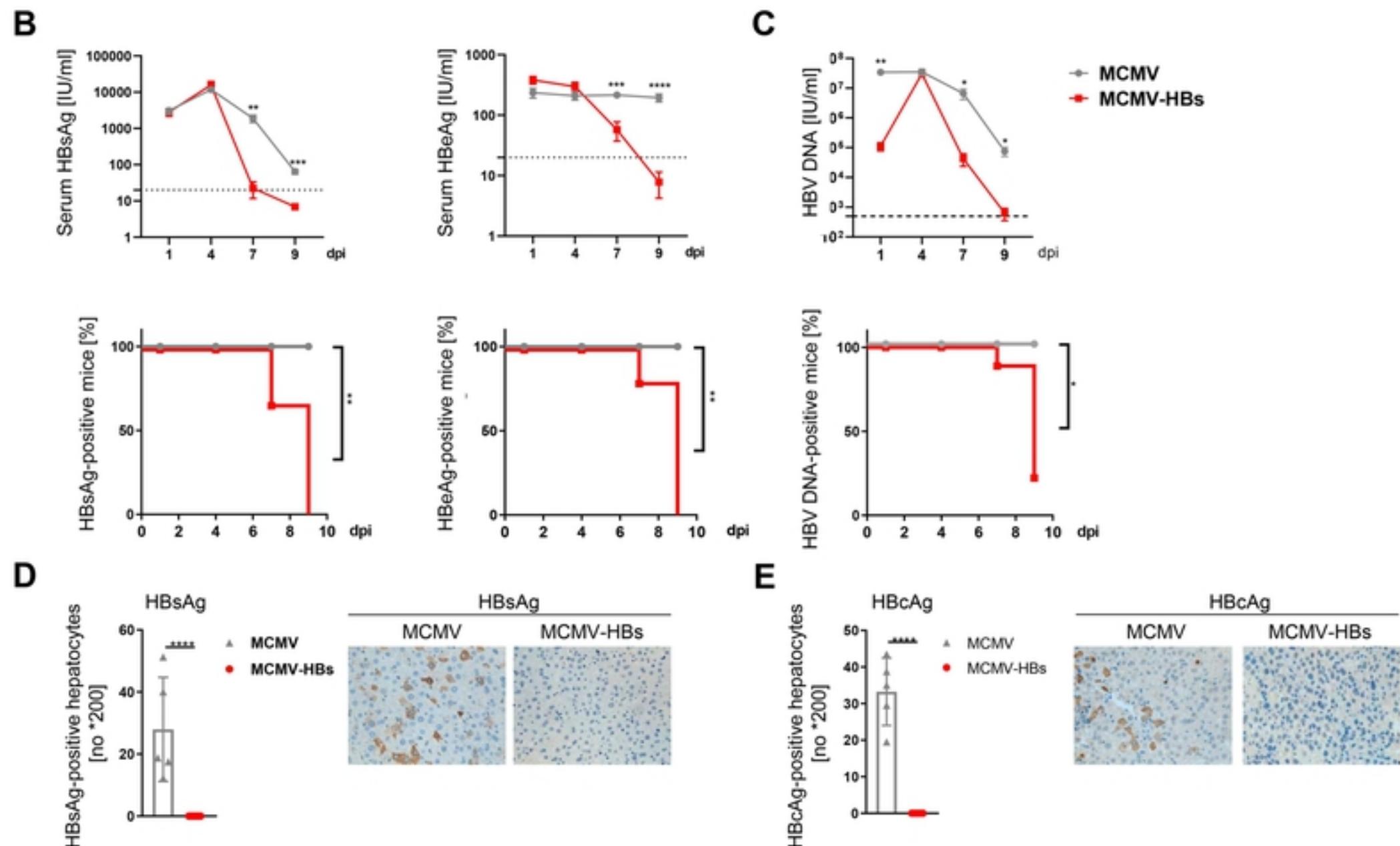
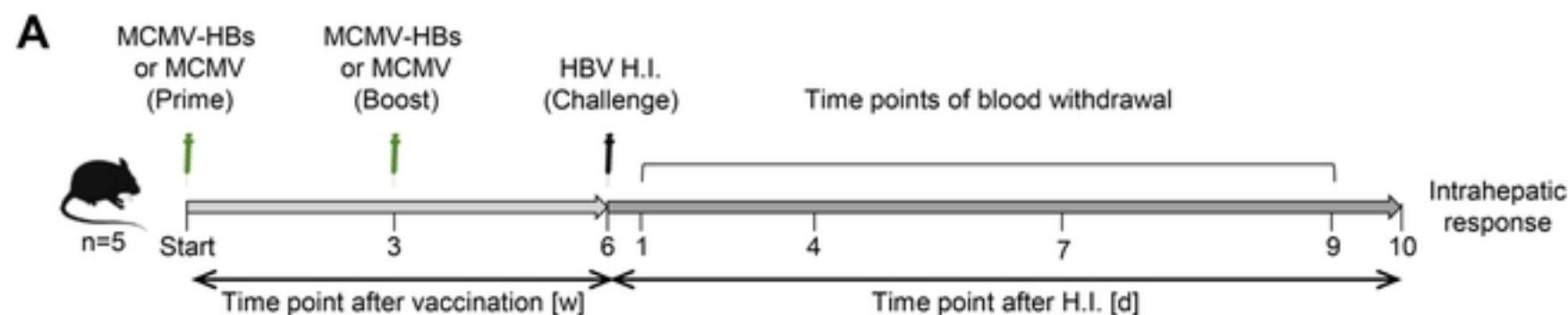
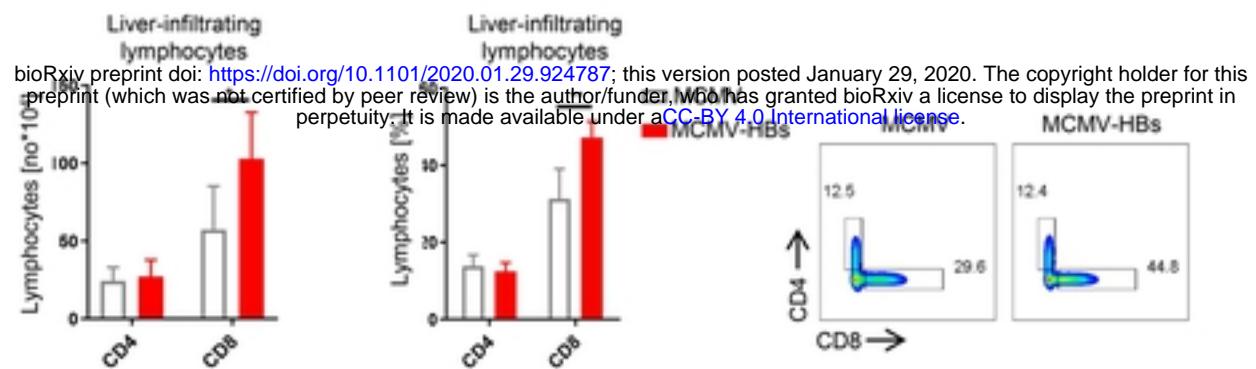
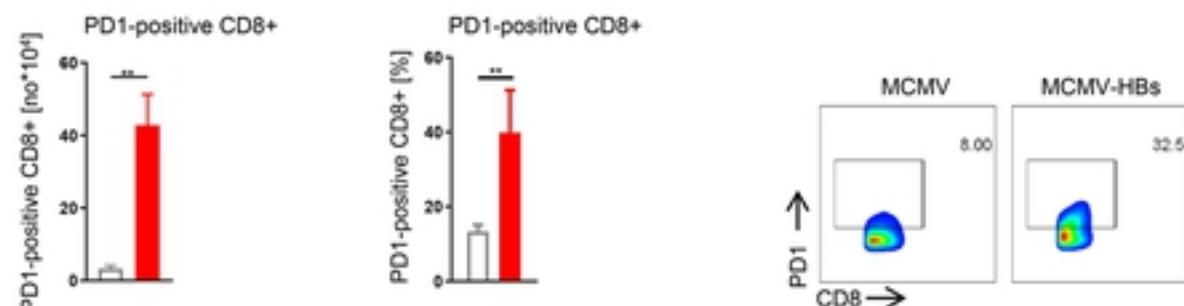
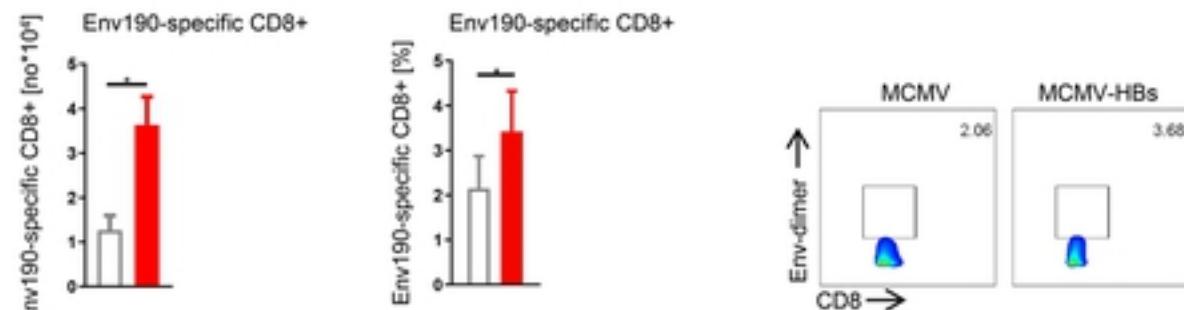
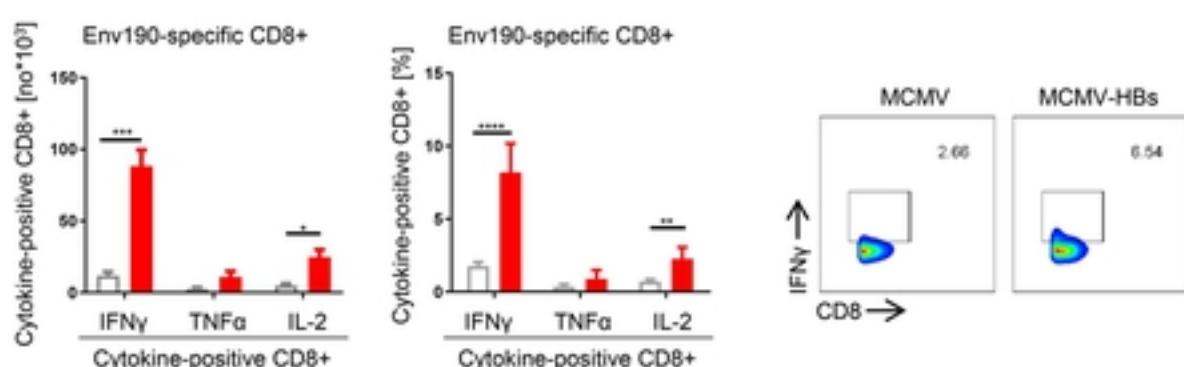
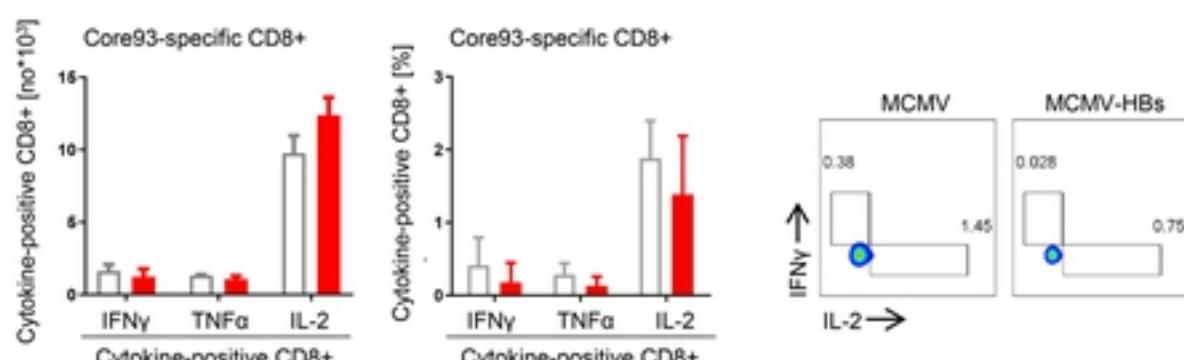
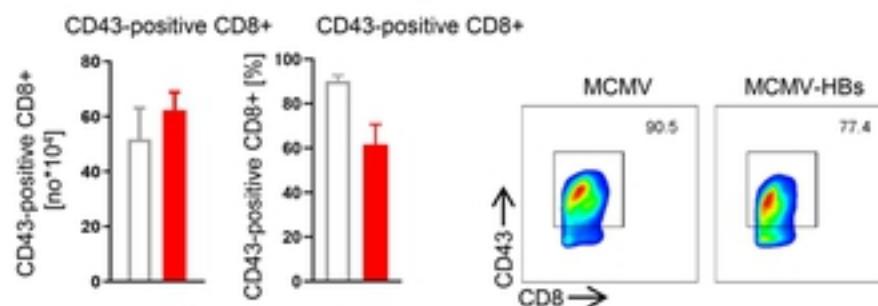
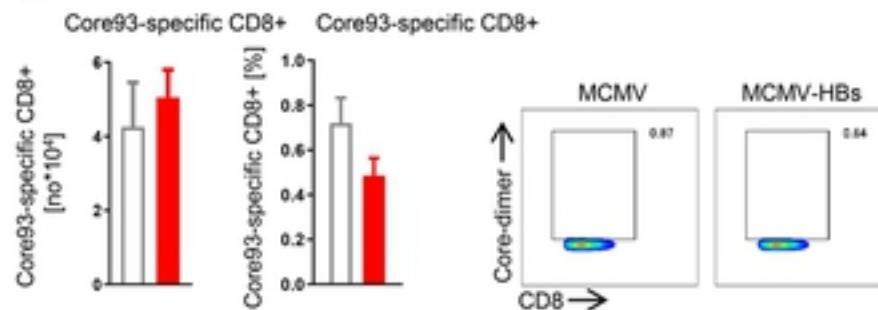
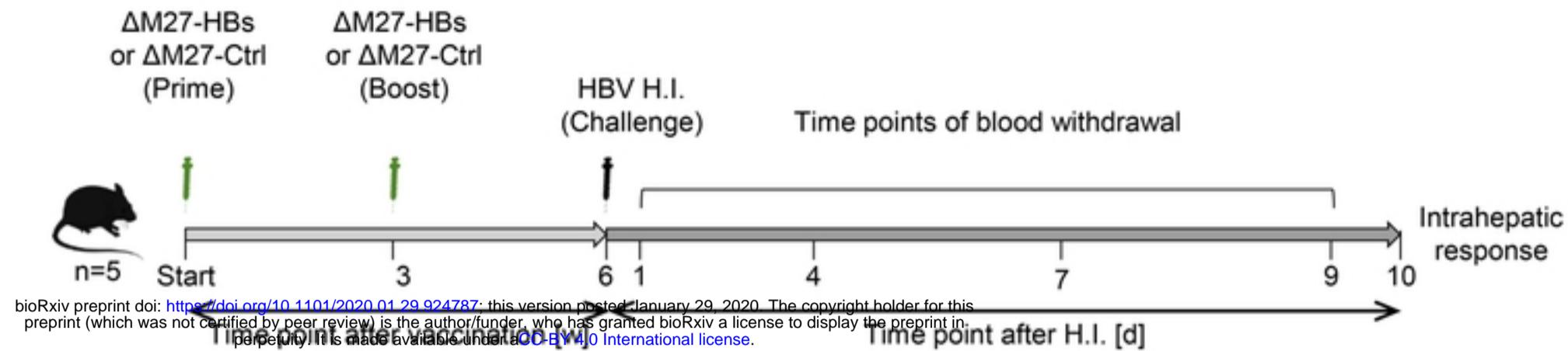
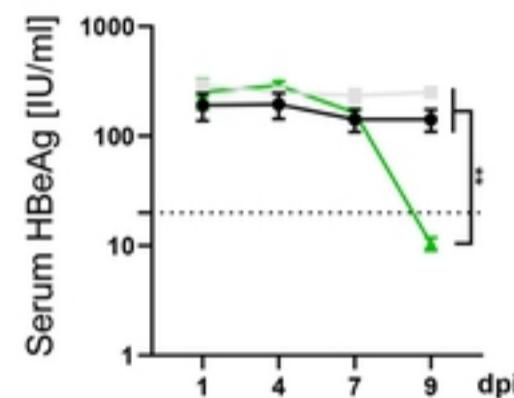
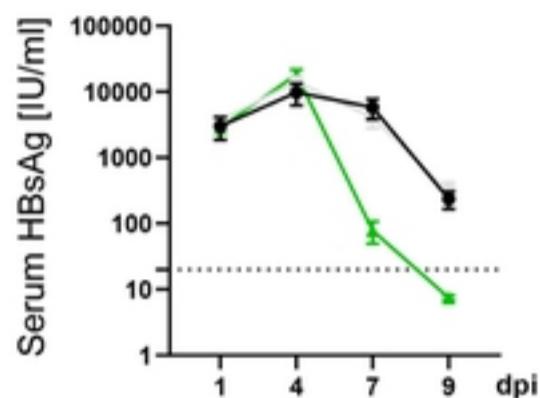
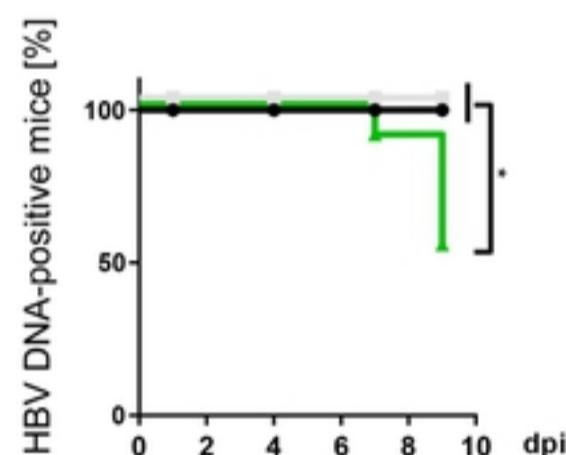
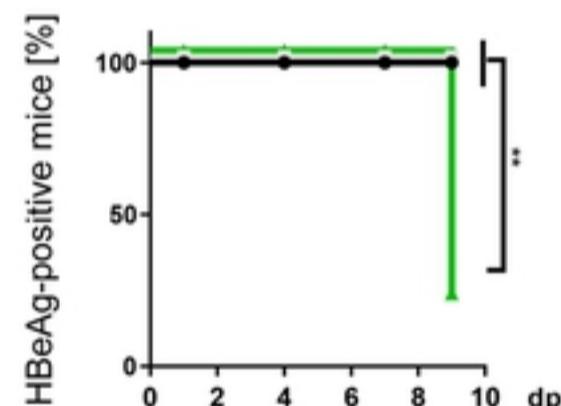
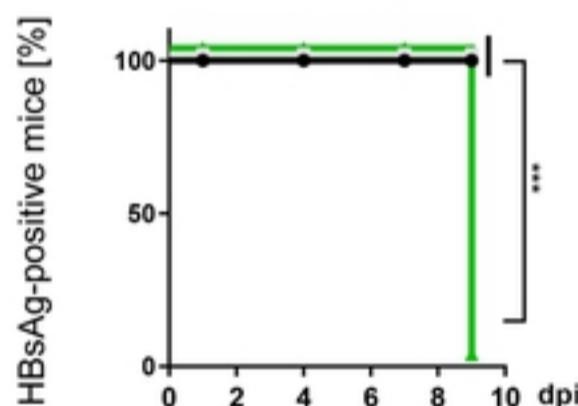
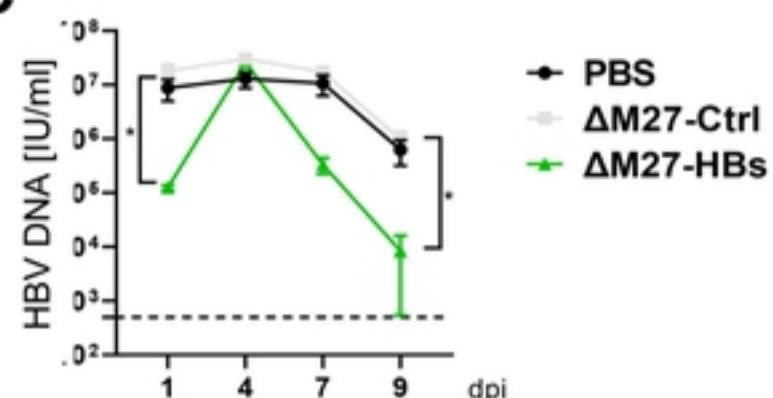
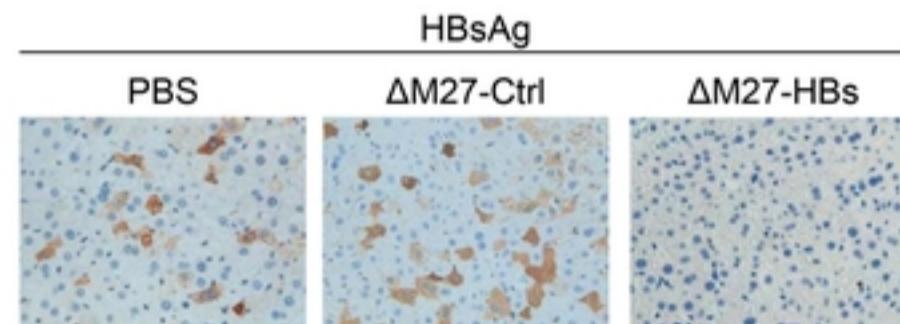
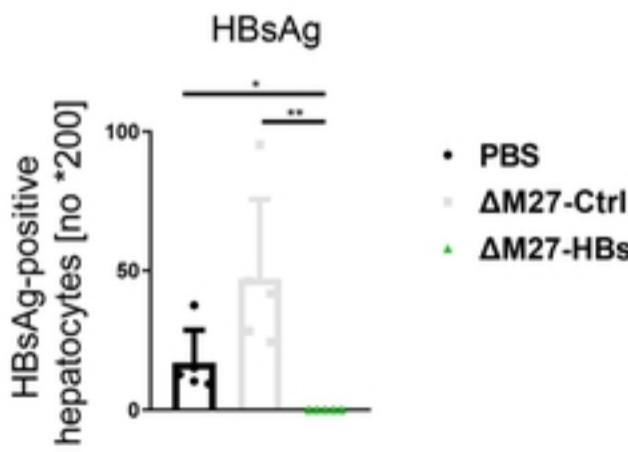
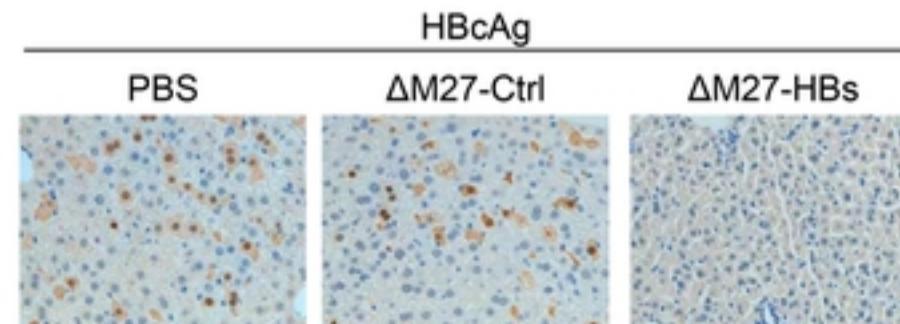
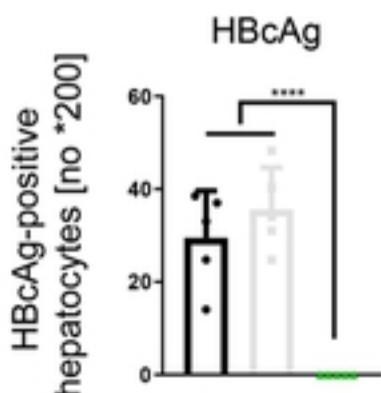





















Figure 2

A**B****D****F****G****C****E****Figure3**

A**B****C****D****E****Figure4**

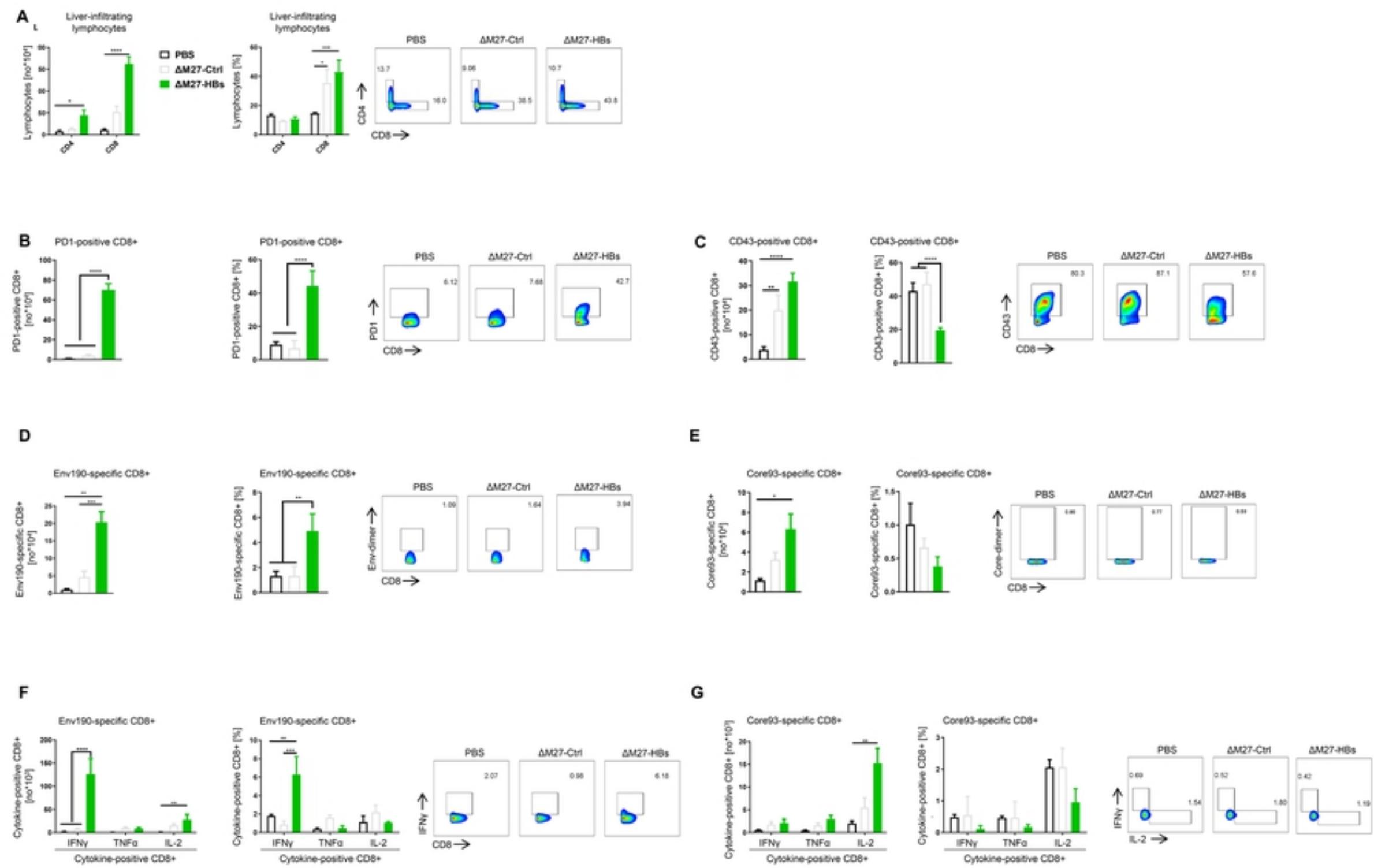
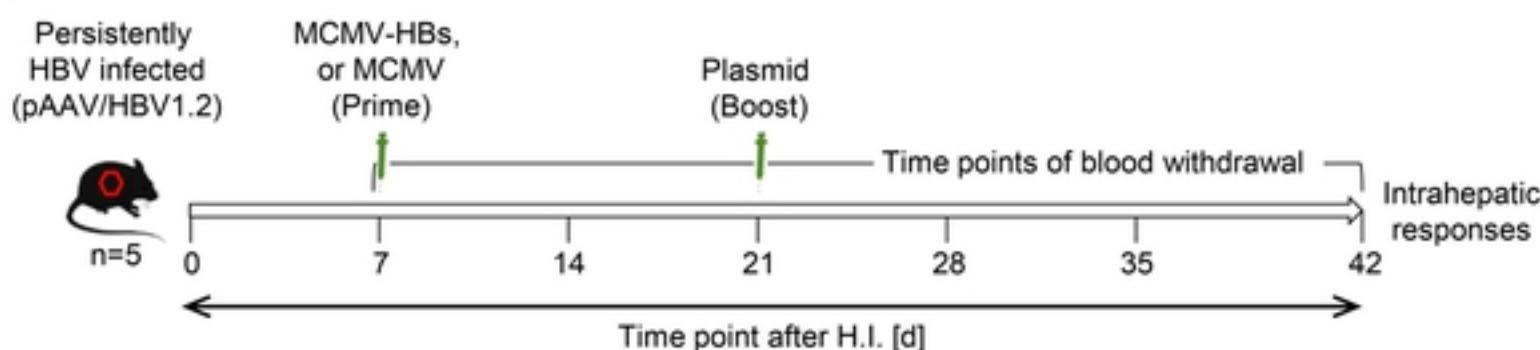
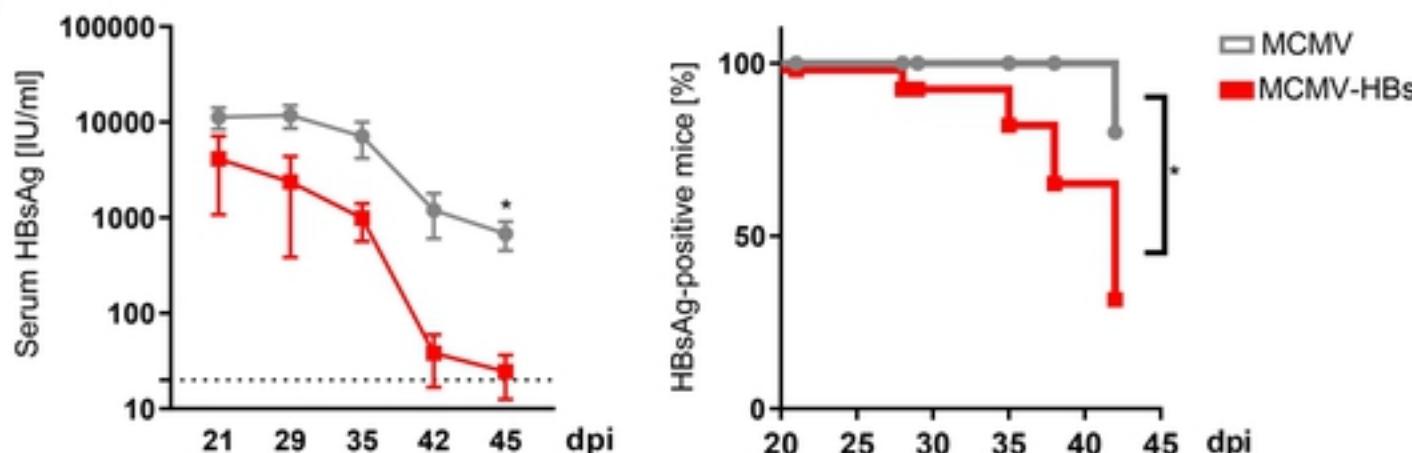
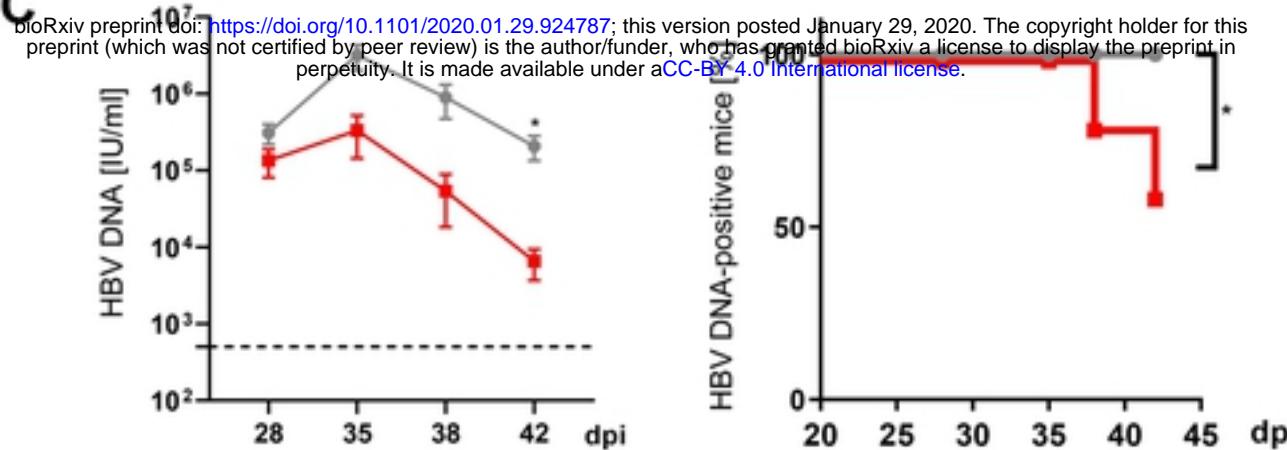
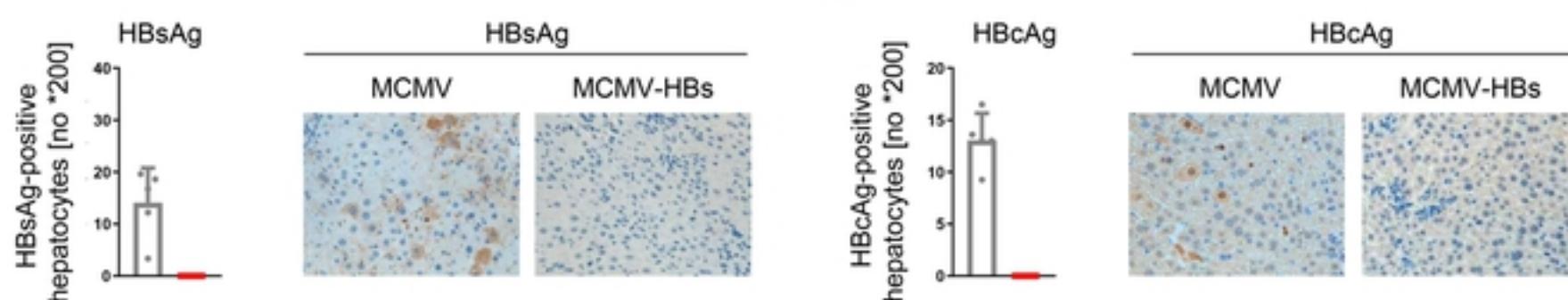
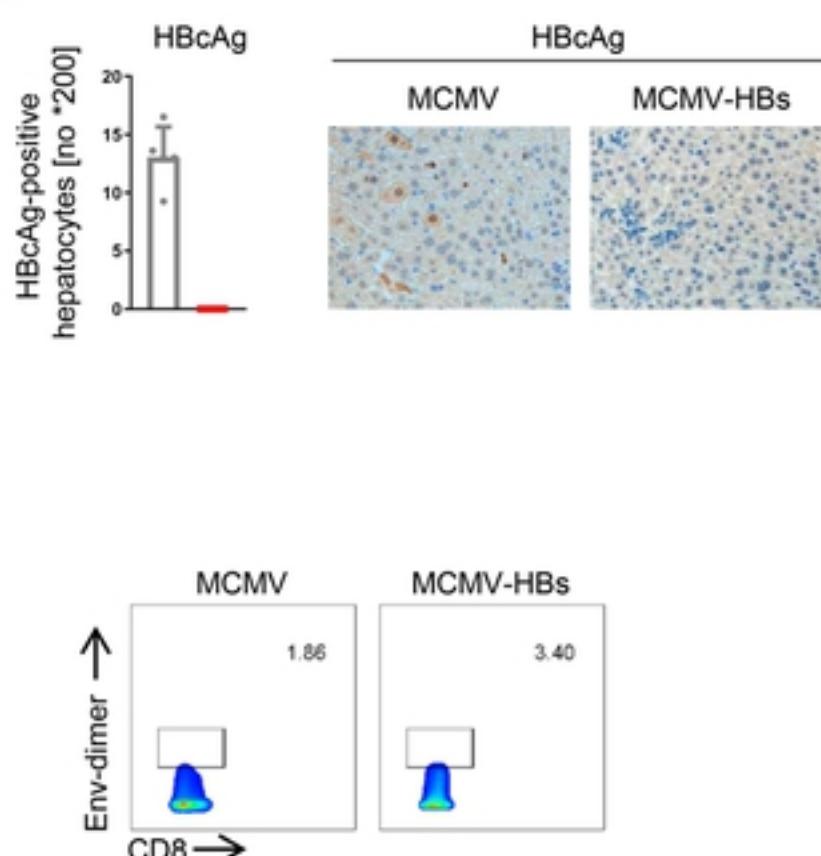
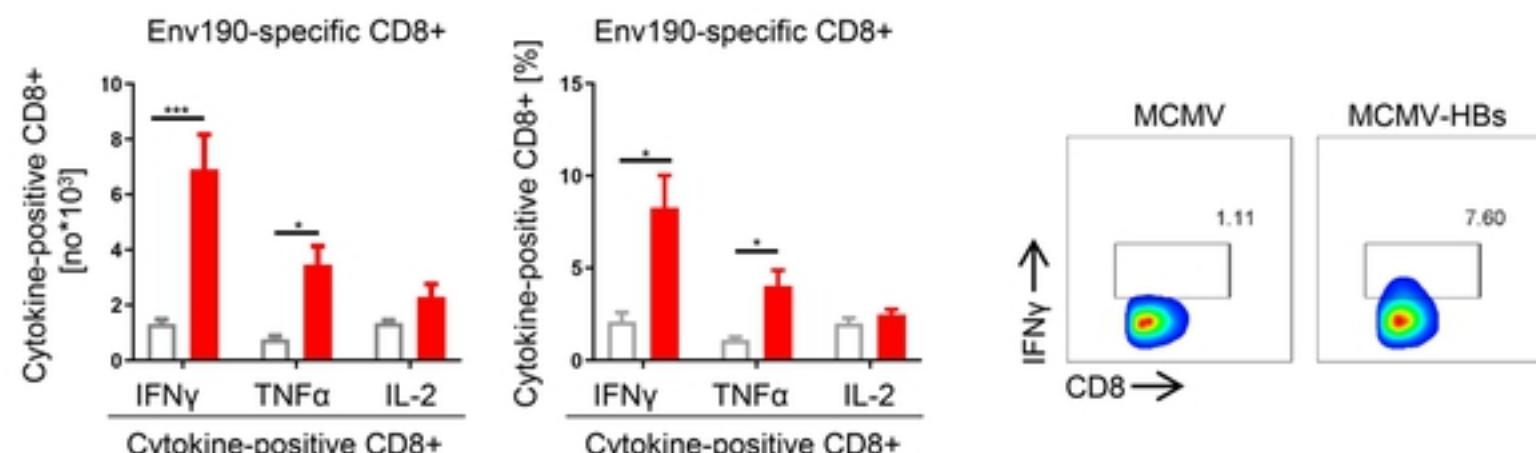








Figure 5

A**B****C****D****E****G****Figure 6**

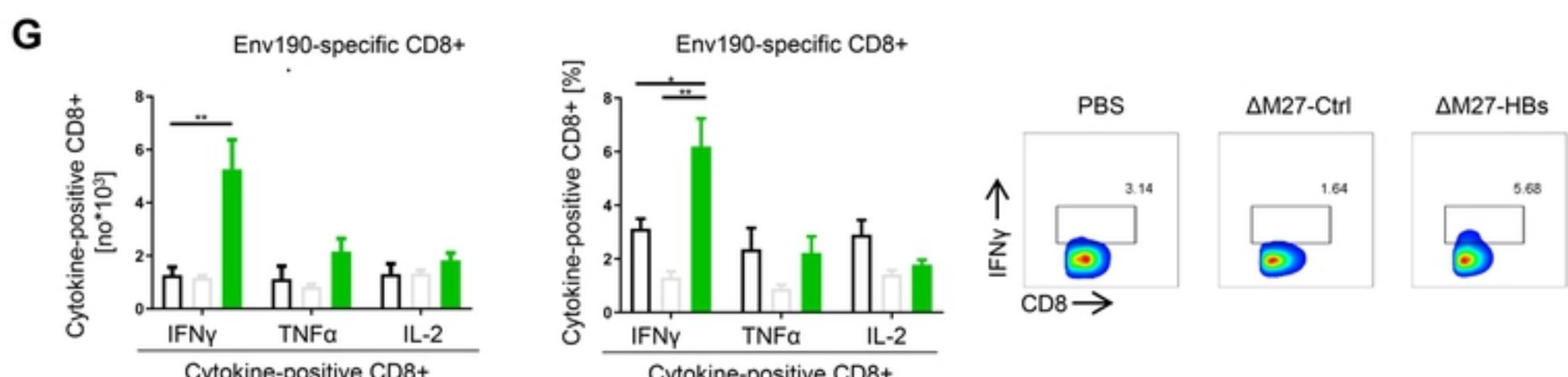
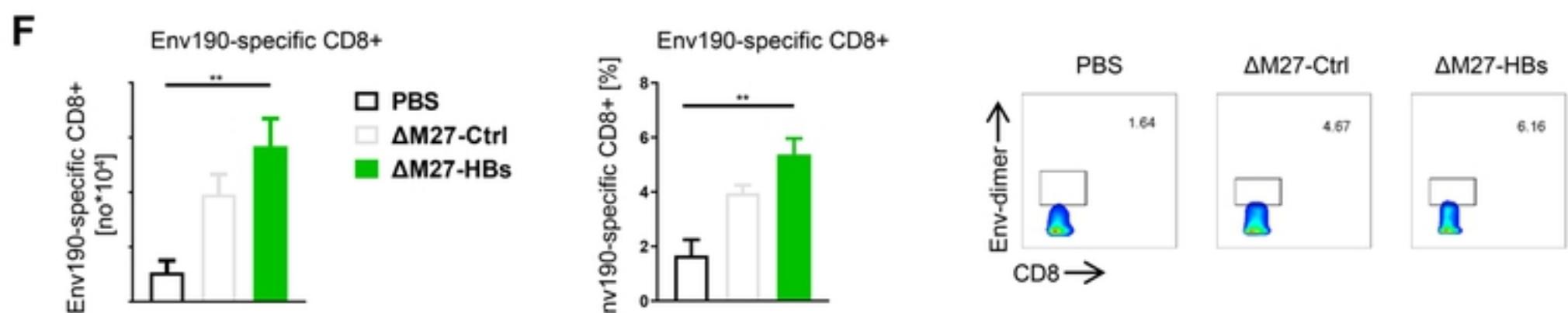
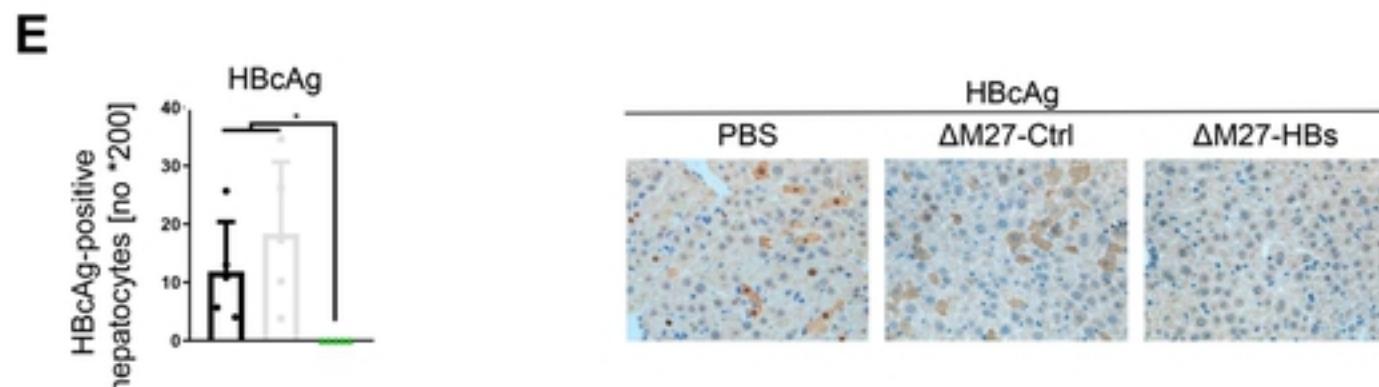
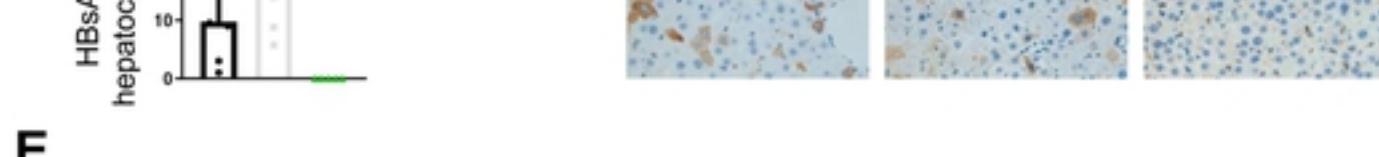
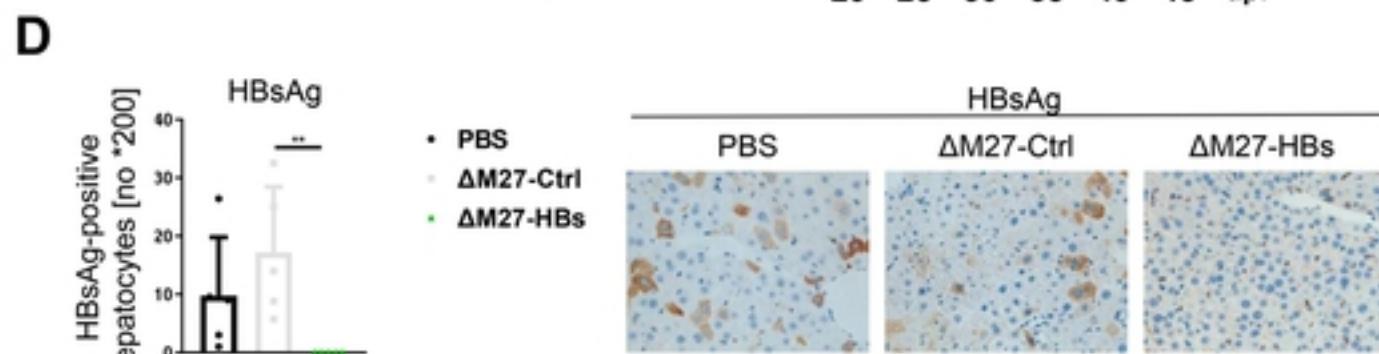
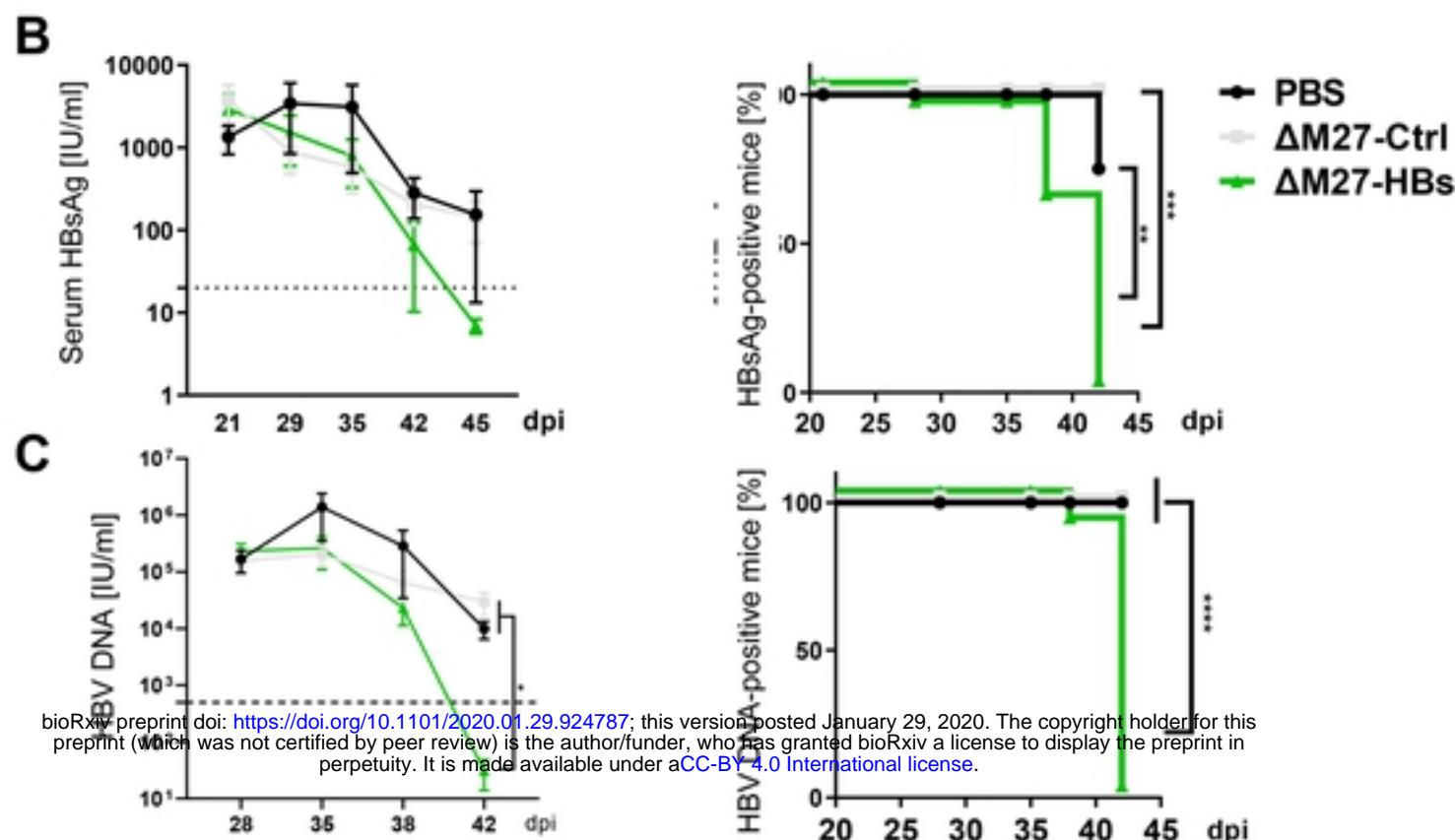
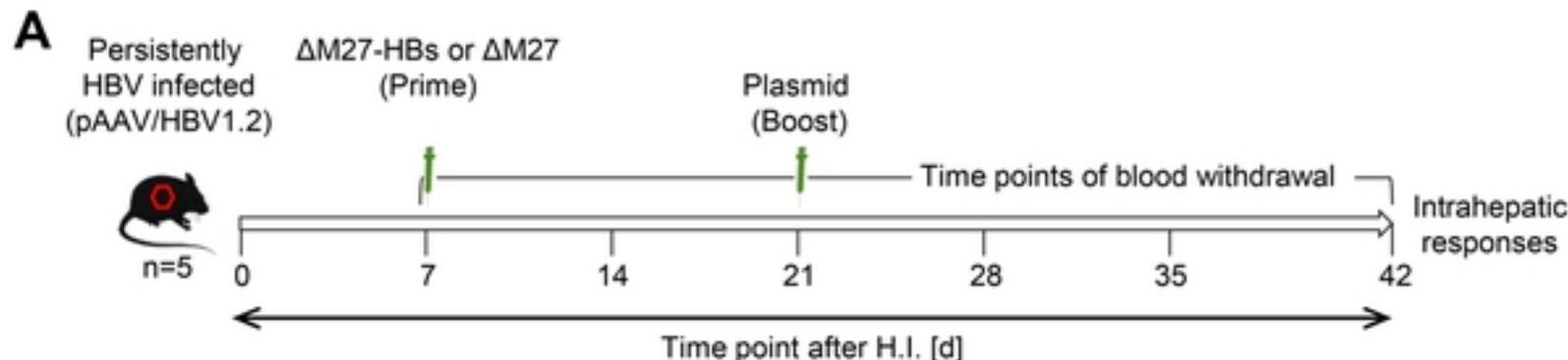








Figure 7