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ABSTRACT 

The drive to understand cell signaling responses to environmental, chemical and genetic 

perturbations has produced outstanding fits of computational models to increasingly intricate 

experiments, yet predicting quantitative responses for new biological conditions remains 

challenging. Overcoming this challenge depends not only on good models and detailed 

experimental data but perhaps more so on how well the two are integrated. Our quantitative, 

live single-cell fluorescence imaging datasets and computational framework to model generic 

signaling networks show how different changing environments (hereafter ‘kinetic stimulations’) 

probe and result in distinct pathway activation dynamics. Utilizing multiple diverse kinetic 

stimulations better constrains model parameters and enables predictions of signaling dynamics 

that would be impossible using traditional step-change stimulations. To demonstrate our 

approach’s generality, we use identified models to predict signaling dynamics in normal, 

mutated, and drug-treated conditions upon multitudes of kinetic stimulations and quantify 

which proteins and reaction rates are most sensitive to which extracellular stimulations. 
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INTRODUCTION 

One of the longest standing challenges of modeling in systems biology has been to make 

accurate quantitative predictions for cell signaling responses over time, upon genetic 

mutations, when subjected to variable drug concentrations, and under kinetic changes of 

environment (Danhof et al., 2007; Rowland et al., 2011; Sebolt-Leopold and English, 2006; 

Wendell Lim & Bruce Mayer, 2015; Yaeger and Corcoran, 2019; Zanetti-Domingues et al., 

2018). Examples of environmental perturbation include changes in the hormone or 

neurotransmitter levels (Steiner et al., 1982), morphogens (Sorre et al., 2014), or extracellular 

stressors such as osmolarity (Mettetal et al., 2008; Mitchell et al., 2015). Such perturbations 

are shown to vary significantly over both time and space and can affect cell fate decisions 

(Harvey and Smith, 2009). Signaling pathways are common in all eukaryotes and play key 

roles in cellular responses and function under a diverse range of different stimulations 

(Hatzivassiliou et al., 2010).  However, mutations in these pathways can alter signaling 

dynamics and can contribute to many human diseases (Cildir et al., 2016; Hanahan and 

Weinberg, 2000; Logan and Nusse, 2004; Mitchell and Hoffmann, 2019; Suarez-Lopez et al., 

2018). Therefore, understanding and predicting signal transduction network behavior will be a 

critical step to identify hidden regulatory mechanisms, distinguish between proteins and 

reaction rates that are sensitive to kinetic stimulations, and to detect and treat abnormal 

regulation that occurs in a large number of human diseases (Cildir et al., 2016; Hanahan and 

Weinberg, 2000; Logan and Nusse, 2004; Mitchell and Hoffmann, 2019; Suarez-Lopez et al., 

2018). 

 

A key obstacle that prevents predictive cell signaling models is the gross mismatch between 

the preponderance of biological complexity and the sparsity of quantitative experimental data 

(Oltvai and Barabási, 2002).  Specifically, cell signal transduction networks are notoriously 

complicated (Campbell et al., 1998; Hanahan and Weinberg, 2000), yet experimental analyses 

of their dynamics often capture only a few signaling proteins at only a few time points during 

cellular responses (Kingsmore, 2006; Mitchell and Hoffmann, 2019; Muzzey and van 

Oudenaarden, 2009; Sorre et al., 2014).  As a result, most current mechanistic models of 

signal transduction pathways are too complex and poorly constrained to provide predictive 

power, while current data-driven models are often too simple to extend beyond the most basic 
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aspects of biological reality (Csete and Doyle, 2002; Klipp et al., 2005; Muzzey et al., 2009; 

Schoeberl et al., 2002).  To address the disparity between biological complexity and lack of 

richness in experimental data, the dominant paradigm has been to devise (usually more 

expensive) experiments with higher content (e.g., high-throughput sequencing or multiplexed 

single-cell imaging) in hope that big enough data will eventually fill the gap between 

mechanistic and predictive understanding (Deng et al., 2019). Unfortunately, very little 

consideration has been given to the possibility that data could be richer if the experimental 

perturbations are designed with diverse kinetic features instead of constant environments of 

different concentrations.  

 

To date, most computational models have been fit to experiments at steady state in different 

environments (Hao and O’Shea, 2012) or under step-like perturbations from one baseline level 

to another (Klipp et al., 2005; Sinkoe et al., 2017) (Figure 1A).  However, life evolved to thrive 

in the presence of gradual changes (Harvey and Smith, 2009; Sorre et al., 2014), and recent 

studies have demonstrated that many cells respond differently to inputs of equal magnitudes 

based upon specific variations in input kinetics, such as different temporal frequencies (Albeck 

et al., 2013; Ashall et al., 2009; Cai et al., 2008; Hao and O’Shea, 2012; Hersen et al., 2008; 

Mettetal et al., 2008; Wang et al., 2012) or different spatial gradients (Harvey and Smith, 

2009). A few pioneering studies have even demonstrated that different kinetic stimulations can 

dramatically affect intracellular signaling dynamics to create distinct cell phenotypes (Averbukh 

et al., 2018; Cai et al., 2004; Heltberg et al., 2019; Mettetal et al., 2008; Mitchell et al., 2015; 

Muzzey and van Oudenaarden, 2009; Rahi et al., 2017; Shimizu et al., 2010; Sorre et al., 

2014; Thiemicke et al., 2019; Zhang et al., 2019) (Figure 1A).  The fact that different kinetics of 

the same environmental inputs create such different responses offer a new opportunity to 

generate a wider and richer range of signaling pathway dynamics, while using current 

experimental assays that measure only a small number of signaling proteins.  

 

The importance of utilizing multiple different dynamical inputs to characterize experimental 

processes has long been recognized in the concept of persistence of excitation in adaptive 

systems identification theory (Billings, 2013; Isermann and Münchhof, 2011; Nowak, 2002). 

This theory states that complex system (e.g., signaling pathways) mechanisms can be inferred 
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from measurements of only a handful of coupled inputs (i.e., perturbations) and outputs (i.e., 

response measurements), provided that the inputs cover an appropriate set of orthogonal 

dynamics that excite the most important modes of the complex system.  In this article, we 

explore the possibility that the diverse data sets achieved by cell signaling networks with 

multiple different inputs would provide such information and allow for more predictive models 

of complex biological pathways. With these models, we computationally screen and distinguish 

between proteins, reaction rates, and hidden regulatory mechanisms that are sensitive to 

kinetic environmental perturbations. To accomplish this task, we begin by inferring several 

models from single-cell time-lapse microscopy data for a well-known Mitogen-Activated Protein 

Kinase (MAPK) pathway. We then examine through simulation which types (or combinations of 

types) of experiments (kinetic inputs) are most likely to excite the appropriate system 

dynamics, to reveal well-constrained model parameters and mechanisms, and to enable 

quantitative predictions for new environmental or mutant circumstances. However, the 

modeling approach is generalizable to any other signal transduction pathway in any organism 

in healthy or diseased tissue. 

 

To provide context for our exploration of optimal experiment design in the elucidation of cell 

signaling pathways, we choose the High Osmolarity Glycerol (HOG) MAPK signaling pathway 

(Figure 1A) in the yeast Saccharomyces cerevisiae (Saito and Posas, 2012; Tatebayashi et al., 

2015). This eukaryotic model system includes all of the most relevant features of signaling 

networks, including a terminal signaling protein (Hog1) that is regulated through a branched 

upstream protein network that generally consists of kinases, phosphorelays, and sensors 

(Cuadrado and Nebreda, 2010; Laboucarié et al., 2017; Weston and Davis, 2007). These 

proteins can be regulated through phosphatases, autoregulation, feedback and feedforward 

loops that collectively modulate the robustness of response in the face of intracellular or 

extracellular perturbations. The Hog1 kinase is evolutionarily conserved from yeast to human 

(Hog1/p38) and its molecular components and interactions have been well characterized 

(Saito and Posas, 2012; Tatebayashi et al., 2015). Moreover, measuring Hog1 activation 

dynamics in single cells through its nuclear translocation dynamics using time-lapse epi-

fluorescent microscopy allows for high temporal resolution measurements that are not possible 

with other methods (Mettetal et al., 2008; Muzzey et al., 2009). With this system, we have 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.923755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923755
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 
 

previously demonstrated experimentally that changing the extracellular osmolyte 

concentrations over time allows us to generate diverse kinetic input profiles that result in 

distinct Hog1 activation dynamics as pathway response output (Thiemicke et al., 2019) 

(Figures 1B and 1C). We now seek to explore what implications this richness of input-to-output 

dynamics can have on the possibility to identify signaling models, to distinguish between 

proteins, reaction rates, and hidden regulatory mechanisms that are sensitive to kinetic 

environmental perturbations, and to determine under what optimal experimental conditions can 

this identification be most reliably accomplished.  

 

For clarity of exposition, we define “kinetic stimulation” as the extracellular environmental 

perturbation that is applied to cells as inputs, and “dynamic responses” as the resulting 

pathway activation outputs. We refer to the pair of “kinetic stimulation” and “dynamic response” 

as a signaling dataset. We design kinetic stimulations that change over time under a wide 

range of rates and intensities. Our analyses reveal that model predictability depends primarily 

on the diversity of kinetic cell stimulations rather than the amount or specific type of data used. 

We demonstrate the power of this approach in selecting the best predictive model and 

accurately predicting the loss and gain of function mutants’ responses such as feedback loops, 

phosphatase activity, and over and under expression of signaling proteins (Figure 1). By 

simulating data for a range of cell stimulations of different kinetic types and intensities (Figure 

1; STAR Methods), we compare model fits (red) to different predictions (blue, yellow and 

green) and demonstrate that our findings are general, irrespective of the choice of kinetics that 

are used to evaluate the predictions. 

 
RESULTS 
 

Parametrizing signaling models with experimental data enables predictions of WT and 
mutant pathway responses upon kinetic stimulations. Since the HOG model pathway 

combines universal signaling network features as outlined above, it serves as a blueprint to 

build predictive signaling models of varying complexity (Figures 1A-1D). To begin, we 

parametrized several representative biologically inspired models (STAR Methods) by fitting 

them to experimental Hog1 nuclear localization data (Figures 1B-1D and S1K-M).  Using 
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experimentally constrained parameters for each model, we predicted Hog1 signaling dynamics 

upon different kinetic stimulation profiles. We chose the model whose least square errors were 

minimal in predicting experimental Hog1 dynamics (Figures 1D and 1E). The representative 

model in Figure 1D (middle), resembles a simplified branched signaling pathway consisting of 

four nodes, including one activating and one repressing sensor protein, constant basal 

regulators and a negative feedback loop from the terminal kinase to an upstream signaling 

branch (Figures 1F and S1). In the context of the HOG pathway, the node x1 represents the 

Sln1 branch including the proteins Sln1, Ypd1, Ssk1, Ssk2/ Ssk22. The Sln1 branch utilizes a 

two-component phosphorelay mechanism to transmit its signal with b1 representing the 

constant deactivation of the Sln1 branch (Hohmann et al., 2007; Maeda et al., 1994). A 

mutation in b1 could increase or decrease the activity of the Sln1 branch (Reiser et al., 2003). 

The node x2 describes the Sho1 branch of the HOG pathway that utilizes protein kinases to 

relay its information. The Sho1 branch consists of the proteins Sho1, Msb2, Hkr1, Opy2, 

Cdc42, Ste20/Cla4, Ste11 and Ste50 with b2 modeling the basal deactivation of the Sho1 

branch (Tatebayashi et al., 2015). Changing or mutating b2 could result in an increase or 

decrease in the activity of the Sho1 branch. The Sho1 branch is also regulated by the Hog1 

kinase through a feedback loop (Hao et al., 2007). Deletion of this interaction (𝝙K) represents 

a Hog1 kinase dead mutant, a Hog1 analog sensitive mutant or an Hog1 inactivation due to a 

small molecule inhibitor (O’Rourke and Herskowitz, 1998; Westfall and Thorner, 2006). The 

node x3 represents a MAPKK such as Pbs2 that integrates information from two branches and 

has basal regulation (b3) through phosphatases such as Ptc1/2/3. Over or under expression of 

Ptc1/2/3 or mutations in Ptc1/2/3 that change phosphatase activity could then be modeled by 

changing the value of b3. Lastly, x4 represents a terminal kinase such as Hog1 that is activated 

by Pbs2. Hog1 is deactivated through phosphatases Ptc1/2/3 and Ptp2/3 (Mattison and Ota, 

2000; Warmka et al., 2001; Young et al., 2002). Deactivation of Hog1 via constitutively active 

phosphatases is modeled as the act of basal deactivator b4 on x4. Changing the value of b4 in 

the model represents over- or under-expression of these phosphatases or a change in their 

activity. We defined the model in Figure 1D (middle) after parametrizing with experimental data 

as the “true model”. From this model we simulated synthetic signaling data upon diverse 

kinetic stimulations for the remainder of this study. Using a known model for this task, rather 

than additional experiments, allows us to systematically and quantitatively establish how 
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diverse kinetic cell stimulations impact model identifiability and predictive power in a controlled 

setting where ground truth knowledge is available to check performance.  

 
Diverse kinetic cell stimulations result in distinct pathway activation dynamics. This 

known true model enables us to map diverse kinetic inputs to pathway dynamics in normal WT 

cells and mutant strains (Figure 1G). Over a wide range of kinetic input types and intensities, 

we simulated 54 synthetic datasets (Figures 1H, S2 and S7) under physiologically feasible and 

mutually independent kinetic stimulation profiles (see STAR Methods) such that each of the 54 

profiles stimulates the pathway uniquely over time. Interestingly, the resulting pathway 

activation responses under different kinetic cell stimulations are qualitatively and quantitatively 

distinct from one another. Our simulated data (Figure S2) qualitatively and quantitatively 

captures the main characteristics of Hog1 dynamics, including activation level, measurement 

error, delay in activation, time to reach maximum activation and prefect adaptation observed in 

experiments (Figures 1B and 1C). Each signaling dataset covers the same duration and 

sampling range and has the same amount of data. However, different datasets may provide 

different amounts of information to constrain model parameters, which could lead to more or 

less accurate predictions for other kinetic inputs.    

 
Lack of kinetic stimulation diversity limits model prediction power. To explore what 

effects different stimulations have on model predictive power, we fit the true model to 

simulated data with experimentally realistic noise (STAR Methods) simultaneously for two 

steps of 0.2M and 0.3M NaCl (red). We then predicted the remaining 54 datasets for steps as 

well as all other kinetics (blue) (Figure 2). We performed multiple independent fits, where each 

fit over all time points on average converged to within the standard deviation in the synthetic 

data (Figures S1G-S1J; STAR Methods). Comparison of the fits and predictions to the 

corresponding training and testing data shows that the quality of predictions are nearly as good 

as fits for the same type of kinetics (Figures 2A and 2J, blue) but become worse for different 
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types of kinetics (Figures 2B-2F and 2G-2I, 2K, 2L).  This raises the question if the lack of 

predictability is due to the lack of data or due to limited kinetic diversity in the training data.  

 

To address the possibility of having too little data, we fit the model to six step (𝑡#)	data 

simultaneously (Figure 3A, red), and we predicted the signaling dynamics upon all remaining 

kinetic stimulations (48 data sets). We then compared model predictions of signaling dynamics 

for linear kinetic stimulations (𝑡&)	 or nonlinear kinetic stimulations (𝑡')	of different final 

concentrations to their corresponding synthetic data (Figure 3A, blue or green, respectively, 

compared to gray). After convergence, each set of model fits resulted in poor predictions for all 

data sets except for testing data collected using the same kinetic type as the training data. This 

observation was the same for subsequent training data sets with homogeneous input types 

(Figures S3A-S3C). Comparing how model predictability depends on the amount of training 

data of the same type illustrates that simply collecting more data of the same type does not 

automatically result in improved predictability (Figures 3B, S3A-S3C, right). Rather, the specific 

kinetics upon which the cells are stimulated may be of greater importance.  

 
Diversified kinetic stimulations better constrain model parameters and improve model 
predictions. To address the importance of kinetic diversity in training data, we fit signaling 

dynamics for different kinetic stimulations (𝑡# − 𝑡))	 of a given final concentration (Figure 3C, 

red), and we predicted the signaling dynamics for the remaining kinetic stimulations (Figure 

3C, blue and green). Comparing model predictions of signaling dynamics for linear kinetic 

stimulations (𝑡&)	or nonlinear kinetic stimulations (𝑡')	of several different final concentrations to 

their corresponding synthetic data (Figures 3C and S3D, blue or green, respectively, compared 

to gray) indicates that all the predictions are substantially improved and are nearly as good as 

the fits, while the amount of training data is still the same as in Figure 3A. Quantitatively 

comparing how model predictability depends on the amount of different types of training data 

illustrates that kinetically diverse training data substantially improves predictability under all 

test kinetics (Figure 3D). A detailed analysis demonstrates that when using training data 

restricted to a single type, prediction errors increase as test data deviates away from kinetically 

similar training data (Figures 4A and S4A-S4I). To understand how diverse kinetic cell 

stimulations result in better predictions and reduced predictions uncertainties (Figure 4B), we 
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developed a Fisher Information Matrix (FIM) analysis framework to directly estimate the 

uncertainties of model parameters under different experiment designs (Apgar et al., 2010; Fox 

and Munsky, 2019; Hagen et al., 2013; Jetka et al., 2018; Komorowski et al., 2011) (STAR 

Methods). For example, each row in Figure S3 represents such an experiment design. 

Comparing the estimates of the model parameters’ uncertainty using D-Optimality (determinant 

of FIM matrix), we find that parameters are constrained substantially better (smaller ellipse) via 

sets of experiments with diverse kinetics (Figures 4C and 4D, green, blue) compared to sets of 

experiments with the same amount of data but with homogeneous kinetics types (Figures 4C, 

4D, and 4SJ-M, black, red, orange). These results indicate that signaling models built based 

on one type of kinetic cell stimulations may be predictive under different intensities of that 

same kinetic, but they fail to predict pathway responses upon other types of kinetic 

stimulations. This is important to consider because most computational models to date are 

often parametrized with measurements performed under constant stimulation profiles. 

Therefore, the models may not provide enough insights into cellular response in realistic 

kinetic physiological conditions. We find that training the model simultaneously with diverse 

kinetics constrains parameters betters and improves predictions substantially. 

 
Diverse kinetic stimulations improve model structure identification. Next, we examined 

how kinetically different cell stimulations affect model structure identifiability (e.g., the number 

and mechanisms of interacting signaling proteins) and elucidate the contribution of specific 

signaling proteins to overall dynamic signaling responses. Figures 5 and S5 show fits (red) and 

predictions (blue, yellow and green) of five models with varying complexity to six different 

signaling response dynamics. This analysis is performed using datasets that are simulated 

from model M3. Simpler models are built by removing one or two regulatory elements from M3 

to form M2 or M1 respectively, to simulate two mutants of the true model where the 

corresponding kinase activities are removed resulting in loss of feedbacks regulations (Figures 

S5A-S5C). On the other side, a more complex model is built by adding an extra regulation 

element to the true model, which could represent a hidden regulatory element yet to be 

discovered (Figure S5D, model M4). Finally, another complex model is generated by adding an 

entirely new signaling branch (consisting of a third sensor node and introducing three 

additional regulatory elements) to the true model (Figure S5E, model M5). As expected, the 
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simplest model cannot fit all data simultaneously (Figures 5A, S5A-S5B, red), whereas the true 

model and the more complex models fit well to the simulated data (Figures 5B, 5C, and S5C-

S5E, red).  These models were then used to make three sets of predictions (Figure 5D-5F, 

blue, green, yellow). As expected, the simple model does not predict well (Figure 5D), whereas 

the medium and complex models predict well but with varying levels of prediction uncertainties 

(Figures 5E, 5F). Through systematic comparison between different types of predictions for a 

range of concentrations and kinetic profiles (Figure 5G), we demonstrate that as model 

complexity increases, model fits improve as expected, but model predictability becomes worse 

as model complexity increases beyond the true model (Figure 5H). We argue that the 

increased uncertainty in the predictions of the complex models is due to the kinetically 

conditional behavior of their extra parameters and their flexibility in constraining their 

parameters during training the model (Figure S5). These results demonstrate that different 

kinetic cell stimulations can improve predictability in the process of complex model structure 

identification.  

 
Diverse kinetic stimulations improve predictions of mutant responses. Finally, we 

examined how diverse kinetic stimulations affect predictive performance for in silico biologically 

realistic mutations to specific signaling proteins in signal transduction pathways (Figures 6A 

and S6) (Hohmann et al., 2007; Mattison and Ota, 2000; O’Rourke and Herskowitz, 1998; 

Westfall and Thorner, 2006; Young et al., 2002). Sensitivity analysis of WT model allowed to 

categorize model parameters into two main groups of insensitive (sensitivity = 0) and sensitive 

(sensitivity = 1) parameters that we then use to predict putative mutations (Figures 6A, 6B, and 

S6). To determine whether diverse kinetic cell stimulations can identify biological mechanisms, 

we computationally introduced six mutations in our true model (STAR Methods). These include 

three knockout mutants that remove basal deactivators on either x1 (𝝙b1, blue cross), x2 (𝝙b2, 

red cross), or x3 (𝝙b3, teal cross). Mutants 𝝙b1 and 𝝙b2 can be interpreted as removing the  

constitutive deactivation of Sln1 or Sho1 branches, which could change the half-life of their 

active states. Mutant 𝝙b3 could represent regulation of Pbs2 through deletion of Ptc1/2/3 

phosphatases. The node x4 can be mutated by removing kinase activity of x4 (𝝙K, purple 

cross, e.g., kinase dead or kinase activity inhibited) and can be regulated through 

overexpression (𝑏+, OE, orange); and underexpression (𝑏+, UE, brown) of the basal deactivator 
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on x4 such as the Ptp2/3 phosphatases (Figure 6A).  We then simulated corresponding 

synthetic pathway activations from all six mutants upon all 54 kinetic stimulations (STAR 

Methods). One example for a simulation upon a t9 kinetic stimulation is shown in Figure 6C. To 

quantify the differences in signaling dynamics between normal and mutant cells, we define 

severity as the difference in the activation dynamics of a mutant compared to that of the WT 

(Figure 6D and STAR Methods). We observed that pathway activation in some mutant strains 

shows no difference from WT under all kinetic inputs (𝝙b1 and 𝝙b3, mutation “severity” = 0), 

while other mutants with non-zero severity (𝝙b2, 𝝙K, UE and OE) are different from WT (Figure 

6C). Comparing the sensitivity to specific parameters in the model (Figure 6B) to the severity 

of the corresponding mutants’ effect on signaling dynamics (Figure 6E), highlights that 

sensitive parameters are direct indicators of how much specific mutations will affect signaling 

under different kinetics of specific types (Figure S6). Furthermore, constraining the parameters 

of WT model on its synthetic data under diverse kinetic stimulations enabled us to accurately 

predict the activation responses of all the 6 mutants over time under all 54 kinetic inputs tested 

(Figures 7 and S7).  These results are quantitatively summarized in Figure 7E, showing that 

the prediction errors for simulated mutations are comparable to prediction errors of non-

mutated WT cells. 

 

DISCUSSION  
Our experimental and simulation results demonstrate that different kinetic cell stimulations of a 

pathway give rise to distinct signaling activation dynamics (Figure 1). When compared to the 

same amount of any type of homogeneous kinetics, kinetically diverse cell stimulations 

perform much better to constrain complex model parameter sets and result in significantly 

reduced predictions errors (Figures 3 and 4).  The FIM analysis approach provides a rigorous 

and clear mathematical interpretation of this effect. Specifically, the eigenvector of the FIM 

corresponding to the greatest eigenvalue corresponds to the most accurately constrained 

parameter combination for a given kinetic stimulation (Figure S4M).  By comparing 

eigenvectors corresponding to large FIM eigenvalues, it is easy to see which kinetic type may 

be most effective to constrain specific parameters of a complex regulatory network. Similarly, 

by examining eigenvectors corresponding to small FIM eigenvalues, it becomes obvious which 

parameter combinations cannot be precisely identified using a specific kinetic input. By 
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choosing diverse and complementary input kinetics, such that the full parameter space is 

spanned by high-eigenvalue FIM eigenvectors from one or multiple kinetic inputs, it becomes 

possible to constrain the entire parameter set (Figures 4C, 4D, and S4J-S4M).   

 

Better constrained parameters make it easier to identify predictive models of signal 

transduction (Figures 5 and S5). This also enables improved performance to predict pathway 

activation dynamics for protein mutant strains upon kinetic stimulations (Figures 6, 7, S6, and 

S7). To illustrate these predictions, we revisited the HOG pathway as an example (Figure 6). 

We predicted that mutations that alter b1 will not impact Hog1 signaling dynamics. Next we 

focused on the node x2 that describes the Sho1 branch in which mutating b2 could result in an 

increase or decrease in Hog1 signaling. We predicted that 𝝙b2 results in increased Hog1 

signaling amplitude. In addition, the Sho1 branch can be altered in its activity by the feedback 

regulation from Hog1 kinase. In our model, we predicted that removing Hog1 kinase activity or 

inhibiting Hog1 kinase activity (𝝙K) results in increased and prolonged Hog1 activation. Next, 

we focused on the node x3 which represents Pbs2. Our model predicted that alternations of 

phosphatases such as Ptc1/2/3 would not alter Hog1 signaling dynamics through changed 

Pbs2 activity (𝝙b3). Lastly, x4 represents the terminal kinase Hog1 that can be deactivated 

through phosphatases Ptc1/2/3, and Ptp2/3 (b4). The model predicted that changing the value 

of b4 through over or under-expression has a strong impact on Hog1 signaling intensity. The 

experimental observations of the effect of above-mentioned mutants on the HOG pathway 

dynamics (O’Rourke and Herskowitz, 1998; Saito and Posas, 2012; Tatebayashi et al., 2015; 

Warmka et al., 2001) qualitatively validate our modeling results for all mutants (Figure 6). 

Using simulated data, we verified our mutant findings by quantitatively comparing predictions 

from each mutant to their corresponding synthetic data (Figure 7). 

 

These results demonstrate that kinetic cell stimulations are ideally suited to discover novel 

regulatory interactions, reveal key functional proteins, identify predictive and biologically 

meaningful models, and help to gain novel biological insights. We believe that implementing 

diverse kinetic cell stimulations may provide new opportunities in constraining complex model 

parameters in situations where experimental design methods based on instantaneous changes 

in the environment such as steps or pulses of varying heights or frequencies have not provided 
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great success (Billings, 2013; Isermann and Münchhof, 2011). Given the complexity of signal 

transduction networks (Campbell et al., 1998; Hanahan and Weinberg, 2000) and their limited 

response bandwidths (Hersen et al., 2008), steps or pulsatile stimulations of even varying 

intensities or frequencies may not provide enough kinetics to efficiently probe the rich 

dynamics underlying these networks (Billings, 2013; Steiner et al., 1982). Our approach on the 

other hand is widely applicable to many biological pathways that respond to a kinetic cell 

stimulation with a dynamic signaling response, and our approach has far reaching implications 

for predicting pathway response upon specific mutations or drugs (Campbell et al., 1998; 

Cuadrado and Nebreda, 2010; Hatzivassiliou et al., 2010). Being able to predict the pathway 

activation dynamics upon mutations or upon environmental changes may help design better 

drug treatments regimes.  In addition, these results could benefit our understanding of human 

biology, particularly in areas such as optogenetics, gene regulatory networks, or synthetic 

biology, where predictive understanding of the system behavior with respect to extracellular 

kinetics or intercellular genetic perturbations are of immense interest (Aoki et al., 2019; Bashor 

et al., 2019; Csete and Doyle, 2002; Endy, 2005; Gardner, 2013; Harrigan et al., 2018).  
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Figure 1. Kinetic stimulation of signaling pathways is required to identify predictive 
models and phenotypes. (A) Different extracellular kinetic stimulations (left) activate a 
signaling pathway (middle) and result in distinct dynamic kinase signaling and nuclear 
localization (right). (B) MAPK Hog1 nuclear localization dynamics upon step increases in NaCl 
to different final concentrations. (C) Hog1 dynamics upon step, linear or quadratic increases 
from 0M to 0.4M NaCl. Lines are means and shaded area are the standard deviation of 
multiple biological replicates (STAR Methods).  (D) Schematic overview of signaling models of 
different complexity. The middle model is defined as the true model to simulate synthetic data. 
(E) Schematic overview of model identification based on models’ predictions. The true model 
was used to simulate synthetic data for pathway response (defined as the activation of node 
x4). Different models were fitted to the same data to identify parameters. These models were 
then used to make predictions for pathway activation, depicted as black solid line, upon a 
different kinetic input that result in different responses for different models (colored lines). (F) 
Pathways are modeled with ordinary differential equations (ODE), where nodes (e.g., x1-x4) 
represent a group of protein(s), top-layer nodes are regulated by the kinetic input (𝑢(𝑡)), basal 
regulators (e.g., b1-b4) act on each node, and the final-layer node (e.g., x4) represents the 
terminal signaling protein that is observed (Figure S1; STAR Methods). (G) Diverse kinetic 
perturbations corresponding to step (𝑡#), root (√𝑡), linear (𝑡&), quadratic (𝑡/), quints (𝑡0), and 
heptic (𝑡)) changes over time (left) are applied to the true model (middle) resulting in synthetic 
signaling activation dynamics (right). Blue and purple show simulated pathway activation from 
mutated models (𝝙b1 and 𝝙K) under a heptic (𝑡)) input function each compared to WT in black. 
In synthetic signaling data, lines are means and shaded area are the standard deviation of 
simulated replicates (STAR Methods).  (H) Diverse kinetic inputs reaching different final 
concentrations result in 54 distinct simulated datasets for each WT or mutant model. These 
datasets are used to train models and test their predictions (Figures S1, S2, and S7).   
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Figure 2. Models trained using same kinetic type inputs fail to predict pathway response 
to other kinetics. (A-F) Models trained using step inputs fail to predict pathway response to 
kinetic stimulations. Gray lines show synthetic pathway activation dynamics over time at 
different kinetic inputs as indicated inside each panel; step (𝑡#, A), root (√𝑡, B), linear (𝑡&, C), 
quadratic (𝑡/, D), quints (𝑡0, E), and heptic (𝑡), F) input kinetics over time each to increasing 
final concentrations of 0.10M, 0.20M, 0.30M, and 0.50M. (A) Model fit simultaneously to steps 
of 0.2M and 0.3M data are shown in red. (A-F) Predictions under all other conditions are 
shown in blue. Predictions in (E) and (F) of all four concentrations overlap. Thick lines and 
shaded areas show median and interquartile range out of 10 independent fits and their 
corresponding predictions, respectively. As shown as an inset in (A), the 1st, 2nd and 3rd 
quartiles are used to plot shaded error bars where the thick line, upper and lower shaded 
areas represent Q2, (Q3-Q2), and (Q2-Q1), respectively. This convention is used throughout 
the manuscript. (G-L) similar to (A-F), models trained using quadratic inputs fail to predict 
pathway response to other kinetics.   
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Figure 3. Kinetic stimulation improves model predictions. (A) Simultaneous fits (red) to six 
simulated step input response of different concentrations (gray) and subsequent model 
predictions of signaling dynamics upon different concentrations of linear input stimulations 
(predictions1 in blue, testdata1 in grey) or different concentrations of nonlinear inputs of the 
shape t9 (predictions3 in green, testdata3 in grey). (B) Box plots of mean and median fit and 
prediction errors when an increasing number of step inputs is used to train the model. (C) 
Simultaneous fit (red) to six different kinetic input stimulations of the same final concentration 
(gray) and model predictions for different concentrations of linear input stimulations 
(predictions1 in blue, testdata1 in grey) or different concentrations of nonlinear input 
stimulations of the shape t9 (predictions3 in green, testdata3 in grey).  In (A and C), thick lines 
and shaded areas in gray show the mean and the standard deviation of synthetic data. Thick 
lines and shaded areas in red, blue, and green show median and interquartile range of 10 
independent fits and their corresponding predictions, respectively. (D) Box plots of fit and 
prediction errors when an increasing number of diverse kinetics (𝑡#𝑡𝑜	𝑡)) is used to train the 
model. For (B and D), circles, squares and error bars show mean, median and 1st and 3rd 
quartiles, respectively. Fit error statistics are drawn from ntrain data sets over 10 independent 
fits (10 × ntrain errors) where ntrain = 1,2, …6 is the number of data sets used to train the model.  
Similarly, P1, P2, P3 are drawn from prediction errors of testdata1 (36-ntrain data sets over 10 
independent fits), testdata2 (12 data sets over 10 independent fits), and testdata3 (6 data sets 
over 10 independent fits), respectively (Figure 1H).   
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Figure 4. Kinetically diverse stimulations constrain model parameters substantially 
better than homogeneous kinetic types. (A) Comprehensive quantification of prediction 
errors of each kinetic stimulation type when five datasets of any given type is used to train the 
model (lighter colors denote smaller errors).  (B) Comparison of prediction errors (Predictions3) 
under increasing amounts of training data of the same kinetic type (e.g., step, linear, quadratic) 
or diverse kinetic types (0.3M and 0.7M). (C) Parameter uncertainty of the model estimated as 
inverse of determinant of FIM (i.e., D-Optimality) when the model is fit to all six of each data 
set. (D) Ellipsis are representative 95% confidence intervals for a representative pair of 
parameters estimated from FIM-1. Colors correspond to the 5 different sets of experiments 
considered in C.     
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Figure 5. Kinetically diverse stimulation profiles enable unprecedented model 
predictions. (A-F) Predictions enable identification of the true model among models of 
increasing complexities. (A-C) Three models with increasing complexity from left to right (M1 in 
A, M3 in B, and M5 in C) each are trained with six kinetically diverse datasets that are 
simulated from M3. Model fits are shown in red and compared to training data in gray. (D-F) 
Model predictions (examples of Predictions1 in blue, Predictions2 in yellow, and Predictions3 
in green) are compared to their corresponding test data (gray) indicated with stars in the table 
of train/test data in (G).  Thick lines and shaded areas in gray show the means and the 
standard deviations of synthetic data. Thick lines and shaded areas in red, blue, yellow, and 
green show median and interquartile range of 5 independent fits and their corresponding 
predictions, respectively. (G) An overview of sets of training and testing data that are used for 
fits and predictions. Red, blue, yellow, and green squares indicate the data sets used in (H) 
and stars indicate predictions that are presented in (D-F).  (H) Quantification of fit and 
prediction errors for five models of increasing complexity (see Figure S5 for model definitions 
and further analysis).  Circles, squares, and error bars represent means, medians, and 1st and 
3rd quartiles, respectively. Fit errors statistics are drawn from 6 train datasets over the 5 
independent fits (30 fit errors).  Similarly, P1, P2, and P3 are drawn from prediction errors of 
testdata1 (30 datasets, blue in G), testdata2 (12 datasets, yellow in G), and testdata3 (6 
datasets, green in G), respectively, each collected over 5 independent fits.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.923755doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923755
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

20 
 

 
Figure 6. Kinetically diverse stimulations elucidate dynamic effects of mutants. Training 
the WT true model (M3 in Figure 5B) on its signaling dynamics upon diverse kinetics (red in 
Figures 5B and 5G) reveal insights into the response of several mutated models under all 
tested kinetic inputs. (A) The six mutants of the WT model correspond to deletions of basal 
regulators (e.g. phosphatases) on x1 (𝝙b1, blue), x2 (𝝙b2, red), or x3 (𝝙b3, teal), removal of the 
kinase activity (e.g. kinase dead or inhibited MAPK) of x4 (𝝙K, purple), and under- or over-
expressing b4 (e.g. phosphatase) that regulates x4 (UE in orange and OE in brown). (B) 
Sensitivity analysis of WT model with respect to model parameters around their best value 
from the fits, predicts insensitive (e.g., 𝜆3 and 𝜆4 corresponding to 𝝙b1) and sensitive (𝜆15 and 
𝜆16 corresponding to 𝝙K) mutants. (See Figure S6). (C) Comparing the activation dynamics of 
mutants (simulated using Λ# in Table S1) to WT under a representative kinetic input (t9 to 0.2M, 
inset). Thick line and shaded area (colors) show the mean and the standard deviation of 
synthetic data for the corresponding strains. (D) Mutation severity, defined as the difference in 
activation dynamics of a mutant from that of the WT (STAR Methods). (E) Mutation severity 
are shown for two representative mutant strains; 𝝙b1 (insensitive) and 𝝙K (sensitive) over all 
kinetic types summed over all their final concentrations.   
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Figure 7. Kinetically diverse stimulations enable to predict mutants’ response 
dynamics. Training the WT true model (M3 in Figure 5A) on its signaling dynamics upon 
diverse kinetics enable predictions for the response of mutants upon all tested kinetic inputs. 
(A) A mutant where the kinase activity of x4 is eliminated (e.g., kinase dead or inhibited MAPK, 
purple cross) leads to a loss of feedback regulation from x4 on x2. (B) Extracellular stimulation 
of the models result in elongated response adaptation in Δ𝐾 mutant compared to WT. (C-D) 
Example pathway activation predictions (predictions3 in green) are compared to their 
corresponding synthetic data for WT (C, gray) and 𝝙K (D, purple) under representative 𝑡' 
kinetic inputs. (E) Prediction (P1, P2, P3) errors quantified over all 54 kinetics (Figure 1H) for 
each of the six mutants (Figure 6A) compared to WT. These predictions are made using 
parameters constrained from 5 independent fits of WT model in Figure 5B.  
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STAR METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

MATLAB  Mathworks www.mathworks.com  

MATLAB code used for all 

simulations and calculations 

this study  Available upon reasonable 

request 

Experimental Models: Cell Lines 

Yeast cells Euroscarf BY4741 

 

LEAD CONTACT AND MATERIALS AVAILABILITY  

Further information and requests for resources should be directed to and will be fulfilled by the 
Lead Contacts, Brian Munsky and Gregor Neuert (gregor.neuert@vanderbilt.edu, 
brian.munsky@colostate.edu). 
 

METHOD DETAILS 

Modeling pathway as a dynamic ODE system.  

A dynamic Ordinary Differential Equations (ODE) system is used to model the pathway as an 

enzymatic regulatory network (Figure S1).  We developed a general framework that maps any 

arbitrary regulatory network to their corresponding ODE models implemented in MATLAB 

2018a (Figures S1A-S1E).  The framework dynamically takes arbitrary number of regulatory 

nodes in any topology and generates all possible ODE models corresponding to all the 

possible permutations of the regulations in the network.  A convention used in Ref. (Ma et al., 

2009) was adopted to formulate the rate equations of the model.  Each node in our model 

represents a protein (or group of proteins) that has a fixed total concentration that can be 

interconverted between active and inactive states via regulations from either of the kinetic 

inputs, fixed basal regulators, or other nodes of the network (Figure S1A-S1C).  All the 

regulations that a node receives are summed (Figure S1C), and each regulation (link) is 

modeled as a Michaelis-Menten function (Figure S1D).  In the model, different numbers of 
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nodes could act as sensors to receive extracellular stimulation and these regulators converge 

on a downstream node which in turn regulate a last node as the readout of the pathway. Each 

node receives a basal regulation from a source of a fixed concentration. This takes the 

opposite sign of the overall regulation the node receives from the input or internodes. Such 

regulation is considered for the role of constitutively active phosphatases and the 

autoregulation.  Finally, feedforward/feedback loop (FFL/FBL) regulations are considered in 

the most general form in our model, such that complex dynamic behaviors like adaptation are 

possible.  Any realization of such a network with basal regulations and internode regulations 

(including FFL or FFL regulation) can then be posed as a candidate model for fitting and 

predicting signaling data (see Figures 5 and S5 as an example).  

 

Despite the apparent topological complexity of signal transduction networks, we focus on a 

general 4-node topology for the following reasons: i) it is well supported that there might only 

be a limited number of recurrent network topologies (“circuit motifs”) that are capable of 

robustly executing biological functions (Milo et al., 2002; Shen-Orr et al., 2002; Wagner, 2005). 

ii) Despite a large number of proteins involved in the signaling networks, multiple of these 

proteins can be grouped together and considered a virtual node without losing significant 

generality on the overall pathway activation dynamics and cellular response. Indeed, model 

reduction methods have been of interest to simplify complex biological systems by exploiting 

system properties such as time scales or parameters sensitivity analysis (Huang et al., 2010; 

Jeong et al., 2018). iii) Many signaling pathways are branched where two (or more) upstream 

multi-component branches (consisting of the sensors, their phosphorelays, or kinases) are 

receiving (either the same or different) stimulations through different mechanisms, then 

converge at a common component, which in turn regulate a terminal signaling protein. This 

class of branched pathways in their core could be most broadly modeled as a 4-node topology. 

For example, in the Hog1 MAPK signaling pathway in S. cerevisiae, either of the Sln1 or Sho1 

branches could be grouped into one virtual node given their fast (millisecond) activation 

dynamics before they converge on Pbs2 compared to the longer activation dynamics of the 

Hog1 kinase (that is in the order of 5 minutes) (Saito and Posas, 2012; Tatebayashi et al., 

2015).  
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Simulating synthetic pathway activation dynamics.  

To validate the modeling framework and more importantly to establish how model identification 

depends on the amount and the type of data, synthetic signaling activation dynamics was 

simulated from a known model in response to different kinetic stimulation profiles. The reason 

we simulate synthetic data for the part of this paper, in comparison to fully relying on  

experimentally measured data, is that synthetic data enables to explore how diverse kinetic 

cell stimulations impacts model identifiability and predictive power, without the obfuscation and 

potential unknowns that come from modeling experimental data. Challenges in using 

experimental data could come due to uncertainties in the model, the data, the integration of 

both, or simply undiscovered biology. Even in the rare cases where both model and 

measurements may be available, there is still a lack of understanding on how to integrate 

modeling frameworks with available experimental data such that meaningful new predictions 

could be made (Klipp et al., 2005; Muzzey et al., 2009). On the other hand, three main reasons 

make simulating synthetic data ideal for our purpose; i) To study how model predictions 

depend on data relies on availability of signaling dynamics over a wide range of kinetics and 

turning to synthetic data allows to simulate responses upon a wide range of perturbations. ii) 

Simulating data from a known model provides a ground truth to quantitatively benchmark the 

performance of a model identification framework while by using experimental data we don’t 

have an underlying known model to cross-check the results. iii) Similar to (ii) simulating 

synthetic data from a known model with known parameter values provides a reference point to 

fully parametrize the model. In addition, model performance could be tested in a wide range of 

parameter space. For these reasons we simulate signaling data under conditions that are 

biologically inspired and resemble experimental observations.  

 

Among many models that equally fit and predict our Hog1 observation dynamics, a known 

network topology was chosen that could most broadly represent the class of ubiquitous 

branched signaling pathways and is parametrized through best fit to our available experimental 

Hog1 activation dynamics upon 0.2M and 0.4M NaCl (Figures S1A, and S1K-S1M). Using the 

resulting parameters (Table S1), synthetic pathway activation dynamics were generated that 

qualitatively and quantitatively recapitulate the experimental Hog1 pathway activation 

dynamics, such as activation levels, measurement noise, onset of activation, maximum 
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activation time and perfect adaptation time (Figures S1 and S2). Upon each stimulation input, 

single cell trajectories with experimentally realistic noise (to capture cell to cell variability and 

measurement noise) were simulated (Figure S1E). We simulated 30 independent synthetic 

data sets for each condition under independent single-cell noise (Figure S2). We refer to these 

as 30 “synthetic replicates” of the same data that will be used to initiate 30 independent fits for 

each condition.  

 

Data for a wider range of stimulations (20 different kinetics to 20 different final concentrations) 

was performed and conditions shown in Figure 1H were selected under the following criteria: i) 

to have a stimulation input profile that is physiologically feasible such that it could be generated 

and delivered to the cells in an experimental setup. Specifically, the solubility of the stimulus in 

the cell culture media and the operational rates range and precision of the syringe pumps 

determine the feasibility of generating a desired profile. All the cell stimulation profiles in this 

manuscript are physiologically feasible and experimentally achievable (Thiemicke et al., 2019). 

ii) To have a detectable pathway activation response (lower bound on the final concentration), 

and that the activation shows adaptation and does not saturate (higher bound on the final 

concentration). iii)  To have mutually exclusive (independent) data so that not any pair are 

overlapping over time for both stimulation inputs and the corresponding pathway responses. 

This ensures each implemented profile input stimulates the pathway uniquely over time. These 

criteria guide the generation of biologically inspired synthetic data sets that enable the 

quantitative investigation of whether and how the type and the amount of data affect model 

predictions and model identifiability. 

 

Fitting model to pathway activation data.  

We developed a customized optimization algorithm (implemented in MATLAB 2018a) to 

robustly and rigorously fit a given model to (any number of) pathway activation data to 

constrain the model parameters. One of the main challenges in parameter optimization is the 

quality and quantity of available experimental data (Figures 1 and S1). To deal with these 

limitations, we developed a combinatorial Genetic Algorithm (GA) that efficiently samples a 

large parameter space, combined with MATLAB’s built in routine fminsearch for finer tuning of 

the parameters at each minimum (Figure S1F). The algorithm dynamically takes a model and a 
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set of training data (𝐷 = {𝑂&(𝑡), 𝑂/(𝑡) …	𝑂>(𝑡)}) and returns a set of parameter sets (𝜦*) that 

best fit the training data set (see next section in STAR Methods). For every condition 

presented, 30 independent fits were performed, each taking one of the 30 “synthetic replicates” 

of the simulated data along an independent random parameter initiation and resampling 

through the algorithm (Figure S1G-S1J). This ensures that results are statistically reproducible, 

that they are not artifacts of noise in the simulated data, and that they are independent of initial 

parameter guesses. All 30 fit optimizations converged as shown in Figure S1H (objective 

converges). Fit errors were calculated by comparing each of 30 fits to their corresponding 

“synthetic replicate” data. These errors were normalized with respect to the number of train 

data (𝑑) and the number of time points in each data set.  

 

Optimization algorithm.  

The algorithm is given in Figure S1F and runs for 21 iterations (𝑖 = {1,2, … 21}), which similar to 

other parameters used in the algorithm, is determined based on fits convergences. Each 

iteration goes through two Genetic Algorithm (GA) calls each followed by a fminsearch (light 

blue boxes). The first GA and its following fminsearch uses only 25% (selected randomly) of 

timepoints of each dataset in the train data (OBJ25%), which helps to escape the potential local 

minima. Then the second GA and its consequent fminsearch use all timepoints of the train 

data. At the first 4 iterations (𝑖 ≤ 4) as well as at every 4th (gold box), the 1st GA takes N=200 

parameter sets sampled uniformly in [-3,+3] in the logarithmic scale (base 10), and returns a 

parameter set (Λ×), which feeds into its following fminsearch and returns the parameter set ΛG. 

This parameter set is collected through the iterations, and it is used to resample the 200 

parameter sets for the 2nd GA, as well as for the 1st GA for 𝑖 > 4 that’s not every 4th (purple 

boxes).  Each GA runs for 20 generations, passes on 1 elite parameter set at each generation, 

and uses a custom mutation function that uses the best sets from the last generation (parents) 

to guess some new parameter sets. Objective values are updated during the 2nd fminsearch if 

their value is improved. In total, 168,042 (= 2×21×20×200 + 2×21) number of parameter sets 

are evaluated for each model fit. 
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Predicting pathway activation dynamics.  

From the best parameter sets resulted from fitting the model to a training dataset, the model 

was solved for 𝑥+(𝑡)	(Figure S1E) to simulate the pathway activation prediction under any 

given stimulation kinetic input.  All 30 independent predictions corresponding to 30 

independent fits were computed using their corresponding best parameters sets (each of 30 

𝜦*s, Figures S1I and S1J). Prediction errors were quantified by comparing each of 30 

predictions to their corresponding “synthetic replicate” data. Prediction errors were normalized 

with respect to the number of time points.  
 

Simulating synthetic data from mutant pathways.  

To evaluate the quality of the predictions upon different extracellular kinetic inputs in the 

presence of intracellular network perturbations, synthetic data was simulated under all kinetic 

stimulations from three main classes of mutations in the pathway for the true model, which are 

i) knockout mutations, ii) varying expression levels, and iii) inhibiting the activity of a protein 

(Figure 6A). Mutation data was simulated using the same set of parameters (𝜦0, Table S1) with 

which the WT pathway activation data was simulated. Three different knockout mutations were 

generated by eliminating each of the basal regulators (𝑏&, 𝑏/, and	𝑏J) acting on 𝑥&, 𝑥/, and	𝑥J 

nodes. Knockouts are done be setting their corresponding parameters values in the model to 

zero.  Another mutation where the activity of the last node (𝑥+) (e.g., kinase dead) and thus its 

regulatory function in terms of feedback on the upstream node 𝑥/ was eliminated. This 

mutation was expected to show elongated perfect adaptation compared to WT. Finally, 

overexpression (OE) and underexpression (UE) mutations were generated by changing the 

concentration of the basal regulator (𝑏+) acting on 𝑥+. Here 𝑏+ was set to 0.05 (in UE) and 0.20 

(in OE) compared to 𝑏+ =0.10 of WT (a two-fold change for each). From each of the 6 mutated 

pathways of the true model, their corresponding activation dynamics, 𝑂(𝑡) 	∝ 𝑥+(𝑡), was 

simulated under all the kinetic stimulation inputs (shown in Figure 1H), and representative 

activation dynamics for each mutant are shown in Figures S7A-S7F.  
  

Predicting pathway activation dynamics for mutated pathways.  

For each of the 6 mutants, the best parameter sets (each of the 30 𝜦* resulting from each of 

the 30 independent fits) were used to generate their corresponding predictions under each 
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extracellular kinetic input (Figures 6A and S7). For all results presented in this study on 

mutants, all 𝜦*s are obtained by only fitting the WT pathway to its six dynamically different 

signaling responses; no mutant models or data were used (Figures 5B and 5G).  
 

Fisher Information Matrix (FIM) analysis to estimate parameter uncertainties.  

The Fisher information matrix (FIM) analysis was used to estimate expected parameter 

uncertainty for different experiment designs (Apgar et al., 2010; Fox and Munsky, 2019; Hagen 

et al., 2013; Jetka et al., 2018; Komorowski et al., 2011). The FIM provides the amount of 

information an observable could provide around an unknown parameter, and it has been 

extensively used to estimate how well potential experiments will constrain model parameters 

(Apgar et al., 2008; Bandara et al., 2009; Fox and Munsky, 2019; Sinkoe et al., 2017; Stewart-

Ornstein et al., 2017).  The FIM-1, the inverse of the FIM, known as the Cramer-Rao bound 
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(CRB), is in particular useful as it provides a lower bound on the variance for any unbiased 

estimator of model parameters (Aitkin, 2010). 

For any given model (Equation S1, Figure S1C), sensitivity equations for all model parameters 

(Equation S2) are formulated and are solved along the model ODEs (Equation S3) using 

Jacobina matrix of the rate functions under the initial and boundary conditions given in Figure 

S1E. Logarithmic parametrization of FIM is then computed to estimate the relative sensitivity of 

the parameters. From each model fit (to any set of train data), around each resulting best 

parameter set (𝜦*, Figure S1I) the FIM and its inverse, FIM-1, are computed upon all stimulation 

inputs. For each test data, standard deviation of the simulated activation dynamics over time, 

resulted from additive Gaussian noise that is independent of the mean activation (Figure S1E), 

is used to build the diagonal covariance matrix (Σ), which is used along computed sensitivities 

to calculate FIM (Equation S4). Several different metrics of the FIM, known as Optimality 

analysis, that are standard in model-guided experiment design are used to evaluate 

uncertainties (Fox and Munsky, 2019). These include A-Optimality, E-Optimality, T-Optimality, 

and D-Optimality, where the choice of the specific criteria depends on the application under the 

study. For example, E-Optimality corresponds to the smallest eigenvalue of the FIM, therefore 

gives a measure on how well an experiment design constrains the principle direction of 

parameter space that has the highest uncertainty.  D-optimality, which corresponds to the 

determinant of the FIM provides a measure of the volume of the uncertainty in parameter 

space, therefore is best suited for our purpose to compare different experiments in their ability 

to constrain the model parameters. We defined a new optimality “W-Optimality” as a weighted 

sum over the uncertainties (∆N) estimated by FIM-1 for individual parameters of the model 

(Figures S4J-S4M). In particular, this optimality gives more weight to better constrained 

parameters and less weight to insensitive ones, therefore it could provide a more accurate 

estimate on helpfulness of a specific experiment design in constraining the parameters that 

matters most by dynamically excluding the contribution of the sloppy parameters.  

 

Under model fit to five different experiment designs that have the same amount of data (six 

steps, six linears, six quadratics, six diverse kinetics of 0.30M or six diverse kinetics of 0.70M), 

the FIM is calculated upon all test data. Then, the resulted FIM or FIM-1 was used to estimate 

the uncertainty of the model parameters using optimalities. Uncertainty estimated by each 
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optimality is summed over all of testdata1, testdata2, or testdata3 kinetic stimulations and the 

results for 10 independent fits are shown in Figures 4C, 4D and S4J-S4M.  The estimates of 

the model uncertainty for five different experiment designs computed using a representative 

kinetic input (t9, 0.7M) from 10 independent fits are shown in Figures 4C-4D for D-Optimality. A 

comprehensive analysis of the model uncertainty for all optimality criteria described above and 

using all kinetic stimulations are given in Figures S4J-S4M. 

 

Mutation severity.  

For each mutant, mutation severity is computed as the sum of absolute difference in activation 

dynamics of a mutant from that of the WT over time upon all kinetic stimulations (Figure 6D). 

The mutation severity was marginalized for each kinetic type (summed over all final 

concentrations for each type kinetics), then normalized to the largest severity. 

 

Experiments, image processing, and data analysis to measure Hog1 dynamics.  

Yeast Saccharomyces cerevisiae BY4741 was used for time-lapse microscopy.  To assay the 

nuclear enrichment of Hog1 in single cells over time in response to NaCl osmotic stress, a 

yellow-fluorescent protein (YFP) was tagged to the C-terminus of endogenous Hog1 in 

BY4741 cells through homologous DNA recombination. A computer programmed syringe 

pump is used to control the osmatic stress over cells using a flowchamber10. The number of 

biological replicates (BR) and single cells presented in Figures 1B and 1C are as following; 

control has 6 BRs that have 6, 22, 5, 21, 9, and 9 cells; step 0.2M has 3 BRs that have 22, 53, 

and 67 cells; step 0.4M has 3 BRs that have 23, 25, and 42 cells; linear 0.4M 10min has 3 BRs 

that have 25, 9 and 45 single cells.  quadratic 0.4M 10min has 3 BRs that have 67, 53 and 61 

single cells.   
 

DATA AND CODE AVAILABILITY 

The datasets of the current study is available from the corresponding author on reasonable 

request. 
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