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Abstract 
Motivation: Protein sequence evolution is a complex process that varies among-sites within proteins 
and across the tree of life. Comparisons of evolutionary rate matrices for specific taxa (‘clade-specific 
models’) have the potential to reveal this variation and provide information about the underlying reasons 
for those changes. To study changes in patterns of protein sequence evolution we estimated and com-
pared clade-specific models in a way that acknowledged variation within proteins due to structure. 
Results: Clade-specific model fit was able to correctly classify proteins from four specific groups (ver-
tebrates, plants, oomycetes, and yeasts) more than 70% of the time. This was true whether we used 
mixture models that incorporate relative solvent accessibility or simple models that treat sites as homo-
geneous. Thus, protein evolution is non-homogeneous over the tree of life. However, a small number 
of dimensions could explain the differences among models (for mixture models ~50% of the variance 
reflected relative solvent accessibility and ~25% reflected clade). Relaxed purifying selection in taxa 
with lower long-term effective population sizes appears to explain much of the among clade variance. 
Relaxed selection on solvent-exposed sites was correlated with changes in amino acid side-chain vol-
ume; other differences among models were more complex. Beyond the information they reveal about 
protein evolution, our clade-specific models also represent tools for phylogenomic inference. 
Availability: Model files are available from https://github.com/ebraun68/clade_specific_prot_models. 
Contact: ebraun68@ufl.edu  
Supplementary information: Supplementary data are appended to this preprint. 

 
 

1 Introduction  
In phylogenetics, tree topology and/or branch lengths are typically the pa-
rameters of interest. However, rate matrices estimated as part of maximum 
likelihood (ML) analyses also provide information about the process of 
evolution. Focusing on protein evolution, patterns of substitution pro-
cesses vary across the tree of life and among proteins (e.g., Braun, 2018; 
Weber and Whelan, 2019; Zou and Zhang, 2019). It has long been appre-
ciated (Kimura, 1986) that the accumulation of substitutions over evolu-
tionary time reflects two processes: 1) the rate at which novel mutations 
enter populations; and 2) the impact of drift and selection on the fate of 
those mutations. This paradigm suggests the patterns of protein evolution 
will vary across the tree of life; after all, the rate and spectrum of mutations 
and strength of selection (the latter reflecting, in large part, variation in 
effective population size, Ne) varies across the tree (Sung et al., 2012; 

Behringer and Hall, 2016). The sensitivity of ratio of radical to conserva-
tive amino acid substitutions to Ne (Nabholz et al., 2013; Weber and 
Whelan, 2019) suggests variation in the strength of selection is likely to 
be especially important for establishing the patterns of protein evolution.  

Using the radical to conservative substitution ratio to examine changes 
in the pattern of sequence evolution is complicated by the challenge of 
defining radical amino acid changes. Even in the earliest days of molecular 
evolution Zuckerkandl and Pauling (1965, p. 129) recognized that the 
“…inadequacy of a priori views on [amino acid substitution] conserva-
tism and nonconservatism is patent”; that problem remains unsolved. 
Many studies divide residues into two categories (e.g., polar/non-polar or 
small/large) and treat between-category substitutions as radical (e.g., Nab-
holz et al., 2013). That idea can be extended by using continuous values 
to describe the physicochemical characteristics of the amino acids instead 
of binary classification (Braun, 2018), but that still relies on the use of 
prespecified amino acid characteristics. Assessing changes in the process 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.923458doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923458
http://creativecommons.org/licenses/by-nc/4.0/


A. Pandey and E.L. Braun  

of protein sequence evolution without a priori assumptions would be de-
sirable. In principle, one could use the general Markov model (GMM) to 
estimating amino acid rate matrices. However, using the amino acid GMM 
requires estimation of 380 free parameters per branch, unlike the nucleo-
tide GMM which only requires 12 free parameters (Barry and Hartigan, 
1987). Moreover, the GMM cannot be used with among-sites rate varia-
tion (except for a +invariant sites version; Jayaswal et al., 2007) and rate 
variation is ubiquitous in protein evolution (Echave et al., 2006). Thus, 
the GMM cannot be used for this purpose. 

The general time-reversible model for amino acids (GTR20) might pro-
vide a feasible framework for parameter estimation. The GTR20 instanta-
neous rate matrix (usually called the Q matrix) can be decomposed into a 
symmetric rate (R) matrix with 189 free parameters that reflect the ‘ex-
changeability’ of each pair of amino acids and a diagonal matrix (Π) with 
19 free parameters for equilibrium amino acid frequencies (Le and Gas-
cuel, 2008). Of course, the time-reversibility assumption that limits the 
number of free parameters is inappropriate when protein evolution has 
changed across the tree; after all, postulating that the model changes over 
time (i.e., that the model is non-homogeneous) intrinsically renders mod-
els non-time-reversible. However, we can avoid this problem by estimat-
ing GTR20 parameters for clades with a limited taxonomic scope and then 
comparing the clade-specific parameter estimates. If the deviations from 
time-reversibility for the underlying model of protein evolution are suffi-
ciently limited within clades comparisons among those clades should re-
veal the ways protein evolution has changed across the tree of life.  

Using GTR20 parameter estimates to understand shifts in process of se-
quence evolution presents several challenges. Although previous studies 
(Huzurbazar et al., 2010; Zou and Zhang, 2019) indicate that we will find 
differences among clades, the complex and heterogeneous nature of pro-
tein evolution suggests there will also be substantial variation among pro-
teins (Braun, 2018) and among sites within proteins (Meyer and Wilke, 
2013; Echave et al., 2016). There are two way this heterogeneity could 
confound our ability the use of GTR20 parameter estimates to understand 
patterns of protein evolution across the tree of life. First, a high degree of 
variation among individual proteins might obscure variation among clades 
(Fig. 1). Second, simply optimizing GTR20 model parameters on a large 
protein dataset will yield average exchangeability estimates for all sites. If 
there is substantial variation among-sites within proteins the patterns re-
vealed by comparing these ‘averaged’ parameter estimates could be con-
fusing. These factors make it important to find ways to examine the impact 
of these sources of variation on any conclusions we reach regarding dif-
ferences among taxa. 

Assessing fine-scale variation (i.e., variation among individual proteins 
and among sites within proteins) is challenging. The simple approach of 
estimating GTR20 parameters for individual proteins and comparing them 
will not work; although the dimension of GTR20 is lower than that of the 
GMM it is still a parameter-rich model and individual proteins will not 
provide sufficient data for accurate parameter estimates. However, it is 
possible to estimate model parameters on a relatively large training dataset 
and then use those parameters to classify proteins in an independent vali-
dation dataset. Hereafter, we will call the GTR20 matrices estimated as part 
of this study ‘models’ because they are analogous to the empirical models 
that are often used in protein phylogenetics, such as the PAM (Dayhoff et 
al., 1978), JTT (Jones et al., 1992), WAG (Whelan and Goldman, 2001), 
and LG (Le and Gascuel, 2008) (we will also call PAM, JTT, WAG, LG, 
and related models ‘standard empirical models’). Using a combination of 
clade-specific and standard empirical models to classify individual pro-
teins should make it possible to establish the part of the parameter space 
shown in Fig. 1 that best describes large-scale patterns of protein evolu-
tion. Clade-specific models should fail as a classifier if the variance among 

individual proteins exceeds the variation among clades (lower portion of 
Fig. 1). In contrast, if the variation among clades exceeds the variation 
among proteins (upper portion of Fig 1), we expect the use of models as 
classifiers to work (i.e., the best-fitting model for validation set proteins 
will be the model generated from that clade). Finally, the number of times 
that model fit fails as a classifier will increase as the variation among pro-
teins increases. It should be possible to establish the specific parameters 
that vary among clades and determine whether they are consistent with 
predictions regarding the expected differences among clades in the 
strength of selection, assuming there is sufficient variation among clades. 

Fig. 1. Possible patterns for the variation in patterns of protein sequence evolution, 
both among proteins and among clades. Conceptual illustration showing the relation-
ships among proteins in the underlying models of presented after some type of dimension 
reduction. The crosses indicate models generated using the training data (i.e., large-scale 
averages for the parameters) and the smaller circles, squares, and triangles indicate individ-
ual proteins. Obviously, the number of dimensions necessary to provide a good summary 
of the data in GTR20 rate matrices in unclear; we have shown two dimensions in the interest 
of simplicity. 

The other type of fine-scale variation, variation among sites within pro-
teins, is more difficult to examine. Patterns of protein evolution are com-
plex (e.g., Wilke, 2012) and the best way to extract information about the 
patterns of molecular evolution while still acknowledging variation within 
proteins remains unclear. However, selection to maintain protein struc-
ture, which has a fundamental role in maintaining protein function, is 
likely to play a major role in establishing the overall patterns within of 
amino acid substitution matrices (Parisi and Echave, 2001). The relative 
solvent accessibility (RSA) of individual amino acids is one of the most 
important determinants of the patterns of sequence evolution for globular 
proteins (Conant and Stadler, 2009; Pandey and Braun, 2019). This sug-
gest it should be possible to subdivide proteins into solvent exposed (high 
RSA) and buried (low RSA) sites before estimating substitution matrix 
parameters for various clades. This would add another dimension to the 
parameter space shown in Fig. 1 (i.e., a dimension describing variation 
among sites within proteins). It also makes it necessary to use of a mixture 
model as a classifier (i.e., a model with two ‘sub-models’ where the site 
likelihoods are calculated as a weighted mixture of both sub-model matri-
ces). However, using these exposed/buried (‘XB’) mixture models is a 
straightforward extension of the idea of using models as a classifier to de-
termine which part of parameter space best describe the large-scale pat-
terns of protein evolution. 
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Herein, we examine the extent to which models of protein sequence 
evolution exhibit clade-specific features using six eukaryotic datasets se-
lected to exhibit differences in the strength of selection. These clades se-
lected for this study included vertebrates (expected to have small long-
term Ne), plants (expected to have intermediate long-term Ne), and micro-
bial eukaryotes (expected to have large long-term Ne). We focused on eu-
karyote datasets to limit the impact of horizontal gene transfer on our pa-
rameter estimates; the high rate of horizontal gene transfer in prokaryotes 
(Soucy et al., 2015) could have distorted estimates. We added a seventh 
dataset with a broad sample of eukaryotes; multiple changes in the under-
lying model of sequence evolution are likely to have occurred for the taxa 
in that dataset (unless the best description of protein evolution actually lies 
in the lower part of Fig. 1). This ‘all Euk’ dataset was included to assess 
the impact of using a dataset presumed to have experienced variation on 
the parameter estimates we obtained. We then used the new models as 
classifiers to assess among-protein variation and examine the way models 
differ, examining parameter differences among clades, among sites that 
were grouped by RSA, and for the combination of RSA and clade. 

2 Methods 
We generated 14 new protein models (seven based on all sites and seven 
XB mixture models) that were trained using arbitrarily selected proteins 
from seven published datasets (Table 1). One training dataset (Prum et al., 
2015) was available as nucleotide sequences, often including only one 
exon. For that dataset we extracted the coding exons and expanded the 
dataset by adding orthologous sequences from 117 avian genome assem-
blies (using the pipeline described in Reddy et al., 2017). After adding 
taxa to the Prum et al. (2015) dataset each locus was re-aligned using 
MAFFT v.7.130b (Katoh et al., 2009). 

Table 1. Training datasets selected for this study 

Clade # Proteins/Sites # Taxa Best Model Citation 

Birds (1) 250 / 109,969         48 JTT Jarvis et al. (2015) 
Birds (2) 250 / 161,112 317 HIVb Prum et al. (2015) 
Mammals 250 / 238,319 116 HIVb Douzery et al. (2014) 
Plants (1) 310 / 80,315 46 JTT Xi et al. (2014) 
Oomycetes 200 / 81,802 17 LG Ascunce et al. (2017) 
Yeasts 277 / 83,312 343 LG Shen et al. (2018) 
All Euk (1) 248 / 58,469 149 LG Strassert et al. (2019) 

In all cases, the best-fitting standard empirical model included +F+I+G4. The Prum 
et al. (2015) dataset was modified by adding 117 taxa (see above) 

We estimated parameters for the new models using IQ-TREE v. 1.6.10 
(Nguyen et al., 2015) as implemented in CIPRES science gateway (Miller 
et al. 2010). Before conducting the full model optimization, we identified 
he best-fitting standard empirical model for each training dataset using the 
-m TEST option with AICc as the decision criterion. The best-fitting stand-
ard empirical model varied among clades (Table 1), but the rate heteroge-
neity parameters for all best-fit models included both invariant sites and 
Γ-distributed rates. Thus, we used GTR20+I+Γ to estimate the new clade-
specific models. We fixed the tree topology and among-sites rate hetero-
geneity parameters (the Γ-distribution shape parameter and proportion of 
invariant sites) based on the analysis using the standard empirical model 
before optimizing fitting GTR20+I+Γ model parameters. The new clade-
specific models are available from github in a format usable by IQ-TREE 
and PAML (Yang, 2007). 

We selected six validation datasets (Table 2). In most cases, the datasets 
in Table 1 had enough alignments to divide them into training and valida-
tion sets. However, we used all genes in the plant and ‘all Euk’ (the latter 
includes a broad sample of eukaryotes) datasets. In those two cases, we 
selected another dataset with a comparable set of taxa to use as the valida-
tion set. We used BLAST (Camacho et al., 2009) to search the validation 
dataset with training set queries and we removed proteins with a low E-
value (our cut-off was 10-40). This eliminated any overlap between these 
two training and validation datasets. We determined the best-fitting model 
for each protein in the validation sets by using the -mset option to supply 
a list of all 18 standard empirical models as well as the seven new models 
estimated for this study to IQ-TREE. For comparison, we conducted the 
same analyses using the proteins in training datasets.  

To reduce within-protein heterogeneity, we separated globular proteins 
into exposed and buried sites. First, we used TMHMM (Krogh et al., 
2001) to identify and remove transmembrane proteins. Then the globular 
proteins were subdivided based on site RSA using a pipeline available 
from https://github.com/aakanksha12/Structural_class_assignment_pipe-
line. The pipeline generates a weighted consensus sequence that is then 
used as input for ACCpro (Pollastri et al., 2002) from the SCRATCH-1D 
suite (Magnan and Baldi, 2014). ACCpro assigns each residue to one of 
the two categories: exposed or buried, with the latter defined as <25% 
RSA. This information is written to a nexus file (Maddison et al., 1997) 
for each protein multiple sequence alignment that includes charsets for the 
two RSA classes (solvent exposed and buried). Finally, PAUP* 4.0b10 
(Swofford, 2003) was used extract the data subsets defined by RSA. Once 
the data were subdivided into exposed and buried residues the data for all 
proteins were concatenated, resulting in 14 data matrices (one exposed 
dataset and one buried dataset for the seven datasets in Table 1). 

Table 2. Validation datasets selected for this study 

Clade # Proteins # Taxa Citation 

Birds (1) 200        48 Jarvis et al. (2015) 
Mammals 200 116 Douzery et al. (2014) 
Plants (2) 200 107 Wickett et al. (2014) 
Oomycetes 150 15 Ascunce et al. (2017) 
Yeasts 200 343 Shen et al. (2018) 
All Euk (2) 149 61 Lax et al. (2018) 

The number of taxa is a maximum; the alignments for many individual proteins were 
missing a small number of taxa. All oomycete alignments were completely sampled 
but the validation set included fewer taxa than the training set 

Rate matrices were estimated for all 14 exposed- and buried-site train-
ing datasets as described above for the all sites datasets. The exposed and 
buried rate matrices were then combined to create a set of seven XB mix-
ture models, in which the site likelihoods are weighted averages over both 
alternative (exposed and buried) matrices. We identified the best-fitting 
mixture model for individual proteins in the validation datasets using 
‘fit_mixture_model.pl’ (available from github), which examines the fit of 
eight models: the seven XB models we generated and the Le et al. (2008) 
EX2 model (which is also an exposed/buried mixture model). We tested 
four versions of each model that differed in their treatment of rate hetero-
geneity (no rate heterogeneity vs. Γ-distributed rates) and equilibrium 
amino acid frequencies (the used of matrix frequencies vs optimized 
[+FO] amino acid frequencies). As above, we also assessed model fit for 
all proteins in training datasets. The XB models are available from github 
as a nexus file that can be used by IQ-TREE. 
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We analyzed the GTR20 exchangeability (R) matrices for standard em-
pirical models and the new models generated in two ways. First, we clus-
tered the distances among matrices by neighbor-joining (Saitou and Nei, 
1987). Second, we used principal component analysis (PCA) to explore 
differences among models. We normalized the matrix elements (i.e., the 
190 exchangeability values for each pair of amino acids) to sum to one for 
both analyses. Then we treated the normalized R matrix as a vector of 190 
values and calculated a matrix of Euclidean distances among the models 
for the cluster analysis. We used three normalized vectors for the PCAs: 
1) vectors with all 190 elements; 2) vectors of 75 elements limited to 
amino acid exchanges possible given single nucleotide change (1-nt inter-
changes); and 3) vectors of 101 elements limited to amino acid exchanges 
possible given two nucleotide changes (2-nt interchanges). We used JMP-
Pro version 12.2 (SAS Institute Inc.) with default settings for the PCA. 

We compared the 1-nt exchangeabilities for our clade-specific models 
to several matrices that describe amino acid properties. First, we used a 
symmetric version of the Yampolsky and Stoltzfus (2005) EX matrix, 
which describes the impact of mutations in laboratory mutagenesis stud-
ies. Note that the EX matrix is unrelated to the Le et al. (2008) EX2 model, 
which is an XB model (using our nomenclature). Lower EX matrix values 
indicate that mutating wild-type amino acid i to amino acid j typically re-
sults in more severe phenotypic changes in the laboratory. The EXs matrix 
(EX matrix-symmetric) was produced by averaging the EX matrix values 
for i to j mutations and j and i mutations and then normalizing the matrix 
to assign the most experimentally exchangeable amino acid pair (I and V) 
a value of one. Second, we compared clade-specific model exchangeabil-
ities to matrices that capture differences in amino acid side-chain volume 
and polarity, which were obtained from Braun (2018). All of these com-
parisons used Spearman’s rank correlations with two-tailed tests for sig-
nificance. 

3 Results and Discussion 

3.1 Models trained on vertebrates and non-vertebrates form 
two clusters in model space 

Clustering of Euclidean distances among models along with midpoint 
rooting revealed two distinct clusters in the model space (Fig. 2). The first 
cluster comprises the bird and mammal models and three standard empir-
ical models trained using viral data. The second includes all of the other 
models estimated for this project along with all other standard empirical 
models. These results corroborate the hypothesis that patterns of sequence 
evolution vary across the tree of life and they further suggest that models 
trained using vertebrate data are especially distinctive. 

The strong separation between the vertebrate models and the other 
clade-specific models was also evident in a PCA of the 190 exchangeabil-
ity parameters of these models (Fig. 3a). PC1 and PC2 were both signifi-
cant, but PC1 explained most of the of variation and it separated the mod-
els into vertebrate and non-vertebrate models. Perhaps surprisingly, the 
three vertebrate models (two of which were estimated using bird data) ap-
peared to be about as distinct as the non-vertebrate models. The PCA for 
the 1-nt exchangeability values (Fig. 3b) was quite similar to the all ex-
changeability PCA, probably reflecting the fact that the largest exchange-
ability values are those possible with a single substitution (Supplementary 
File 1). In contrast, PCA of 2-nt exchangeabilities (Fig. 3c) revealed a 
slightly different pattern; in that analysis PC1 also explained most of the 
variance but the plant model fell between the vertebrate models and the 
models for microbial eukaryotes (i.e., the yeast and oomycete). The verte-
brate models were closer to each other than they were in the 1-nt PCA and 

the ‘all Euk’ model was located even further from vertebrates than the 
yeast and oomycete models. The latter finding probably reflects the fact 
that microbial eukaryotes dominate that dataset. The influence of 2-nt ex-
changes could explain the distances (sum of branch lengths between mod-
els) among vertebrate models and between vertebrate models and the plant 
and microbial eukaryote models in the cluster analysis (Fig. 2). 

Fig. 2. Cluster analysis for clade-specific models of sequence evolution. A ‘tree of mod-
els’ generated by neighbor-joining of Euclidean distances among exchangeability matrices 
for the new models (bold) and standard empirical models. 

3.2 The best-fitting model for most individual proteins is the 
appropriate clade-specific model 

The best-fitting model for individual proteins in each validation dataset 
was one of novel clade-specific models (Table 3); the only exception was 
the ‘all Euk’ validation dataset where the LG model (Le and Gascuel, 
2008) had the best fit more than 60% of the time (compared to 31.5% for 
the new ‘all Euk’ model). The best-fitting models for the vertebrate vali-
dation datasets were split among the three vertebrate models (Table 3). 
The results for individual proteins in the training data were virtually iden-
tical (Supplementary Table S1); the exception was the ‘all Euk’ training 
data where the new ‘all Euk’ model had the best fit for 93.5% of proteins. 
These results indicate that the average patterns of protein evolution for 
each clade provide substantial information regarding the patterns of sub-
stitution within those clades and further suggests that idiosyncratic differ-
ences among proteins play a limited role in model fit (i.e., our results are 
consistent with the top portion of the model space shown in Fig. 1). 

3.3 Variation among structural environments is stronger 
than the variation among clades 

Clustering the matrices from the exposed/buried model XB models with 
standard empirical models and the two matrices from the EX2 model (Le 
et al., 2008) revealed three relatively distinct clusters (Fig. 4). All exposed 
models formed a divergent cluster on one side of the midpoint root; the 
deepest split within the exposed models was between vertebrates and non-
vertebrates (the EX2 exposed component nested within non-vertebrates). 
The results for the buried components was similar; the bird and mammal 
buried components formed a cluster that was distinct from the second 
group that included the buried components of all non-vertebrate models 
and the EX2 model. Both of those buried clusters were nested within 
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groups of standard empirical models (none of the latter were structure 
aware). The vertebrate buried components formed a cluster sister to three 
viral models (HIVb, HIVw, and FLU). Thus, matrices for the structural 
models exhibited two levels of separation: 1) the separation between the 
exposed and buried clusters; and 2) the separation between the taxonomic 
groups (vertebrates vs. all other taxa). 

Fig. 3. PCA of the clade-specific models of sequence evolution. Plot showing the first 
two PCs for analyses of exchangeability (R matrix) parameter estimates. The PCAs were 
calculated using (a) all values; (b), 1-nt values; and (c) 2-nt values. The proportion of the 
variance explained by each PC is listed alongside each axis. 

Table 3. Percentage of times clade-specific models were the best-fitting 
model for individual proteins in each validation dataset  

Best-fit model Birds Mammals Plants Oomycetes  Yeast All Euk 

Bird (1) 25 2 1 —  — — 
Bird (2) 24 21 — — — — 
Mammal 27.5 65 — — — — 
Plant 6.5 4 70.5 4.7 2.5 — 
Oomycete 0.5 — 2 84 1.5 2 
Yeast 1 — 3 2 88 4.7 
All Euk — — 0.5 2 2 31.5 
LG 1.5 0.5 5.5 5.3 4.5 60.4 
JTT 8 6 16.5 — — — 
WAG — — 0.5 1.3 — 1.3 
DCMut — — 0.5 — — — 
BLOSUM 0.5 0.5 — — — — 
PMB 1 — — — — — 
VT 1.5 — — — — — 
HIVb 2 — — — — — 
FLU 0.5 0.5 — — — — 
mt models 0.5 0.5 — 0.7 1.5 — 

Our clade-specific models are presented in bold. Values are rounded to the nearest 
0.1%; ‘—’ indicates models that never had the best fit to any protein the specified 
validation dataset. Cases where JTT or JTT-DCMut had the best fit were grouped, as 
were the mitochondrial models (‘mt models’). This table only reports the best-fitting 
rate matrix; each protein was allowed to have any among-sites rate heterogeneity 
model. Similar data for the training sets are available in Table S1. 

 

Fig. 4. Cluster analysis for clade-specific models of sequence evolution that incorpo-
rate protein structure. Our structural models are mixture of two matrices, similar to the 
EX2 model of Le et al. (2008). This ‘tree of models’ was generated by neighbor-joining of 
Euclidean distances among exchangeability matrices for the new XB model components 
(bold), the two components of the EX2 model, and standard empirical models. The line 
break on the “bird (1) EXP” branch indicates that it was a long branch that was shortened 
for readability. This tree is available from github as a nexus format.  

PCA of all 190 exchangeability parameters (Fig. 5a) and the 1-nt ex-
changeabilities (Fig. 5b) for the structural subsets of these datasets re-
vealed similar patterns. In both cases PC1 explained ~50% of the variance 
and it separated the exposed and buried models. In contrast, PC2 explained 
slightly more than 25% of the variance and it separated the models by 
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clade in a manner consistent with the models based on all data. The ex-
posed ‘bird 1’ model, which was based on the protein alignments used in 
Jarvis et al. (2014), is especially distinctive. In contrast, PCA of amino 
acid exchangeabilities that require at least two nucleotide substitutions (2-
nt exchangeabilities) was less informative; most models clustered near the 
center of a score plot of the first two PCs (which together explain 82.2% 
of the variance among models, see Fig. 5c). The exposed and buried sub-
models of the ‘all Euk’ XB model were the most distinctive, with higher 
values of PC1 than any other sub-models from the same structural envi-
ronment. The major similarity between the 2-nt PCA and the others is that 
the vertebrate exposed sub-models for vertebrates were more spread out 
than the buried sub-models for the same taxa, with the exposed ‘bird 1’ 
model based on the protein alignments used in Jarvis et al. (2014) being 
especially distinctive. 

3.4 The best-fitting XB model for most individual proteins 
is the appropriate clade-specific XB model 

The results validation set classification using clade-specific mixture mod-
els that were trained using exposed- and buried-site data as a classifier 
were similar to those obtained using the all-sites models (Table 4). The 
majority of the best-fitting XB model for the plant, oomycete, and yeast 
validation data were the appropriate clade-specific models (>75% in all 
cases). Likewise, the best-fitting models for proteins in the vertebrate val-
idation sets were almost always models trained using vertebrate data 
(>80% in both case). As we observed with the all-sites models, the XB 
model was not our novel ‘all Euk’ XB model; it was the EX2 model (Le 
et al., 2008) instead. However, none of the truly clade-specific XB models 
were the best-fit to the ‘all Euk’ validation set. 

Table 4. Percentage of times clade-specific XB models were the best-
fitting model for individual proteins in each validation dataset  

Best-fit model Birds Mammals Plants Oomycetes  Yeast All Euk 

Bird (1) 26.5 5 — —  — — 
Bird (2) 24.5 18 — — — — 
Mammal 32 68.5 — — — — 
Plant 12 8 94.5 4.7 1.5 — 
Oomycete 1.5 — 1 76 5 6.7 
Yeast 2.5 — 1 4 79 2 
All Euk — — — 3.3 1 33.5 
EX2 1 0.5 3 12 13.5 57.7 

New clade-specific models are presented in bold. Values are rounded to the nearest 
0.1%; ‘—’ indicates models that never had the best fit to any protein the specified 
validation dataset. Similar data for the training sets are available in Table S2. 

3.5  A ‘rule of opposites’ explains the exchangeabilities for 
different structural environments 

The highest exchangeabilities for exposed sites involved pairs of hydro-
phobic residues; when exchangeabilities for all six models were averaged 
the three highest values corresponded to I-V, F-Y, and I-M.  In contrast, 
the highest exchangeabilities for the buried environment were polar pairs 
(in this case, the three highest values were R-K, D-E, and Q-H). This pat-
tern may seem surprising; after all, it has long been appreciated that polar 
residues are common in solvent exposed environments whereas hydropho-
bic residues dominate the buried sites (Worth et al., 2009). We call the 
observation that the most exchangeable amino acids in each structural 

environment are the less common amino acids in that environment the 
‘rule of opposites.’ 

Fig. 5. PCA of the clade-specific models of sequence evolution. Plot showing the first 
two PCs for analyses of exchangeability (R matrix) parameter estimates. The PCAs were 
calculated using (a) all values; (b), 1-nt values; and (c) 2-nt values. The proportion of the 
variance explained by each PC is listed alongside each axis. 

The ‘rule of opposites’ allows us to differentiate between two alterna-
tive hypotheses to explain the relationship between exchangeabilities and 
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amino acid frequencies. One might postulate that the amino acids that are 
rare in a specific structural environment would have very low exchangea-
bilities because those amino acid amino acids would be necessary for spe-
cific functions. Alternatively, one might postulate that exchanges between 
pairs of rare amino acids are common as long as the physicochemical na-
ture of the amino acid is conserved. These results corroborate the second 
hypothesis and further suggest that at least some rare amino acids are es-
pecially exchangeable. 

The exposed and buried sub-models of the XB models could be sepa-
rated into a vertebrate and a non-vertebrate cluster (along PC2 in Fig. 5, 
panels a and b). Specific elements that separate the models were evident 
among the largest exchangeability values. Although the largest element 
for the exposed sub-models was I-V in both the vertebrate and plant/mi-
crobial groups, the next three elements differed. For vertebrates the next 
two elements involved exchanges between cysteine and aromatic residues 
(C-W and C-Y) whereas the plant/microbial models involved much more 
physicochemically-similar pairs (F-Y and L-M). Despite these differ-
ences, both groups conform to the rule of opposites (cysteine and aromatic 
residues are uncommon in solvent exposed environments; data available 
from github). In contrast, the top two exchangeabilities for the buried 
model were identical for the vertebrate and plant/microbial buried sub-
models, although there were certainly a number of additional differences.  

3.6 Differences in the strength of selection appears to ex-
plain difference among clade-specific models 

It should be possible to gain insights into the basis for the differences 
among-clade specific models by comparing changes in amino acid prop-
erties to the differences between vertebrate and plant/microbial models in 
their 1-nt exchangeabilities. Exchangeability differences for the all-sites 
models were correlated with experimental amino acid exchangeabilities 
(i.e., values in the EXs matrix) and differences in side-chain volume. The 
correlation with EXs was negative (Spearman’s correlation; rS = -0.29309, 
P = 0.01071). The correlation with changes in amino acid side chain vol-
ume (hereafter, ∆ volume) was positive and even stronger (rS = 0.39197, 
P = 0.00051). The directions of both correlations were consistent with the 
hypothesis that the major difference between vertebrate and non-verte-
brate models is the relaxed selection against slightly deleterious mutations 
in vertebrates (presumably due to their lower long-term Ne). In contrast, 
clade-specific model exchangeability differences were not correlated with 
∆ polarity (rS = -0.0405, P = 0.73009). These results suggest changes in 
side-chain volume is the primary property subject to differential selection 
between vertebrates and plants/microbial eukaryotes. 

A similar pattern was evident for the exposed sub-model of the clade 
specific XB models. Specifically, surface residue exchangeability differ-
ences were correlated with EXs (rS = -0.34316, P = 0.00258) and ∆ volume 
(rS = 0.45707, P = 4x10-5); those exchangeability differences were not cor-
related with ∆ polarity (rS = -0.09805, P = 0.40265). The correlations were 
weaker for buried sites (rS = -0.20979, P = 0.07085 for EXs; rS = 0.30234, 
P = 0.00838 for ∆ volume; rS = -0.03851, P = 0.7429 for ∆ polarity). How-
ever, comparisons of buried sub-models for vertebrate and plant/microbial 
did reveal some specific differences. 1-nt interchanges with higher buried-
site exchangeabilities in vertebrates included A-T, R-H, M-V, R-Q, and 
C-Y whereas exchangeabilities with comparable elevation in the plant/mi-
crobial XB buried sub-models were F-Y, S-T, A-S, and N-H. Although 
there was no unifying physicochemical property for either set of pairs, we 
note that two of the pairs with elevated relative exchangeabilities in verte-
brates (R-Q and C-Y) fall into different Dayhoff groups (i.e., the six 
groups shown in Fig. 84 of Dayhoff et al., 1978) and the pairs in the same 

Dayhoff group are relatively distinctive (e.g., R and H are both basic but 
they differ in shape, size, and even their charge at physiological pH). In 
contrast, two of the exchangeabilities elevated in the plant/microbial bur-
ied sub-models (F-Y and S-T) are physiochemically similar and only one 
(N-H) would change the Dayhoff group. Thus, these results are also con-
sistent with the hypothesis that the lower long-term Ne of vertebrates has 
reduced the effectiveness of selection against slightly deleterious substi-
tutions in vertebrates.  

The hypothesis that among-clade differences in the patterns of protein 
sequence evolution reflects the strength of purifying selection raises sev-
eral issues. First, the observation that our new vertebrate models clustered 
with models trained using viral data (HIVb, HIVw, and FLU; Nickle et 
al., 2007; Dang et al., 2010) seems puzzling if Ne is a major factor in es-
tablishing model differences; after all, viruses are microbes so one might 
assume their long-term Ne would be very large. However, the population 
biology of viral pathogens is complex, and drift appears to play an im-
portant role in their evolution (Kouyos et al., 2006; Voronin et al., 2009). 
Second, our failure to find a correlation between differences in exchange-
abilities and ∆ polarity may seem surprising given the important role that 
polarity appears to play in models of protein evolution (cf. Braun, 2018). 
However, our goal was to examine differences between the exchangeabil-
ities in vertebrate and plant/microbe models rather than the exchangeabil-
ities themselves. An amino acid property that leads to similar exchangea-
bility values in all taxa would not appear to be correlated with these dif-
ferences. Thus, neither of those observations are problems for the hypoth-
esis that differences in the strength of purifying selection can explain the 
differences among the clade-specific models. 

3.7 Broadly sampled training data can distort model pa-
rameter estimates  

Most empirical models have used as much training datasets as possible to 
reduce the variance of model parameter estimates. However, some studies 
have reported that estimates of parameters describing the amino acid sub-
stitution process exhibit time dependence (Benner et al., 1994; Mitchison 
and Durbin, 1995; Müller et al., 2002). The results of Benner et al. (1994), 
who estimated log-odds matrices using many pairs of aligned sequences 
selected to fall within certain divergence ranges, are especially interesting. 
They highlighted eight specific amino acid pairs; the log-odds scores for 
the first set (which we will call ‘type A pairs’) have higher values when 
they are estimated using divergent sequence pairs whereas the second set 
(hereafter, ‘type B pairs’) have lower log-odds scores they were estimated 
using divergent sequence pairs. Type A pairs (F-W, W-Y, C-M, and C-V) 
are similar amino acids (mean EXs = 0.5258) that are encoded by codons 
that differ by at least two nucleotides. Type B pairs (C-W, R-C, C-Y, and 
R-W) are dissimilar amino acids (mean EXs = 0.3547) encoded by codons 
that differ by a single nucleotide. These amino acid pairs led Benner et al. 
(1994) to conclude that “the genetic code influences accepted point muta-
tions strongly at early stages of divergence, while the chemical properties 
of the side chains dominate at more advanced stages” (where ‘advanced 
stages’ refers to long evolutionary timescales).  

We included the ‘all Euk’ training dataset to assess the impact of esti-
mating model parameters using highly diverged sequences. Our exchange-
ability parameter estimates exhibited a pattern similar to the pattern ob-
served by Benner et al. (1994) for log-odds scores; the mean exchangea-
bility for type A pairs in the clade-specific models ranged from 15.4% of 
the ‘all Euk’ value (for W-Y) to 17.6% (for C-V). We observed similar 
patterns for both XB sub-models, with the mean exchangeabilities for type 
A pairs ranging from 13.2% of the ‘all Euk’ value (for buried site W-Y 
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interchanges) to 22.1% (for exposed site W-Y interchanges). As expected, 
we observed the opposite pattern for type B pairs. When we normalized 
the ‘all Euk’ type B exchangeabilities to the maximum for that pair in any 
clade specific model we found values that ranged from an absolute mini-
mum of 3.4% (for R-W interchanges in the exposed environment) to 
24.8% (for R-C interchanges in the exposed environment). 

Kosiol and Goldman (2011) pointed out that apparent time-dependence 
is problematic; after all, long-term substitution patterns ultimately reflect 
the accumulation of substitutions over many short periods of time. Thus, 
Benner et al. (1994) log-odds score estimates should not exhibit time de-
pendence if the accumulation of amino acid substitutions can be modeled 
as a time-homogeneous Markov process. Kosiol and Goldman (2011) re-
solved this paradox by showing that a time-homogeneous Markov model 
for nucleotides can appear non-Markovian when the data are aggregated 
into the encoded amino acids. In fact, they even demonstrated apparent 
time-dependence of log-odds scores for the type A and B pairs qualita-
tively similar to the Benner et al. (1994) patterns (although there were only 
two pairs, C-M and C-V, that were similar in quantitative terms). Ex-
changeabilities for the LG model, which was trained using a taxonomi-
cally diverse dataset (Le and Gascuel, 2008), also exhibited the pattern of 
high values for type A pairs and (to a lesser degree) low values for type B 
pairs. Three of the type A pairs (F-W, W-Y, and C-M) in the LG model 
had values ~60% of the ‘all Euk’ comparable values and they were higher 
than the comparable values for any clade-specific model (see models on 
github). This suggests the LG model may be subject to a ‘time-depend-
ency’ effect similar to our ‘all Euk’ model, albeit not as extreme. 

The fact that type B pairs involve physicochemically-dissimilar amino 
acids that require a single nucleotide substitution for interchanges creates 
an additional complexity. They are exactly the type of substitutions ex-
pected to accumulate at an elevated rate in taxa where the long-term Ne is 
lower so the observation that vertebrate models always had the highest 
type B exchangeabilities (see models github) is not surprising. The sur-
prise is actually the high values for the type A substitutions, which involve 
similar amino acids but require multiple substitutions. Some type B ex-
changes represent potential intermediates for type A substitutions (e.g., 
the only two-step pathway for F-Y involves C as an intermediate). Thus, 
one would expect strong selection against these disfavored intermediates 
to reduce type A exchangeabilities. However, type A exchangeabilities are 
quite high in the ‘all Euk’ model (e.g., W-Y was the highest 2-nt ex-
changeability, and it had the ninth highest value of the 190 exchangeabil-
ities). Overall, the ‘all Euk’ models exhibit many similarities to the 
plant/microbial models (Figs. 2 and 4) combined with the distortion of 
some rate matrix parameter estimates (especially for type A pairs) super-
imposed. Those distortions of the rate matrix may have an impact on other 
uses of these rate matrices, like phylogenetic estimation. 

4 Conclusions 
Efforts to estimate models of protein sequence evolution began in the very 
earliest days of computational biology; the first version of the PAM matrix 
was estimated over 50 years ago using a mere 814 substitutions from 11 
protein families (Dayhoff et al., 1969). However, analyses of empirical 
models have provided little information about the processes governing 
protein evolution beyond the relatively straightforward conclusion that 
most amino acid exchanges involve physicochemically-similar amino ac-
ids. However, that was a conclusion that Dayhoff and Eck (1969) reached 
(in very general terms) by examining the first version of the PAM matrix. 
On the other hand, efforts to develop models of protein evolution from 
first principles (e.g., Parisi and Echave, 2001; Bastolla et al., 2006; Arenas 
et al., 2013), remain impractical for phylogenetic analyses, especially in 

the phylogenomic era when hundreds or thousands of protein alignments 
are analyzed (e.g., the studies in Tables 1 and 2). The continued develop-
ment of empirical models (e.g., Whelan and Goldman, 2001; Le and Gas-
cuel, 2008) has provided models that can be used in that framework. It has 
not escaped our attention that our clade-specific models can also be used 
to improve phylogenomic analyses. The HIVb/HIVw (Nickle et al., 2007) 
and FLU (Dang et al., 2010) models were generated to improve analyses 
of proteins from those viruses; our clade-specific models should improve 
phylogenetic estimation for specific taxa. Moreover, our clade-specific 
XB models should further improve model fit (and tree estimation) by ac-
commodating variation among taxa and variation among-sites within pro-
teins due to protein structure. All of our models are available in from 
github and can be implemented in programs, such as IQ-TREE (Nguyen 
et al., 2015), that are used in many phylogenomic studies. 

Although our models may be valuable for phylogenomic inference, the 
primary goal of this effort was to learn about the various ways that protein 
evolution has changed over time. Many efforts to understand the ways that 
evolutionary models change over time have assumed a single model for 
all sites within proteins. For practical reasons, they have also reduced the 
model dimension by focusing on single parameter, like the ratio of radical 
to conservative substitutions with radical vs. conservative substitutions in 
defined in a binary manner (e.g., Nabholz et al., 2013; Weber and Whelan, 
2019). Although this basic approach has been extended to a limited num-
ber of parameters by considering the physicochemical properties of amino 
acids (Braun, 2018), it is difficult to ‘cast a wide net’ in order to learn the 
ways that the process of amino acid has changed over time. Herein, we 
have estimated parameters that describe protein evolution in various 
clades using a simple framework (the GTR20 model) that does not presup-
pose an important role for any specific amino acid property. In doing so 
we found that there is substantial variation among clades in their model 
and that this variation among clades is evident both for amino acids lo-
cated on the surface of proteins and for residues buried in the interior of 
proteins. We also found evidence that vertebrates are more tolerant of sub-
stitutions that change amino side-chain volume than plant/microbial mod-
els; however, this was only evident in only for models that describe the 
evolution of solvent exposed residues. We also showed that training em-
pirical models using sequences sampled from taxa that were sampled too 
broadly (i.e., the ‘all Euk’ training data) can lead to distorted parameter 
estimates. Finally, we found that most proteins from a specific taxon were 
clustered in model space and that a relatively the simple hypothesis – pat-
terns of substitution reflect the strength of purifying selection, which dif-
fers among taxa due to differences among taxa in their long-term Ne – can 
explain many of the observed differences among taxa 
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Supplementary data for: Protein evolution is structure dependent and non-homogeneous across the 
tree of life by Akanksha Pandey and Edward L. Braun 

Table S1. Percentage of times clade-specific models were the best-fitting model for individual proteins in each training dataset  

Best-fit model  Birds (1) Birds (2) Mammals Plants Oomycetes Yeast All Euk 

Bird (1) 49.2 4.4 5.2 0.3 — — — 
Bird (2) 16.8 72 23.4 0.3 — — — 
Mammal 14 14 59.1 0.3 — — — 
Plant 9.2 3.6 5.7 88.1 1.1 1 — 
Oomycete 0.8 0.8 0.8 5.5 86.5 — 0.4 
Yeast — 0.4 — 2.6 1.1 96.5 — 
All Euk — — — 0.6 4 1 93.5 
LG — 0.4 — 0.6 3.6 1 5.2 
JTT 3.2 1.6 4 — 0.4 — — 
JTT-DCMut 0.4 — 1.2 1.3 0.4 — — 
WAG 0.4 — — 0.6 0.7 — 0.4 
Dayhoff — 0.4 — — — — — 
BLOSUM 3.2 — — — 0.4 — — 
VT 1.6 — — — 0.4 — — 
HIVb 0.4 0.4 — — — — — 
FLU 0.4 2 — — — — — 
rtREV — — — — 0.4 — — 
mt models 0.4 — 0.4 — 1.1 0.5 0.4 

Our clade-specific models are presented in bold. Values are rounded to the nearest 0.1%; ‘—’ indicates models that never had the best fit to any protein the specified 
validation dataset. Cases where mitochondrial models had the best fit were grouped (‘mt models’). This table only reports the best-fitting rate matrix; each protein was 
allowed to have any among-sites rate heterogeneity model. 

 

Table S2. Percentage of times clade-specific XB mixture models were the best-fitting model for individual proteins in each training dataset  

Best-fit model  Birds (1) Birds (2) Mammals Plants Oomycetes Yeast All Euk 

Bird (1) 45.2 3.6 7.7 — — — — 
Bird (2) 19.2 56 25.1 — — — — 
Mammal 20 33.2 57.4 0.6 — — — 
Plant 13.6 4 8.9 90 1.1 0.5 — 
Oomycete 1.6 1.6 0.4 4.5 83.4 2 3.2 
Yeast 0.4 0.4 — 2.6 2.9 91.5 0.8 
All Euk — — — 0.6 3.6 — 69 
EX2 — 0.8 0.4 1.3 9 6 27 

Our clade-specific mixture models are presented in bold. Values are rounded to the nearest 0.1%; ‘—’ indicates models that never had the best fit to any protein the 
specified validation dataset.  

 

Additional files: Model files and other information are available from https://github.com/ebraun68/clade_specific_prot_models  
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