bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.922559; this version posted January 29, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Extensive fragmentation and re-organization of gene co-expression
patterns underlie the progression of Systemic Lupus Erythematosus

Vasilis F. Ntasis?, Nikolaos I. Panousis?>, Maria G. Tektonidou®’, Emmanouil T.
Dermitzakis?#38, Dimitrios T. Boumpas’-'%, George K. Bertsias'"'2, Christoforos

Nikolaou'12*

' Department of Biology, University of Crete, Heraklion, 70013, Greece

2 Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva,
Switzerland

3Institute of Genetics and Genomics in Geneva (iG3), University of Geneva Medical School, Geneva,
Switzerland;

4Swiss Institute of Bioinformatics, Geneva, Switzerland;
> Wellcome Sanger Institute, Hinxton, United Kingdom

5Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of
Athens, Greece

7 Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens,
Greece

8 Biomedical Research Foundation of the Academy of Athens, Athens, Greece.

° 4th Department of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens
Medical School, Athens, Greece

10 Medical school, University of Cyprus, Nicosia, Cyprus

1" Department of Rheumatology, Clinical Immunology, Medical School, University of Crete, Heraklion,
70013, Greece

2nstitute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology
(FORTH), Heraklion, Greece

*corresponding author: nikolaou@uoc.gr


mailto:nikolaou@uoc.gr
https://doi.org/10.1101/2020.01.28.922559
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.922559; this version posted January 29, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Systemic Lupus Erythematosus (SLE) is the prototype of autoimmune diseases, characterized by
extensive gene expression perturbations in peripheral blood immune cells. Circumstantial
evidence suggests that these perturbations may be due to altered epigenetic profiles and
chromatin accessibility but the relationship between transcriptional deregulation and genome
organization remains largely unstudied. We developed a genomic approach that leverages
patterns of gene coexpression from genome-wide transcriptome profiles in order to identify
statistically robust Domains of Co-ordinated gene Expression (DCEs). By implementing this
method on gene expression data from a large SLE patient cohort, we identify significant disease-
associated alterations in gene co-regulation patterns, which also correlate with the SLE activity
status. Low disease activity patient genomes are characterized by extensive fragmentation
leading to DCEs of smaller size. High disease activity genomes display excessive spatial
redistribution of co-expression domains with expanded and newly-appearing (emerged) DCEs.
Fragmentation and redistribution of gene coexpression patterns correlate with SLE-implicated
biological pathways and clinically relevant endophenotypes such as kidney involvement. Notably,
genes lying at the boundaries of split DCEs of low activity genomes are enriched in the
interferon and other SLE susceptibility signatures, suggesting the implication of DCE
fragmentation at early disease stages. Interrogation of promoter-enhancer interactions from
various immune cell subtypes shows that a significant percentage of nested connections are
disrupted by a DCE split or depletion in SLE genomes. Collectively, our results underlining an
important role for genome organization in shaping gene expression in SLE, could provide

valuable insights into disease pathogenesis and the mechanisms underlying disease flares.

Keywords: Systemic Lupus Erythematosus, Genome organization, gene regulation, genome
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Significance

Although widespread gene expression changes have been reported in Systemic Lupus
Erythematosus (SLE), attempts to link gene deregulation with genome structure have been
lacking. Through a computational framework for the segmentation of gene expression data, we
reveal extensive fragmentation and reorganization of gene co-regulation domains in SLE, that
correlates with disease activity states. Gene co-expression domains pertaining to biological
functions implicated in SLE such as the interferon pathway, are being disrupted in patients, while
others associated to severe manifestations such as nephritis, emerge in previously uncorrelated
regions of the genome. Our results support extensive genome re-organization underlying
aberrant gene expression in SLE, which could assist in the early detection of disease flares in

patients that are in remission.
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Introduction

Systemic Lupus Erythematosus (SLE) is considered the prototype of systemic autoimmune
diseases due to highly heterogeneous manifestations, variability in symptoms, affected organs
and alternating periods of dormancy and increased activity (flares) (1). Several studies of SLE
transcription profiles (reviewed in (2, 3)) have reported consistent alterations in key biological
pathways, with the Interferon (IFN) signaling pathway being the most prominent example (4, 5).
A recent systematic transcriptomic and genetic analysis comparing SLE patients with variable
disease activity against healthy individuals, led to the definition of discrete susceptibility and
severity gene signatures (6). Beyond gene expression, changes have also been observed at the
epigenetic and chromatin levels, with extensive DNA hyper-hydroxymethylation in SLE T-cells

(7) and altered chromatin accessibility in naive B-cells from SLE patients under flare status (8).

Given the complexity of the disease at both transcriptome and chromatin levels, an aspect that
has not been adequately explored pertains to genome architecture. Over the last years, a
number of genomic entities including chromatin loops (9), topologically associated domains (10),
enhancer-promoter interacting domains (11), cis-regulatory domains (12, 13) and domains of
defined epigenetic characteristics (14, 15) have been shown to define an ever more complex
genomic landscape. In spite of their variable size, dynamics and underlying principles governing
their creation, a unifying property of these chromosomal entities is the co-ordination of gene
expression (16, 17). At the same time, novel high-throughput methodologies have unraveled a
strong link between nuclear compartments and transcriptional activity (18, 19). Positional
effects in gene expression have been reported since relatively early and their evolutionary and
regulation dynamics have been extensively studied (16, 20-22). The importance of gene
clustering deregulation in disease has been demonstrated through epigenetics in the case of
cancer (23) and genetic associations in the case of Down syndrome (24), but a comprehensive
assessment of gene expression clustering has been lacking. Given the apparent extent and
impact of genome organization, addressing gene expression changes from an architectural
viewpoint could enhance our understanding of the genomic basis of complex pathological
conditions, especially those that are accompanied by widespread gene expression alterations,
such as SLE.

In this work, we have employed a genomic segmentation approach on an extensive SLE
expression dataset (6), aiming to define regions of co-ordinated gene expression for the First
time in the context of a complex disease. Our analysis leads to the definition of detailed patterns
of transcriptional compartmentalization that vary significantly between SLE and healthy
individuals. Interestingly, we find SLE patient genomes to exhibit more fragmented and thus,
less structured co-expression patterns, a trend that correlates with the degree of disease

activity. The defined Domains of Co-ordinated Expression (DCEs) exhibit intricate dynamics, that
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are associated with both molecular signatures and clinical features of the disease. This
represents the first attempt to correlate the complex SLE phenotype with genome topology

through detailed transcriptional analysis.

Results

Gene co-expression patterns are fragmented in SLE patients

Neighbouring gene expression correlation (25) and modelling (16) have been recently
introduced to define how gene expression propagates in space. We employed a topologically-
inspired approach to quantify the correlation of gene expression genome-wide. After splitting
each chromosome in fixed-size bins, we calculated the transcript count correlation and defined
regions of significant co-expression based on a permutation test, followed by local minima
localization (see Methods). The Domains of Co-ordinated expression (DCEs) produced through
this analysis are supported by permutation analysis involving 1000 random reshuffling events of
transcript counts along each chromosome (see Methods, Figure 1A). Accordingly, they
correspond to statistically robust chromosomal domains, within which gene co-expression is

significantly higher as compared to the surrounding regions.

Analysis of DCE patterns between SLE and healthy individuals shows significant differences with
SLE gene co-expression being organized into smaller and more fragmented regions. This finding
is not confined to specific chromosomes, although gene-dense chromosomes with a more
compact transcript pattern show increased overall signal (Figure 1B). Notably, DCE patterns
correlate with the activity of the disease (SLEDAI). Having stratified patients to three groups
according to their SLEDAI values (low, intermediate and high activity) we found that DCE sizes
are smaller in low activity patients, where the percentage of the genome organized in DCE does
not exceed 9% as compared to 13% and 17%, for intermediate and high activity respectively, and
19% for healthy individuals. Decreased gene co-expression in SLE patients is evidenced by the: a)
significantly lower numbers of total DCE for low and intermediate disease activity (Figure 1B), b)
smaller DCE sizes (Figure 1C) c) decreased co-expression signal (Figure 1D) and, d) smaller
overall percentage of the chromosome covered by DCEs (Figure 1E). The observed differences
cannot be explained by cell type heterogeneity as shown by an entropy analysis of cell type
variability (Supplementary Figure 1). The more fragmented expression patterns in low activity
SLE genomes are suggestive of generalized perturbations in gene regulation, which could
provide mechanistical explanation for the recurrent flares that tend to develop in patients who
are inactive. Thus, while a desirable outcome, clinical remission may not necessarily be lacking a

molecular fingerprint and the combination of the recently suggested susceptibility signature
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(6) with our fragmented DCE pattern may provide an interesting framework for the assessment
of its stability.

DCEs are dynamically redistributed in SLE

To gain additional insight into the dynamics of DCEs, we classified DCE patterns into four main
groups according to their changes between patient and healthy genomes. We used an
implementation of the Jaccard Index to group the domains into: a) DCEs that were left intact, b)
DCEs that were absent (depleted) in patients while present in healthy individuals, c) DCEs that
were only present (emerged) in patients and, d) DCEs whose coordinates were altered between
patient and healthy genomes. The last group was further categorized into DCEs that were split
(one fragmented into two or more smaller sub-DCEs) or merged (two or more joined into one

larger) and expanded or contracted.

Low and high disease activity patients showed the most extensive changes in the pattern of
DCEs as compared to the healthy state (Figure 2A). A detailed analysis shows that, in agreement
with the changes observed at genome-scale level (Figure 1), there is extensive fragmentation
and redistribution of domains in SLE versus healthy genomes. Contraction and depletion of DCEs
are more pronounced in low activity patients, with contracted and depleted DCEs corresponding
to nearly 73% of DCEs in low activity, as compared to 56% and 48% for intermediate and high
disease activity genomes, respectively (Figure 2A). Conversely, expanded and emerged DCEs
comprise over 30% in high activity versus less than 10% in low activity patients (Figure 2A).
These observations are suggestive of different modes of dynamic changes in co-expression
domains, with low SLE activity genomes characterized by DCE fragmentation and high activity
ones featuring a redistribution of co-expression with increased percentages of expanded and
emerged DCEs. This redistribution was also supported by a simple value measure of DCE pattern
similarity, calculated with the implementation of BPscore (26), which showed that in spite of
being comparable in genome coverage, the DCEs between high activity patients and healthy

controls were radically different in terms of genomic localization (Supplementary Figure 2).

Gene expression changes are reflected upon DCE dynamics

Changes in the patterns of co-expression may be linked to differential gene expression and
underlying chromatin dynamics. To address this, we employed Modular and Weighted Gene Co-
Expression Network Analysis (WGCNA) (27) of differential gene expression on the three disease
activity groups against healthy individuals. The results were strongly suggestive of quantifiable

phenotypic variability between patients with different clinical activity states, in agreement with
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the previously defined susceptibility and severity gene signatures (Supplementary Figure 3). In
addition we were able to define gene expression modules and to correlate them to clinical
characteristics such as disease activity. Comparison of WGCNA results with clinical characteristics
of the cohort samples allowed us to identifiy a “SLEDAI gene module”, which comprised 224
genes, enriched for innate and adaptive immune pathways, particularly signaling through the Fc-
v and B-cell receptors (BCR). A “Nephritis module” (184 genes) and an “/FN module” (282 genes)
were also identified, the latter being highly associated with anti-nuclear and anti-DNA antibodies

(Supplementary Figure 4).

In order to investigate how changes in the patterns of co-expression may be linked to differential
gene expression we analyzed the degree of overlap between the different DCE categories and
the WGCNA modules obtained from our dataset (Figure 2B). The /FN module was over-
represented in split DCEs across all SLE groups and was particularly enriched in DCEs that
become depleted within the high activity group, implying that increased IFN pathway gene
activity may be linked to loss of co-expression structure. Conversely, the nephritis/neutrophil-
specific module was enriched in emergent DCEs from low disease activity genomes, which is
suggestive of gene deregulation being also associated with the creation of new co-expression
domains. The correlation of nephritis/neutrophil-specific module with emergent domains in low
activity genomes could be indicative of underlying tendencies in gene deregulation present even
in patients without developed symptoms who may yet be predisposed to flare. Consistent with
observations at the level of functional enrichments, the B-cell module was enriched in DCEs that
are depleted being largely absent from high disease activity DCEs. Taken together, these
findings indicate that functional aspects of gene expression pertaining to distinct clinical

characteristics are reflected on the genome organization.

DCE dynamics are strongly associated with chromatin accessibility and chromosomal

compartments

Transcriptional coordination in self-contained domains is tightly linked to underlying chromatin
organization at various levels ranging from topologically associated domains (TADs) to more
extended chromomomal compartments. We thus went on to correlate the dynamics of DCE
patterns with underlying genomic features related to chromatin accessibility and chromosomal
compartments. By comparing the coordinates of stable and dynamic DCEs against ATAC-Seq
peaks defined for B-cells in severe-case SLE against healthy individuals (8), we found split,
contracted and merged DCEs (of all disease activity groups) to be enriched in peaks of decreased
chromatin accessibility (Supplementary Figure 5). Conversely, depleted and emerged DCEs of all
SLE activity groups were enriched (although with a smaller effect size), almost exclusively, in

over-accessible regions. This finding signifies a clear distinction between the DCEs that are
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locally modified, which tend to be confined in under-accessible regions, and those that are

dynamically re-distributed, which are preferentially located in more accessible chromatin.

We performed a similar analysis at the level of chromosome compartments (at 100kbp
resolution) as defined in a B-lymphoblastoid cell line (9). On a large scale, chromosomes may be
organised into two broad compartments labelled A and B, corresponding to active and inactive
chromatin, and also bearing other distinct properties. These may be further subdivided to A1 and
A2 and B1 to B4 (9). A chromosomal coordinate overlap enrichment analysis showed DCEs to be
generally enriched in the euchromatic A compartment (Figure 2C). When focusing on specific
DCE subtypes, we found that regions belonging to the most dynamic subsets of emerged and
depleted DCEs were enriched in the A2 subcompartment, which is associated with late-
replicating, low GC content DNA, enriched in H3K9me3 and longer gene transcripts (9). On the
other hand, intact DCEs and in general, DCEs that are less dynamic appear to be more enriched in
the gene dense, early-replicating A1 subcompartment. Enrichments in the B4 subcompartments
are probably due to the over-representation of particular DCEs in chromosome 19, which hosts

the entirety of this very small subcompartment.

Together, the differential enrichments of split and contracted DCEs, compared to the dynamically
redistributed emerged and depleted regions, in terms of chromatin accessibility and genome
compartments, indicate an interplay between gene regulation and underlying chromatin
environment. Regions of high gene density tend to have highly correlated gene expression, but
that this pattern changes radically with the splitting of co-expression domains in low disease
activity and the emergence of new, probably re-arranged domains in high disease activity SLE
patients. We hypothesize that epigenetic changes that increase chromatin accessibility, in
particular in A2 genomic compartments, may create a permissive environment for the
redistribution of co-regulated genomic domains, which are, moreover, associated with functions

characteristic of increased disease activity.

DCE splits are driven by differential expression of transcriptional regulators and disrupt

enhancer-promoter interactions of key biological functions

While split DCEs represent no more than 5-10% of the total genome coverage, they are highly
enriched among differentially expressed genes and in particular with the /FN module. Given their
additional enrichment in low disease activity patients and therefore, their possible implication in
further disease progression, we performed a focused analysis of split DCEs and the genes lying
on their boundaries (see Supplementary Methods). The latter were predominantly enriched
among the targets of specific transcriptional regulators, a number of which are associated with
zinc finger factors (SALL1, Ikaros, ZIC3 etc.) and oncogenes (GLI1, ING4) (Figure 3A). Members of
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the lkaros transcriptional regulators have been genetically associated with SLE (2), and

interestingly, /KZF3 lies within a disrupted DCE in all SLE groups.

Based on the differences in the extent of split DCEs between low and high activity genomes, we
next assessed their overlaps with the SLE susceptibility and severity gene signatures as
previously defined (6) for the same dataset. We found significant differences between the two
gene sets with susceptibility genes being highly enriched in split DCEs in contrast to a depletion
of severity genes (Figure 3B). Genes belonging to the susceptibility signature are also enriched in
the subset of differentially expressed genes that are found in low disease activity split DCE
boundaries (p=0.0061). Protein and regulatory interaction network analysis of these genes,
performed through STRING-DB (28), revealed an IFN gene signature (Figure 3C) and
interestingly, a set of highly connected genes associated with DAP12 signaling (Figure 3C, cyan
polygon). DAP12 (TYROBP) is a key activator of NK cells, which are reported to have impaired
function in SLE patients (29). Smaller network modules were associated with neutrophils (lime)
and B-cells (yellow). We may thus see how, by focusing on split DCE regions we may prioritize

genes of the broader susceptibility signature and to investigate their functional connections.

Given the DCE definition as regions with increased regulatory interactions, it is plausible to
expect that gene promoters are more likely to be associated with enhancers that are lying within
the same region. To test this hypothesis, we obtained cell-type specific promoter-enhancer
interactions for CD4, CD8 and CD14 and CD19 cells from Enhancer Atlas (30) and identified
genes whose promoter-enhancer pairs were nested within the same DCE in the healthy state but
disrupted in SLE. We found that a significant percentage of enhancers-promoter connections
that are completely nested in healthy DCEs are disrupted by a DCE split or depletion in one of the
SLE disease activity states. Thus, it seems that the redistribution of gene co-regulation domains
in disease may also be disrupting the regulatory links between enhancers and their cognate
promoters. Functional enrichment of the genes, whose enhancer-promoter associations are
disrupted in SLE revealed relevant biological functions (Figure 3D). More specifically, functions
related to the immune system are, as expected, highly enriched in all disease activity groups.
Others, such as protein metabolism, translation and protein turnover are particularly enriched in
high disease activity patients. Gene transcription is enriched in low and intermediate activity but
absent from high activity genomes, suggesting major changes in general functions. Interestingly,
interleukin-16 (/(75) and interleukin-21 (/(21) signaling are specifically enriched in high activity

patients even though with low effect sizes (Figure 3D).

Methods
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Definition of domains of coordinated expression (DCEs)

To call domains of co-ordinated expression, we modified a methodology that was introduced for

the definition of topologically associated domains (TAD) (31), in our case, by using expression

correlation data instead of chromosomal contact frequencies. Statistically robust expression

correlation matrices (see Supplementary Methods) were used as input. Domains of Co-

ordinated Expression (DCEs) were defined as genomic regions of consecutive chromosomal bins

with correlation above average, delimited by statistically significant boundaries. More

specifically, DCE detection is a four-step pipeline, which is repeated for each chromosome and

for every study group (see Figure 1A).

1.

3.

4.

First, we compute a signal that runs along the chromosomes and is indicative of the local
average correlation of expression. We achieve this by sliding two juxtaposed windows of
equal size along a chromosome with a single-bin displacement, until the whole
chromosome has been covered. In every iteration, we use the correlation matrix that has
already been constructed and statistically evaluated. We look up the correlation values
concerning the relationship of the two regions and calculate their average. That value is
assigned to the chromosomal bin located in the middle, more precisely, the downstream-

most bin inside the upstream window.

Subsequently, the calculated signal is used to detect DCE boundaries. Hence, the second
step of the pipeline is to compute a smoothed function of that signal, using a smoothing
spline, and to detect all local minima of that Function. DCEs are initially detected as
regions between local minima with a value lower than 0.25, which is the average genome

signal for the healthy, control group.

The third step is to statistically evaluate and refine the boundaries. We estimate the
significance of the boundaries by utilizing a Mann-Whitney U test to compare "within"
and "in-between" correlation coefficients. In case any of the initially calculated
boundaries does not reach the required statistical significance threshold (p-value > 0.05),
we "chop" that boundary by one bin towards the centre of DCE, and repeat the test. DCEs

with any remaining non-significant boundary are discarded.

The last step includes the fusion of neighbouring DCEs which are separated by up to two
bins with signal lower than 0.25. The maximum number of bins, with a signal lower than
0.25, allowed in the final DCE is two, thus allowing at most two such Fusion events. This
step enhances the robustness of the pipeline and decreases the noise in our data. The

window size used in bin-signal calculation and in boundary evaluation was three bins,
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based on the maximization of average intra-DCE correlation of chromosome 1 of the

healthy group.

Discussion

Genome organization is intricately linked to gene expression and regulation in health and
disease, with differentially expressed genes creating clusters under various conditions. Our
study, the First such conducted in SLE, shows that genes are organized in extended domains of
coordinated expression but, moreover, that these domains are highly dynamic and extensively
reorganized during disease progression. While high activity patient patterns are suggestive of a
general re-organization of gene regulation that extends to broader chromosomal domains,
increased fragmentation of gene co-expression is observed even in the genomes of patients
with very low disease activity. This may suggest that the observed disruptive patterns of gene
expression may be related to the way initial cellular signals propagate in the genome in order to
affect hundreds of abnormally regulated genes. Thus, the more disconnected co-expression in
low activity SLE genomes could be linked to mechanisms, with which flares occur even in patients

that are in remission.

While, the governing principles of such mechanisms are yet to be resolved, our analyses suggest
a key role for the chromatin environment. Differential enrichment of DCE patterns between
open and closed chromatin and chromosomal compartments pertaining to early and late-
replicating chromatin, are strong indications of epigenetic patterns underlying the
fragmentation and re-organization of gene co-expression. Epigenetic effects, downstream of
environmental triggers are expected to lie at the basis of SLE aetiopathogenesis, given the
limited association of genetic factors reported for the disease. Further investigation of the
mechanisms linking chromatin structure and the organization of gene expression in SLE could be
assisted by our approach, through the prioritization of chromosomal domains with increased

regulatory potential.

Besides epigenetic phenomena, the formation of co-expression domains could occur more
transiently as the result of differential expression in any given setting (32), through the
clustering of differentially expressed genes, that have been spatially constrained through
evolution (20, 33). Such a notion is supported by our data in two ways. First through the
association of the observed DCEs with functions that are known to be activated in SLE. Major
pathways related to the intensity of the symptoms (such as the IFN signature) are associated
with the disruption of co-expression, while downstream effects of SLE, related to the damage of

organs (e.g. nephritis) are correlated with the general re-organization of co-expression in
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emergent domains. In addition gene signatures from both expression (6) and genome-wide
association data are enriched in various types of DCEs (Supplementary Figure 6), a strong
indication that transcriptomic as well as genetic data may reveal a hidden layer of information

when studied through the lens of genome organization.

The dynamics of co-expression clustering are also linked to differential expression, through the
tendency of deregulated genes to occur in the boundaries of split DCEs. Inspection of the
dynamics of DCE splits is, moreover, indicative of the general pattern of fragmentation and
redistribution as is showcased in a number of examples where, compared to a contiguous DCE
pattern in the healthy state, we observe splits in low disease activity and more generalized
reorganization in high disease activity patients (Figure 4). The fact that split/disrupted regions
are more prominent at low disease activity genomes, combined with their proximity to genes
belonging to the susceptibility signature, may come as an indication of an underlying hierarchy
behind the gene deregulation program. Indeed, we find enhancer-promoter associations of high
relevance to be possibly affected by the disrupted patterns of gene co-expression, which is

strongly indicative of DCE splits having a possible multiplicative effect on gene regulation.

The approach we present here constitutes a first attempt to analyze gene expression at the level
of genome organization in a complex disease and points to a number of interesting hypotheses
linking the SLE phenotype with the underlying genome structure. Targeted conformation
capture experiments on homogeneous cell cultures could be implemented in order to test these
hypotheses. At the same time, the implementation of single-cell approaches at both
transcriptome and genome conformation levels, could provide a data-rich framework for the
application of our approach, with the final aim of obtaining cell-type specific co-expression

profiles at increased resolution.

Data Availability

Original RNASeq data have been deposited at the European Genome-Phenome Archive (EGA)
under the accession number EGAS00001003662. Processed data and original code for all
presented analyses may be found at https://github.com/vntasis/SLE_spatial_gene_expression
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Figure Legends

Figure 1. Differential patterns of Domains of Co-ordinated Expression (DCEs) in healthy and
patient groups. A. The DCE detection pipeline is represented as a series of ‘transformations’
applied to the expression data. We start by calculating the expression profile of each
chromosomal bin using the expression profile of the encompassed genes (i). We then calculate
the correlation coefficients between the bins located at the same chromosome (ii). Next, the
correlation profile of each chromosome is transformed into a one-dimensional binsignal profile
(iii). We analyze that profile, detecting local minima and maxima in order to determine the
borders of the domains. Finally, a statistical evaluation of those borders results in the final DCE
coordinates (iv). B. Domainograms depicting the distribution of DCEs for the healthy and the
three patient groups studied. The color of DCEs represent the respective average binsignal of
the chromosomal bins encompassed. C. Violin plots illustrating the estimated distribution of DCE
sizes in each group. Classic boxplots are included. The scale of the y axis is logarithmic (log(bps)).
D. Average bin signal (co-expression score) for each group. E. Violin plots representing, for each
chromosome, the percentage of chromosomal bins that contain genes, with non-zero expression
value, and form DCEs. C, E. The results of Mann-Whitney-Wilcoxon tests comparing each patient

group to the healthy group are demonstrated by the significance level indicators.

Figure 2. DCEs are extensively fragmented and redistributed in SLE patients and correlate
with functional signatures and epigenetic marks. A. Heatmap presenting the different types
of DCE reorganization. Numbers inside cells indicate the ratio of the number of DCEs, of the
respective type, over the total number of DCEs for each patient group. Colour code is
corresponding to column z-score of ratios. B. Heatmap depicting the results of an enrichment
test For DCEs in the functionally annotated WGCNA modules. C. Heatmap depicting the results
of an enrichment test for DCEs in different genome subcompartments. A-C. Scaling and
centering has been performed per column. Trees are illustrating the outcome of hierarchical
clustering performed on the data. B, C. Symbols inside cells demonstrate the significance level of
the outcome of each test (*:0.05; **:0.01; ***:0.001). Significance has been assessed by a non-

parametric, permutation-based test.

Figure 3. Functional analysis of the disruption events. A. Enrichment analysis of ‘Disruptors’ in
genes that are commonly regulated (suggested by the mutual regulatory motif matches -
TRANSFAC database) by transcription factors indicated on y axis. The overlap between the query
gene set and the corresponding Pathway members or TF-target genes are displayed on the x
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axis. The color of each bar illustrates the corrected p-value of the corresponding enrichment
test. B. Average positional enrichments of susceptibility and severity genes from (6) against
different types of DCEs. Significance levels of one hundred permutations (*:0.05; **:0.01). C.
Protein interaction networks for susceptibility signature genes that are found to be
differentially expressed and overlapping split DCE boundaries, as obtained from STRING-DB (28).
Genes are grouped on the basis of a modularity analysis. Modules are shown with coloured
polygons around genes (red: interferon signature genes, cyan: DAP12 signaling, lime: neutrophil
module, green: B-cell module) D. Pathway enrichment analysis of genes which correspond to
enhancer-tss links (CD4+ cells - Enhancer Atlas), that are nested in healthy group DCEs but
disrupted in SLE. The top 20 most significant KEGG or/and REACTOME pathways are presented.

Figure 4. Examples of alterations in the co-expression profile. Heatmaps of expression
correlation for selected loci for characteristic cases of disrupted (top), expanded (middle),
deleted (bottom left) and emerged DCEs (bottom right). Heatmaps were created with the Sushi
package from Bioconductor. Values in heatmaps correspond bin signal, while the tracks below
them show (from top to bottom) gene positions colour-coded for differential expression as
log2(fold-change), DCE coordinates and enhancer-promoter associations that are entirely
included in the same DCE (in blue) or not (in red). Names of differentially expressed genes in

each locus are shown on the side of each panel.
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