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Abstract

Systemic Lupus Erythematosus (SLE) is the prototype of autoimmune diseases, characterized by

extensive  gene  expression  perturbations  in  peripheral  blood  immune  cells.  Circumstantial

evidence  suggests  that  these  perturbations  may  be  due  to  altered  epigenetic  profiles  and

chromatin accessibility but the relationship between transcriptional deregulation and genome

organization  remains  largely  unstudied.  We  developed  a  genomic  approach  that  leverages

patterns of gene coexpression from genome-wide transcriptome profiles in order to identify

statistically  robust  Domains  of  Co-ordinated  gene  Expression (DCEs).  By  implementing  this

method on gene expression data from a large SLE patient cohort, we identify significant disease-

associated alterations in gene co-regulation patterns, which also correlate with the SLE activity

status.  Low  disease  activity  patient  genomes  are  characterized  by  extensive  fragmentation

leading  to  DCEs  of  smaller  size.  High  disease  activity  genomes  display  excessive  spatial

redistribution of co-expression domains with expanded and newly-appearing (emerged) DCEs.

Fragmentation and redistribution of gene coexpression patterns correlate with SLE-implicated

biological pathways and clinically relevant endophenotypes such as kidney involvement. Notably,

genes  lying  at  the  boundaries  of  split  DCEs  of  low  activity  genomes  are  enriched  in  the

interferon  and  other  SLE  susceptibility  signatures,  suggesting  the  implication  of  DCE

fragmentation at early  disease stages.  Interrogation of  promoter-enhancer interactions from

various immune cell  subtypes shows that a significant percentage of nested connections are

disrupted by a DCE split or depletion in SLE genomes. Collectively, our results underlining an

important  role  for  genome  organization  in  shaping  gene  expression  in  SLE,  could  provide

valuable insights into disease pathogenesis and the mechanisms underlying disease flares.

Keywords:  Systemic  Lupus  Erythematosus,  Genome  organization,  gene  regulation,  genome
topology
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Significance

Although  widespread  gene  expression  changes  have  been  reported  in  Systemic  Lupus

Erythematosus  (SLE),  attempts  to  link  gene  deregulation  with  genome  structure  have  been

lacking. Through a computational framework for the segmentation of gene expression data, we

reveal extensive fragmentation and reorganization of gene co-regulation domains in SLE, that

correlates  with  disease  activity  states.  Gene  co-expression  domains  pertaining  to  biological

functions implicated in SLE such as the interferon pathway, are being disrupted in patients, while

others associated to severe manifestations such as nephritis, emerge in previously uncorrelated

regions  of  the  genome.  Our  results  support  extensive  genome  re-organization  underlying

aberrant gene expression in SLE, which could assist in the early detection of disease flares in

patients that are in remission.

Graphical Abstract
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Introduction

Systemic  Lupus  Erythematosus  (SLE)  is  considered  the  prototype  of  systemic  autoimmune

diseases due to highly heterogeneous manifestations, variability in symptoms, affected organs

and alternating periods of dormancy and increased activity (flares) (1). Several studies of SLE

transcription profiles (reviewed in (2, 3)) have reported consistent alterations in key biological

pathways, with the Interferon (IFN) signaling pathway being the most prominent example (4, 5).

A recent systematic transcriptomic and genetic analysis comparing SLE patients with variable

disease activity against healthy individuals, led to the definition of discrete susceptibility and

severity gene signatures (6). Beyond gene expression, changes have also been observed at the

epigenetic and chromatin levels,  with extensive DNA hyper-hydroxymethylation in SLE T-cells

(7) and altered chromatin accessibility in naive B-cells from SLE patients under flare status (8).

Given the complexity of the disease at both transcriptome and chromatin levels, an aspect that

has  not  been  adequately  explored  pertains  to  genome  architecture.  Over  the  last  years,  a

number of genomic entities including chromatin loops (9), topologically associated domains (10),

enhancer-promoter interacting domains  (11),  cis-regulatory  domains  (12,  13) and domains  of

defined epigenetic characteristics (14, 15) have been shown to define an ever more complex

genomic landscape. In spite of their variable size, dynamics and underlying principles governing

their creation, a unifying property of these chromosomal entities is the co-ordination of gene

expression (16, 17). At the same time, novel high-throughput methodologies have unraveled a

strong  link  between  nuclear  compartments  and  transcriptional  activity  (18,  19).  Positional

effects in gene expression have been reported since relatively early and their evolutionary and

regulation  dynamics  have  been  extensively  studied  (16,  20–22).  The  importance  of  gene

clustering deregulation in disease has been demonstrated through epigenetics in the case of

cancer (23) and genetic associations in the case of Down syndrome (24), but a comprehensive

assessment  of  gene  expression  clustering  has  been  lacking.  Given  the  apparent  extent  and

impact  of  genome  organization,  addressing  gene  expression  changes  from  an  architectural

viewpoint  could  enhance  our  understanding  of  the  genomic  basis  of  complex  pathological

conditions, especially those that are accompanied by widespread gene expression alterations,

such as SLE.

In  this  work,  we  have  employed  a  genomic  segmentation  approach  on  an  extensive  SLE

expression dataset (6), aiming to define regions of co-ordinated gene expression for the first

time in the context of a complex disease. Our analysis leads to the definition of detailed patterns

of  transcriptional  compartmentalization  that  vary  significantly  between  SLE  and  healthy

individuals. Interestingly, we find SLE patient genomes to exhibit more fragmented and thus,

less  structured  co-expression  patterns,  a  trend  that  correlates  with  the  degree  of  disease

activity. The defined Domains of Co-ordinated Expression (DCEs) exhibit intricate dynamics, that
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are  associated  with  both  molecular  signatures  and  clinical  features  of  the  disease.  This

represents the first attempt to correlate the complex SLE phenotype with genome topology

through detailed transcriptional analysis.

Results

Gene co-expression patterns are fragmented in SLE patients

Neighbouring  gene  expression  correlation  (25) and  modelling  (16) have  been  recently

introduced to define how gene expression propagates in space. We employed a topologically-

inspired approach to quantify the correlation of gene expression genome-wide. After splitting

each chromosome in fixed-size bins, we calculated the transcript count correlation and defined

regions  of  significant  co-expression  based  on  a  permutation  test,  followed  by  local  minima

localization (see  Methods).  The  Domains of Co-ordinated expression (DCEs) produced through

this analysis are supported by permutation analysis involving 1000 random reshuffling events of

transcript  counts  along  each  chromosome  (see  Methods,  Figure  1A).  Accordingly,  they

correspond  to  statistically  robust  chromosomal  domains,  within  which  gene co-expression  is

significantly higher as compared to the surrounding regions.

Analysis of DCE patterns between SLE and healthy individuals shows significant differences with

SLE gene co-expression being organized into smaller and more fragmented regions. This finding

is  not  confined  to  specific  chromosomes,  although  gene-dense  chromosomes  with  a  more

compact transcript pattern show increased overall  signal (Figure 1B).   Notably, DCE patterns

correlate with the activity of the disease (SLEDAI). Having stratified patients to three groups

according to their SLEDAI values (low, intermediate and high activity) we found that DCE sizes

are smaller in low activity patients, where the percentage of the genome organized in DCE does

not exceed 9% as compared to 13% and 17%, for intermediate and high activity respectively, and

19% for healthy individuals. Decreased gene co-expression in SLE patients is evidenced by the: a)

significantly lower numbers of total DCE for low and intermediate disease activity (Figure 1B), b)

smaller  DCE  sizes  (Figure 1C)  c)  decreased  co-expression  signal  (Figure 1D)  and,  d)  smaller

overall percentage of the chromosome covered by DCEs (Figure 1E). The observed differences

cannot be explained by cell  type heterogeneity as shown by an entropy analysis of cell  type

variability (Supplementary Figure 1). The more fragmented expression patterns in low activity

SLE  genomes  are  suggestive  of  generalized  perturbations  in  gene  regulation,  which  could

provide mechanistical explanation for the recurrent flares that tend to develop in patients who

are inactive. Thus, while a desirable outcome, clinical remission may not necessarily be lacking a

molecular fingerprint and the combination of the recently  suggested susceptibility  signature
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(6) with our fragmented DCE pattern may provide an interesting framework for the assessment

of its stability.  

DCEs are dynamically redistributed in SLE

To gain additional insight into the dynamics of DCEs, we classified DCE patterns into four main

groups  according  to  their  changes  between  patient  and  healthy  genomes.  We  used  an

implementation of the Jaccard Index to group the domains into: a) DCEs that were left intact , b)

DCEs that were absent (depleted) in patients while present in healthy individuals, c) DCEs that

were only present (emerged) in patients and, d) DCEs whose coordinates were altered between

patient and healthy genomes. The last group was further categorized into DCEs that were split

(one fragmented into two or more smaller sub-DCEs) or  merged  (two or more joined into one

larger) and expanded or contracted.

Low and high disease activity patients showed the most extensive changes in the pattern of

DCEs as compared to the healthy state (Figure 2A). A detailed analysis shows that, in agreement

with the changes observed at genome-scale level (Figure 1), there is extensive fragmentation

and redistribution of domains in SLE versus healthy genomes. Contraction and depletion of DCEs

are more pronounced in low activity patients, with contracted and depleted DCEs corresponding

to nearly 73% of DCEs in low activity, as compared to 56% and 48% for intermediate and high

disease  activity  genomes,  respectively  (Figure  2A).  Conversely,  expanded and  emerged DCEs

comprise over 30% in high activity versus less than 10% in low activity patients (Figure 2A).

These observations  are  suggestive  of  different  modes  of  dynamic  changes  in  co-expression

domains, with low SLE activity genomes characterized by DCE fragmentation and high activity

ones  featuring a redistribution of co-expression with increased percentages of  expanded and

emerged DCEs. This redistribution was also supported by a simple value measure of DCE pattern

similarity,  calculated with the implementation of BPscore (26), which showed that in spite of

being comparable in genome coverage, the DCEs between high activity patients and healthy

controls were radically different in terms of genomic localization (Supplementary Figure 2).

Gene expression changes are reflected upon DCE dynamics

Changes in  the patterns  of  co-expression may be linked to differential  gene expression and

underlying chromatin dynamics. To address this,  we employed Modular and  Weighted Gene Co-

Expression Network Analysis (WGCNA) (27) of differential gene expression on the three disease

activity groups against healthy individuals. The results were strongly suggestive of quantifiable

phenotypic variability between patients with different clinical activity states, in agreement with
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the previously defined susceptibility and severity gene signatures (Supplementary Figure 3). In

addition we were able to  define gene expression modules  and to correlate them to clinical

characteristics such as disease activity. Comparison of WGCNA results with clinical characteristics

of  the cohort samples allowed us to identifiy a  “SLEDAI  gene module”,  which comprised 224

genes, enriched for innate and adaptive immune pathways, particularly signaling through the Fc-

γ and B-cell receptors (BCR). A “Nephritis module” (184 genes) and an “IFN module” (282 genes)

were also identified, the latter being highly associated with anti-nuclear and anti-DNA antibodies

(Supplementary Figure 4). 

In order to investigate how changes in the patterns of co-expression may be linked to differential

gene expression we analyzed the degree of overlap between the different DCE categories and

the  WGCNA  modules  obtained  from  our  dataset  (Figure  2B).  The  IFN  module was  over-

represented  in  split DCEs  across  all  SLE  groups  and  was  particularly  enriched  in  DCEs  that

become  depleted within  the  high  activity  group,  implying  that  increased  IFN  pathway  gene

activity may be linked to loss of co-expression structure. Conversely, the  nephritis/neutrophil-

specific  module was  enriched in  emergent DCEs from low disease  activity  genomes,  which is

suggestive of gene deregulation being also associated with the creation of new co-expression

domains. The correlation of  nephritis/neutrophil-specific module  with emergent domains in low

activity genomes could be indicative of underlying tendencies in gene deregulation present even

in patients without developed symptoms who may yet be predisposed to flare. Consistent with

observations at the level of functional enrichments, the B-cell module was enriched in DCEs that

are  depleted  being  largely  absent  from  high  disease  activity  DCEs.  Taken  together,  these

findings  indicate  that  functional  aspects  of  gene  expression  pertaining  to  distinct  clinical

characteristics are reflected on the genome organization.

DCE  dynamics  are  strongly  associated  with  chromatin  accessibility  and  chromosomal

compartments

Transcriptional coordination in self-contained domains is tightly linked to underlying chromatin

organization at various  levels  ranging from topologically  associated domains  (TADs)  to more

extended chromomomal  compartments.  We thus  went on to correlate the dynamics  of  DCE

patterns with underlying genomic features related to chromatin accessibility and chromosomal

compartments.  By comparing the coordinates  of  stable and dynamic DCEs against  ATAC-Seq

peaks  defined  for  B-cells  in  severe-case  SLE  against  healthy  individuals  (8),  we  found  split,

contracted and merged DCEs (of all disease activity groups) to be enriched in peaks of decreased

chromatin accessibility (Supplementary Figure 5). Conversely, depleted and emerged DCEs of all

SLE activity groups were enriched (although with a smaller effect size), almost exclusively, in

over-accessible  regions.  This  finding  signifies  a  clear  distinction  between  the  DCEs  that  are
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locally  modified,  which  tend  to  be  confined  in  under-accessible  regions,  and  those that  are

dynamically re-distributed, which are preferentially located in more accessible chromatin. 

We  performed  a  similar  analysis  at  the  level  of  chromosome  compartments  (at  100kbp

resolution) as defined in a B-lymphoblastoid cell line (9). On a large scale, chromosomes may be

organised into two broad compartments labelled A and B, corresponding to active and inactive

chromatin, and also bearing other distinct properties. These may be further subdivided to A1 and

A2 and B1 to B4 (9). A chromosomal coordinate overlap enrichment analysis showed DCEs to be

generally enriched in the euchromatic A compartment (Figure 2C). When focusing on specific

DCE subtypes, we found that regions belonging to the most dynamic subsets of  emerged and

depleted DCEs  were  enriched  in  the  A2  subcompartment,  which  is  associated  with  late-

replicating, low GC content DNA, enriched in H3K9me3 and longer gene transcripts (9). On the

other hand, intact DCEs and in general, DCEs that are less dynamic appear to be more enriched in

the gene dense, early-replicating A1 subcompartment. Enrichments in the B4 subcompartments

are probably due to the over-representation of particular DCEs in chromosome 19, which hosts

the entirety of this very small subcompartment.  

Together, the differential enrichments of split and contracted DCEs, compared to the dynamically

redistributed  emerged and  depleted regions,  in terms of chromatin  accessibility  and genome

compartments,  indicate  an  interplay  between  gene  regulation  and  underlying  chromatin

environment. Regions of high gene density tend to have highly correlated gene expression, but

that this pattern changes radically with the splitting of co-expression domains in low disease

activity and the emergence of new, probably re-arranged domains in high disease activity SLE

patients.  We  hypothesize  that  epigenetic  changes  that  increase  chromatin  accessibility,  in

particular  in  A2  genomic  compartments,  may  create  a  permissive  environment  for  the

redistribution of co-regulated genomic domains, which are, moreover, associated with functions

characteristic of increased disease activity.

DCE splits are driven by differential expression of transcriptional regulators and disrupt

enhancer-promoter interactions of key biological functions

While split DCEs represent no more than 5-10% of the total genome coverage, they are highly

enriched among differentially expressed genes and in particular with the IFN module. Given their

additional enrichment in low disease activity patients and therefore, their possible implication in

further disease progression, we performed a focused analysis of split DCEs and the genes lying

on their  boundaries (see  Supplementary Methods).  The latter were predominantly  enriched

among the targets of specific transcriptional regulators, a number of which are associated with

zinc finger factors (SALL1, Ikaros, ZIC3 etc.) and oncogenes (GLI1, ING4) (Figure 3A). Members of
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the  Ikaros  transcriptional  regulators  have  been  genetically  associated  with  SLE  (2),  and

interestingly, IKZF3 lies within a disrupted DCE in all SLE groups.

Based on the differences in the extent of split DCEs between low and high activity genomes, we

next  assessed  their  overlaps  with  the  SLE  susceptibility  and  severity  gene  signatures  as

previously defined (6) for the same dataset. We found significant differences between the two

gene sets with susceptibility genes being highly enriched in split DCEs in contrast to a depletion

of severity genes (Figure 3B). Genes belonging to the susceptibility signature are also enriched in

the subset of differentially  expressed genes that are found in low disease activity  split DCE

boundaries  (p=0.0061).  Protein  and  regulatory  interaction  network  analysis  of  these  genes,

performed  through  STRING-DB  (28),  revealed  an  IFN  gene  signature  (Figure  3C)  and

interestingly, a set of highly connected genes associated with DAP12 signaling (Figure 3C, cyan

polygon). DAP12 (TYROBP) is a key activator of NK cells, which are reported to have impaired

function in SLE patients (29). Smaller network modules were associated with neutrophils (lime)

and B-cells (yellow). We may thus see how, by focusing on split DCE regions we may prioritize

genes of the broader susceptibility signature and to investigate their functional connections. 

Given the DCE definition as  regions  with  increased regulatory  interactions,  it  is  plausible to

expect that gene promoters are more likely to be associated with enhancers that are lying within

the  same  region.  To  test  this  hypothesis,  we  obtained  cell-type  specific  promoter-enhancer

interactions for  CD4,  CD8 and CD14 and CD19 cells  from Enhancer Atlas (30) and identified

genes whose promoter-enhancer pairs were nested within the same DCE in the healthy state but

disrupted in SLE. We found that a significant percentage of enhancers-promoter connections

that are completely nested in healthy DCEs are disrupted by a DCE split or depletion in one of the

SLE disease activity states. Thus, it seems that the redistribution of gene co-regulation domains

in disease may also be disrupting the regulatory links between enhancers and their  cognate

promoters.  Functional  enrichment  of  the  genes,  whose  enhancer-promoter  associations  are

disrupted in SLE revealed relevant biological functions (Figure 3D). More specifically, functions

related to the  immune system are, as expected, highly enriched in all disease activity groups.

Others, such as  protein metabolism,  translation and protein turnover are particularly enriched in

high disease activity patients. Gene transcription is enriched in low and intermediate activity but

absent from high activity genomes, suggesting major changes in general functions. Interestingly,

interleukin-16 (Il15) and interleukin-21 (Il21) signaling are specifically enriched in high activity

patients even though with low effect sizes (Figure 3D).

Methods
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Definition of domains of coordinated expression (DCEs)

To call domains of co-ordinated expression, we modified a methodology that was introduced for

the definition of topologically associated domains (TAD) (31), in our case, by using expression

correlation  data  instead  of  chromosomal  contact  frequencies.  Statistically  robust  expression

correlation  matrices  (see  Supplementary  Methods)  were  used  as  input.  Domains  of  Co-

ordinated Expression (DCEs) were defined as genomic regions of consecutive chromosomal bins

with  correlation  above  average,  delimited  by  statistically  significant  boundaries.  More

specifically, DCE detection is a four-step pipeline, which is repeated for each chromosome and

for every study group (see Figure 1A).

1. First, we compute a signal that runs along the chromosomes and is indicative of the local

average correlation of expression. We achieve this by sliding two juxtaposed windows of

equal  size  along  a  chromosome  with  a  single-bin  displacement,  until  the  whole

chromosome has been covered. In every iteration, we use the correlation matrix that has

already been constructed and statistically evaluated. We look up the correlation values

concerning the relationship of the two regions and calculate their average. That value is

assigned to the chromosomal bin located in the middle, more precisely, the downstream-

most bin inside the upstream window.

2. Subsequently, the calculated signal is used to detect DCE boundaries. Hence, the second

step of the pipeline is to compute a smoothed function of that signal, using a smoothing

spline,  and to  detect  all  local  minima of  that  function.  DCEs  are initially  detected  as

regions between local minima with a value lower than 0.25, which is the average genome

signal for the healthy, control group.

3. The third step is  to statistically  evaluate and refine the boundaries.  We estimate the

significance of the boundaries by utilizing a Mann–Whitney U test to compare "within"

and  "in-between"  correlation  coefficients.  In  case  any  of  the  initially  calculated

boundaries does not reach the required statistical significance threshold (p-value > 0.05),

we "chop" that boundary by one bin towards the centre of DCE, and repeat the test. DCEs

with any remaining non-significant boundary are discarded.

4. The last step includes the fusion of neighbouring DCEs which are separated by up to two

bins with signal lower than 0.25. The maximum number of bins, with a signal lower than

0.25, allowed in the final DCE is two, thus allowing at most two such fusion events. This

step enhances the robustness of the pipeline and decreases the noise in our data. The

window size used in bin-signal  calculation and in boundary evaluation was three bins,

10

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.922559doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.922559
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on the maximization of  average intra-DCE correlation of chromosome 1 of the

healthy group.

Discussion

Genome  organization  is  intricately  linked  to  gene  expression  and  regulation  in  health  and

disease,  with  differentially  expressed  genes  creating  clusters  under  various  conditions.  Our

study, the first such conducted in SLE, shows that genes are organized in extended domains of

coordinated expression but, moreover, that these domains are highly dynamic and extensively

reorganized during disease progression. While high activity patient patterns are suggestive of a

general  re-organization  of  gene  regulation  that  extends  to  broader  chromosomal  domains,

increased fragmentation of gene co-expression is observed even in the genomes of patients

with very low disease activity. This may suggest that the observed disruptive patterns of gene

expression may be related to the way initial cellular signals propagate in the genome in order to

affect hundreds of abnormally regulated genes. Thus, the more disconnected co-expression in

low activity SLE genomes could be linked to mechanisms, with which flares occur even in patients

that are in remission.

While, the governing principles of such mechanisms are yet to be resolved, our analyses suggest

a key role for the chromatin environment.  Differential  enrichment of DCE patterns between

open  and  closed  chromatin  and  chromosomal  compartments  pertaining  to  early  and  late-

replicating  chromatin,  are  strong  indications  of  epigenetic  patterns  underlying  the

fragmentation and re-organization of gene co-expression.  Epigenetic  effects,  downstream of

environmental  triggers  are expected to  lie  at  the  basis  of  SLE aetiopathogenesis,  given  the

limited  association  of  genetic  factors  reported  for  the  disease.  Further  investigation  of  the

mechanisms linking chromatin structure and the organization of gene expression in SLE could be

assisted by our approach, through the prioritization of chromosomal domains with increased

regulatory potential.  

Besides  epigenetic  phenomena,  the  formation  of  co-expression  domains  could  occur  more

transiently  as  the  result  of  differential  expression  in  any  given  setting  (32),  through  the

clustering  of  differentially  expressed  genes,  that  have  been  spatially  constrained  through

evolution  (20,  33).   Such  a  notion  is  supported  by  our  data  in  two  ways.  First  through  the

association of the observed DCEs with functions that are known to be activated in SLE. Major

pathways related to the intensity of the symptoms (such as the IFN signature) are associated

with the disruption of co-expression, while downstream effects of SLE, related to the damage of

organs  (e.g.  nephritis)  are  correlated  with  the  general  re-organization  of  co-expression  in
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emergent  domains.  In  addition  gene signatures  from  both  expression  (6) and  genome-wide

association  data  are  enriched  in  various  types  of  DCEs  (Supplementary Figure 6),  a  strong

indication that transcriptomic as well as genetic data may reveal a hidden layer of information

when studied through the lens of genome organization.

The dynamics of co-expression clustering are also linked to differential expression, through the

tendency  of  deregulated  genes  to  occur  in  the  boundaries  of  split  DCEs.  Inspection  of  the

dynamics  of  DCE  splits is,  moreover,  indicative of  the  general  pattern of  fragmentation  and

redistribution as is showcased in a number of examples where, compared to a contiguous DCE

pattern in  the healthy  state,  we observe splits  in  low disease activity  and more generalized

reorganization in high disease activity patients (Figure 4). The fact that split/disrupted regions

are more prominent at low disease activity genomes, combined with their proximity to genes

belonging to the susceptibility signature, may come as an indication of an underlying hierarchy

behind the gene deregulation program. Indeed, we find enhancer-promoter associations of high

relevance to be possibly  affected by the disrupted patterns  of  gene co-expression,  which is

strongly indicative of DCE splits having a possible multiplicative effect on gene regulation.  

The approach we present here constitutes a first attempt to analyze gene expression at the level

of genome organization in a complex disease and points to a number of interesting hypotheses

linking  the  SLE  phenotype  with  the  underlying  genome  structure.  Targeted  conformation

capture experiments on homogeneous cell cultures could be implemented in order to test these

hypotheses.  At  the  same  time,  the  implementation  of  single-cell  approaches  at  both

transcriptome and genome conformation levels,  could provide a data-rich framework for the

application  of  our  approach,  with  the  final  aim  of  obtaining  cell-type specific  co-expression

profiles at increased resolution.  

Data Availability

Original  RNASeq data have been deposited at the European Genome-Phenome Archive (EGA)

under  the  accession  number  EGAS00001003662.  Processed  data  and  original  code  for  all

presented analyses may be found at   https://github.com/vntasis/SLE_spatial_gene_expression
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Figure Legends

Figure 1. Differential patterns of Domains of Co-ordinated Expression (DCEs) in healthy and

patient groups.  A. The DCE detection pipeline is represented as a series of ‘transformations’

applied  to  the  expression  data.  We  start  by  calculating  the  expression  profile  of  each

chromosomal bin using the expression profile of the encompassed genes (i). We then calculate

the correlation coefficients between the bins located at the same chromosome (ii). Next, the

correlation profile of each chromosome is transformed into a one-dimensional binsignal profile

(iii).  We analyze  that  profile,  detecting  local  minima and  maxima in  order  to  determine the

borders of the domains. Finally, a statistical evaluation of those borders results in the final DCE

coordinates (iv). B. Domainograms depicting the distribution of DCEs for the healthy and the

three patient groups studied. The color of DCEs represent the respective average binsignal of

the chromosomal bins encompassed. C. Violin plots illustrating the estimated distribution of DCE

sizes in each group. Classic boxplots are included. The scale of the y axis is logarithmic (log(bps)).

D. Average bin signal (co-expression score) for each group. E. Violin plots representing, for each

chromosome, the percentage of chromosomal bins that contain genes, with non-zero expression

value, and form DCEs. C, E. The results of Mann-Whitney-Wilcoxon tests comparing each patient

group to the healthy group are demonstrated by the significance level indicators.

Figure 2. DCEs are extensively fragmented and redistributed in SLE patients and correlate

with functional signatures and epigenetic marks.  A. Heatmap presenting the different types

of DCE reorganization. Numbers inside cells indicate the ratio of the number of DCEs, of the

respective  type,  over  the  total  number  of  DCEs  for  each  patient  group.  Colour  code  is

corresponding to column z-score of ratios. B. Heatmap depicting the results of an enrichment

test for DCEs in the functionally annotated WGCNA modules. C. Heatmap depicting the results

of  an  enrichment  test  for  DCEs  in  different  genome  subcompartments.  A-C.  Scaling  and

centering has been performed per column. Trees are illustrating the outcome of hierarchical

clustering performed on the data. B, C. Symbols inside cells demonstrate the significance level of

the outcome of each test (*:0.05; **:0.01; ***:0.001). Significance has been assessed by a non-

parametric, permutation-based test.

Figure 3. Functional analysis of the disruption events.  A. Enrichment analysis of ‘Disruptors’ in

genes  that  are  commonly  regulated  (suggested  by  the  mutual  regulatory  motif  matches  -

TRANSFAC database) by transcription factors indicated on y axis. The overlap between the query

gene set and the corresponding Pathway members or TF-target genes are displayed on the x
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axis.  The color of each bar illustrates the corrected p-value of the corresponding enrichment

test.   B.  Average positional enrichments of susceptibility and severity genes from (6) against

different types of DCEs.  Significance levels  of one hundred permutations (*:0.05;  **:0.01).  C.

Protein  interaction  networks  for  susceptibility  signature  genes  that  are  found  to  be

differentially expressed and overlapping split DCE boundaries, as obtained from STRING-DB (28).

Genes are grouped on the basis  of  a modularity  analysis.  Modules are shown with  coloured

polygons around genes (red: interferon signature genes, cyan: DAP12 signaling, lime: neutrophil

module, green: B-cell module)   D. Pathway enrichment analysis of genes which correspond to

enhancer-tss  links  (CD4+  cells  -  Enhancer  Atlas),  that  are  nested in  healthy  group  DCEs  but

disrupted in SLE. The top 20 most significant KEGG or/and REACTOME pathways are presented.

Figure  4.  Examples  of  alterations  in  the  co-expression  profile.  Heatmaps  of  expression

correlation  for  selected  loci  for  characteristic  cases  of  disrupted  (top),  expanded  (middle),

deleted (bottom left) and emerged DCEs (bottom right). Heatmaps were created with the Sushi

package from Bioconductor. Values in heatmaps correspond bin signal, while the tracks below

them  show (from top  to  bottom)  gene positions  colour-coded  for  differential  expression as

log2(fold-change),  DCE  coordinates  and  enhancer-promoter  associations  that  are  entirely

included in the same DCE (in blue) or not (in red). Names of differentially expressed genes in

each locus are shown on the side of each panel.
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