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Summary

How a memory system encodes related experiences has consequences for what operations the
system supports. For instance, independent coding enables retention of potentially important
idiosyncratic details by reducing interference, but makes it difficult to generalize across
experiences. Strikingly, the rodent hippocampus constructs statistically independent
representations across environments (“global remapping”) and assigns individual neuron firing
fields to locations within an environment in an apparently random fashion, processes thought to
contribute to the role of the hippocampus in episodic memory. This random mapping implies that
it should be challenging to predict hippocampal encoding of a given experience in a one subject
based on the encoding of that same experience in another subject. Contrary to this prediction,
we find that by constructing a common representational space across rats (“hyperalignment”),
we can consistently predict data of “right” trials (R) on a T-maze in a target rat based on 1) the
“left” trials (L) of the target rat, and 2) the relationship between L and R trials from a different
source rat. These cross-subject predictions outperformed a number of control mappings, such
as those based on permuted data that broke the relationship between L and R activity for
individual neurons, and those based solely on within-subject prediction. This work constitutes
proof-of-principle for successful cross-subject prediction of ensemble activity patterns in the
hippocampus. This novel approach provides new insights in understanding how different
experiences are structured, and suggests further work identifying what aspects of experience
encoding are shared vs. unique to an individual.
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Introduction

A fundamental challenge faced by any memory system is how related experiences should be
organized — storing the details of each individual experience preserves potentially valuable
details, but is storage-inefficient and hampers generalization, whereas treating all experiences
as the same risks ignoring potentially important differences’. For instance, learning the common
spatial features of different floors in the same building makes it possible to predict the layout of
a not-yet-visited floor (“similar to the others”); at the same time, each floor also has unique
features, such as the location of a specific colleague’s office, that do not generalize. Thus,
memory systems need to balance pattern-completion (treating a new observation the same as a
previous one) and pattern-separation (keeping similar observations as distinct).

The rodent hippocampus is a model system for studying the neural basis of these processes.
Strikingly, the hippocampus can construct statistically independent representations across
environments (“global remapping")z_5 and assigns individual neuron firing fields to locations
within an environment in an apparently random fashion®7. Similarly, “engram” studies suggest
that the population of neurons allocated to a given experience is determined by a competition
based on randomly fluctuating excitability levels among eligible neuronsS. Although there are
also examples of hippocampal cells whose firing properties are tied to a particular stimulus
feature (e.qg. rewardg) and therefore transfer across different environments, the received wisdom
is that those cells that do change their firing fields between environments or across different
regions of the same environment, do so randomly10.

Remapping studies to date have been limited to within-subject comparisons, but it is possible in
principle that what appears random within a single subject in fact obeys a common rule that is
shared across subjects. Consider how two related experiences such as running the left (L) and
right arms (R) of a T-maze may be encoded in a population of hippocampal neurons. The
correlation between L and R activity on a cell-by-cell basis may be zero, but still obey an
underlying structure. For instance, cells that tend to fire at the start of L may be more likely to
fire at the end of R. If such a rule were to exist, it should be possible to predict, across subjects,
what R activity of a target subject looks like, based on (1) that subject’s L activity and (2) the
relationship between L and R activity found in a different “source” subject. Although there is no
way to predict how two different subjects encodes a given experience L (especially when
sampling randomly from different numbers of neurons that are not uniquely identifiable across
subjects as in e.g. C. elegans), the relationship between how two different experiences L and R
are represented may be conserved across subjects.

Such a representational geometry has been demonstrated in a number of brain regions in
human cognitive neuroscience studies that use fMRI11_13, but cross-subject prediction has not
yet been applied to ensemble recording data in the rodent hippocampus. If (re)mapping in the
rodent hippocampus were to show a shared representational geometry, this would not only
challenge a long-held dogma about the randomness of place cell allocation, but potentially also
open up novel lines of research that can elucidate the algorithmic basis of memory assignment
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and generalization in a wide variety of settings, while creating a bridge between rodent neural
data and human fMRI work.

Results

The overall goal of this study is to determine if we can predict how hippocampal place cells in a
“target” subject encode a particular experience based on two ingredients: (a) knowledge of how
the target subject encodes a distinct but related experience, and (b) how a different, “source”
subject encodes the same two experiences.

We operationalize this idea using data from T-maze tasks, in which rats run along the left and
right arms of the maze to form the two related experiences under study. Specifically, we can
describe hippocampal activity on this task as two subject-specific matrices with time as the
horizontal dimension, and neuron as the vertical dimension (Figure 1, leftmost column); one
matrix describing the average activity for left trials (L), and another matrix for right trials (R; see
Figure S1 for a description of how this input data is obtained). We aim to predict the R matrix in
the target subject, based on (a) the target’s L matrix and (b) the source’s L and R matrices. This
neural activity can be visualized as trajectories for L and R trials in a dimensionality-reduced
principal component (PCA) space (Step 1 in Figure 1).

Our method for performing cross-subject prediction builds on a procedure from human cognitive
neuroscience, “hyperalignment”11 ’14, that projects each subject’s idiosyncratic neural activity into
a common space that minimizes the Euclidean distance between neural activity trajectories.
Working in this common space, we can identify the relationship between how the source subject
encodes L and R trials, and express it as a transformation matrix (“hypertransform”) and apply it
to the target subject’s L trials to obtain a predicted R trajectory R . This predicted trajectory is
then projected back to the target-specific neural space to obtain a prediction which is compared
to the actual data (Figure 1).
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Figure 1. Workflow for cross-subject prediction of place cell data using the hypertransform.
The objective of the main procedure in this study is to predict place cell activity on the right arm (R) of
a T-maze in a “target” subject, based on (a) place cell activity in the left arm (L) in the target subject,
and (b) L and R place cell activity in a different, “source” subject. These input data are shown
schematically in the leftmost column: both the source and target rats have two matrices each that
describe, for each recorded neuron, how its activity varies during left and right trials. Note that
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although the number of time bins is the same across subjects, the number of recorded cells may be
different. Therefore, the first step of the analysis workflow (step 1 in the panel above) is to apply
principal component analysis (PCA), resulting in neural activity trajectories for left and right trials (red
and blue, respectively) in each subject’'s own PCA space. 3 principal components are shown here for
display purposes, but in the main analysis 10 PCs were used. Next, these neural activity trajectories
are mapped into a common space using a “hyperalignment” procedure that minimizes the Euclidean
distance between the trajectories across subjects (step 2, see Methods for details). In this common
space, a procrustes transformation 12 (M12 in step 3) is derived that maps L to R trajectories for the
“source” subject (step 3), which can then be applied to the L trajectory of the “target” subject (step 4)
to obtain its predicted R trajectory in the common space (step 5). This predicted R trajectory is then
projected back to the “target” PCA space using the inverse of the matrix used in step 2 (step 6) and
expanded back into the target’s original neuron space (step 7). Finally, the predicted R neural activity
is compared to the actual R activity to yield an error measure (step 8).

If a given subject encodes L and R trials independently, then it should not be possible to use
one subject’s neural activity for L and R to predict anything about how another subject encodes
R trials based on its L trials. On the other hand, if there is some shared structure between
subjects in how L and R trials are encoded, then cross-subject prediction should perform better
than chance. Note that is possible for L and R activity in a given subject to appear completely
unrelated — that is, there is no correlation between which cells fire for L and R trials — but have
the relationship between L and R be completely deterministic across subjects.

To test if there is a shared structure across subjects, we compare the prediction of R trials as
described above with various baseline (control) predictions. Specifically, for each source-target
pair, we obtain a distribution of chance predictions based on breaking the relationship between
L and R trials in the source subject by randomly permuting the rows of the R matrix (see Figure
S1 for a schematic of this procedure). Based on this chance distribution, we define three
metrics: (1) a z-score of the actually observed error compared to chance, (2) the difference
between the actually observed prediction error and the mean of the chance prediction error, and
(3) the proportion of chance prediction errors that were lower than the observed error.

We used two different data sets: the first, “Carey” data set18.17 is from a T-maze where L and R
arms were deliberately equipped with distinct surface colors and textures. In contrast, the

second, “Gupta” data set18:19 used a T-maze whose arms had similar surfaces. Starting with the
Carey data, we found that the hypertransform (HT) prediction of R trials in the target subject

was better than chance overall for all metrics used (Figure 2, top and middle rows; green “HT”

bars; z-score: p < 0.001 for Wilcoxon signed rank test vs. 0; raw error: p < 0.001). Cross-subject

prediction of R activity was better than chance even when the R data was withheld entirely from

the hyperalignment step (Figure S2, top row; p < 0.001 for HT vs. 0), and when L and R activity

was expressed as tuning curves in space rather than in time (Figure S2, middle row; p < 0.001

for HT vs. 0). These results demonstrate that the relationship between L and R trials is not

random across subjects.
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To test if the hyperalignment step of the prediction procedure is important, rather than some
other part of the workflow, we repeated the analysis with the hyperalignment step left out (i.e.
we applied the L-R transform obtained from the source subject's PCA space to the target
subject's PCA space, “PCA-only”; see Methods for details). The HT-based prediction
consistently outperformed the PCA-only prediction for the Carey data (blue “PCA” bars in Figure
2, middle row; p < 0.001, binomial test). For the Gupta data, the HT prediction similarly was
consistently better than chance (p < 0.001 for HT vs. 0); however, unlike the Carey data, this
prediction was not different from the PCA-only prediction (Figure 2, bottom row; p = 0.67,
binomial test).
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Figure 2: Cross-subject prediction of R trials of a “target” subject based on how a “source”
subject encodes L and R trials outperforms prediction based on shuffled source data. For each
source-target pair, we computed a z-score of the actually observed error between predicted and
actual R trials (based on the hypertransform procedure, “HT”) compared to a shuffled distribution in
which the R rows of the source subject we randomly permuted. Thus, lower z-scores indicate lower
error and therefore better prediction than chance. Across all source-target pairs, this z-scored error
varied depending on the pair used (column A, top row), but was lower than chance overall, as
indicated by a shift in the z-score histogram relative to 0 (“HT” green bars in column A, middle row;
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—0.94 +/- 0.56, SEM across unique subject pairs, p < 0.001 for Wilcoxon signed rank test vs. 0).
Cross-subject predictions based on the L-R transform in common space (“hypertransform”)
outperformed predictions based on the L-R transform in PCA space (“PCA” blue bars; see Methods
for details; HT < PCA: 66.15% of subject pairs, p < 0.001 for binomial test). Next, we applied the
same analysis to a different data set (“Gupta”, bottom row, in which the L and R maze arms were
more similar to each other than in the “Carey” data), and found that although the hypertransform
prediction was again significantly better than chance (“HT”; —1.60 +/- 1.00, p < 0.001, bottom row),
this prediction was not different from PCA-only (HT < PCA, 47.89% of pairs, p = 0.67; the reason for
this will be revealed in Figure 3 and the main text). Column B and C use the same layout as column
A, but using different metrics to describe prediction accuracy. B uses the raw error (between
predicted and actual R neural activity; lower error/negative indicate better prediction) compared to the
mean of the shuffle distribution, and C uses the proportion of the shuffle distribution with smaller error
than the actually observed error (lower proportions indicate better prediction). For the raw error
measure, the HT prediction was better than chance and better than the PCA prediction in the Carey
data. (B: —195.23 +/- 88.45, p < 0.001 for HT vs. 0; HT < PCA: 66.15%, p < 0.001 for HT vs. PCA). In
the Gupta data, HT prediction was again better than chance (B: —277.87 +/- 117.14, p < 0.001 for HT)
but the HT prediction was not better than PCA (B: HT < PCA: 48.59% of pairs, p = 0.80).

A possible explanation for the better-than-chance cross-subject prediction is that rats represent
experiences in L and R similarly, so that a duplicate of L activity already forms a reasonable
prediction of R activity. Such a scenario would be a trivial use of cross-subject prediction. To test
if L-R correlations underlie the cross-subject prediction results in Figure 2, we compared
cross-subject predictions based on the hypertransform (L-R mapping in common space) with
those based on the identity transform: a within-subject prediction that simply takes a duplicate of
the L trajectory in common space and uses it as the prediction for R. For the Carey data set, the
cross-subject HT prediction was significantly better than that based on the identity transform (ID;
left panel in Figure 3a; p < 0.001, binomial test), demonstrating that the better-than-chance
prediction of R is not due to linear correlations with L activity. In contrast, for the Gupta data, the
same effect was not observed, suggesting that the better-than-chance cross-subject prediction
for this data set (Figure 2, bottom row) may be due to correlations between L and R activity.
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Figure 3: Cross-subject prediction outperforms within-subject prediction only in the absence
of cell-by-cell correlations. A: Comparison of cross-subject prediction error (“hypertransform”,
green bars; HT) with within-subject prediction error (“identity transform”; blue bars, ID) for two
different data sets. In the “Carey” data (left panel) the left and right arms of the maze had different
texture and color patterns; in the “Gupta” data (right panel) the two maze arms were identical. For the
Carey data, cross-subject prediction was significantly better than within-subject prediction (HT < ID:
96.92% of subject pairs, p < 0.001 for binomial test) whereas for the Gupta data, this effect was not
observed. B: Cell-by-cell correlation of firing rates between L and R arms (i.e. row-wise correlations of
the L and R matrices in Figure S1), averaged across all cells and subjects, for Carey and Gupta data.
Cell activity was significantly more correlated in the Gupta data compared to Carey data (Gupta: r =
0.35 +/- 0.27, SEM across subjects, Carey: r = 0.02 +/- 0.12, Wilcoxon ranksum test, p < 0.001).
Also, cell activity in Carey data was not significantly different from 0 (p = 0.44 for Wilcoxon signed
rank test vs. 0). C: Population vector (PV) correlations between ensemble activity at each time point
and every other time point, i.e column-wise correlations of the L and R activity matrices, averaged
across sessions. Both Carey and Gupta data sets show high correlations around the diagonal,
indicating an overall autocorrelation in time; however, the Gupta data additionally shows high
off-diagonal correlations between L and R which are barely visible in the Carey data. D: Quantification
of the mean PV correlation between L and R (i.e. the values along the diagonal of the first quadrant in
C). For Gupta data, this correlation is remarkably high (r = 0.80 +/- 0.16) whereas for Carey data, it is
significantly lower (r = 0.15 +/- 0.10, p < 0.001 for Wilcoxon rank sum test) and consistent with
previous reports of global remappingz’4. The above results explain why the HT is not needed for
Gupta data to achieve better than chance predictions (see bottom row in Figure 2): L and R activity is
sufficiently similar such that the L trajectory alone in either PCA or common space can predict R
activity.
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To test this idea, we investigated the correlation structure between the L and R firing rate
matrices using two different measures: the cell-by-cell (row-wise) correlation, averaged across
all cells, and the column-wise population vector (PV) correlation (averaged across sessions, see
Figure S1 for schematic; note that in order to compute these measures, putative interneurons
were removed from the data; see Figure S3 and Methods). The cell-by-cell firing rate
correlations between L and R arms were significantly more correlated in the Gupta data
compared to Carey data (Gupta: r = 0.35 +/- 0.27, Carey: r = 0.02 +/- 0.12, SEM across
subjects; p < 0.001 for Wilcoxon ranksum test; Figure 3b). Similarly, PV correlations in the
Gupta data showed high off-diagonal values between L and R, which were barely visible in the
Carey data (Figure 3c-d). The low correlation values observed in the Carey data are consistent
with those previously reported and characterized as global remapping 2’4, whereas the Gupta
correlations are strikingly high, indicating the presence of “symmetric” cells with similar firing
patterns on the L and R arms. High L-R correlations in the Gupta data imply that the
cross-subject (hypertransform) method cannot outperform the already very good prediction
based on within-subject correlations, whereas for the nearly uncorrelated Carey data, there is
room for cross-subject prediction to improve.

Importantly, the comparison between the two data sets suggests that the cross-subject
prediction on Carey data is not the result of within-subject correlations -- because, if it were,
then the HT prediction would be similar to the ID prediction. So, if cross-subject prediction for
the Carey data is not simply a consequence of within-subject correlations between L and R,
what is the prediction based on? In other words, can we identify what features of the L-R
relationship are generalizable across subjects without appearing as within-subject correlations
between L and R activity? To address this question, we generated synthetic neural activity
matrices using 1-D Gaussians with three parameters: time, peak firing rate (FR) and width.
Specifically, three simulated data sets captured different potential place cell properties: (1) each
neuron has an independent probability of having a firing field on L and R, and all parameters are
randomly and independently chosen for L and R (ind-ind, top row in Figure 4a), (2) if a neuron
has a firing field on L, it does not have a field on R (and vice versa), and the parameters of the
field are chosen randomly (x-or, second row) and (3) each neuron has an independent
probability of having a field on L and R, but if a cell has a field in both, all three parameters are
the same (ind-same-all, third row). For all these scenarios, we generated synthetic data
matching the number of recording sessions and the number of neurons recorded in the Carey
data, and applied exactly the same analysis procedure.

The independent (ind-ind) simulation serves as a sanity check to verify that our cross-subject
prediction procedure cannot exploit shared structure where none exists; as expected,
cross-subject prediction was not different from chance in this scenario (Figure 4a, right column;
p = 0.92 for Wilcoxon signed rank test vs. 0). In contrast, both x-or and ind-same-all showed
better-than-chance cross-subject prediction (p < 0.001 for x-or, p < 0.001 for ind-same-all). If
the x-or or ind-same-all rules are potential explanations for better-than-chance predictions in
Carey data, we should see uncorrelated cell-by-cell correlations and low PV correlations
between L and R in these two data sets as observed in Carey (Figure 3b-d). However, the x-or
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scenario shows negatively correlated PV correlations inconsistent with the Carey data (Figure
4b-c; r = -0.17). The ind-same-all rule shows both high cell-by-cell correlations (Figure 4d; r =
0.25) and high PV correlations (r = 0.41), which is again inconsistent with the Carey data, but
more in line with the Gupta data (compare Figure 3b-d). Thus, although both simple rules can
support cross-subject prediction, the resulting correlations are inconsistent with those observed
in the Carey data.

In further simulations, we separately investigated the role of each parameter of the 1-D
gaussian place fields (time, FR and width) as a potential explanation for cross-subject
prediction. We created data sets in a manner similar to the ind-same-all scenario, i.e assigning
each neuron an independent probability of having a field on L and R, but with the difference that
if a cell has a field in both, only one parameter is the same, and the other two are randomly and
independently chosen. For instance, in the ind-same-time case, cells with fields on both L and
R have independent width and peak firing rates on L and R, but fire at the same (mean) time.
Only when the same time is shared across L and R are the cross-subject predictions better than
chance (Figure S4; p < 0.001). Importantly, this excludes the possibility that correlations in
(peak) firing rates between L and R (as suggested by the data in Lee et al. (2019)20, and by the
absence of cross-subject prediction in z-scored data, Figure S3) is the cause for
better-than-chance cross-subject prediction.

If these predetermined rules cannot be the source of cross-subject prediction in the Carey data,
what can? The hyperalignment procedure we used to derive the L-R transform
(“hypertransform”) was originally developed to capture so-called representational geometry:. a
shared rule that specifies how differences in neural responses to a set of stimuli may be
preserved across subjects even though each subject may encode a given stimulus quite
differently " Totestif such a geometry is consistent with the data, we created another synthetic
data set in which the activity on L is simulated by assigning each neuron an independent
probability of having a 1-D gaussian place field whose parameters are randomly chosen, and
the activity on R is obtained by applying the L-R transform (hypertransform, HT) from the Carey
to the simulated L activity (sim. HT, bottom row in Figure 4a). Not only did sim. HT show
significant better-than-chance cross-subject predictions on the simulated data (p < 0.001) but
the cell-by-cell (r = 0.05) and PV correlations (r = 0.17) were similar to the Carey data. Thus,
unlike the simple x-or or same-parameter scenarios, a shared representational geometry is
consistent with the correlations observed in the data.
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Figure 4: Representational geometry, but not simple rules such as exclusive-or and firing
rate correlations, result in cross-subject prediction while being consistent with the data. A:
Example L and R activity matrices (left column) and histogram of z-scores of cross-subject
prediction compared to the distribution of shuffle predictions (right column; z-scores lower than
zero indicate better-than-chance predictions) of four simulated data sets: (1) neurons have a fixed,
independent probability (0.5) of having a 1-D Gaussian place field on L and/or R, with the three
parameters of time, peak firing rate (FR) and width randomly and independently chosen for L and
R (ind-ind, top row), (2) neurons only have a field on either L or R but not both, and parameters of
the field are chosen randomly as in (1) (x-or, second row), (3) neurons have a fixed independent
probability of having L and R fields as in (1) but with the additional constraint that neurons with
both L and R fields must have the same three parameters (ind-same-all, third row) and (4) the
activity on L is simulated by assigning each neuron an independent probability of having a field
whose parameters are randomly chosen, then the activity on R is obtained by applying L-R
transform (hypertransform, HT) from real data (Carey) to the simulated L activity (sim. HT, last
row). As expected, in the ind-ind (independent) case, cross-subject prediction is not possible
because firing field properties are chosen independently; this can be seen from the histogram of
z-scores (prediction vs. shuffle) not being different from 0 (0.0015 +/- 0.03, SEM across unique
subject pairs, p = 0.92 for Wilcoxon signed rank test vs. 0). In contrast, X-or, ind-same-all and
sim. HT all show better-than-chance cross-subject predictions (-0.59 +/- 0.27 for x-or, -2.42 +/-
0.07 for ind-same-all, -3.98 +/- 0.07 for sim. HT, all p < 0.001 for Wilcoxon signed rank test vs. 0),
indicating that if there is a non-random L-R relationship in the underlying data, the hypertransform
procedure can discover and exploit it. B: Population vector (PV; column-wise) correlations
between ensemble activity at each time point and every other time point of the L and R activity
matrices. Only ind-same-all shows high off-diagonal correlations between L and R, resembling
the Gupta data set in which L and R arms were identical and firing activity on both arms is highly
correlated (compare with Figure 3C). In x-or, off-diagonal correlations are slightly negative. C:
Quantification of the mean PV correlation between L and R (i.e. the values along the diagonal of
the first quadrant in B). PV correlations between L and R in ind-ind are uncorrelated since no
prediction of ensemble activity of one time point on L can be made based on the same time of R.
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In contrast, L and R are positively correlated in ind-same-all (r = 0.41 +/- 0.01) since for every
time point in L where there is a field, the same ensemble activity appears at the same time point in
R with probability 0.5. X-or shows a negative correlation (r = -0.17 +/- 0.02) because for every time
point in L where there is a field, the same ensemble activity would deterministically be absent in R,
and vice versa. None of these simple rules are consistent with the PV correlation found in the
Carey data; however, sim. HT does show similar correlations as the data (r = 0.17 +/- 0.03 for
sim. HT and r = 0.15 +/- 0.10 for Carey). D: Cell-by-cell (row-wise) correlations of L and R show
that ind-same-all is more correlated than the data, whereas sim. HT yields similar correlations (r
= 0.05 +/- 0.02 for sim. HT and r = 0.02 +/- 0.12 for Carey). Thus, taken across panels C and D,
simple rules (x-or and ind-same-all) are inconsistent with the data, but the representational
geometry embodied in the sim. HT yields correlations that are similar to the data.

Discussion

We have shown that it is possible to predict across subjects, better than chance, how a given
experience will be encoded in the hippocampus. In particular, we predict how a “target” subject
will represent the right arm of a T-maze (R), given (1) how that same subject represents the left
arm (L) of the same maze, and (2) the relationship between L and R activity in a different
“source” subject. Control analyses based on within-subject prediction and a comparison of the
properties of various simulated data sets with the real data suggests that this cross-subject
prediction is unlikely to be the result of trivial relationships such as cells with symmetric firing
fields, or simple rules such as exclusive-or. Thus, our results imply that the hippocampal
encoding of different locations in space, commonly reported to be random within subject82_4’6’7,
in fact has a shared structure between subjects.

An innovative aspect of this work that contrasts with the vast majority of neural recording studies
in rodents is the use of cross-subject prediction. This approach is attractive because it provides
rigorous, quantifiable tests of how generalizable a given model of neural activity is, and because
it can provide insights into what is shared and what is unique between subjects. Using calcium
imaging data from hippocampal ensembles, Rubin et al. (2019)21 showed that the location of
one animal could be decoded using a decoder trained on data from another animal. Our
approach is similar in that it also uses cross-subject prediction, but addresses a different
question in that we seek to predict not the location of the animal, but the tuning curves -- that is,
the way different and potentially not-yet-experienced locations will be encoded.

Unlike in the rodent literature, a substantial number of human fMRI and ECoG studies has used
cross-subject prediction11_13’22’23. Particularly effective are procedures that do not only align
across subjects anatomically (e.g. by mapping each subject to a reference brain) but
functionally, i.e. by finding structure in how related experiences are represented, even though
across subjects the same experience may be represented very differently. Haxby et al. (2011)11
refer to such shared structure as “representational geometry”, an idea consistent with the results
reported here.
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So what is the shared similarity we have uncovered, and why does it matter? One possibility is

suggested by the relationship between grid cells and place cells: Dordek et al. (2016)24 showed
that applying nonnegative principal component analysis to ensemble activity of place cells yields

grid cell-like activity patterns. In addition, grid cell firing patterns were known to remain intact but

realign linearly (and differently for different subjects) during global remappin925. This suggests
that what our hypertransform procedure found was a common coding strategy that transforms

grid cell activity from one environment to the other, a possibility supported by recent work26:27
We provide a novel perspective on this issue by considering shared structure across subjects.

More generally, uncovering the ways in which hippocampal activity is non-random can ultimately

inform how processes such as generalization and structure learning are realized in neural

circuits.
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Figure Legends

Figure 1. Workflow for cross-subject prediction of place cell data using the
hypertransform. The objective of the main procedure in this study is to predict place cell
activity on the right arm (R) of a T-maze in a “target” subject, based on (a) place cell activity in
the left arm (L) in the target subject, and (b) L and R place cell activity in a different, “source”
subject. These input data are shown schematically in the leftmost column: both the source and
target rats have two matrices each that describe, for each recorded neuron, how its activity
varies during left and right trials. Note that although the number of time bins is the same across
subjects, the number of recorded cells may be different. Therefore, the first step of the analysis
workflow (step 1 in the panel above) is to apply principal component analysis (PCA), resulting in
neural activity trajectories for left and right trials (red and blue, respectively) in each subject’s
own PCA space. 3 principal components are shown here for display purposes, but in the main
analysis 10 PCs were used. Next, these neural activity trajectories are mapped into a common
space using a “hyperalignment” procedure that minimizes the Euclidean distance between the
trajectories across subjects (step 2, see Methods for details). In this common space, a
procrustes transformation1° (M12 in step 3) is derived that maps L to R trajectories for the
“source” subject (step 3), which can then be applied to the L trajectory of the “target” subject
(step 4) to obtain its predicted R trajectory in the common space (step 5). This predicted R
trajectory is then projected back to the “target” PCA space using the inverse of the matrix used
in step 2 (step 6) and expanded back into the target’s original neuron space (step 7). Finally, the
predicted R neural activity is compared to the actual R activity to yield an error measure (step
8).

Figure 2: Cross-subject prediction of R trials of a “target” subject based on how a
“source” subject encodes L and R trials outperforms prediction based on shuffled
source data. For each source-target pair, we computed a z-score of the actually observed error
between predicted and actual R trials (based on the hypertransform procedure, “HT”) compared
to a shuffled distribution in which the R rows of the source subject we randomly permuted. Thus,
lower z-scores indicate lower error and therefore better prediction than chance. Across all
source-target pairs, this z-scored error varied depending on the pair used (column A, top row),
but was lower than chance overall, as indicated by a shift in the z-score histogram relative to 0
(“HT” green bars in column A, middle row; —0.94 +/- 0.56, SEM across unique subject pairs, p <
0.001 for Wilcoxon signed rank test vs. 0). Cross-subject predictions based on the L-R
transform in common space (“hypertransform”) outperformed predictions based on the L-R
transform in PCA space (“PCA” blue bars; see Methods for details; HT < PCA: 66.15% of
subject pairs, p < 0.001 for binomial test). Next, we applied the same analysis to a different data
set (“Gupta”, bottom row, in which the L and R maze arms were more similar to each other than
in the “Carey” data), and found that although the hypertransform prediction was again
significantly better than chance (“HT”; —1.60 +/- 1.00, p < 0.001, bottom row), this prediction was
not different from PCA-only (HT < PCA, 47.89% of pairs, p = 0.67; the reason for this will be
revealed in Figure 3 and the main text). Column B and C use the same layout as column A, but
using different metrics to describe prediction accuracy. B uses the raw error (between predicted
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and actual R neural activity; lower error/negative indicate better prediction) compared to the
mean of the shuffle distribution, and C uses the proportion of the shuffle distribution with smaller
error than the actually observed error (lower proportions indicate better prediction). For the raw
error measure, the HT prediction was better than chance and better than the PCA prediction in
the Carey data. (B: —195.23 +/- 88.45, p < 0.001 for HT vs. 0; HT < PCA: 66.15%, p < 0.001 for
HT vs. PCA). In the Gupta data, HT prediction was again better than chance (B: —277.87 +/-
117.14, p < 0.001 for HT) but the HT prediction was not better than PCA (B: HT < PCA: 48.59%
of pairs, p = 0.80).

Figure 3: Cross-subject prediction outperforms within-subject prediction only in the
absence of cell-by-cell correlations. A: Comparison of cross-subject prediction error
(“hypertransform”, green bars; HT) with within-subject prediction error (“identity transform”; blue
bars, ID) for two different data sets. In the “Carey” data (left panel) the left and right arms of the
maze had different texture and color patterns; in the “Gupta” data (right panel) the two maze
arms were identical. For the Carey data, cross-subject prediction was significantly better than
within-subject prediction (HT < ID: 96.92% of subject pairs, p < 0.001 for binomial test) whereas
for the Gupta data, this effect was not observed. B: Cell-by-cell correlation of firing rates
between L and R arms (i.e. row-wise correlations of the L and R matrices in Figure S1),
averaged across all cells and subjects, for Carey and Gupta data. Cell activity was significantly
more correlated in the Gupta data compared to Carey data (Gupta: r = 0.35 +/- 0.27, SEM
across subjects, Carey: r = 0.02 +/- 0.12, Wilcoxon ranksum test, p < 0.001). Also, cell activity
in Carey data was not significantly different from 0 (p = 0.44 for Wilcoxon signed rank test vs. 0).
C: Population vector (PV) correlations between ensemble activity at each time point and every
other time point, i.e column-wise correlations of the L and R activity matrices, averaged across
sessions. Both Carey and Gupta data sets show high correlations around the diagonal,
indicating an overall autocorrelation in time; however, the Gupta data additionally shows high
off-diagonal correlations between L and R which are barely visible in the Carey data. D:
Quantification of the mean PV correlation between L and R (i.e. the values along the diagonal of
the first quadrant in C). For Gupta data, this correlation is remarkably high (r = 0.80 +/- 0.16)
whereas for Carey data, it is significantly lower (r = 0.15 +/- 0.10, p < 0.001 for Wilcoxon rank
sum test) and consistent with previous reports of global remappin92’4. The above results explain
why the HT is not needed for Gupta data to achieve better than chance predictions (see bottom
row in Figure 2): L and R activity is sufficiently similar such that the L trajectory alone in either
PCA or common space can predict R activity.

Figure 4: Representational geometry, but not simple rules such as exclusive-or and firing
rate correlations, result in cross-subject prediction while being consistent with the data.
A: Example L and R activity matrices (left column) and histogram of z-scores of cross-subject
prediction compared to the distribution of shuffle predictions (right column; z-scores lower than
zero indicate better-than-chance predictions) of four simulated data sets: (1) neurons have a
fixed, independent probability (0.5) of having a 1-D Gaussian place field on L and/or R, with the
three parameters of time, peak firing rate (FR) and width randomly and independently chosen
for L and R (ind-ind, top row), (2) neurons only have a field on either L or R but not both, and
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parameters of the field are chosen randomly as in (1) (x-or, second row), (3) neurons have a
fixed independent probability of having L and R fields as in (1) but with the additional constraint
that neurons with both L and R fields must have the same three parameters (ind-same-all, third
row) and (4) the activity on L is simulated by assigning each neuron an independent probability
of having a field whose parameters are randomly chosen, then the activity on R is obtained by
applying L-R transform (hypertransform, HT) from real data (Carey) to the simulated L activity
(sim. HT, last row). As expected, in the ind-ind (independent) case, cross-subject prediction is
not possible because firing field properties are chosen independently; this can be seen from the
histogram of z-scores (prediction vs. shuffle) not being different from 0 (0.0015 +/- 0.03, SEM
across unique subject pairs, p = 0.92 for Wilcoxon signed rank test vs. 0). In contrast, X-or,
ind-same-all and sim. HT all show better-than-chance cross-subject predictions (-0.59 +/- 0.27
for x-or, -2.42 +/- 0.07 for ind-same-all, -3.98 +/- 0.07 for sim. HT, all p < 0.001 for Wilcoxon
signed rank test vs. 0), indicating that if there is a non-random L-R relationship in the underlying
data, the hypertransform procedure can discover and exploit it. B: Population vector (PV;
column-wise) correlations between ensemble activity at each time point and every other time
point of the L and R activity matrices. Only ind-same-all shows high off-diagonal correlations
between L and R, resembling the Gupta data set in which L and R arms were identical and firing
activity on both arms is highly correlated (compare with Figure 3C). In x-or, off-diagonal
correlations are slightly negative. C: Quantification of the mean PV correlation between L and R
(i.e. the values along the diagonal of the first quadrant in B). PV correlations between L and R in
ind-ind are uncorrelated since no prediction of ensemble activity of one time point on L can be
made based on the same time of R. In contrast, L and R are positively correlated in
ind-same-all (r = 0.41 +/- 0.01) since for every time point in L where there is a field, the same
ensemble activity appears at the same time point in R with probability 0.5. X-or shows a
negative correlation (r = -0.17 +/- 0.02) because for every time point in L where there is a field,
the same ensemble activity would deterministically be absent in R, and vice versa. None of
these simple rules are consistent with the PV correlation found in the Carey data; however, sim.
HT does show similar correlations as the data (r = 0.17 +/- 0.03 for sim. HT and r = 0.15 +/-
0.10 for Carey). D: Cell-by-cell (row-wise) correlations of L and R show that ind-same-all is
more correlated than the data, whereas sim. HT yields similar correlations (r = 0.05 +/- 0.02 for
sim. HT and r = 0.02 +/- 0.12 for Carey). Thus, taken across panels C and D, simple rules (x-or
and ind-same-all) are inconsistent with the data, but the representational geometry embodied
in the sim. HT yields correlations that are similar to the data.
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STAR Methods
Raw data

We used two different data sets containing ensemble recordings of hippocampal CA1 neurons
in rats performing T-maze tasks.

The first data set (“Carey”) is as described in van der Meer et al. (2017)16 and Carey et al.
(2019)16’17. Briefly, male rats (n = 4) performed daily sessions on a T-maze where they had free
choice between left and right arms. Rats were alternately food- and water-restricted across
days; the left arm resulted in food reward (five 45mg pellets), the right arm resulted in water
reward (~0.2 ml sucrose solution). Rats ran 15-20 discrete trials per recording session, with no
less than 5 ftrials for the least preferred choice (left or right). Only sessions with at least 40
simultaneously recorded neurons were included, this left 19 of 24 total sessions for analysis
(range: 50 - 178 neurons per session).

The second data set (“Gupta”) is as described in Gupta et al. (2010)18 and Gupta et al.
(2012)18’19. Briefly, male rats (n = 4) performed daily sessions on a continuous Multiple-T maze
with free choice between left and right arms. Food pellet reward (four 45 mg pellets) was

available either by choosing left only, right only, or alternating between left and right; which

reward schedule was in effect was determined pseudorandomly at the start of daily recording

sessions. In addition, the reward schedule switched approximately halfway throughout the

session. Only sessions with at least 40 simultaneously recorded neurons were included, this left

14 of 42 total sessions for analysis (range: 41-101 neurons per session).

Both data sets consist of both left (L) and right (R) trials; the analyses in this study are
concerned with the relationship between how L and R trials are encoded in hippocampal
ensemble activity. To avoid the possibility that neural activity on a common trajectory shared
between L and R is the main predictor of L and R relationship, data from the central stem of the
maze was excluded.

Data preprocessing

Preparation of input data. Both data sets were preprocessed to obtain two types of neural
activity matrices that form the starting point for all analyses (Figure S1). The first and main data
type is the Q-matrix, which describes binned firing rate over time for simultaneously recorded
neurons [nNeurons x nTimeBins] and is used in all main analyses. The second data type is the
TC-matrix (place turning curves) matrices of dimension [nNeurons x nSpaceBins] for Figure S2
and S3).

Since both data sets contain different numbers of L and R trials within a session, trials were first
subsampled so that equal number of L and R trials were used. Next, because trials differed in
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length because of variations in running speed, all trials were truncated to the last 2.4 seconds
(the median time between passing the choice point and reaching the reward site) of all included
sessions.

To obtain Q-matrices for L and R trials, binned firing rate matrices (time bin width: 50 ms) were
created for individual trials, smoothed with a window size = 1 s, 0 = 50 ms Gaussian kernel, and
then averaged across within session.

To obtain TC-matrices for L and R ftrials, spike firing data with only running speed > 5 cm/s rata
were averaged for each place bin (~3 cm per bin) across within session, then smoothed with a
window size = 11 bins, o = 1 bin Gaussian kernel. Only data from the last 41 place bins were
included so that only after-choice-point data was used.

Criterion for exclusion of interneurons (some analyses only). Neurons with mean firing rate > 10
Hz across the entire recording session were classified as putative interneurons. These were
excluded for the correlation analysis in Figure 3, because otherwise variations in firing rates
between putative interneurons and projection neurons would dominate the population vector
correlations (described below). We verify that inclusion of interneurons was not required for the
main results in Figure S3.

Normalization (some analyses only). Normalization of the input data was conducted by dividing
the 12-norm of each row (neuron) or z-scoring each row of data matrices, independently for the L
and R parts of the input data matrices. Although it may seem intuitive to normalize each entire
row of the input data (i.e. L and R data together), this actually introduces an artificial
anticorrelation between the L and R parts of the matrix, such that even on data where no
relationship exists between L and R, a relationship is introduced by normalization. Thus, we
avoided normalization across L and R when testing cross-subject prediction. Normalization was
only used on Q-matrices and TC-matrices with interneurons removed in Figure S3.

Hypertransform analysis procedure

Overview. The overall objective of the hypertransform procedure is to predict R data in a “target”
subject based on (1) the target rat L data, and (2) the L and R data of a different “source” rat
(see Figure 1 for a complete description and schematic). Each step of the procedure is
described in detail below.

Each recording session was used as source and paired with all sessions from all other subjects
to form cross-subject source-target pairs (260 unique source-target session pairs for Carey data
and 142 pairs for Gupta data).

PCA. After preprocessing the data as described above, principal component analysis (PCA; svd
function in MATLAB R2018b) was applied to concatenated L and R neural data matrices to
reduce to the same dimension because (1) there were unequal numbers of neurons recorded
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across sessions, and (2) we want to keep the principal components that capture the most
information (variance). Ten principal components (PCs), accounting for approximately 95% of
the variance (Figure S2d) were then used to project L and R matrices into neural activity
trajectories in each subject’'s own PCA space.

Hyperalignment. Hyperalignment is procedure that applies a Procrustes transformation: the
linear transformation that minimizes the Euclidean distance between input trajectories based on
rotation and translation (and scaling, in some implementations; we did not use scaling in this
study). This procedure is commonly used to align fMRI activity trajectories in subject-specific
spaces into a common representational space (Haxby et al. 2011)11. In similar fashion, we
aligned L and R neural trajectories in the PCA spaces from a source rat and a target rat into a
common space by using the hyperalign function in hypen‘ools74 (matlab version). We refer to the
transformation from the PCA space of single subject S into the common space as H;.

Hypertransform. In this common space, a linear (Procrustes) transformation was derived
between L and R neural trajectories of the source rat. This transformation (hypertransform, HT)
was then applied to the target rat’s L trajectory to yield a predicted R trajectory. Note that this
transformation is not only subject-specific but subject-target-pair-specific since the common
space is unique for each pair used.

Projection back into neural space. Next, the inverse of the subject-specific hyperalignment
matrix (projecting from PCA to common space) was applied to project the predicted R trajectory
back to the target rat's PCA space. Principal components obtained earlier were used to
reconstruct the predicted R trajectory in the PCA space into the predicted R data matrix (Q or
TC) for the target rat.

Shuffles and associated metrics. The prediction error for a specific source-target pair is
calculated by summing squared errors between predicted and actual R data matrices of the
target rat. This error is compared against a baseline control by permuting (shuffling) the rows of
R data matrix of the source rat (but keeping the L matrix intact; row shuffles) and repeating the
hypertransform procedure. The rationale for this is that if there is no shared relationship
between L and R across subjects, then shuffled predicted errors should not be different from the
actual observed predicted error. 1000 shuffles, hence 1000 shuffled predicted error were
conducted for a source-target pair, and three metrics were used to compare the actual predicted
error against shuffled predicted error: (1) z-scores of actual observed error compared to the
distribution of shuffle predictions (2) raw prediction error compared to the mean of the shuffle
distribution (middle), and (3) proportion of the shuffle distribution whose error was smaller than
actual observed error. For all metrics, lower numbers indicate a non-random relationship
between L and R share across subjects, i.e. a better-than-chance cross-subject prediction.

Identity transform. To test if a better-than-chance cross-subject prediction is simply due to the
similarity of L and R neural activity within the target rat, a within-subject prediction is obtained by
using a duplicate of target rat’s L trajectory in the common space as the predicted R trajectory,
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i.e. making the L-R transformation equal to the identity transformation. This predicted trajectory
was then used to reconstruct the predicted target rat's R data matrix as in the hypertransform
procedure.

Variation: withheld data. To exclude the possibility that including data to-be-predicted is the
reason why better-than-chance predictions can be achieved, the R data matrix of target rat was
withheld, i.e. padded with zeros before the rest of the hypertransform procedure was conducted.

Variation: PCA only. To test whether a relationship between L and R already exists in
subject-specific PCA spaces, we modified the hypertransform procedure as follows: instead of
aligning neural activity trajectories in the common space through hyperalignment, a L to R linear
(Procrustes) transformation was derived from the source rat’'s PCA space and directly applied to
the L trajectory in target rat's PCA space to obtain the predicted R trajectory. This predicted
trajectory was then used to reconstruct the predicted target rat's R data matrix as in
hypertransform procedure.

Simulations

As a first step towards understanding the possible explanation for cross-subject prediction,
simulated neural activity matrices were generated using 1-D Gaussians with three parameters:
time, peak firing rate (FR) and width. Several scenarios were created to test the possibility that
different potential place cell properties may account for the observed cross-subject prediction:

- Ind-ind: Neurons have a fixed, independent probability (0.5) of having a 1-D Gaussian
place field on L and/or R, with the three parameters of time, peak firing rate (FR) and
width randomly and independently chosen for L and R.

- X-or: Neurons only have a field on either L or R but not both, and parameters of the field
are chosen randomly as ind-ind

- Ind-same-all: Neurons have a fixed independent probability of having L and R fields as
in ind-ind but with the additional constraint that neurons with both L and R fields must
have the same three parameters.

- Sim. HT: The activity on L is simulated by assigning each neuron an independent
probability of having a field whose parameters are randomly chosen, then the activity on
R is obtained by applying L-R transform (hypertransform, HT) from real data (Carey) to
the simulated L activity.

- Ind-same-time: Similar to ind-same-all, neurons have a fixed independent probability of
having L and R fields as in ind-ind, but if when a cell has fields in both, one of the three
parameters: time is the for L and R, and FR and width are independently chosen.

- Ind-same-FR: Similar to ind-same-all, neurons have a fixed independent probability of
having L and R fields as in ind-ind, but if when a cell has fields in both, one of the three
parameters: FR is the for L and R, and time and width are independently chosen.

- Ind-same-width: Similar to ind-same-all, neurons have a fixed independent probability
of having L and R fields as in ind-ind, but if when a cell has fields in both, one of the
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three parameters: width is the for L and R, and time and width are independently
chosen.

For each simulation scenario, we generated a matching number of sessions (19) as in Carey
data and a matching number of neurons within each session as a dataset. To avoid the
possibility that one particular randomly generated dataset biases the results, 100 datasets were
created and all statistics were averaged across datasets to match the real data.

For each of the 100 datasets in sim. HT, a randomly chosen session from the Carey data was
used to hyperalign with simulated L activity (R activity was padded with zeros first). The
hypertransform obtained from the real session was then applied to the simulated L trajectory in
the common space to obtain a simulated R trajectory. This simulated trajectory was then used to
reconstruct the simulated R activity as in hypertransform procedure.

Correlation analysis of neural and simulated data.

Cell-by-cell (row-wise) correlations. For each cell (a row in the neural data matrix), a correlation
coefficient between L and R was computed (see schematic in Figure S1). Whitening noise
(matrices of same size as L and R, in which each element is a number sampled from Uniform(0,
10'5)) was added so that a coefficient can be computed when there is no activity on either L and
R trials, which would otherwise result in zero variance.

Population vector (PV; column-wise) correlations. L and R data matrices were (horizontally)
concatenated, and a correlation coefficient was computed between each time point (a column)
and all other columns of the L and R concatenated matrix (see schematic in Figure S1). Higher
off-diagonal values (the values along the diagonal of the first quadrant) of this concatenated
matrix indicate higher correlated ensemble neural activity between L and R.

All correlation coefficients were computed using the MATLAB corrcoef function.
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Figure S1: Data preprocessing and analysis schematics. Left: Data preprocessing. Neural ensemble
activity for left (L) and right trials (R) in each recording session was shaped into two types of input data
matrices: the Q-matrix, which describes binned firing rate over time for simultaneously recorded neurons
(dimension [nNeurons x nTimeBins]), used in the main analyses, and the TC-matrix (spatial tuning
curves, dimension [nNeurons x nSpaceBins]). Trials were subsampled to obtain an equal number of L
and R trials were used, and truncated to the last 2.4 seconds (the median time taken from the choice
point to the end of a trial). Times when the animal was deemed to be stationary were excluded from
analysis. Middle: lllustration of the shuffling procedure used in the main analysis (Figure 2). To obtain a
distribution of chance cross-subject predictions, the analysis steps illustrated in Figure 1 were applied,
except that for the “source” subject, the relationship between L and R activity was disrupted by randomly
permuting the rows of the R matrix. Right: lllustration of the correlation analyses used in Figures 3-4.
Cell-by-cell correlations are obtained by row-wise correlating L and R activity for each cell, and then
averaging across all cells. Population vector correlations are obtained by column-wise correlating activity
at each time or location with activity at every other time or location. This yields a correlation matrix for
each session, which are then averaged across sessions.
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Figure S2: Better-than-chance cross-subject predictions can be observed even when the
to-be-predicted target data was withheld, and spatial turning curves were used. A: Histogram of
three cross-subject prediction metrics: z-scores of actual observed error compared to the distribution of
shuffle predictions (left column), raw prediction error compared to the mean of the shuffle distribution
(middle), proportion of the shuffle distribution whose error was smaller than actual observed error (right).
For all metrics, lower numbers indicate better cross-subject predictions. The better than chance
cross-subject predictions can be observed even when the R activity of the target subject, which is the
activity to be predicted, is withheld from the hyperalignment procedure (-1.33 +/- 0.76, SEM across
unique subject pairs, p < 0.001 for Wilcoxon signed rank test vs. 0). B: Histogram of three cross-subject
prediction metrics as in A for neural activity matrices calculated as a function of locations (turning curves;
TC) instead of time (See Figure S1 and Methods for details) were used. The cross-subject predictions are
significantly better compared to shuffles (-1.07 +/- 0.64, p < 0.001 for HT vs. 0) and significantly better
than PCA-only (HT < PCA: 69.23% of subject pairs, p < 0.001 for binomial test), suggesting time and
location yield similar results in our data (see Figure 2). C: Z-scores of cross-subject prediction errors
(normalized within each session) as a function of time, averaged across sessions. Errors varied across
time but did not highlight particular time points, indicating that cross-subject prediction is not
disproportionately due to certain time points such as the end of the trial. D: Explained variance as a
function of the number of principal components (PCs). In our hypertransform procedure, 10 PCs were
used, which accounts for ~95% of the variance of data.
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Figure S3: Cross-subject prediction is preserved when removing putative interneurons and
normalizing L and R independently by I2-norm, but abolished when independently z-scoring L and
R firing rates. A: Example L and R activity matrices with interneurons (mean firing rate > 10 Hz) removed
and corresponding histogram of z-scores of cross-subject prediction compared to the distribution of
shuffled predictions (z-scores lower than zero indicate better-than-chance prediction) for both temporal
(Q) and spatial (TC) tuning curves. Both Q and TC show significantly better-than-chance cross-subject
predictions (Q: -0.14 +/- 0.42, SEM across unique subject pairs, p < 0.01 for Wilcoxon signed rank test vs.
0; TC: -0.40 +/- 0.39, p < 0.001 for HT vs. 0), indicating high-firing rate interneurons are not required for
cross-subject prediction. B: Same layout as A, but L and R activity matrices were obtained by removing
interneurons and dividing separately each L and R row by its 12-norm (vector length). Both Q and TC
again show significantly better-than-chance prediction (Q: mean =-0.12 +/- 0.31, p < 0.05 for HT vs. 0;
TC: -0.26 +/- 0.31, p < 0.001 for HT vs. 0). C: Same layout as A, but L and R activity matrices were
obtained by removing interneurons and z-scoring separately each L and R row. Unlike the 12-norm case,
normalization by z-scoring does not show better-than-chance prediction. Note that for both I2-norm and
z-scoring cases, independently normalizing L and R activity (L separately from R), rather than normalizing
L and R together (normalizing the entire row), avoids introducing artifactual anti-correlations between L
and R which would be exploited by the cross-subject prediction algorithm even for independent data.
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Figure S4: Simulations show that either the same place field firing time, peak firing rate, or place
field width alone cannot account for cross-subject prediction in the Carey data. A: Example L and
R activity matrices (left column) and histogram of z-scores of cross-subject prediction compared to the
distribution of shuffle predictions (z-scores lower than zero indicate better-than-chance predictions; right
column) of three simulated data sets. All three data sets are generated by assigning each neuron a fixed,
independent probability (0.5) of having a field on L and/or R, but when a cell has fields in both, one of the
three parameters of its 1-D Gaussian place field (ind-same-time, ind-same-FR (firing rate) or
ind-same-width) is the same for L and R; the other two are randomly and independently chosen.
Ind-same-time shows better-than-chance cross-subject predictions (-2.14 +/- 0.08, SEM across unique
subject pairs, p < 0.001 for Wilcoxon signed rank test vs. zero) but ind-same-FR and ind-same-width do
not, indicating cross-subject predictions cannot be better than chance when time points of fields are
unrelated between L and R. B: Population vector (PV; column-wise) correlations between ensemble
activity at each time point and every other time point of the L and R activity matrices. C: Quantification of
the mean PV correlation between L and R (i.e. the values along the diagonal of the first quadrant in B).
Ind-same-time shows highly positive correlation (r = 0.35 +/- 0.01) since for every location of L where
there are fields, there would some chance that some (although random) amount of ensemble activity
would appear on the same location of R. In contrast, L and R in ind-same-FR and ind-same-width are
nearly uncorrelated since no prediction of ensemble activity of one location on L can be made based on
the same location of R (see also ind-ind in Figure 3). The ind-same-time case is potentially consistent
with the Carey data as measured by PV correlations. D: Cell-by-cell (row-wise) correlations of L and R.
Here, the ind-same-time correlations are higher than in the Carey data (r = 0.24 +/- 0.02 vs. r = 0.02 +/-
0.12 for Carey), indicating that this scenario does not accurately capture the source of cross-subject
prediction in the data.
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