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Summary  
 
How  a  memory  system  encodes  related  experiences  has  consequences  for  what  operations  the              
system  supports.  For  instance,  independent  coding  enables  retention  of  potentially  important            
idiosyncratic  details  by  reducing  interference,  but  makes  it  difficult  to  generalize  across             
experiences.  Strikingly,  the  rodent  hippocampus  constructs  statistically  independent         
representations  across  environments  (“global  remapping”)  and  assigns  individual  neuron  firing           
fields  to  locations  within  an  environment  in  an  apparently  random  fashion,  processes  thought  to               
contribute  to  the  role  of  the  hippocampus  in  episodic  memory.  This  random  mapping  implies  that                
it  should  be  challenging  to  predict  hippocampal  encoding  of  a  given  experience  in  a  one  subject                 
based  on  the  encoding  of  that  same  experience  in  another  subject.  Contrary  to  this  prediction,                
we  find  that  by  constructing  a  common  representational  space  across  rats  (“hyperalignment”),             
we  can  consistently  predict  data  of  “right”  trials  (R)  on  a  T-maze  in  a  target  rat  based  on  1)  the                     
“left”  trials  (L)  of  the  target  rat,  and  2)  the  relationship  between  L  and  R  trials  from  a  different                    
source  rat.  These  cross-subject  predictions  outperformed  a  number  of  control  mappings,  such             
as  those  based  on  permuted  data  that  broke  the  relationship  between  L  and  R  activity  for                 
individual  neurons,  and  those  based  solely  on  within-subject  prediction.  This  work  constitutes             
proof-of-principle  for  successful  cross-subject  prediction  of  ensemble  activity  patterns  in  the            
hippocampus.  This  novel  approach  provides  new  insights  in  understanding  how  different            
experiences  are  structured,  and  suggests  further  work  identifying  what  aspects  of  experience             
encoding   are   shared   vs.   unique   to   an   individual.  
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Introduction  
 
A  fundamental  challenge  faced  by  any  memory  system  is  how  related  experiences  should  be               
organized  –  storing  the  details  of  each  individual  experience  preserves  potentially  valuable             
details,  but  is  storage-inefficient  and  hampers  generalization,  whereas  treating  all  experiences            
as  the  same  risks  ignoring  potentially  important  differences 1 .  For  instance,  learning  the  common              
spatial  features  of  different  floors  in  the  same  building  makes  it  possible  to  predict  the  layout  of                  
a  not-yet-visited  floor  (“similar  to  the  others”);  at  the  same  time,  each  floor  also  has  unique                 
features,  such  as  the  location  of  a  specific  colleague’s  office,  that  do  not  generalize.  Thus,                
memory  systems  need  to  balance  pattern-completion  (treating  a  new  observation  the  same  as  a               
previous   one)   and   pattern-separation   (keeping   similar   observations   as   distinct).  
 
The  rodent  hippocampus  is  a  model  system  for  studying  the  neural  basis  of  these  processes.                
Strikingly,  the  hippocampus  can  construct  statistically  independent  representations  across          
environments  (“global  remapping”) 2–5  and  assigns  individual  neuron  firing  fields  to  locations            
within  an  environment  in  an  apparently  random  fashion 6,7 .  Similarly,  “engram”  studies  suggest             
that  the  population  of  neurons  allocated  to  a  given  experience  is  determined  by  a  competition                
based  on  randomly  fluctuating  excitability  levels  among  eligible  neurons 8 .  Although  there  are             
also  examples  of  hippocampal  cells  whose  firing  properties  are  tied  to  a  particular  stimulus               
feature  (e.g.  reward 9 )  and  therefore  transfer  across  different  environments,  the  received  wisdom             
is  that  those  cells  that  do  change  their  firing  fields  between  environments  or  across  different                
regions   of   the   same   environment,   do   so   randomly 10 .  
 
Remapping  studies  to  date  have  been  limited  to  within-subject  comparisons,  but  it  is  possible  in                
principle  that  what  appears  random  within  a  single  subject  in  fact  obeys  a  common  rule  that  is                  
shared  across  subjects.  Consider  how  two  related  experiences  such  as  running  the  left  (L)  and                
right  arms  (R)  of  a  T-maze  may  be  encoded  in  a  population  of  hippocampal  neurons.  The                 
correlation  between  L  and  R  activity  on  a  cell-by-cell  basis  may  be  zero,  but  still  obey  an                  
underlying  structure.  For  instance,  cells  that  tend  to  fire  at  the  start  of  L  may  be  more  likely  to                    
fire  at  the  end  of  R.  If  such  a  rule  were  to  exist,  it  should  be  possible  to  predict,  across  subjects,                      
what  R  activity  of  a  target  subject  looks  like,  based  on  (1)  that  subject’s  L  activity  and  (2)  the                    
relationship  between  L  and  R  activity  found  in  a  different  “source”  subject.  Although  there  is  no                 
way  to  predict  how  two  different  subjects  encodes  a  given  experience  L  (especially  when               
sampling  randomly  from  different  numbers  of  neurons  that  are  not  uniquely  identifiable  across              
subjects  as  in  e.g. C.  elegans ),  the relationship  between  how  two  different  experiences  L  and  R                 
are   represented   may   be   conserved   across   subjects.   
 
Such  a representational  geometry  has  been  demonstrated  in  a  number  of  brain  regions  in               
human  cognitive  neuroscience  studies  that  use  fMRI 11–13 ,  but  cross-subject  prediction  has  not             
yet  been  applied  to  ensemble  recording  data  in  the  rodent  hippocampus.  If  (re)mapping  in  the                
rodent  hippocampus  were  to  show  a  shared  representational  geometry,  this  would  not  only              
challenge  a  long-held  dogma  about  the  randomness  of  place  cell  allocation,  but  potentially  also               
open  up  novel  lines  of  research  that  can  elucidate  the  algorithmic  basis  of  memory  assignment                
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and  generalization  in  a  wide  variety  of  settings,  while  creating  a  bridge  between  rodent  neural                
data   and   human   fMRI   work.  
 
Results  
 
The  overall  goal  of  this  study  is  to  determine  if  we  can  predict  how  hippocampal  place  cells  in  a                    
“target”  subject  encode  a  particular  experience  based  on  two  ingredients:  (a)  knowledge  of  how               
the  target  subject  encodes  a  distinct  but  related  experience,  and  (b)  how  a  different,  “source”                
subject   encodes   the   same   two   experiences.   
 
We  operationalize  this  idea  using  data  from  T-maze  tasks,  in  which  rats  run  along  the  left  and                  
right  arms  of  the  maze  to  form  the  two  related  experiences  under  study.  Specifically,  we  can                 
describe  hippocampal  activity  on  this  task  as  two  subject-specific  matrices  with  time  as  the               
horizontal  dimension,  and  neuron  as  the  vertical  dimension  (Figure  1,  leftmost  column);  one              
matrix  describing  the  average  activity  for  left  trials  (L),  and  another  matrix  for  right  trials  (R;  see                  
Figure  S1  for  a  description  of  how  this  input  data  is  obtained).  We  aim  to  predict  the  R  matrix  in                     
the  target  subject,  based  on  (a)  the  target’s  L  matrix  and  (b)  the  source’s  L  and  R  matrices.  This                    
neural  activity  can  be  visualized  as  trajectories  for  L  and  R  trials  in  a  dimensionality-reduced                
principal   component   (PCA)   space   (Step   1   in   Figure   1).  
 
Our  method  for  performing  cross-subject  prediction  builds  on  a  procedure  from  human  cognitive              
neuroscience,  “hyperalignment” 11,14 ,  that  projects  each  subject’s  idiosyncratic  neural  activity  into           
a  common  space  that  minimizes  the  Euclidean  distance  between  neural  activity  trajectories.             
Working  in  this  common  space,  we  can  identify  the  relationship  between  how  the  source  subject                
encodes  L  and  R  trials,  and  express  it  as  a  transformation  matrix  (“hypertransform”)  and  apply  it                 
to  the  target  subject’s  L  trials  to  obtain  a  predicted  R  trajectory .  This  predicted  trajectory  is             R

︿
     

then  projected  back  to  the  target-specific  neural  space  to  obtain  a  prediction  which  is  compared                
to   the   actual   data   (Figure   1).  
 

 
Figure  1 : Workflow  for  cross-subject  prediction  of  place  cell  data  using  the  hypertransform .              
The  objective  of  the  main  procedure  in  this  study  is  to  predict  place  cell  activity  on  the  right  arm  (R)  of                      
a  T-maze  in  a  “target”  subject,  based  on  (a)  place  cell  activity  in  the  left  arm  (L)  in  the  target  subject,                      
and  (b)  L  and  R  place  cell  activity  in  a  different,  “source”  subject.  These  input  data  are  shown                   
schematically  in  the  leftmost  column:  both  the  source  and  target  rats  have  two  matrices  each  that                 
describe,  for  each  recorded  neuron,  how  its  activity  varies  during  left  and  right  trials.  Note  that                 
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although  the  number  of  time  bins  is  the  same  across  subjects,  the  number  of  recorded  cells  may  be                   
different.  Therefore,  the  first  step  of  the  analysis  workflow  (step  1  in  the  panel  above)  is  to  apply                   
principal  component  analysis  (PCA),  resulting  in  neural  activity  trajectories  for  left  and  right  trials  (red                
and  blue,  respectively)  in  each  subject’s  own  PCA  space.  3  principal  components  are  shown  here  for                 
display  purposes,  but  in  the  main  analysis  10  PCs  were  used.  Next,  these  neural  activity  trajectories                 
are  mapped  into  a  common  space  using  a  “hyperalignment”  procedure  that  minimizes  the  Euclidean               
distance  between  the  trajectories  across  subjects  (step  2,  see  Methods  for  details).  In  this  common                
space,  a  procrustes  transformation 15  (M 12  in  step  3)  is  derived  that  maps  L  to  R  trajectories  for  the                   
“source”  subject  (step  3),  which  can  then  be  applied  to  the  L  trajectory  of  the  “target”  subject  (step  4)                    
to  obtain  its  predicted  R  trajectory  in  the  common  space  (step  5).  This  predicted  R  trajectory  is  then                   
projected  back  to  the  “target”  PCA  space  using  the  inverse  of  the  matrix  used  in  step  2  (step  6)  and                     
expanded  back  into  the  target’s  original  neuron  space  (step  7).  Finally,  the  predicted  R  neural  activity                 
is   compared   to   the   actual   R   activity   to   yield   an   error   measure   (step   8).  

 
If  a  given  subject  encodes  L  and  R  trials  independently,  then  it  should  not  be  possible  to  use                   
one  subject’s  neural  activity  for  L  and  R  to  predict  anything  about  how  another  subject  encodes                 
R  trials  based  on  its  L  trials.  On  the  other  hand,  if  there  is  some  shared  structure  between                   
subjects  in  how  L  and  R  trials  are  encoded,  then  cross-subject  prediction  should  perform  better                
than  chance.  Note  that  is  possible  for  L  and  R  activity  in  a  given  subject  to  appear  completely                   
unrelated  –  that  is,  there  is  no  correlation  between  which  cells  fire  for  L  and  R  trials  –  but  have                     
the   relationship   between   L   and   R   be   completely   deterministic   across   subjects.  
 
To  test  if  there  is  a  shared  structure  across  subjects,  we  compare  the  prediction  of  R  trials  as                   
described  above  with  various  baseline  (control)  predictions.  Specifically,  for  each  source-target            
pair,  we  obtain  a  distribution  of  chance  predictions  based  on  breaking  the  relationship  between               
L  and  R  trials  in  the  source  subject  by  randomly  permuting  the  rows  of  the  R  matrix  (see  Figure                    
S1  for  a  schematic  of  this  procedure).  Based  on  this  chance  distribution,  we  define  three                
metrics:  (1)  a  z-score  of  the  actually  observed  error  compared  to  chance,  (2)  the  difference                
between  the  actually  observed  prediction  error  and  the  mean  of  the  chance  prediction  error,  and                
(3)   the   proportion   of   chance   prediction   errors   that   were   lower   than   the   observed   error.  
 
We  used  two  different  data  sets:  the  first,  “Carey”  data  set 16,17  is  from  a  T-maze  where  L  and  R                    
arms  were  deliberately  equipped  with  distinct  surface  colors  and  textures.  In  contrast,  the              
second,  “Gupta”  data  set 18,19  used  a  T-maze  whose  arms  had  similar  surfaces.  Starting  with  the                
Carey  data,  we  found  that  the  hypertransform  (HT)  prediction  of  R  trials  in  the  target  subject                 
was  better  than  chance  overall  for  all  metrics  used  (Figure  2,  top  and  middle  rows;  green  “HT”                  
bars;  z-score:  p  <  0.001  for Wilcoxon  signed  rank  test  vs.  0;  raw  error:  p  <  0.001).  Cross-subject                   
prediction  of  R  activity  was  better  than  chance  even  when  the  R  data  was  withheld  entirely  from                  
the  hyperalignment  step  (Figure  S2,  top  row;  p  <  0.001  for  HT  vs.  0),  and  when  L  and  R  activity                     
was  expressed  as  tuning  curves  in  space  rather  than  in  time  (Figure  S2,  middle  row;  p  <  0.001                   
for  HT  vs.  0).  These  results  demonstrate  that  the  relationship  between  L  and  R  trials  is  not                  
random   across   subjects.   
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To  test  if  the  hyperalignment  step  of  the  prediction  procedure  is  important,  rather  than  some                
other  part  of  the  workflow,  we  repeated  the  analysis  with  the  hyperalignment  step  left  out  (i.e.                 
we  applied  the  L-R  transform  obtained  from  the  source  subject’s  PCA  space  to  the  target                
subject’s  PCA  space,  “PCA-only”;  see Methods  for  details).  The  HT-based  prediction            
consistently  outperformed  the  PCA-only  prediction  for  the  Carey  data  (blue  “PCA”  bars  in  Figure               
2,  middle  row;  p  <  0.001,  binomial  test).  For  the  Gupta  data,  the  HT  prediction  similarly  was                  
consistently  better  than  chance  (p  <  0.001  for  HT  vs.  0);  however,  unlike  the  Carey  data,  this                  
prediction  was  not  different  from  the  PCA-only  prediction  (Figure  2,  bottom  row;  p  =  0.67,                
binomial   test).  
 

 
Figure  2:  Cross-subject  prediction  of  R  trials  of  a  “target”  subject  based  on  how  a  “source”                 
subject  encodes  L  and  R  trials  outperforms  prediction  based  on  shuffled  source  data. For  each                
source-target  pair,  we  computed  a  z-score  of  the  actually  observed  error  between  predicted  and               
actual  R  trials  (based  on  the  hypertransform  procedure,  “HT”)  compared  to  a  shuffled  distribution  in                
which  the  R  rows  of  the  source  subject  we  randomly  permuted.  Thus,  lower  z-scores  indicate  lower                 
error  and  therefore  better  prediction  than  chance.  Across  all  source-target  pairs,  this  z-scored  error               
varied  depending  on  the  pair  used  (column A ,  top  row),  but  was  lower  than  chance  overall,  as                  
indicated  by  a  shift  in  the  z-score  histogram  relative  to  0  (“HT”  green  bars  in  column A ,  middle  row;                    
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–0.94  +/-  0.56,  SEM  across  unique  subject  pairs,  p  <  0.001  for Wilcoxon  signed  rank  test  vs.  0).                   
Cross-subject  predictions  based  on  the  L-R  transform  in  common  space  (“hypertransform”)            
outperformed  predictions  based  on  the  L-R  transform  in  PCA  space  (“PCA”  blue  bars;  see Methods                
for  details;  HT  <  PCA:  66.15%  of  subject  pairs,  p  <  0.001  for  binomial  test).  Next,  we  applied  the                    
same  analysis  to  a  different  data  set  (“Gupta”,  bottom  row,  in  which  the  L  and  R  maze  arms  were                    
more  similar  to  each  other  than  in  the  “Carey”  data),  and  found  that  although  the  hypertransform                 
prediction  was  again  significantly  better  than  chance  (“HT”;  –1.60  +/-  1.00,  p  <  0.001,  bottom  row),                 
this  prediction  was  not  different  from  PCA-only  (HT  <  PCA,  47.89%  of  pairs,  p  =  0.67;  the  reason  for                    
this  will  be  revealed  in  Figure  3  and  the  main  text).  Column B  and C  use  the  same  layout  as  column                      
A ,  but  using  different  metrics  to  describe  prediction  accuracy. B  uses  the  raw  error  (between                
predicted  and  actual  R  neural  activity;  lower  error/negative  indicate  better  prediction)  compared  to  the               
mean  of  the  shuffle  distribution,  and C  uses  the  proportion  of  the  shuffle  distribution  with  smaller  error                  
than  the  actually  observed  error  (lower  proportions  indicate  better  prediction).  For  the  raw  error               
measure,  the  HT  prediction  was  better  than  chance  and  better  than  the  PCA  prediction  in  the  Carey                  
data.  (B:  –195.23  +/-  88.45,  p  <  0.001  for  HT  vs.  0;  HT  <  PCA:  66.15%,  p  <  0.001  for  HT  vs.  PCA).  In                         
the  Gupta  data,  HT  prediction  was  again  better  than  chance  (B:  –277.87  +/-  117.14,  p  <  0.001  for  HT)                    
but   the   HT   prediction   was   not   better   than   PCA   (B:   HT   <   PCA:   48.59%   of   pairs,   p   =   0.80).  

 
A  possible  explanation  for  the  better-than-chance  cross-subject  prediction  is  that  rats  represent             
experiences  in  L  and  R  similarly,  so  that  a  duplicate  of  L  activity  already  forms  a  reasonable                  
prediction  of  R  activity.  Such  a  scenario  would  be  a  trivial  use  of  cross-subject  prediction.  To  test                  
if  L-R  correlations  underlie  the  cross-subject  prediction  results  in  Figure  2,  we  compared              
cross-subject  predictions  based  on  the  hypertransform  (L-R  mapping  in  common  space)  with             
those  based  on  the identity  transform :  a  within-subject  prediction  that  simply  takes  a  duplicate  of                
the  L  trajectory  in  common  space  and  uses  it  as  the  prediction  for  R.  For  the  Carey  data  set,  the                     
cross-subject  HT  prediction  was  significantly  better  than  that  based  on  the  identity  transform  (ID;               
left  panel  in  Figure  3a;  p  <  0.001,  binomial  test),  demonstrating  that  the  better-than-chance               
prediction  of  R  is  not  due  to  linear  correlations  with  L  activity.  In  contrast,  for  the  Gupta  data,  the                    
same  effect  was  not  observed,  suggesting  that  the  better-than-chance  cross-subject  prediction            
for   this   data   set   (Figure   2,   bottom   row)   may   be   due   to   correlations   between   L   and   R   activity.  
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Figure  3:  Cross-subject  prediction  outperforms  within-subject  prediction  only  in  the  absence            
of  cell-by-cell  correlations.  A :  Comparison  of  cross-subject  prediction  error  (“hypertransform”,           
green  bars;  HT)  with  within-subject  prediction  error  (“identity  transform”;  blue  bars,  ID)  for  two               
different  data  sets.  In  the  “Carey”  data  (left  panel)  the  left  and  right  arms  of  the  maze  had  different                    
texture  and  color  patterns;  in  the  “Gupta”  data  (right  panel)  the  two  maze  arms  were  identical.  For  the                   
Carey  data,  cross-subject  prediction  was  significantly  better  than  within-subject  prediction  (HT  <  ID:              
96.92%  of  subject  pairs,  p  <  0.001  for  binomial  test)  whereas  for  the  Gupta  data,  this  effect  was  not                    
observed. B :  Cell-by-cell  correlation  of  firing  rates  between  L  and  R  arms  (i.e.  row-wise  correlations  of                 
the  L  and  R  matrices  in  Figure  S1),  averaged  across  all  cells  and  subjects,  for  Carey  and  Gupta  data.                    
Cell  activity  was  significantly  more  correlated  in  the  Gupta  data  compared  to  Carey  data  (Gupta:  r  =                  
0.35  +/-  0.27,  SEM  across  subjects,  Carey:  r  =  0.02  +/-  0.12, Wilcoxon  ranksum  test,  p  <  0.001).                   
Also,  cell  activity  in  Carey  data  was  not  significantly  different  from  0  (p  =  0.44  for Wilcoxon  signed                   
rank  test  vs.  0 ). C :  Population  vector  (PV)  correlations  between  ensemble  activity  at  each  time  point                 
and  every  other  time  point,  i.e  column-wise  correlations  of  the  L  and  R  activity  matrices,  averaged                 
across  sessions.  Both  Carey  and  Gupta  data  sets  show  high  correlations  around  the  diagonal,               
indicating  an  overall  autocorrelation  in  time;  however,  the  Gupta  data  additionally  shows  high              
off-diagonal  correlations  between  L  and  R  which  are  barely  visible  in  the  Carey  data. D :  Quantification                 
of  the  mean  PV  correlation  between  L  and  R  (i.e.  the  values  along  the  diagonal  of  the  first  quadrant  in                     
C ).  For  Gupta  data,  this  correlation  is  remarkably  high  (r  =  0.80  +/-  0.16)  whereas  for  Carey  data,  it  is                     
significantly  lower  (r  =  0.15  +/-  0.10,  p  <  0.001  for Wilcoxon  rank  sum  test )  and  consistent  with                   
previous  reports  of  global  remapping 2,4 .  The  above  results  explain  why  the  HT  is  not  needed  for                 
Gupta  data  to  achieve  better  than  chance  predictions  (see  bottom  row  in  Figure  2):  L  and  R  activity  is                    
sufficiently  similar  such  that  the  L  trajectory  alone  in  either  PCA  or  common  space  can  predict  R                  
activity.  
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To  test  this  idea,  we  investigated  the  correlation  structure  between  the  L  and  R  firing  rate                 
matrices  using  two  different  measures:  the  cell-by-cell  (row-wise)  correlation,  averaged  across            
all  cells,  and  the  column-wise  population  vector  (PV)  correlation  (averaged  across  sessions,  see              
Figure  S1  for  schematic;  note  that  in  order  to  compute  these  measures,  putative  interneurons               
were  removed  from  the  data;  see  Figure  S3  and  Methods).  The  cell-by-cell  firing  rate               
correlations  between  L  and  R  arms  were  significantly  more  correlated  in  the  Gupta  data               
compared  to  Carey  data  (Gupta:  r  =  0.35  +/-  0.27,  Carey:  r  =  0.02  +/-  0.12,  SEM  across                   
subjects;  p  <  0.001  for Wilcoxon  ranksum  test ;  Figure  3b).  Similarly,  PV  correlations  in  the                
Gupta  data  showed  high  off-diagonal  values  between  L  and  R,  which  were  barely  visible  in  the                 
Carey  data  (Figure  3c-d).  The  low  correlation  values  observed  in  the  Carey  data  are  consistent                
with  those  previously  reported  and  characterized  as  global  remapping 2,4 ,  whereas  the  Gupta              
correlations  are  strikingly  high,  indicating  the  presence  of  “symmetric”  cells  with  similar  firing              
patterns  on  the  L  and  R  arms.  High  L-R  correlations  in  the  Gupta  data  imply  that  the                  
cross-subject  (hypertransform)  method  cannot  outperform  the  already  very  good  prediction           
based  on  within-subject  correlations,  whereas  for  the  nearly  uncorrelated  Carey  data,  there  is              
room   for   cross-subject   prediction   to   improve.  
 
Importantly,  the  comparison  between  the  two  data  sets  suggests  that  the  cross-subject             
prediction  on  Carey  data  is  not  the  result  of  within-subject  correlations  --  because,  if  it  were,                 
then  the  HT  prediction  would  be  similar  to  the  ID  prediction.  So,  if  cross-subject  prediction  for                 
the  Carey  data  is  not  simply  a  consequence  of  within-subject  correlations  between  L  and  R,                
what is  the  prediction  based  on?  In  other  words,  can  we  identify  what  features  of  the  L-R                  
relationship  are  generalizable  across  subjects  without  appearing  as  within-subject  correlations           
between  L  and  R  activity?  To  address  this  question,  we  generated  synthetic  neural  activity               
matrices  using  1-D  Gaussians  with  three  parameters:  time,  peak  firing  rate  (FR)  and  width.               
Specifically,  three  simulated  data  sets  captured  different  potential  place  cell  properties:  (1)  each              
neuron  has  an  independent  probability  of  having  a  firing  field  on  L  and  R,  and  all  parameters  are                   
randomly  and  independently  chosen  for  L  and  R  ( ind-ind ,  top  row  in  Figure  4a),  (2)  if  a  neuron                   
has  a  firing  field  on  L,  it  does  not  have  a  field  on  R  (and  vice  versa),  and  the  parameters  of  the                       
field  are  chosen  randomly  ( x-or ,  second  row)  and  (3)  each  neuron  has  an  independent               
probability  of  having  a  field  on  L  and  R,  but  if  a  cell  has  a  field  in  both,  all  three  parameters  are                       
the  same  ( ind-same-all ,  third  row).  For  all  these  scenarios,  we  generated  synthetic  data              
matching  the  number  of  recording  sessions  and  the  number  of  neurons  recorded  in  the  Carey                
data,   and   applied   exactly   the   same   analysis   procedure.  
 
The  independent  ( ind-ind )  simulation  serves  as  a  sanity  check  to  verify  that  our  cross-subject               
prediction  procedure  cannot  exploit  shared  structure  where  none  exists;  as  expected,            
cross-subject  prediction  was  not  different  from  chance  in  this  scenario  (Figure  4a,  right  column;               
p  =  0.92  for Wilcoxon  signed  rank  test  vs.  0).  In  contrast,  both x-or  and ind-same-all  showed                  
better-than-chance  cross-subject  prediction  (p  <  0.001  for x-or ,  p  <  0.001  for ind-same-all ).  If               
the x-or or ind-same-all  rules  are  potential  explanations  for  better-than-chance  predictions  in             
Carey  data,  we  should  see  uncorrelated  cell-by-cell  correlations  and  low  PV  correlations             
between  L  and  R  in  these  two  data  sets  as  observed  in  Carey  (Figure  3b-d).  However,  the x-or                   
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scenario shows  negatively  correlated  PV  correlations  inconsistent  with  the  Carey  data  (Figure             
4b-c;  r  = - 0.17).  The ind-same-all  rule  shows  both  high  cell-by-cell  correlations  (Figure  4d; r  =                 
0.25 )  and  high  PV  correlations  (r  = 0.41 ),  which  is  again  inconsistent  with  the  Carey  data,  but                  
more  in  line  with  the  Gupta  data  (compare  Figure  3b-d).  Thus,  although  both  simple  rules  can                 
support  cross-subject  prediction,  the  resulting  correlations  are  inconsistent  with  those  observed            
in   the   Carey   data.  
 
In  further  simulations,  we  separately  investigated  the  role  of  each  parameter  of  the  1-D               
gaussian  place  fields  (time,  FR  and  width)  as  a  potential  explanation  for  cross-subject              
prediction.  We  created  data  sets  in  a  manner  similar  to  the ind-same-all scenario , i.e  assigning                
each  neuron  an  independent  probability  of  having  a  field  on  L  and  R,  but  with  the  difference  that                   
if  a  cell  has  a  field  in  both,  only  one  parameter  is  the  same,  and  the  other  two  are  randomly  and                      
independently  chosen.  For  instance,  in  the ind-same-time  case,  cells  with  fields  on  both  L  and                
R  have  independent  width  and  peak  firing  rates  on  L  and  R,  but  fire  at  the  same  (mean)  time.                    
Only  when  the  same  time  is  shared  across  L  and  R  are  the  cross-subject  predictions  better  than                  
chance  (Figure  S4;  p  <  0.001).  Importantly,  this  excludes  the  possibility  that  correlations  in               
(peak)  firing  rates  between  L  and  R  (as  suggested  by  the  data  in  Lee  et  al.  (2019) 20 ,  and  by  the                     
absence  of  cross-subject  prediction  in  z-scored  data,  Figure  S3)  is  the  cause  for              
better-than-chance   cross-subject   prediction.  
 
If  these  predetermined  rules  cannot  be  the  source  of  cross-subject  prediction  in  the  Carey  data,                
what  can?  The  hyperalignment  procedure  we  used  to  derive  the  L-R  transform             
(“hypertransform”)  was  originally  developed  to  capture  so-called representational  geometry :  a           
shared  rule  that  specifies  how differences  in  neural  responses  to  a  set  of  stimuli  may  be                 
preserved  across  subjects  even  though  each  subject  may  encode  a  given  stimulus  quite              
differently 11 .  To  test  if  such  a  geometry  is  consistent  with  the  data,  we  created  another  synthetic                  
data  set  in  which  the  activity  on  L  is  simulated  by  assigning  each  neuron  an  independent                 
probability  of  having  a  1-D  gaussian  place  field  whose  parameters  are  randomly  chosen,  and               
the  activity  on  R  is  obtained  by  applying  the  L-R  transform  (hypertransform,  HT)  from  the  Carey                 
to  the  simulated  L  activity  ( sim.  HT ,  bottom  row  in  Figure  4a).  Not  only  did sim.  HT  show                   
significant  better-than-chance  cross-subject  predictions  on  the  simulated  data  (p  <  0.001)  but             
the  cell-by-cell  (r  = 0.05 )  and  PV  correlations  (r  =  0.17)  were  similar  to  the  Carey  data.  Thus,                   
unlike  the  simple  x-or  or  same-parameter  scenarios,  a  shared  representational  geometry  is             
consistent   with   the   correlations   observed   in   the   data.  
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Figure  4:  Representational  geometry,  but  not  simple  rules  such  as  exclusive-or  and  firing              
rate  correlations,  result  in  cross-subject  prediction  while  being  consistent  with  the  data.  A :              
Example  L  and  R  activity  matrices  (left  column)  and  histogram  of  z-scores  of  cross-subject               
prediction  compared  to  the  distribution  of  shuffle  predictions  (right  column;  z-scores  lower  than              
zero  indicate  better-than-chance  predictions)  of  four  simulated  data  sets:  (1)  neurons  have  a  fixed,               
independent  probability  (0.5)  of  having  a  1-D  Gaussian  place  field  on  L  and/or  R,  with  the  three                  
parameters  of  time,  peak  firing  rate  (FR)  and  width  randomly  and  independently  chosen  for  L  and                 
R  ( ind-ind ,  top  row),  (2)  neurons  only  have  a  field  on either  L  or  R  but  not  both,  and  parameters  of                      
the  field  are  chosen  randomly  as  in  (1)  ( x-or ,  second  row),  (3)  neurons  have  a  fixed  independent                  
probability  of  having  L  and  R  fields  as  in  (1)  but  with  the  additional  constraint  that  neurons  with                   
both  L  and  R  fields  must  have  the  same  three  parameters  ( ind-same-all ,  third  row)  and  (4)  the                  
activity  on  L  is  simulated  by  assigning  each  neuron  an  independent  probability  of  having  a  field                 
whose  parameters  are  randomly  chosen,  then  the  activity  on  R  is  obtained  by  applying  L-R                
transform  (hypertransform,  HT)  from  real  data  (Carey)  to  the  simulated  L  activity  ( sim.  HT ,  last                
row).  As  expected,  in  the ind-ind  (independent)  case,  cross-subject  prediction  is  not  possible              
because  firing  field  properties  are  chosen  independently;  this  can  be  seen  from  the  histogram  of                
z-scores  (prediction  vs.  shuffle)  not  being  different  from  0  (0.0015  +/-  0.03,  SEM  across  unique                
subject  pairs,  p  =  0.92  for Wilcoxon  signed  rank  test  vs.  0).  In  contrast, X-or , ind-same-all  and                  
sim.  HT  all  show  better-than-chance  cross-subject  predictions  (-0.59  +/-  0.27  for x-or ,  -2.42  +/-               
0.07  for ind-same-all ,  -3.98  +/-  0.07  for sim.  HT, all  p  <  0.001  for Wilcoxon  signed  rank  test  vs.  0),                     
indicating  that  if  there  is  a  non-random  L-R  relationship  in  the  underlying  data,  the  hypertransform                
procedure  can  discover  and  exploit  it. B :  Population  vector  (PV;  column-wise)  correlations             
between  ensemble  activity  at  each  time  point  and  every  other  time  point  of  the  L  and  R  activity                   
matrices.  Only ind-same-all  shows  high  off-diagonal  correlations  between  L  and  R,  resembling             
the  Gupta  data  set  in  which  L  and  R  arms  were  identical  and  firing  activity  on  both  arms  is  highly                     
correlated  (compare  with  Figure  3C).  In x-or ,  off-diagonal  correlations  are  slightly  negative. C :              
Quantification  of  the  mean  PV  correlation  between  L  and  R  (i.e.  the  values  along  the  diagonal  of                  
the  first  quadrant  in B ).  PV  correlations  between  L  and  R  in ind-ind are  uncorrelated  since  no                  
prediction  of  ensemble  activity  of  one  time  point  on  L  can  be  made  based  on  the  same  time  of  R.                     
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In  contrast,  L  and  R  are  positively  correlated  in ind-same-all (r  =  0.41  +/- 0.01 )  since  for  every                   
time  point  in  L  where  there  is  a  field,  the  same  ensemble  activity  appears  at  the  same  time  point  in                     
R  with  probability  0.5. X-or  shows  a  negative  correlation  (r  =  -0.17  +/-  0.02)  because  for  every  time                   
point  in  L  where  there  is  a  field,  the  same  ensemble  activity  would  deterministically  be  absent  in  R,                   
and  vice  versa.  None  of  these  simple  rules  are  consistent  with  the  PV  correlation  found  in  the                  
Carey  data;  however, sim.  HT  does  show  similar  correlations  as  the  data  (r  = 0.17  +/-  0.03  for                   
sim.  HT  and  r  =  0.15  +/-  0.10  for  Carey). D :  Cell-by-cell  (row-wise)  correlations  of  L  and  R  show                    
that ind-same-all  is  more  correlated  than  the  data,  whereas sim.  HT  yields  similar  correlations  (r                
= 0.05  +/-  0.02  for sim.  HT  and r  =  0.02  +/-  0.12  for  Carey).  Thus,  taken  across  panels  C  and  D,                       
simple  rules  ( x-or  and ind-same-all )  are  inconsistent  with  the  data,  but  the  representational              
geometry   embodied   in   the    sim.   HT    yields   correlations   that   are   similar   to   the   data.  

 
 
Discussion  
 
We  have  shown  that  it  is  possible  to  predict  across  subjects,  better  than  chance,  how  a  given                  
experience  will  be  encoded  in  the  hippocampus.  In  particular,  we  predict  how  a  “target”  subject                
will  represent  the  right  arm  of  a  T-maze  (R),  given  (1)  how  that  same  subject  represents  the  left                   
arm  (L)  of  the  same  maze,  and  (2)  the  relationship  between  L  and  R  activity  in  a  different                   
“source”  subject.  Control  analyses  based  on  within-subject  prediction  and  a  comparison  of  the              
properties  of  various  simulated  data  sets  with  the  real  data  suggests  that  this  cross-subject               
prediction  is  unlikely  to  be  the  result  of  trivial  relationships  such  as  cells  with  symmetric  firing                 
fields,  or  simple  rules  such  as  exclusive-or.  Thus,  our  results  imply  that  the  hippocampal               
encoding  of  different  locations  in  space,  commonly  reported  to  be  random within  subjects 2–4,6,7 ,              
in   fact   has   a   shared   structure    between    subjects.  
 
An  innovative  aspect  of  this  work  that  contrasts  with  the  vast  majority  of  neural  recording  studies                 
in  rodents  is  the  use  of  cross-subject  prediction.  This  approach  is  attractive  because  it  provides                
rigorous,  quantifiable  tests  of  how  generalizable  a  given  model  of  neural  activity  is,  and  because                
it  can  provide  insights  into  what  is  shared  and  what  is  unique  between  subjects.  Using  calcium                 
imaging  data  from  hippocampal  ensembles,  Rubin  et  al.  (2019) 21  showed  that  the  location  of               
one  animal  could  be  decoded  using  a  decoder  trained  on  data  from  another  animal.  Our                
approach  is  similar  in  that  it  also  uses  cross-subject  prediction,  but  addresses  a  different               
question  in  that  we  seek  to  predict  not  the  location  of  the  animal,  but  the  tuning  curves  --  that  is,                     
the   way   different   and   potentially   not-yet-experienced   locations   will   be   encoded.  
 
Unlike  in  the  rodent  literature,  a  substantial  number  of  human  fMRI  and  ECoG  studies  has  used                 
cross-subject  prediction 11–13,22,23 .  Particularly  effective  are  procedures  that  do  not  only  align            
across  subjects  anatomically  (e.g.  by  mapping  each  subject  to  a  reference  brain)  but              
functionally,  i.e.  by  finding  structure  in  how  related  experiences  are  represented,  even  though              
across  subjects  the  same  experience  may  be  represented  very  differently.  Haxby  et  al.  (2011) 11               
refer  to  such  shared  structure  as  “representational  geometry”,  an  idea  consistent  with  the  results               
reported   here.  
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So  what  is  the  shared  similarity  we  have  uncovered,  and  why  does  it  matter?  One  possibility  is                  
suggested  by  the  relationship  between  grid  cells  and  place  cells:  Dordek  et  al.  (2016) 24  showed                
that  applying  nonnegative  principal  component  analysis  to  ensemble  activity  of  place  cells  yields              
grid  cell-like  activity  patterns.  In  addition,  grid  cell  firing  patterns  were  known  to  remain  intact  but                 
realign  linearly  (and  differently  for  different  subjects)  during  global  remapping 25 .  This  suggests             
that  what  our  hypertransform  procedure  found  was  a  common  coding  strategy  that  transforms              
grid  cell  activity  from  one  environment  to  the  other,  a  possibility  supported  by  recent  work 26,27 .                
We  provide  a  novel  perspective  on  this  issue  by  considering  shared  structure  across  subjects.               
More  generally,  uncovering  the  ways  in  which  hippocampal  activity  is  non-random  can  ultimately              
inform  how  processes  such  as  generalization  and  structure  learning  are  realized  in  neural              
circuits.  
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Figure   Legends  
 
Figure  1 : Workflow  for  cross-subject  prediction  of  place  cell  data  using  the             
hypertransform .  The  objective  of  the  main  procedure  in  this  study  is  to  predict  place  cell                
activity  on  the  right  arm  (R)  of  a  T-maze  in  a  “target”  subject,  based  on  (a)  place  cell  activity  in                     
the  left  arm  (L)  in  the  target  subject,  and  (b)  L  and  R  place  cell  activity  in  a  different,  “source”                     
subject.  These  input  data  are  shown  schematically  in  the  leftmost  column:  both  the  source  and                
target  rats  have  two  matrices  each  that  describe,  for  each  recorded  neuron,  how  its  activity                
varies  during  left  and  right  trials.  Note  that  although  the  number  of  time  bins  is  the  same  across                   
subjects,  the  number  of  recorded  cells  may  be  different.  Therefore,  the  first  step  of  the  analysis                 
workflow  (step  1  in  the  panel  above)  is  to  apply  principal  component  analysis  (PCA),  resulting  in                 
neural  activity  trajectories  for  left  and  right  trials  (red  and  blue,  respectively)  in  each  subject’s                
own  PCA  space.  3  principal  components  are  shown  here  for  display  purposes,  but  in  the  main                 
analysis  10  PCs  were  used.  Next,  these  neural  activity  trajectories  are  mapped  into  a  common                
space  using  a  “hyperalignment”  procedure  that  minimizes  the  Euclidean  distance  between  the             
trajectories  across  subjects  (step  2,  see  Methods  for  details).  In  this  common  space,  a               
procrustes  transformation 15  (M 12  in  step  3)  is  derived  that  maps  L  to  R  trajectories  for  the                 
“source”  subject  (step  3),  which  can  then  be  applied  to  the  L  trajectory  of  the  “target”  subject                  
(step  4)  to  obtain  its  predicted  R  trajectory  in  the  common  space  (step  5).  This  predicted  R                  
trajectory  is  then  projected  back  to  the  “target”  PCA  space  using  the  inverse  of  the  matrix  used                  
in  step  2  (step  6)  and  expanded  back  into  the  target’s  original  neuron  space  (step  7).  Finally,  the                   
predicted  R  neural  activity  is  compared  to  the  actual  R  activity  to  yield  an  error  measure  (step                  
8).  
 
Figure  2:  Cross-subject  prediction  of  R  trials  of  a  “target”  subject  based  on  how  a                
“source”  subject  encodes  L  and  R  trials  outperforms  prediction  based  on  shuffled             
source  data. For  each  source-target  pair,  we  computed  a  z-score  of  the  actually  observed  error                
between  predicted  and  actual  R  trials  (based  on  the  hypertransform  procedure,  “HT”)  compared              
to  a  shuffled  distribution  in  which  the  R  rows  of  the  source  subject  we  randomly  permuted.  Thus,                  
lower  z-scores  indicate  lower  error  and  therefore  better  prediction  than  chance.  Across  all              
source-target  pairs,  this  z-scored  error  varied  depending  on  the  pair  used  (column A ,  top  row),                
but  was  lower  than  chance  overall,  as  indicated  by  a  shift  in  the  z-score  histogram  relative  to  0                   
(“HT”  green  bars  in  column A ,  middle  row;  –0.94  +/-  0.56,  SEM  across  unique  subject  pairs,  p  <                   
0.001  for Wilcoxon  signed  rank  test  vs.  0).  Cross-subject  predictions  based  on  the  L-R               
transform  in  common  space  (“hypertransform”)  outperformed  predictions  based  on  the  L-R            
transform  in  PCA  space  (“PCA”  blue  bars;  see Methods  for  details;  HT  <  PCA:  66.15%  of                 
subject  pairs,  p  <  0.001  for  binomial  test).  Next,  we  applied  the  same  analysis  to  a  different  data                   
set  (“Gupta”,  bottom  row,  in  which  the  L  and  R  maze  arms  were  more  similar  to  each  other  than                    
in  the  “Carey”  data),  and  found  that  although  the  hypertransform  prediction  was  again              
significantly  better  than  chance  (“HT”;  –1.60  +/-  1.00,  p  <  0.001,  bottom  row),  this  prediction  was                 
not  different  from  PCA-only  (HT  <  PCA,  47.89%  of  pairs,  p  =  0.67;  the  reason  for  this  will  be                    
revealed  in  Figure  3  and  the  main  text).  Column B  and C  use  the  same  layout  as  column A ,  but                     
using  different  metrics  to  describe  prediction  accuracy. B  uses  the  raw  error  (between  predicted               
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and  actual  R  neural  activity;  lower  error/negative  indicate  better  prediction)  compared  to  the              
mean  of  the  shuffle  distribution,  and C  uses  the  proportion  of  the  shuffle  distribution  with  smaller                 
error  than  the  actually  observed  error  (lower  proportions  indicate  better  prediction).  For  the  raw               
error  measure,  the  HT  prediction  was  better  than  chance  and  better  than  the  PCA  prediction  in                 
the  Carey  data.  (B:  –195.23  +/-  88.45,  p  <  0.001  for  HT  vs.  0;  HT  <  PCA:  66.15%,  p  <  0.001  for                       
HT  vs.  PCA).  In  the  Gupta  data,  HT  prediction  was  again  better  than  chance  (B:  –277.87  +/-                  
117.14,  p  <  0.001  for  HT)  but  the  HT  prediction  was  not  better  than  PCA  (B:  HT  <  PCA:  48.59%                     
of   pairs,   p   =   0.80).  
 
Figure  3:  Cross-subject  prediction  outperforms  within-subject  prediction  only  in  the           
absence  of  cell-by-cell  correlations.  A :  Comparison  of  cross-subject  prediction  error           
(“hypertransform”,  green  bars;  HT)  with  within-subject  prediction  error  (“identity  transform”;  blue            
bars,  ID)  for  two  different  data  sets.  In  the  “Carey”  data  (left  panel)  the  left  and  right  arms  of  the                     
maze  had  different  texture  and  color  patterns;  in  the  “Gupta”  data  (right  panel)  the  two  maze                 
arms  were  identical.  For  the  Carey  data,  cross-subject  prediction  was  significantly  better  than              
within-subject  prediction  (HT  <  ID:  96.92%  of  subject  pairs,  p  <  0.001  for  binomial  test)  whereas                 
for  the  Gupta  data,  this  effect  was  not  observed. B :  Cell-by-cell  correlation  of  firing  rates                
between  L  and  R  arms  (i.e.  row-wise  correlations  of  the  L  and  R  matrices  in  Figure  S1),                  
averaged  across  all  cells  and  subjects,  for  Carey  and  Gupta  data.  Cell  activity  was  significantly                
more  correlated  in  the  Gupta  data  compared  to  Carey  data  (Gupta:  r  =  0.35  +/-  0.27,  SEM                  
across  subjects,  Carey:  r  =  0.02  +/-  0.12, Wilcoxon  ranksum  test,  p  <  0.001).  Also,  cell  activity                  
in  Carey  data  was  not  significantly  different  from  0  (p  =  0.44  for Wilcoxon  signed  rank  test  vs.  0 ).                    
C :  Population  vector  (PV)  correlations  between  ensemble  activity  at  each  time  point  and  every               
other  time  point,  i.e  column-wise  correlations  of  the  L  and  R  activity  matrices,  averaged  across                
sessions.  Both  Carey  and  Gupta  data  sets  show  high  correlations  around  the  diagonal,              
indicating  an  overall  autocorrelation  in  time;  however,  the  Gupta  data  additionally  shows  high              
off-diagonal  correlations  between  L  and  R  which  are  barely  visible  in  the  Carey  data. D :                
Quantification  of  the  mean  PV  correlation  between  L  and  R  (i.e.  the  values  along  the  diagonal  of                  
the  first  quadrant  in C ).  For  Gupta  data,  this  correlation  is  remarkably  high  (r  =  0.80  +/-  0.16)                   
whereas  for  Carey  data,  it  is  significantly  lower  (r  =  0.15  +/-  0.10,  p  <  0.001  for Wilcoxon  rank                    
sum  test )  and  consistent  with  previous  reports  of  global  remapping 2,4 .  The  above  results  explain               
why  the  HT  is  not  needed  for  Gupta  data  to  achieve  better  than  chance  predictions  (see  bottom                  
row  in  Figure  2):  L  and  R  activity  is  sufficiently  similar  such  that  the  L  trajectory  alone  in  either                    
PCA   or   common   space   can   predict   R   activity.  
 
Figure  4:  Representational  geometry,  but  not  simple  rules  such  as  exclusive-or  and  firing              
rate  correlations,  result  in  cross-subject  prediction  while  being  consistent  with  the  data.             
A :  Example  L  and  R  activity  matrices  (left  column)  and  histogram  of  z-scores  of  cross-subject                
prediction  compared  to  the  distribution  of  shuffle  predictions  (right  column;  z-scores  lower  than              
zero  indicate  better-than-chance  predictions)  of  four  simulated  data  sets:  (1)  neurons  have  a              
fixed,  independent  probability  (0.5)  of  having  a  1-D  Gaussian  place  field  on  L  and/or  R,  with  the                  
three  parameters  of  time,  peak  firing  rate  (FR)  and  width  randomly  and  independently  chosen               
for  L  and  R  ( ind-ind ,  top  row),  (2)  neurons  only  have  a  field  on either  L  or  R  but  not  both,  and                       
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parameters  of  the  field  are  chosen  randomly  as  in  (1)  ( x-or ,  second  row),  (3)  neurons  have  a                  
fixed  independent  probability  of  having  L  and  R  fields  as  in  (1)  but  with  the  additional  constraint                  
that  neurons  with  both  L  and  R  fields  must  have  the  same  three  parameters  ( ind-same-all ,  third                 
row)  and  (4)  the  activity  on  L  is  simulated  by  assigning  each  neuron  an  independent  probability                 
of  having  a  field  whose  parameters  are  randomly  chosen,  then  the  activity  on  R  is  obtained  by                  
applying  L-R  transform  (hypertransform,  HT)  from  real  data  (Carey)  to  the  simulated  L  activity               
( sim.  HT ,  last  row).  As  expected,  in  the ind-ind  (independent)  case,  cross-subject  prediction  is               
not  possible  because  firing  field  properties  are  chosen  independently;  this  can  be  seen  from  the                
histogram  of  z-scores  (prediction  vs.  shuffle)  not  being  different  from  0  (0.0015  +/-  0.03,  SEM                
across  unique  subject  pairs,  p  =  0.92  for Wilcoxon  signed  rank  test  vs.  0).  In  contrast, X-or ,                  
ind-same-all  and sim.  HT  all  show  better-than-chance  cross-subject  predictions  (-0.59  +/-  0.27             
for x-or ,  -2.42  +/-  0.07  for ind-same-all ,  -3.98  +/-  0.07  for sim.  HT, all  p  <  0.001  for Wilcoxon                    
signed  rank  test  vs.  0),  indicating  that  if  there  is  a  non-random  L-R  relationship  in  the  underlying                  
data,  the  hypertransform  procedure  can  discover  and  exploit  it. B :  Population  vector  (PV;              
column-wise)  correlations  between  ensemble  activity  at  each  time  point  and  every  other  time              
point  of  the  L  and  R  activity  matrices.  Only ind-same-all  shows  high  off-diagonal  correlations               
between  L  and  R,  resembling  the  Gupta  data  set  in  which  L  and  R  arms  were  identical  and  firing                    
activity  on  both  arms  is  highly  correlated  (compare  with  Figure  3C).  In x-or ,  off-diagonal               
correlations  are  slightly  negative. C :  Quantification  of  the  mean  PV  correlation  between  L  and  R                
(i.e.  the  values  along  the  diagonal  of  the  first  quadrant  in B ).  PV  correlations  between  L  and  R  in                    
ind-ind are  uncorrelated  since  no  prediction  of  ensemble  activity  of  one  time  point  on  L  can  be                  
made  based  on  the  same  time  of  R.  In  contrast,  L  and  R  are  positively  correlated  in                  
ind-same-all (r  =  0.41  +/- 0.01 )  since  for  every  time  point  in  L  where  there  is  a  field,  the  same                     
ensemble  activity  appears  at  the  same  time  point  in  R  with  probability  0.5. X-or  shows  a                 
negative  correlation  (r  =  -0.17  +/-  0.02)  because  for  every  time  point  in  L  where  there  is  a  field,                    
the  same  ensemble  activity  would  deterministically  be  absent  in  R,  and  vice  versa.  None  of                
these  simple  rules  are  consistent  with  the  PV  correlation  found  in  the  Carey  data;  however, sim.                 
HT  does  show  similar  correlations  as  the  data  (r  = 0.17  +/-  0.03  for sim.  HT  and  r  =  0.15  +/-                      
0.10  for  Carey). D :  Cell-by-cell  (row-wise)  correlations  of  L  and  R  show  that ind-same-all  is                
more  correlated  than  the  data,  whereas sim.  HT  yields  similar  correlations  (r  = 0.05  +/-  0.02  for                  
sim.  HT  and r  =  0.02  +/-  0.12  for  Carey).  Thus,  taken  across  panels  C  and  D,  simple  rules  ( x-or                     
and ind-same-all )  are  inconsistent  with  the  data,  but  the  representational  geometry  embodied             
in   the    sim.   HT    yields   correlations   that   are   similar   to   the   data.  
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STAR   Methods  

Raw   data  
 
We  used  two  different  data  sets  containing  ensemble  recordings  of  hippocampal  CA1  neurons              
in   rats   performing   T-maze   tasks.  
 
The  first  data  set  (“Carey”)  is  as  described  in  van  der  Meer  et  al.  (2017) 16  and  Carey  et  al.                    
(2019) 16,17 .  Briefly,  male  rats  (n  =  4)  performed  daily  sessions  on  a  T-maze  where  they  had  free                  
choice  between  left  and  right  arms.  Rats  were  alternately  food-  and  water-restricted  across              
days;  the  left  arm  resulted  in  food  reward  (five  45mg  pellets),  the  right  arm  resulted  in  water                  
reward  (~0.2  ml  sucrose  solution).  Rats  ran  15-20  discrete  trials  per  recording  session,  with  no                
less  than  5  trials  for  the  least  preferred  choice  (left  or  right).  Only  sessions  with  at  least  40                   
simultaneously  recorded  neurons  were  included,  this  left  19 of  24  total sessions  for  analysis               
(range:   50   -   178   neurons   per   session).  
 
The  second  data  set  (“Gupta”)  is  as  described  in  Gupta  et  al.  (2010) 18  and  Gupta  et  al.                  
(2012) 18,19 .  Briefly,  male  rats  (n  =  4)  performed  daily  sessions  on  a  continuous  Multiple-T  maze                
with  free  choice  between  left  and  right  arms.  Food  pellet  reward  (four  45  mg  pellets)  was                 
available  either  by  choosing  left  only,  right  only,  or  alternating  between  left  and  right;  which                
reward  schedule  was  in  effect  was  determined  pseudorandomly  at  the  start  of  daily  recording               
sessions.  In  addition,  the  reward  schedule  switched  approximately  halfway  throughout  the            
session.  Only  sessions  with  at  least  40  simultaneously  recorded  neurons  were  included,  this  left               
14   of   42    total    sessions   for   analysis   (range:   41-101   neurons   per   session).  
 
Both  data  sets  consist  of  both  left  (L)  and  right  (R)  trials;  the  analyses  in  this  study  are                   
concerned  with  the  relationship  between  how  L  and  R  trials  are  encoded  in  hippocampal               
ensemble  activity.  To  avoid  the  possibility  that  neural  activity  on  a  common  trajectory  shared               
between  L  and  R  is  the  main  predictor  of  L  and  R  relationship,  data  from  the  central  stem  of  the                     
maze   was   excluded.  
 
Data   preprocessing  
 
Preparation  of  input  data. Both  data  sets  were  preprocessed  to  obtain  two  types  of  neural                
activity  matrices  that  form  the  starting  point  for  all  analyses  (Figure  S1).  The  first  and  main  data                  
type  is  the  Q-matrix,  which  describes  binned  firing  rate  over  time  for  simultaneously  recorded               
neurons [nNeurons  x  nTimeBins]  and  is  used  in  all  main  analyses.  The  second  data  type  is  the                  
TC-matrix  (place  turning  curves)  matrices  of  dimension [nNeurons  x  nSpaceBins]  for  Figure  S2              
and   S3).   
 
Since  both  data  sets  contain  different  numbers  of  L  and  R  trials  within  a  session,  trials  were  first                   
subsampled  so  that  equal  number  of  L  and  R  trials  were  used.  Next,  because  trials  differed  in                  
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length  because  of  variations  in  running  speed,  all  trials  were  truncated  to  the  last  2.4  seconds                 
(the  median  time  between  passing  the  choice  point  and  reaching  the  reward  site)  of  all  included                 
sessions.  
 
To  obtain  Q-matrices  for  L  and  R  trials,  binned  firing  rate  matrices  (time  bin  width:  50  ms)  were                   
created  for  individual  trials,  smoothed  with  a  window  size  =  1  s,  σ  =  50  ms  Gaussian  kernel,  and                    
then   averaged   across   within   session.  
 
To  obtain  TC-matrices  for  L  and  R  trials,  spike  firing  data  with  only  running  speed  >  5  cm/s  rata                    
were  averaged  for  each  place  bin  (~3  cm  per  bin)  across  within  session,  then  smoothed  with  a                  
window  size  =  11  bins,  σ  =  1  bin  Gaussian  kernel.  Only  data  from  the  last  41  place  bins  were                     
included   so   that   only   after-choice-point   data   was   used.  
 
Criterion  for  exclusion  of  interneurons  (some  analyses  only) .  Neurons  with  mean  firing  rate  >  10                
Hz  across  the  entire  recording  session  were  classified  as  putative  interneurons.  These  were              
excluded  for  the  correlation  analysis  in  Figure  3,  because  otherwise  variations  in  firing  rates               
between  putative  interneurons  and  projection  neurons  would  dominate  the  population  vector            
correlations  (described  below).  We  verify  that  inclusion  of  interneurons  was  not  required  for  the               
main   results   in   Figure   S3.   
 
Normalization  (some  analyses  only). Normalization  of  the  input  data  was  conducted  by  dividing              
the  l 2 -norm  of  each  row  (neuron)  or  z-scoring  each  row  of  data  matrices, independently  for  the  L                  
and  R  parts  of  the  input  data  matrices.  Although  it  may  seem  intuitive  to  normalize  each  entire                  
row  of  the  input  data  (i.e.  L  and  R  data  together),  this  actually  introduces  an  artificial                 
anticorrelation  between  the  L  and  R  parts  of  the  matrix,  such  that  even  on  data  where  no                  
relationship  exists  between  L  and  R,  a  relationship  is  introduced  by  normalization.  Thus,  we               
avoided  normalization  across  L  and  R  when  testing  cross-subject  prediction.  Normalization  was             
only   used   on   Q-matrices   and   TC-matrices   with   interneurons   removed   in   Figure   S3.  
 
Hypertransform   analysis   procedure  
 
Overview. The  overall  objective  of  the  hypertransform  procedure  is  to  predict  R  data  in  a  “target”                 
subject  based  on  (1)  the  target  rat  L  data,  and  (2)  the  L  and  R  data  of  a  different  “source”  rat                      
(see  Figure  1  for  a  complete  description  and  schematic).  Each  step  of  the  procedure  is                
described   in   detail   below.  
 
Each  recording  session  was  used  as  source  and  paired  with  all  sessions  from  all  other  subjects                 
to  form  cross-subject  source-target  pairs  (260  unique  source-target  session  pairs  for  Carey  data              
and   142   pairs   for   Gupta   data).  
 
PCA. After  preprocessing  the  data  as  described  above,  principal  component  analysis  (PCA; svd              
function  in  MATLAB  R2018b)  was  applied  to  concatenated  L  and  R  neural  data  matrices  to                
reduce  to  the  same  dimension  because  (1)  there  were  unequal  numbers  of  neurons  recorded               
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across  sessions,  and  (2)  we  want  to  keep  the  principal  components  that  capture  the  most                
information  (variance).  Ten  principal  components  (PCs),  accounting  for  approximately  95%  of            
the  variance  (Figure  S2d)  were  then  used  to  project  L  and  R  matrices  into  neural  activity                 
trajectories   in   each   subject’s   own   PCA   space.  
 
Hyperalignment. Hyperalignment  is  procedure  that  applies  a  Procrustes  transformation:  the           
linear  transformation  that  minimizes  the  Euclidean  distance  between  input  trajectories  based  on             
rotation  and  translation  (and  scaling,  in  some  implementations;  we  did  not  use  scaling  in  this                
study).  This  procedure  is  commonly  used  to  align  fMRI  activity  trajectories  in  subject-specific              
spaces  into  a  common  representational  space  (Haxby  et  al.  2011) 11 .  In  similar  fashion,  we               
aligned  L  and  R  neural  trajectories  in  the  PCA  spaces  from  a  source  rat  and  a  target  rat  into  a                     
common  space  by  using  the hyperalign  function  in hypertools 14  (matlab  version) .  We  refer  to  the                
transformation   from   the   PCA   space   of   single   subject   S   into   the   common   space   as   . Hs  
 
Hypertransform. In  this  common  space,  a  linear  (Procrustes)  transformation  was  derived            
between  L  and  R  neural  trajectories  of  the  source  rat.  This  transformation  (hypertransform,  HT)               
was  then  applied  to  the  target  rat’s  L  trajectory  to  yield  a predicted  R  trajectory.  Note  that  this                   
transformation  is  not  only  subject-specific  but  subject-target-pair-specific  since  the  common           
space   is   unique   for   each   pair   used.  
 
Projection  back  into  neural  space. Next,  the  inverse  of  the  subject-specific  hyperalignment             
matrix  (projecting  from  PCA  to  common  space)  was  applied  to  project  the  predicted  R  trajectory                
back  to  the  target  rat’s  PCA  space.  Principal  components  obtained  earlier  were  used  to               
reconstruct  the  predicted  R  trajectory  in  the  PCA  space  into  the  predicted  R  data  matrix  (Q  or                  
TC)   for   the   target   rat.  
 
Shuffles and  associated  metrics .  The  prediction  error  for  a  specific  source-target  pair  is              
calculated  by  summing  squared  errors  between  predicted  and  actual  R  data  matrices  of  the               
target  rat.  This  error  is  compared  against  a  baseline  control  by  permuting  (shuffling)  the  rows  of                 
R  data  matrix  of  the  source  rat  (but  keeping  the  L  matrix  intact; row  shuffles )  and  repeating  the                   
hypertransform  procedure.  The  rationale  for  this  is  that  if  there  is  no  shared  relationship               
between  L  and  R  across  subjects,  then  shuffled  predicted  errors  should  not  be  different  from  the                 
actual  observed  predicted  error.  1000  shuffles,  hence  1000  shuffled  predicted  error  were             
conducted  for  a  source-target  pair,  and  three  metrics  were  used  to  compare  the  actual  predicted                
error  against  shuffled  predicted  error:  (1)  z-scores  of  actual  observed  error  compared  to  the               
distribution  of  shuffle  predictions  (2)  raw  prediction  error  compared  to  the  mean  of  the  shuffle                
distribution  (middle),  and  (3)  proportion  of  the  shuffle  distribution  whose  error  was  smaller  than               
actual  observed  error.  For  all  metrics,  lower  numbers  indicate  a  non-random  relationship             
between   L   and   R   share   across   subjects,   i.e.   a   better-than-chance   cross-subject   prediction.  
 
Identity  transform. To  test  if  a  better-than-chance  cross-subject  prediction  is  simply  due  to  the               
similarity  of  L  and  R  neural  activity  within  the  target  rat,  a  within-subject  prediction  is  obtained  by                  
using  a  duplicate  of  target  rat’s  L  trajectory  in  the  common  space  as  the  predicted  R  trajectory,                  
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i.e.  making  the  L-R  transformation  equal  to  the  identity  transformation.  This  predicted  trajectory              
was  then  used  to  reconstruct  the  predicted  target  rat’s  R  data  matrix  as  in  the  hypertransform                 
procedure.  
 
Variation:  withheld  data. To  exclude  the  possibility  that  including  data  to-be-predicted  is  the              
reason  why  better-than-chance  predictions  can  be  achieved,  the  R  data  matrix  of  target  rat  was                
withheld,   i.e.   padded   with   zeros   before   the   rest   of   the   hypertransform   procedure   was   conducted.  
 
Variation:  PCA  only. To  test  whether  a  relationship  between  L  and  R  already  exists  in                
subject-specific  PCA  spaces,  we  modified  the  hypertransform  procedure  as  follows:  instead  of             
aligning  neural  activity  trajectories  in  the  common  space  through  hyperalignment,  a  L  to  R  linear                
(Procrustes)  transformation  was  derived  from  the  source  rat’s  PCA  space  and  directly  applied  to               
the  L  trajectory  in  target  rat’s  PCA  space  to  obtain  the  predicted  R  trajectory.  This  predicted                 
trajectory  was  then  used  to  reconstruct  the  predicted  target  rat’s  R  data  matrix  as  in                
hypertransform   procedure.  
 
Simulations  
 
As  a  first  step  towards  understanding  the  possible  explanation  for  cross-subject  prediction,             
simulated  neural  activity  matrices  were  generated  using  1-D  Gaussians  with  three  parameters:             
time,  peak  firing  rate  (FR)  and  width.  Several  scenarios  were  created  to  test  the  possibility  that                 
different   potential   place   cell   properties   may   account   for   the   observed   cross-subject   prediction:  
 

- Ind-ind :   Neurons   have   a   fixed,   independent   probability   (0.5)   of   having   a   1-D   Gaussian  
place   field   on   L   and/or   R,   with   the   three   parameters   of   time,   peak   firing   rate   (FR)   and  
width   randomly   and   independently   chosen   for   L   and   R.  

- X-or :   Neurons   only   have   a   field   on    either    L   or   R   but   not   both,   and   parameters   of   the   field  
are   chosen   randomly    as   ind-ind  

- Ind-same-all :  Neurons  have  a  fixed  independent  probability  of  having  L  and  R  fields  as               
in ind-ind  but  with  the  additional  constraint  that  neurons  with  both  L  and  R  fields  must                 
have   the   same   three   parameters.  

- Sim.  HT :  The  activity  on  L  is  simulated  by  assigning  each  neuron  an  independent               
probability  of  having  a  field  whose  parameters  are  randomly  chosen,  then  the  activity  on               
R  is  obtained  by  applying  L-R  transform  (hypertransform,  HT)  from  real  data  (Carey)  to               
the   simulated   L   activity.  

- Ind-same-time :  Similar  to ind-same-all ,  neurons  have  a  fixed  independent  probability  of            
having  L  and  R  fields  as  in ind-ind,  but  if  when  a  cell  has  fields  in  both,  one  of  the  three                      
parameters:    time    is   the   for   L   and   R,   and   FR   and   width   are   independently   chosen.  

- Ind-same-FR :  Similar  to ind-same-all ,  neurons  have  a  fixed  independent  probability  of            
having  L  and  R  fields  as  in ind-ind,  but  if  when  a  cell  has  fields  in  both,  one  of  the  three                      
parameters:    FR    is   the   for   L   and   R,   and   time   and   width   are   independently   chosen.  

- Ind-same-width :  Similar  to ind-same-all ,  neurons  have  a  fixed  independent  probability           
of  having  L  and  R  fields  as  in ind-ind,  but  if  when  a  cell  has  fields  in  both,  one  of  the                      
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three  parameters: width  is  the  for  L  and  R,  and  time  and  width  are  independently                
chosen.  

 
For  each  simulation  scenario,  we  generated  a  matching  number  of  sessions  (19)  as  in  Carey                
data  and  a  matching  number  of  neurons  within  each  session  as  a  dataset.  To  avoid  the                 
possibility  that  one  particular  randomly  generated  dataset  biases  the  results,  100  datasets  were              
created   and   all   statistics   were   averaged   across   datasets   to   match   the   real   data.  
 
For  each  of  the  100  datasets  in sim.  HT ,  a  randomly  chosen  session  from  the  Carey  data  was                   
used  to  hyperalign  with  simulated  L  activity  (R  activity  was  padded  with  zeros  first).  The                
hypertransform  obtained  from  the  real  session  was  then  applied  to  the  simulated  L  trajectory  in                
the  common  space  to  obtain  a  simulated  R  trajectory.  This  simulated  trajectory  was  then  used  to                 
reconstruct   the   simulated   R   activity   as   in   hypertransform   procedure.  
 
Correlation   analysis   of   neural   and   simulated   data .  
 
Cell-by-cell  (row-wise)  correlations. For  each  cell  (a  row  in  the  neural  data  matrix),  a  correlation                
coefficient  between  L  and  R  was  computed  (see  schematic  in  Figure  S1).  Whitening  noise               
(matrices  of  same  size  as  L  and  R,  in  which  each  element  is  a  number  sampled  from Uniform (0,                   
10 -5 ))  was  added  so  that  a  coefficient  can  be  computed  when  there  is  no  activity  on  either  L  and                    
R   trials,   which   would   otherwise   result   in   zero   variance.  
 
Population  vector  (PV;  column-wise)  correlations. L  and  R  data  matrices  were  (horizontally)             
concatenated,  and  a  correlation  coefficient  was  computed  between  each  time  point  (a  column)              
and  all  other  columns  of  the  L  and  R  concatenated  matrix  (see  schematic  in  Figure  S1).  Higher                  
off-diagonal  values  (the  values  along  the  diagonal  of  the  first  quadrant)  of  this  concatenated               
matrix   indicate   higher   correlated   ensemble   neural   activity   between   L   and   R.  
 
All   correlation   coefficients   were   computed   using   the   MATLAB    corrcoef    function.  
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Supplementary   Information  
 

 
 
Figure  S1:  Data  preprocessing  and  analysis  schematics.  Left: Data  preprocessing.  Neural  ensemble             
activity  for  left  (L)  and  right  trials  (R)  in  each  recording  session  was  shaped  into  two  types  of  input  data                     
matrices:  the Q-matrix ,  which  describes  binned  firing  rate  over  time  for  simultaneously  recorded  neurons               
(dimension  [nNeurons  x  nTimeBins]),  used  in  the  main  analyses,  and  the TC-matrix  (spatial  tuning               
curves,  dimension  [nNeurons  x  nSpaceBins]).  Trials  were  subsampled  to  obtain  an  equal  number  of  L                
and  R  trials  were  used,  and  truncated  to  the  last  2.4  seconds  (the  median  time  taken  from  the  choice                    
point  to  the  end  of  a  trial).  Times  when  the  animal  was  deemed  to  be  stationary  were  excluded  from                    
analysis. Middle :  Illustration  of  the  shuffling  procedure  used  in  the  main  analysis  (Figure  2).  To  obtain  a                  
distribution  of  chance  cross-subject  predictions,  the  analysis  steps  illustrated  in  Figure  1  were  applied,               
except  that  for  the  “source”  subject,  the  relationship  between  L  and  R  activity  was  disrupted  by  randomly                  
permuting  the  rows  of  the  R  matrix. Right :  Illustration  of  the  correlation  analyses  used  in  Figures  3-4.                  
Cell-by-cell  correlations  are  obtained  by  row-wise  correlating  L  and  R  activity  for  each  cell,  and  then                 
averaging  across  all  cells. Population  vector  correlations  are  obtained  by  column-wise  correlating  activity              
at  each  time  or  location  with  activity  at  every  other  time  or  location.  This  yields  a  correlation  matrix  for                    
each   session,   which   are   then   averaged   across   sessions.  
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Figure  S2:  Better-than-chance  cross-subject  predictions  can  be  observed  even  when  the            
to-be-predicted  target  data  was  withheld,  and  spatial  turning  curves  were  used.  A : Histogram  of               
three  cross-subject  prediction  metrics:  z-scores  of  actual  observed  error  compared  to  the  distribution  of               
shuffle  predictions  (left  column),  raw  prediction  error  compared  to  the  mean  of  the  shuffle  distribution                
(middle),  proportion  of  the  shuffle  distribution  whose  error  was  smaller  than  actual  observed  error  (right).                
For  all  metrics,  lower  numbers  indicate  better  cross-subject  predictions.  The  better  than  chance              
cross-subject  predictions  can  be  observed  even  when  the  R  activity  of  the  target  subject,  which  is  the                  
activity  to  be  predicted,  is  withheld  from  the  hyperalignment  procedure  (-1.33  +/-  0.76,  SEM  across                
unique  subject  pairs,  p  <  0.001  for Wilcoxon  signed  rank  test  vs.  0). B :  Histogram  of  three  cross-subject                   
prediction  metrics  as  in A  for  neural  activity  matrices  calculated  as  a  function  of  locations  (turning  curves;                  
TC)  instead  of  time  (See  Figure  S1  and Methods  for  details)  were  used.  The  cross-subject  predictions  are                  
significantly  better  compared  to  shuffles  (-1.07  +/-  0.64,  p  <  0.001  for  HT  vs.  0)  and  significantly  better                   
than  PCA-only  (HT  <  PCA:  69.23%  of  subject  pairs,  p  <  0.001  for  binomial  test),  suggesting  time  and                   
location  yield  similar  results  in  our  data  (see  Figure  2). C :  Z-scores  of  cross-subject  prediction  errors                 
(normalized  within  each  session)  as  a  function  of  time,  averaged  across  sessions.  Errors  varied  across                
time  but  did  not  highlight  particular  time  points,  indicating  that  cross-subject  prediction  is  not               
disproportionately  due  to  certain  time  points  such  as  the  end  of  the  trial. D :  Explained  variance  as  a                   
function  of  the  number  of  principal  components  (PCs).  In  our  hypertransform  procedure,  10  PCs  were                
used,   which   accounts   for   ~95%   of   the   variance   of   data.  
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Figure  S3:  Cross-subject  prediction  is  preserved  when  removing  putative  interneurons  and            
normalizing  L  and  R  independently  by  l 2 -norm,  but  abolished  when  independently  z-scoring  L  and               
R  firing  rates.  A :  Example  L  and  R  activity  matrices  with  interneurons  (mean  firing  rate  >  10  Hz)  removed                    
and  corresponding  histogram  of  z-scores  of  cross-subject  prediction  compared  to  the  distribution  of              
shuffled  predictions  (z-scores  lower  than  zero  indicate  better-than-chance  prediction)  for  both  temporal             
( Q )  and  spatial  ( TC )  tuning  curves.  Both  Q  and  TC  show  significantly  better-than-chance  cross-subject               
predictions  (Q:  -0.14  +/-  0.42,  SEM  across  unique  subject  pairs,  p  <  0.01  for Wilcoxon  signed  rank  test  vs.                    
0; TC:  -0.40  +/-  0.39,  p  <  0.001  for  HT  vs.  0),  indicating  high-firing  rate  interneurons  are  not  required  for                     
cross-subject  prediction. B :  Same  layout  as  A,  but  L  and  R  activity  matrices  were  obtained  by  removing                  
interneurons  and  dividing  separately  each  L  and  R  row  by  its  l 2 -norm  (vector  length).  Both  Q  and  TC                   
again  show  significantly  better-than-chance  prediction  (Q:  mean  =  -0.12  +/-  0.31,  p  <  0.05  for  HT  vs.  0;                   
TC:  -0.26  +/-  0.31,  p  <  0.001  for  HT  vs.  0). C :  Same  layout  as  A,  but  L  and  R  activity  matrices  were                        
obtained  by  removing  interneurons  and  z-scoring  separately  each  L  and  R  row.  Unlike  the  l 2 -norm  case,                 
normalization  by  z-scoring  does  not  show  better-than-chance  prediction.  Note  that  for  both  l 2 -norm  and               
z-scoring  cases,  independently  normalizing  L  and  R  activity  (L  separately  from  R),  rather  than  normalizing                
L  and  R  together  (normalizing  the  entire  row),  avoids  introducing  artifactual  anti-correlations  between  L               
and   R   which   would   be   exploited   by   the   cross-subject   prediction   algorithm   even   for   independent   data.  
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Figure  S4:  Simulations  show  that  either  the  same  place  field  firing  time,  peak  firing  rate,  or  place                  
field  width  alone  cannot  account  for  cross-subject  prediction  in  the  Carey  data.  A :  Example  L  and                 
R  activity  matrices  (left  column)  and  histogram  of  z-scores  of  cross-subject  prediction  compared  to  the                
distribution  of  shuffle  predictions  (z-scores  lower  than  zero  indicate  better-than-chance  predictions;  right             
column)  of  three  simulated  data  sets.  All  three  data  sets  are  generated  by  assigning  each  neuron  a  fixed,                   
independent  probability  (0.5)  of  having  a  field  on  L  and/or  R,  but  when  a  cell  has  fields  in  both,  one  of  the                       
three  parameters  of  its  1-D  Gaussian  place  field  ( ind-same-time , ind-same-FR  (firing  rate)  or              
ind-same-width )  is  the  same  for  L  and  R;  the  other  two  are  randomly  and  independently  chosen.                 
Ind-same-time  shows  better-than-chance  cross-subject  predictions  (-2.14  +/-  0.08,  SEM  across  unique            
subject  pairs,  p  <  0.001  for Wilcoxon  signed  rank  test  vs.  zero)  but  ind-same-FR  and ind-same-width do                  
not,  indicating  cross-subject  predictions  cannot  be  better  than  chance  when  time  points  of  fields  are                
unrelated  between  L  and  R. B :  Population  vector  (PV;  column-wise)  correlations  between  ensemble              
activity  at  each  time  point  and  every  other  time  point  of  the  L  and  R  activity  matrices. C :  Quantification  of                     
the  mean  PV  correlation  between  L  and  R  (i.e.  the  values  along  the  diagonal  of  the  first  quadrant  in B ).                     
Ind-same-time  shows  highly  positive  correlation  (r  =  0.35  +/-  0.01)  since  for  every  location  of  L  where                  
there  are  fields,  there  would  some  chance  that  some  (although  random)  amount  of  ensemble  activity                
would  appear  on  the  same  location  of  R.  In  contrast,  L  and  R  in ind-same-FR and ind-same-width are                   
nearly  uncorrelated  since  no  prediction  of  ensemble  activity  of  one  location  on  L  can  be  made  based  on                   
the  same  location  of  R  (see  also ind-ind  i n  Figure  3).  The ind-same-time case  is  potentially  consistent                  
with  the  Carey  data  as  measured  by  PV  correlations. D :  Cell-by-cell  (row-wise)  correlations  of  L  and  R.                  
Here,  the ind-same-time  correlations  are  higher  than  in  the  Carey  data  (r  =  0.24  +/-  0.02  vs.  r  =  0.02  +/-                      
0.12  for  Carey),  indicating  that  this  scenario  does  not  accurately  capture  the  source  of  cross-subject                
prediction   in   the   data.  
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