

1 **A variant in *SMOC2*, inhibiting BMP signaling by competitively binding to**
2 **BMPR1B, causes multiple epiphyseal dysplasia**

3

4 Feng Long^{1,4}, Lin Li^{2,4}, Hongbiao Shi¹, Pengyu Li¹, Shaoqiang Guo¹, Yuer Ma¹, Yan

5 Li¹, Shijun Wei¹, Fei Gao¹, Shang Gao¹, Meitian Wang¹, Ruonan Duan^{1,3}, Xiaojing

6 Wang¹, Kun Yang¹, Ai Liu¹, Anran Wang¹, Xiao Chen¹, Wenjie Sun¹, Xi Li¹, Jiangxia

7 Li^{1,4}, Qiji Liu^{1,4*}

8 ¹ Key Laboratory for Experimental Teratology of the Ministry of Education and

9 Department of Medical Genetics, Shandong University School of Basic Medical

10 Sciences, Jinan, Shandong, 250012, China

11 ² Department of Genetics, Linyi Peoples Hospital, Linyi, Shandong, 276000, China.

12 ³ Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong,

13 250012, China.

14 ⁴These authors contribute equally to this work.

15 *Address correspondence and reprint to:

16 Qiji Liu, PhD, Professor, Department of Medical Genetics, Shandong University,

17 School of Basic Medical Sciences, No.44 West Wenhua Road, Jinan, Shandong,

18 250012, P.R. China. Email: liuqiji@sdu.edu.cn.

19

20 **Abstract:** Previously study showed that SMOC, a matricellular protein, inhibits BMP
21 signaling downstream of its receptor via activation of mitogen-activated protein kinase
22 (MAPK) signaling. In our study, exome sequencing revealed a missense mutation
23 (c.1076T>G, p.Leu359Arg) in EC domain of SMOC2 in a Chinese family with
24 multiple epiphyseal disease (MED). The pathogenicity of this SMOC2 variant was
25 verified by *Smoc2*^{L359R/L359R} knock-in mice. Of note, decreasing phosphorylation of
26 SMAD1/5/9 was detected in growth plates and primary chondrocytes from
27 *Smoc2*^{L359R/L359R} mice. Furthermore, binding affinity of mutant SMOC2 with collagen
28 IX and HSPG in the extracellular matrix of cartilage were reduced while binding
29 affinity with BMPRIB was intact. In addition, in contrast to previously results, that
30 SMOC2 cannot antagonize BMP activity in the presence of a constitutively activated
31 BMP receptor. These results support that *SMOC2* with p.Leu359Arg variant act as an
32 antagonist of canonical BMP pathway by competitively binding with BMP receptors.
33

34 **Introduction**

35 Multiple epiphyseal dysplasia (MED, MIM 132400) is a genotypically and
36 phenotypically heterogeneous skeletal dysplasia and chondrodysplasia that affects
37 epiphysis of long bones^[1, 2]. MED is characterized by early-onset arthritis, especially in
38 hip and knee joints, which results in joint pain and stiffness, waddling gait in early
39 childhood, and mild to moderate shortness of stature. Eight disease genes, which may
40 be inherited in an autosomal dominant or recessive pattern, have been identified.
41 Autosomal dominant variants include collagen oligomeric matrix protein (*COMP*)^[3, 4],
42 collagen type IX α -1 (*COL9A1*)^[5], collagen type IX α -2 (*COL9A2*)^[6], collagen type IX
43 α -3 (*COL9A3*)^[7], matrilin-3 (*MATN3*)^[8], and collagen type II α -1 (*COL2A1*)^[9].
44 Autosomal recessive variants are the sulfate transporter gene (*SLC26A2*) and
45 calcium-activated nucleotidase-1 (*CANT1*)^[10, 11]. All proteins encoded by the known
46 MED-associated genes are involved in maintaining the structural integrity of the
47 cartilage extracellular matrix (ECM). All variants in these genes account for the
48 molecular basis of about 70% of MED cases^[11]. However, a number of MED cases
49 have no identifiable genetic mutation, and additional genetic etiologies of MED remain
50 to be identified.

51 SPARC-related modular calcium binding 2 (SMOC2) and SMOC1, its closest
52 homolog, are members of the protein family BM-40 (also known as secreted protein
53 acidic and rich in cysteines [SPARC] or osteonectin)^[12, 13]. BM-40 is a prototypic
54 collagen-binding matricellular protein that participates in regulating cell–matrix

55 interactions, in particular influencing bone mineralization, wound repair and other
56 biological functions. The BM-40 family of modular extracellular proteins is
57 characterized by a follistatin-like (FS) domain as well as an extracellular
58 calcium-binding (EC) domain with two EF-hand calcium-binding motifs. SMOC1 and
59 SMOC2 share a common domain organization, containing one FS domain, one EC
60 domain, two TY domains and one SMOC domain, a novel domain with no known
61 homologs. Increasing studies have shown that both proteins interact with the
62 receptor-mediated signaling of several growth factors and play diverse roles in
63 physiological processes involving matrix assembly and extensive tissue remodelling.

64 In this study, we investigated a family with autosomal dominant MED; we detected a
65 heterozygous c.1076T>G (p. Leu359Arg) missense mutation in *SMOC2* on exome
66 sequencing. To determine the *in vivo* pathophysiologic mechanism of SMOC2
67 mutation, we generated c.1076T>G knock-in mice. In contrast to wild-type mice,
68 mutant mice show a dysplastic tibial growth plate with disordered cells in the
69 proliferative zone and expanded hypertrophic zones. *In vivo* experiments further
70 demonstrated that decreased heparan sulfate proteoglycan(HSPG)-binding ability of
71 mutant *Smoc2* increased SMOC2 level in ECM, which competed to bind with bone
72 morphogenetic protein receptor (BMPR) and inhibit the BMP–Smad1/5/9 signaling
73 pathway. Co-immunoprecipitation supported that mutant SMOC2 lacked the ability to
74 interact with collagen IX but retained the ability to interact with COMP and MATN3.

75

76 **Results**

77 **Pedigree and clinical findings of the family with MED, which caused by a**
78 **c.1076T>G missense mutation in *SMOC2***

79

80 In the four successive generations of the family with MED, 8 patients were affected, as
81 confirmed clinically and radiologically; the male/female ratio was close to 1, which
82 suggested an autosomal dominant inheritance pattern (Figure. 1A). The proband IV-9
83 was a 4-year-old girl with knee pain and stiffness. Joint pain affecting the knee joint
84 occurred after exercise and she had difficulty rising from the floor. Radiographs
85 showed ossification of the femoral and tibial epiphysis that did not proceed
86 homogeneously from the centre to the periphery (Figure. 1B). All the other patients had
87 a history of pain and stiffness in joints and a shorter stature than average (Table 1).

88 To find the pathogenic gene, we performed exome sequencing of DNA from
89 patients II9, III14 and IV9 and found 9 variants (Table 2). *PABPC3* was not confirmed
90 by Sanger sequencing in this family, and another 7 variants, except *SMOC2*, could be
91 found in the normal population in the ExAC database (Table 2). Only the
92 NM_001166412.2:c.1076T>G, p.Leu359Arg (L359R) mutation in exon 11 of *SMOC2*
93 could not be found in the normal population. We confirmed a complete cosegregation
94 of the 1076G allele with MED in this family by Sanger sequencing (Figure. 1C). Amino
95 acid sequence alignment of *SMOC2* in 12 species showed that the leucine at position
96 359 was highly conserved (Figure1- figure supplement 1).

97

98 ***Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice developed short-limbed dwarfism**

99 In order to study the in vivo pathophysiologic mechanism of *SMOC2* mutation, we

100 generated c.1076T>G knock-in mice (Figure 2- figure supplement 1A). However,

101 normal Mendelian ratios were not observed in the offspring of all matings. Rare

102 homozygous mutant mice were generated (Table 3). The genotypes of the offspring

103 were confirmed by Sanger sequencing (Figure 2- figure supplement 1B). The

104 wild-type mice were labeled *Smoc2*^{+/+}, heterozygous mutant *Smoc2* mice *Smoc2*^{L359R/+},

105 and homozygous mutant *Smoc2* mice *Smoc2*^{L359R/L359R}.

106 The gross skeletons of *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice were normal as

107 compared with *Smoc2*^{+/+} mice at birth. At postnatal day 30 (P30), obvious differences

108 were observed. The body lengths of *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice were 7.2%

109 and 6.5% reduced as compared with *Smoc2*^{+/+} mice; the weights of *Smoc2*^{L359R/+} and

110 *Smoc2*^{L359R/L359R} mice were 2.2% and 9.7% reduced as compared with *Smoc2*^{+/+} mice

111 (Figure. 2A, C). At P63, the difference in body length among all the mice did not

112 expand. However, the weights of *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice were 10.8%

113 and 12.1% reduced as compared with *Smoc2*^{+/+} mice (Figure 2- figure supplement 2A).

114 At P30, the femur and tibia length of *Smoc2*^{L359R/+} mice was approximately 7% and

115 5.7% reduced as compared with *Smoc2*^{+/+} mice. The lengths of femur and tibia of

116 *Smoc2*^{L359R/L359R} mice were more than 17% and 15.5% shorter than those of *Smoc2*^{+/+}

117 mice (Figure. 2A, D). At P63, the tibia lengths of *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R}

118 mice were 7% and 8.5% shorter than those of *Smoc2*^{+/+} mice and the reduction in femur
119 lengths was reduced to approximately 5% and 8.1% (Figure 2- figure supplement 2B).

120

121 ***Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice had disorganized growth plate and**
122 **abnormal chondrocytes**

123 To determine the effect of mutant *Smoc2* on morphology of tibial growth plates, we
124 used haematoxylin and eosin (H&E) staining of tibial growth plates of all mice at P21
125 and P63. All tibial growth plates of studied mice were clearly divided into resting,
126 proliferative and hypertrophic zones. At P21, the widths of the growth plates from
127 *Smoc2*^{L359R/+} mice became wider because the hypertrophic zones were almost 30%
128 longer than those of *Smoc2*^{+/+} mice, but the resting and proliferative zones were still
129 similar to those of *Smoc2*^{+/+} mice (Figure. 2B, E). However, at P63, the widths of the
130 hypertrophic zones and ratios of width of hypertrophic zone to that of growth plates
131 tended to be normal (Figure. 2B, E). At P21, as compared with *Smoc2*^{+/+} mice, for
132 *Smoc2*^{L359R/L359R} mice, proliferative zones were almost 29% shorter and hypertrophic
133 zones were almost 18% wider (Figure. 2B, E). At P63, the proportions increased to
134 46% and 67% (Figure. 2B, E).

135 In the tibial growth plates of *Smoc2*^{+/+} mice at P21 and P63, the chondrocytes in the
136 resting, proliferative and hypertrophic zones were closely aligned, well organized and
137 arranged along the long axis of the tibia (Figure. 3A). The tibial growth plates of
138 *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice developed progressively dysplastic growth

139 plates from birth. The number of chondrocytes in the tibial growth plates were reduced
140 in these mice than *Smoc2*^{+/+} mice (Figure. 3B-D) and they were disorganized and failed
141 to arranged into a column, so hypocellular areas could be observed in the proliferative
142 zones and hyaline cartilage of proximal tibia (Figure. 3A).

143 On transmission electron microscopy of tibial growth plates of P21 mice, the cisternae
144 of rER in the chondrocytes were well organized and folded. However, in mutant mice,
145 the cell nuclei in chondrocytes were deformed and the nuclear membrane was
146 saw-tooth-shaped. Mutant mice showed some seriously dilated cisternae of rER
147 containing retained proteins in the chondrocytes. Almost all chondrocytes of mutant
148 mice contained seriously dilated cisternae of rER (Figure. 3A).

149

150 ***Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice showed chondrocyte apoptosis and**
151 **hypertrophy spatially dysregulated**

152 To determine the mechanism of the expansion of hypertrophic zones in mutant mice
153 tibial growth plates, we determined the relative levels of proliferation, apoptosis and
154 hypertrophy at P21. By using immunohistochemistry with proliferating cell nuclear
155 antigen (PCNA), a marker of proliferation, we found no significant differences in ratio
156 of PCNA-positive cells in both proliferative and hypertrophic zones from the tibial
157 growth plates (Figure. 4A, B). We performed terminal deoxynucleotidyltransferase
158 deoxyuridine triphosphate nick-end labeling (TUNEL) assay on the tibial growth plates
159 of P21 littermates to determine whether decreased apoptosis contributed to the

160 expanded hypertrophic zones in *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice. As expected,
161 mutant mice showed less TUNEL-positive chondrocytes in the hypertrophic zone as
162 compared with *Smoc2*^{+/+} mice (Figure. 4A, C). On western blot analysis at P21, Bcl-2
163 expression was increased and Bax expression was reduced in chondrocytes of mutant
164 mice, which showed the lower level of apoptosis in the mutant mice (Figure. 4D). To
165 test chondrocyte hypertrophy in the growth plates, we used immunohistochemistry and
166 real-time PCR (qPCR) analysis of Ihh. The level of mRNA expression of Ihh was
167 increased in *Smoc2*^{L359R/+} mice (Figure. 4E). On immunohistochemistry of cell
168 hypertrophy at P21 (Figure. 4A), the expression area of Ihh (area between the black
169 lines) was wider in *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice than *Smoc2*^{+/+} mice. The
170 dysregulated apoptosis and hypertrophy might lead to the expanded hypertrophic zones
171 in the tibial growth plates from mutant mice.

172

173 **Overexpressed SMOC2 and mutant SMOC2 blocked phosphorylation of**
174 **SMAD1/5/9**

175 Because BMP plays important role in initiation of chondrogenesis and previous study
176 showed that SMOC without EC domain inhibited BMP signalling^[14], we analyzed
177 whether mutant SMOC2 inhibited BMP signaling. We found that the number of
178 p-Smad1/5/9 positive cells decreased in primary chondrocytes and tibial growth plates
179 from mutant mice (Figure. 5A, C). The protein level of p-Smad1/5/9 also decreased in
180 mutant mice (Figure. 5B). On western blot analysis of p-SMAD1/5/9 in stably

181 transfected HEK293T cells showed that overexpressed SMOC2 and mutant SMOC2
182 able to block phosphorylation of SMAD1/5/9 (Figure. 5D) and inhibit the activity of
183 BMP2 (Figure 5- figure supplement 1A), which signals through SMAD1/5/9.

184

185 **Overexpressed SMOC2 and mutant SMOC2 inhibited BMP signaling by**
186 **competitive binding of BMPR1B**

187 In previous study, SMOC1 could inhibit BMP signaling by activating the
188 mitogen-activated protein kinase (MAPK) pathway^[14]. We used MG132 and BMP2
189 treated HEK293T cells stably transfected with or without wild *SMOC2* cells (Figure 5-
190 figure supplement 1B). MYC but not p-SMAD1/5/9 level was rescued and p-SMAD1
191 (Ser206) level showed no obvious change in cells stably transfected with wild-type
192 *SMOC2*-MYC incubated in MG132 at the indicated doses.

193 Thomas et al. found that SMOC-EC domain could expand the range of BMP
194 signalling by competitive binding of HSPG with a similar affinity to BMP2^[14]. We
195 performed solid phase binding assay (SPB) and detected dose-dependent binding of the
196 SMOC2 EC domain or mutant SMOC2 EC domain to HSPG, but the mutant SMOC2
197 EC domain showed weak binding to HSPG (Figure. 5E). Considering that MED
198 proteins are combined in the ECM, we examined the ability of wild-type and mutant
199 SMOC2 to combine with COMP, MATN3 or COL9A1 by Co-IP and SPB. Mutation
200 on SMOC2 EC domain decreased the ability of binding to COL9A1 (Figure. 5F-H)
201 rather than COMP and MATN3 (Figure 5- figure supplement 2).

202 Because SMOC2 did not inhibit BMP signaling by activating the MAPK/ERK pathway,
203 we investigated whether SMOC2 acted by directly binding to the ligand. Western blot
204 analysis showed that inhibition of p-SMAD1/5/9 by SMOC2 could be rescued by
205 activated BMP receptors (Figure. 6A). To clarify the exact BMP receptor binding to
206 SMOC2, we used Co-IP to study the ability of SMOC2 to interact with ACVR1,
207 BMPR1A and BMPR1B. Only BMPR1B could be detected in the precipitate by
208 SMOC2 (Figure. 6B-D). BMPR1B could also be detected in the precipitate by mutant
209 SMOC2 (Figure. 6E). Therefore, both wild-type and mutant SMOC2 inhibited BMP
210 signaling by binding to BMPR1B.

211 According to the above results, we concluded that overexpression of SMOC2 led to too
212 much free SMOC2 competing with BMP2 for binding to BMPR1B. Thus, we assumed
213 that the ability of mutant SMOC2 binding to the matrix proteins declined, and more free
214 mutant SMOC2 could compete with BMP2 for BMPR1B binding (Figure. 7).

215

216 **Discussion**

217 In this study, we demonstrated a four-generation MED family with complicated
218 phenotypes and identified an unreported pathogenic gene, *SMOC2*, establishing a close
219 relationship of *SMOC2* with MED for the first time. The missense mutation c.1076T>G
220 (p. Leu359Arg) of *SMOC2* was suggested to be the causative variant.

221 Of note, we detected a meaningful phenotype, the enlarged hypertrophic zone in tibia
222 growth plates in the *Smoc2* knock-in mice model, which had been observed in some

223 knockout mice models, including those deficient in *Matn3*^[15], *Smad3*^[16], and *Fgf18*^[17].
224 The mechanisms of expanded hypertrophic zones are different. The expanded
225 hypertrophic zones in *Matn3*-deficient and *Smad3*-deficient mice were due to
226 accelerated differentiation of chondrocytes^{[7][16]}. Both proliferative and hypertrophic
227 zones were expanded in *Fgf18*-deficient mice, which also displayed delayed
228 ossification and decreased expression of osteogenic markers^[17]. In our study,
229 chondrocyte proliferation did not differ in all mice. Chondrocyte apoptosis was reduced
230 in the hypertrophic zones of tibial growth plates from mutant mice. Furthermore, the
231 increased expression of Ihh in mutant mice may be another reason for the expanded
232 hypertrophic zones. Whether this is related to delayed ossification and matrix
233 resorption needs further investigation.

234 SMOC2 has been found involved in cell cycle progression by maintaining
235 integrin-linked kinase activity during the G1 phase^[18]. Both a homozygous mutation
236 (c.84pI>G>T) in the canonical-splice donor site of intron 1 and c.681T>A(p.C227X)
237 nonsense mutations in SMOC2 caused dental development defects^[19, 20]. However, no
238 dental defects were observed in our family or the knock-in mouse model. Recent study
239 has shown that overexpressing *SMOC2* in osteoprogenitor cells inhibits osteogenic
240 differentiation and ECM mineralization^[21]. *SMOC2* was also considered an antagonist
241 of BMP signaling. Study of zebrafish showed that Smoc2 can inhibit the transcription
242 of BMP target genes^[22]. Another study of Xenopus and Drosophila showed that SMOC
243 can activate MAPK signals, thereby inhibiting the BMP signaling downstream of its

244 receptor, and can expand the range of BMP signaling by competing HSPG binding^{[14,}
245^{23]}.

246 SMOC2 and its homologue SMOC1 contain an FS domain, two TY domains
247 separated by one SMOC domain, and an EC domain with two EF-hand
248 calcium-binding motifs family^[12, 13]. The EC domain of BM-40 protein families have
249 diverse biological functions such as transducing signals of calcium as a secondary
250 signal, maintaining conformation by binding with calcium, and binding to collagenous
251 proteins^[24]. Homozygous missense variants in the EC domain of BM-40 abolished the
252 affinity of BM-40 to collagen type I and caused recessive osteogenesis imperfecta type
253 IV^[25]. Previous study has shown that the EC domain of SMOC2 is fully conserved and
254 is presumably important by binding calcium for the structure of SMOC2^[13, 26]. The
255 SMOC2 EC domain mediates cell attachment by binding to $\alpha v\beta 6$ and $\alpha v\beta 1$ integrins on
256 cell surface receptors^[27]. In the present report, the Leu359Arg mutant in SMOC2
257 responsible for MED in our family is strictly conserved in evolution and is located in
258 the first EF-hand motif of the EC domain. When we first focused on the interaction of
259 SMOC2 and collagen IX, we found that the mutation could affect the interaction
260 affinity of SMOC2 and collagen IX. So, the reduced interaction between SMOC2 and
261 collagen IX may alter the biological function of collagen IX or SMOC2 and result in
262 this MED. Certainly, its detailed mechanism needs to be elucidated.

263 SMOC2 is an important structural anchor in the ECM networks of cartilage, like
264 other members of the BM40/SPARC family, but SMOC2 can also interact with

265 receptors on the cell surface, acting as a regulator of cell–matrix interaction to activate
266 or inactivate some signaling pathways. Previous evidence demonstrated that SMOC2 is
267 involved in the pathways fibroblast growth factor or vascular endothelial growth factor
268 signaling^[28], TGF- β 1-SMAD2/3^[29, 30], WNT/ β -catenin^[31], and BMP-SMAD1/5/9^{[14,}
269^{23, 32]}, which play an important role in chondrogenesis. Considering the importance of
270 the BMP-SMAD1/5/9 pathway in endochondral bone formation^[33-36], we assessed
271 whether the mutant Smoc2 affected the BMP-SMAD1/5/9 pathway. Our study
272 confirmed that overexpression of wild-type SMOC2 could antagonize BMP signaling,
273 and mutant SMOC2 overexpression still retained this antagonist property intact in vitro,
274 which was due to the mutant site located in the EC domain. In knock-in mice,
275 heterozygous and also homozygous mutant Smoc2 inhibited BMP signaling, which is
276 consistant with wild-type SMOC2 overexpression. So, we conclude that the pathogenic
277 mechanism in this MED family is inhibition of BMP signaling by the mutation (Figure.
278 7).

279 The SMOC EC (EC domain only) domain could bind HSPG with similar affinity to
280 BMP2. Low levels of SMOC competitively bound to HSPG and released BMP to bind
281 with BMPR and activate BMP signaling, whereas high amounts of SMOC both bound
282 HSPG and inhibited BMP signaling. We also found that the mutant SMOC2 EC
283 domain reduced or abolished the interaction of SMOC2 with collagen IX and HSPG,
284 which at least led to increased insoluble SMOC2 level in the ECM of cartilage.

285 In our study, inhibiting the overexpression of SMOC2 to BMP signaling was due to
286 neither increasing degradation of phospho-SMAD 1/5/9 nor MAPK-mediated
287 phosphorylation of the Smad linker region (Figure 5- figure supplement 1B). Rescue
288 experiments with the BMP receptors ACVR1, caBMPR1A and caBMPR1B further
289 suggests that its inhibition mainly depends on competitive BMP–receptor binding,
290 especially BMPR1B binding, which was not altered by the Leu359Arg mutant in the
291 SMOC2 EC domain. This contrasts with previous study finding that SMOC, mainly
292 SMOC1, acted downstream of the BMPR via MAPK-mediated phosphorylation of the
293 Smad linker region^[14].

294 In conclusion, our evidence supports that *SMOC2* is a new MED-causative gene
295 and illustrates the importance of *SMOC2* in the development of cartilage and long
296 bones. Ultimately, a complete understanding of the molecular genetics and cell-matrix
297 pathophysiology of MED will aid in the diagnosis, prognosis, and treatment of patients
298 and families with MED and will also help in understanding the disease mechanisms of
299 more common conditions such as osteoarthritis.

300

301 **Materials and Methods**

302 **Family**

303 We were contacted by a Chinese family that had several adults with short stature and
304 osteoarthritis. All patients in this family received a diagnosis of MED based on clinical
305 and radiography findings. Genomic DNA was extracted from peripheral venous blood

306 by using standard protocols. This study was approved by the medical ethics committees
307 of Shandong University, China and followed the principles of the Declaration of
308 Helsinki. Before the study initiation, written informed consent was obtained from
309 participating individuals.

310

311 **Exome sequencing, variant filtration and mutation detection**

312 We performed exome sequencing of DNA from patients II9, III14 and IV9 in this
313 family by using SureSelect Human All Exon Kit (Agilent, Santa Clara, CA) to capture
314 the exome and HiSeq2000 platform (Illumina, San Diego, CA) for sequencing. All
315 variations were filtered by using dbSNP137, the 1000 Genomes Project, and HapMap8
316 databases. Sanger sequencing was used to confirm the mutation in *SMOC2* in this
317 family. PCR involved using 40 ng genomic DNA and Easy Taq (Transgen Biotech,
318 Beijing). The PCR products were sequenced by Biosune Biotechnology (Shanghai) and
319 compared with the reference sequence in NCBI (<https://blast.ncbi.nlm.nih.gov>). To
320 predict the detrimental effect caused by the mutation, bioinformatics analysis of the
321 p.Leu359Arg mutation involved using PolyPhen-2, Mutation Taster
322 (<http://www.mutationtaster.org/>) and SIFT.

323

324 **Construction of the targeting vector and generation of chimeric mice**

325 A targeting vector containing SMOC2 exon10, 11 and 12 and the mutation allele
326 flanked by a loxP site and a loxP-neo cassette was constructed, which was introduced

327 into mouse embryonic stem (ES) cells. After removing the cassette, the targeting ES
328 cells were injected into C57BL/ 6 (B6) blastocysts to generate chimeras (F0), which
329 were mated with C57BL/6 mice to generate F1 heterozygous offspring. Generation of
330 the mouse model was performed by Cyagen Biosciences (Guangzhou, China). The
331 genotypes of mice were determined by Sanger sequencing. The sequence containing
332 the mutation was amplified with primers (Table 4). The PCR products were sequenced
333 by Biosune Biotechnology (Shanghai) and compared with the reference sequence in
334 NCBI.

335

336 **Cell culture**

337 The cells The human embryonic kidney 293T (HEK293T) cell were cultured in DMEM
338 containing 10% FBS (Thermo Fisher Scientific), 100 U/ml penicillin (A603460,
339 Sangon Biotech, Shanghai) and 100 µg/ml streptomycin (A100382-0050, Sangon
340 Biotech) at 37°C with 5% CO₂. Primary chondrocytes were taken from the knees of P6
341 littermates. F-12 nutrient medium was purchased from Gibco (Thermo Fisher
342 Scientific). Cells were cultured in F12 containing 10% FBS at 37°C with 5% CO₂.

343

344 **Cell transfection and treatment**

345 Recombinant lentiviruses and stably transfected cell line were established as
346 described in previous study^[37]. Stably transfected cells were seeded in a 100-mm² dish
347 at 80% density. After maintaining in DMEM with 10% FBS overnight, 4–12 µg

348 pCMV3-COMP-HA (HG10173-CY), pCMV3-MATN3-HA (HG11951-UT), or
349 pCMV3-COL9A1-HA (HG12231-CY, all Sino Biological, China); pcDNA3-ACVR1
350 (80870), pcDNA3-caBMPR1A (80873) or pcDNA3-caBMPR1B (80882); and
351 pcDNA3-ACVR1 (80871), pcDNA3-caBMPR1A (80874) or pcDNA3-caBMPR1B
352 (80883, all Addgene) were transfected into stably transfected cells by using 12 μ l PEI
353 (BMS1003-A, Thermo Fisher Scientific). At 48 h after transfection, cells were
354 collected. HEK293 cells stably transfected with or without wild SMOC2 -MYC were
355 incubated in serum-free medium with MG132 (A2585, ApexBio Technology) at
356 increasing doses (10 μ M, 20 μ M, 50 μ M) for 1h and then incubated with BMP at 20
357 ng/ml for 1h. MYC, p-SMAD1/5/9, p-SMAD1 (Ser206), SMAD1 and GAPDH in
358 whole cell protein lysates were analyzed by western blot.

359

360 **Analysis of the skeleton**

361 The body weights of littermates were measured on days 30 and 63. The body length
362 measurements were taken from X-ray radiographs by using X-RAD225 OptiMAX. The
363 lengths of isolated femurs and tibias were measured by using a vernier caliper.

364

365 **Alizarin Red and Alcian Blue double-staining**

366 The newborn littermates were sacrificed and the skin, muscle, viscera and soft tissues
367 were removed. After fixation in absolute ethanol and acetone, alcian blue (0.1%,
368 G1027, Servicebio Technology Co. Ltd, Wuhan, China) and alizarin red S (0.2%,

369 G1038, Servicebio Technology) staining of skeleton from newborn littermates was
370 performed.

371

372 **Skeleton tissue paraffin section**

373 Hind limbs from littermates at postnatal day 0 (P0), 21 (P21), 63 (P63) and heart, liver,
374 kidney, stomach, duodenum, colon, bladder, cerebrum, cerebellum, gastrocnemius,
375 epiphyseal growth plate of tibia, rib, sternum, vertebra and mandible from *Smoc2*⁺⁺
376 mice at P30 were dissected. After fixation overnight in 4% paraformaldehyde and
377 decalcification in 20% EDTA for 1 month, bone samples were embedded in paraffin
378 wax and cut into 4 μ m sections.

379

380 **Histological analysis**

381 The slides of tissue samples were soaked in 3% H₂O₂ (ZLI-9311, ZSGB-BIO, China)
382 for 15 min to quench endogenous peroxidase activity. An amount of 0.1% trypsin
383 (A100458-0050, Diamond) was used to recover antigen and 20% goat serum (ab7481,
384 Abcam) was used for blocking. The 4- μ m paraffin-embedded sections of tibia were
385 incubated overnight at 4°C with anti-PCNA (1:20, AB0051, Abways Technology),
386 anti-Ihh (1:100, 13388-I-AP, Cell Signaling Technology) or
387 anti-phospho-Smad1(Ser463/465)/Smad5 (Ser463/465)/Smad9 (Ser465/467) (1:100,
388 13820S, Cell Signaling Technology) and 1 h with the secondary antibody at room
389 temperature. Then, sections were developed by using 3,3-diaminobenzidine (DAB)

390 (ZLI-9017, ZSGB-BIO). After dehydrating, clearing and mounting, the slices were
391 photographed by microscopy (BX41, OLYMPUS, JPN).

392 For H&E staining (G1005-100, Servicebio Technology, Wuhan, China), the 4- μ m
393 paraffin-embedded sections of tibia were stained in 10% hematoxylin for 5 min and in
394 1% eosin for 1 min.

395 For TUNEL analysis, One Step TUNEL Apoptosis Assay Kit (C1090, Beyotime
396 Biotechnology, Shanghai) was used and visualization was by laser-scanning confocal
397 microscopy (BX51, OLYMPUS, Japan). Nuclei were stained with DAPI (ab104139,
398 Abcam) and apoptotic cells were labeled with Cyanine 3 (Cy3).

399

400 **Immunofluorescence analysis**

401 For immunofluorescence experiments, monolayers of primary chondrocytes from
402 littermates were soaked in 0.1% TritonX-100 (T0694-100ML, Sangon Biotech) in PBS
403 and blocked with 20% goat serum (ab7481, Abcam), then incubated with antibodies
404 anti-Phospho-Smad1 (Ser463/465)/Smad5 (Ser463/465)/Smad9 (Ser465/467) (1:100,
405 13820S, Cell Signaling Technology) overnight at 4 °C and secondary antibody [Alexa
406 Fluor 594 – conjugated Affinipure Donkey Anti-Rabbit IgG(H+L) antibody (SA0006-8,
407 Proteintech Group)] for 1 h at 37 °C in dark. Cell nuclei were stained with
408 4',6-diamidino-2-phenylindole (DAPI) (ab104139, Abcam). After sealing with neutral
409 gum, sections were photographed by laser-scanning confocal microscopy (BX51,
410 OLYMPUS, Japan).

411

412 **Co-immunoprecipitation (Co-IP)**

413 The proteins from stably transfected cells transiently transfected with *COMP*, *MATN3*
414 or *COL9A1* and *ACVR1*, *BMPR1A* or *BMPR1B* were extracted by using IP lysis buffer
415 with 1% protease inhibitor cocktail (K1007, ApexBio Technology) and ultrasonication.
416 Extracts were mixed with antibody-coated Dynabeads (10004D, Invitrogen, Thermo
417 Fisher Scientific) and incubated at 4°C for 3 h. After 3 washes in washing buffer,
418 immunoprecipitated proteins were eluted in 7.5 µl 2×SDS loading buffer by heating at
419 99°C for 10 min for western blot analysis.

420

421 **Western blot analysis**

422 Total cell lysates or tissue lysates from the P21 mice tissue including heart, lung, liver,
423 muscle, brain, kidney, testis, stomach, duodenum, tibia, lumbar vertebral and sternum
424 were collected in RIPA lysis Buffer (P0013C, Beyotime Biotechnology) with 1%
425 protease inhibitor cocktail (K1007, ApexBio Technology) and 1% phosphatase
426 inhibitor (K1015, ApexBio Technology). Protein concentration was determined
427 according to the instructions of BCA Kit (Boster Biological Technology, Wuhan,
428 China). An amount of 35 or 40 µg whole cell lysates or tissue lysates were resolved by
429 10% SDS-PAGE and transferred onto PVDF membranes (Merck Millipore, Germany).
430 After incubation in 5% non-fat milk for 1 h at room temperature, the membrane was
431 incubated with the anti-Phospho-Smad1 (Ser463/465)/Smad5 (Ser463/465)/Smad9

432 (Ser465/467) (1:100, 13820S, Cell Signaling Technology), anti-HA (1:10000,
433 66006-2-Ig, Proteintech Group), anti-MYC (1:10000, 60003-2-Ig, Proteintech Group),
434 anti-SMAD1 (1:1000, D151630, Sangon Biotech) or anti-GAPDH (1:20000,
435 60004-1-Ig, Proteintech Group) overnight at 4°C and horseradish
436 peroxidase-conjugated secondary antibody for 1 h at room temperature. Signals were
437 visualized by ECL blotting detection reagents (32209, Thermo) and exposed to X-ray
438 films (SUPER RX-N-C, FUJIFILM).

439

440 **Real time PCR (qRT-PCR)**

441 Cartilages from proximal tibias were dissected from wild-type and mutant mice. Then
442 total RNA from cartilages was isolated by using TRIzol (Invitrogen) and cDNA was
443 generated by using random primers. Real time PCR was performed with the SYBR
444 Green Real Time PCR Master Mix (CW0957, CWBIO, CHN) and primers
445 (Supplemental Table S4).

446

447 **Solid phase binding assay (SPB)**

448 *SMOC2* gene, SMOC2 FTST domain, SMOC2 EC domain and Mut SMOC2 EC
449 domain containing the His tag were synthesized by Bioss Biotechnology. HSPG
450 (H4777, Sigma-Aldrich) or COL9A1 (TP318130, OriGene Technologies) was coated
451 in the 96-well plates at 40 ng/well. Nonspecific binding sites were blocked with 30%
452 BSA for 2 h at temperature. Wild-type or mutant SMOC2 EC domain (Bioss) was

453 added to the wells at increasing doses (10, 20, 50, 100 and 200 ng/well) and incubated
454 for 2 h at room temperature. Wells were incubated with anti-SMOC2 primary antibody
455 (1:1000, bs-7506R, Bioss) overnight at 4°C and horseradish peroxidase-conjugated
456 secondary antibody for 1 h at room temperature. Then 100 µl TMB (C520026,
457 EL-TMB Chromogenic Reagent kit, Sangon Biotech) was added to every well and
458 plates were kept in the dark until a blue color was obtained. Then, 50 µl stop buffer
459 (C520026, EL-TMB Chromogenic Reagent kit, Sangon Biotech) was added to stop the
460 reaction and OD at 450 nm was measured.

461

462 **Transmission electron microscopy (TEM)**

463 TEM was performed by Servicebio Technology. The tibial growth plates from
464 littermates were dissected and fixed in 4% PFA for 4 h. After a wash with 0.1 M sodium
465 cacodylate buffer for 3 times, the samples were fixed with 1% osmium tetroxide for 2 h
466 at room temperature. Samples were dehydrated through ascending ethanol series and
467 ethanol was replaced by acetone. Then samples were embedded with 812 embedding
468 medium and incubated for 48 h at 60°C. Samples were cut at 60-80 nm and stained with
469 uranyl acetate and lead citrate for 15 min and images were obtained by using an
470 HITACHI Transmission Electron Microscope (HT7700).

471

472 **Statistical analysis**

473 Unpaired two-tailed Student *t* test was used to analyze the results of the body length and
474 weight of *Smoc2*^{+/+}, *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice at P30 and P63, the length
475 of tibia and femur of *Smoc2*^{+/+}, *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice at P30 and P63,
476 the width of growth plates and the ratio of hypertrophic zone to that of a growth plate of
477 *Smoc2*^{+/+}, *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice at P21 and P63 and immunostaining
478 analysis. P<0.05 was considered statistically significant.

479

480 **Acknowledgements**

481 We thank the patients and their families for their participation. This work was
482 supported by the National Natural Science Foundation of China (81671114,
483 81471602, 81741055, 81873878) and Natural Science Foundation of Shandong
484 Province (2015GSF118050, ZR2015HZ002, ZR2016HZ01, ZR2012HQ015) and the
485 Key Technology Research and Development Program of Shandong (2016ZDJS07A08,
486 2018CXGC1211).

487

488 **Competing interests**

489 The authors declare no conflict of interest.

490

491 **References**

- 492 1. Chapman KL, Briggs MD, Mortier GR: **Review: clinical variability and genetic heterogeneity**
493 **in multiple epiphyseal dysplasia.** *Pediatr Pathol Mol Med* 2003, **22**(1):53-75.
- 494 2. Anthony S, Munk R, Skakun W, Masini M: **Multiple epiphyseal dysplasia.** *J Am Acad Orthop
495 Surg* 2015, **23**(3):164-172.

496 3. Briggs MD, Hoffman SM, King LM, Olsen AS, Mohrenweiser H, Leroy JG, Mortier GR, Rimoin
497 DL, Lachman RS, Gaines ES *et al*: **Pseudoachondroplasia and multiple epiphyseal dysplasia**
498 **due to mutations in the cartilage oligomeric matrix protein gene**. *Nat Genet* 1995,
499 **10**(3):330-336.

500 4. Hecht JT, Nelson LD, Crowder E, Wang Y, Elder FF, Harrison WR, Francomano CA, Prange CK,
501 Lennon GG, Deere M *et al*: **Mutations in exon 17B of cartilage oligomeric matrix protein**
502 **(COMP) cause pseudoachondroplasia**. *Nat Genet* 1995, **10**(3):325-329.

503 5. Czarny-Ratajczak M, Lohiniva J, Rogala P, Kozlowski K, Perala M, Carter L, Spector TD,
504 Kolodziej L, Seppanen U, Glazar R *et al*: **A mutation in COL9A1 causes multiple epiphyseal**
505 **dysplasia: further evidence for locus heterogeneity**. *Am J Hum Genet* 2001, **69**(5):969-980.

506 6. Muragaki Y, Mariman EC, van Beersum SE, Perala M, van Mourik JB, Warman ML, Olsen BR,
507 Hamel BC: **A mutation in the gene encoding the alpha 2 chain of the fibril-associated**
508 **collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2)**. *Nat Genet* 1996,
509 **12**(1):103-105.

510 7. Paassilta P, Lohiniva J, Annunen S, Bonaventure J, Le Merrer M, Pai L, Ala-Kokko L: **COL9A3: A**
511 **third locus for multiple epiphyseal dysplasia**. *Am J Hum Genet* 1999, **64**(4):1036-1044.

512 8. Chapman KL, Mortier GR, Chapman K, Loughlin J, Grant ME, Briggs MD: **Mutations in the**
513 **region encoding the von Willebrand factor A domain of matrilin-3 are associated with**
514 **multiple epiphyseal dysplasia**. *Nat Genet* 2001, **28**(4):393-396.

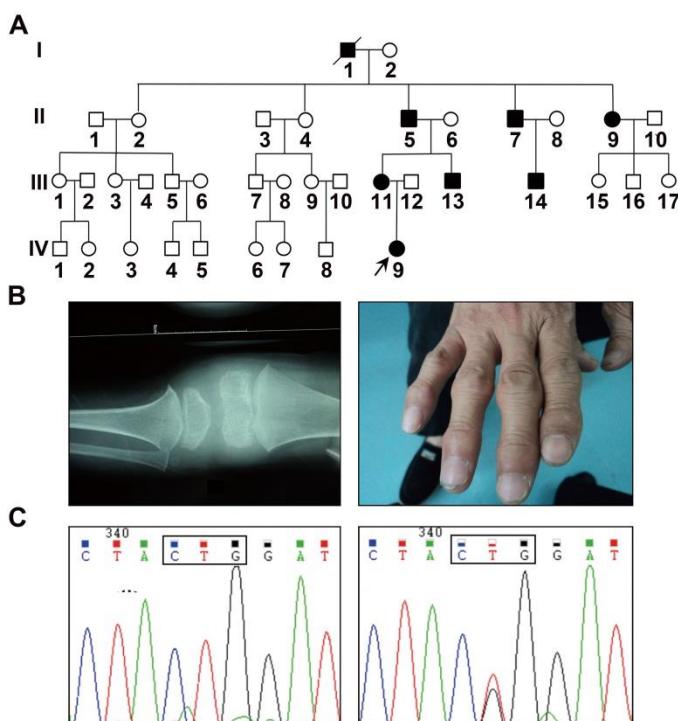
515 9. Dasa V, Eastwood JRB, Podgorski M, Park H, Blackstock C, Antoshchenko T, Rogala P, Bieganski
516 T, Jazwinski SM, Czarny-Ratajczak M: **Exome sequencing reveals a novel COL2A1 mutation**
517 **implicated in multiple epiphyseal dysplasia**. *Am J Med Genet A* 2019, **179**(4):534-541.

518 10. Superti-Furga A, Neumann L, Riebel T, Eich G, Steinmann B, Spranger J, Kunze J: **Recessively**
519 **inherited multiple epiphyseal dysplasia with normal stature, club foot, and double layered**
520 **patella caused by a DTDST mutation**. *J Med Genet* 1999, **36**(8):621-624.

521 11. Balasubramanian K, Li B, Krakow D, Nevarez L, Ho PJ, Ainsworth JA, Nickerson DA, Bamshad
522 MJ, Immken L, Lachman RS *et al*: **MED resulting from recessively inherited mutations in the**
523 **gene encoding calcium-activated nucleotidase CANT1**. *Am J Med Genet A* 2017,
524 **173**(9):2415-2421.

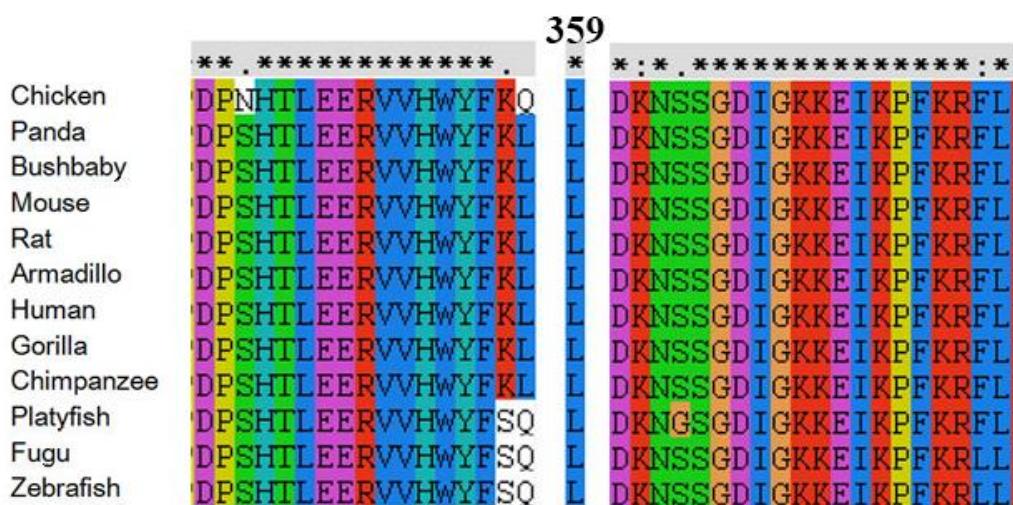
525 12. Vannahme C, Smyth N, Miosge N, Gosling S, Frie C, Paulsson M, Maurer P, Hartmann U:
526 **Characterization of SMOC-1, a novel modular calcium-binding protein in basement**
527 **membranes**. *J Biol Chem* 2002, **277**(41):37977-37986.

528 13. Vannahme C, Gosling S, Paulsson M, Maurer P, Hartmann U: **Characterization of SMOC-2, a**
529 **modular extracellular calcium-binding protein**. *Biochem J* 2003, **373**(Pt 3):805-814.

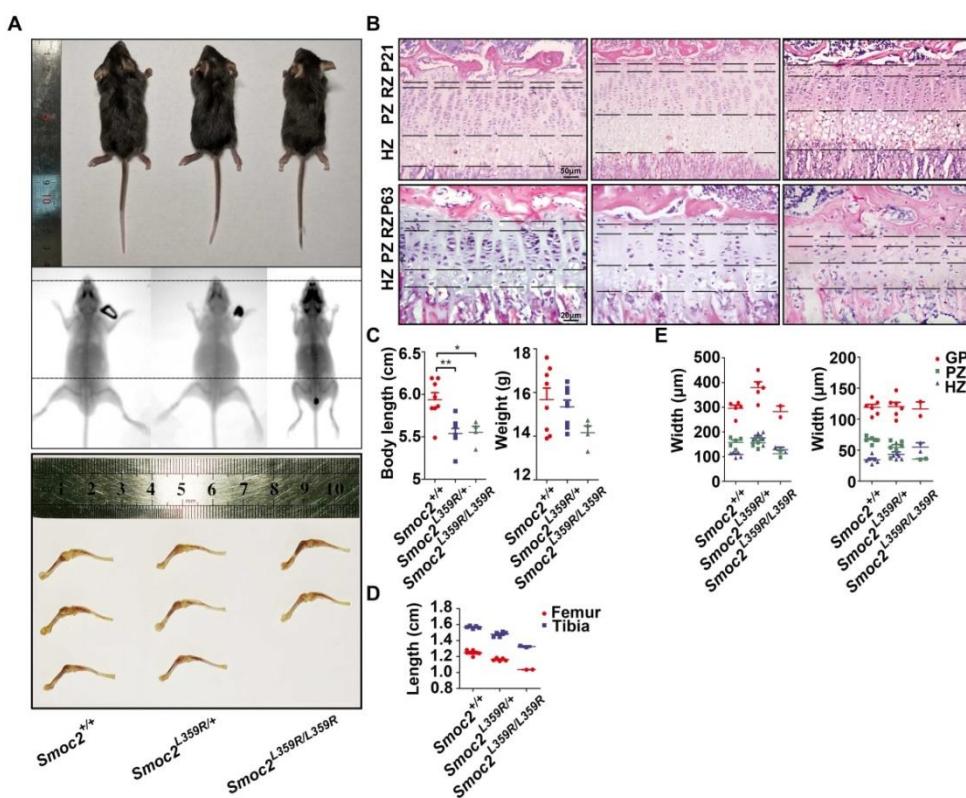

530 14. Thomas JT, Eric Dollins D, Andrykovich KR, Chu T, Stultz BG, Hursh DA, Moos M: **SMOC can act**
531 **as both an antagonist and an expander of BMP signaling**. *Elife* 2017, **6**.

532 15. van der Weyden L, Wei L, Luo J, Yang X, Birk DE, Adams DJ, Bradley A, Chen Q: **Functional**
533 **Knockout of the Matrilin-3 Gene Causes Premature Chondrocyte Maturation to**
534 **Hypertrophy and Increases Bone Mineral Density and Osteoarthritis**. *The American journal*
535 *of pathology* 2006, **169**(2):515-527.

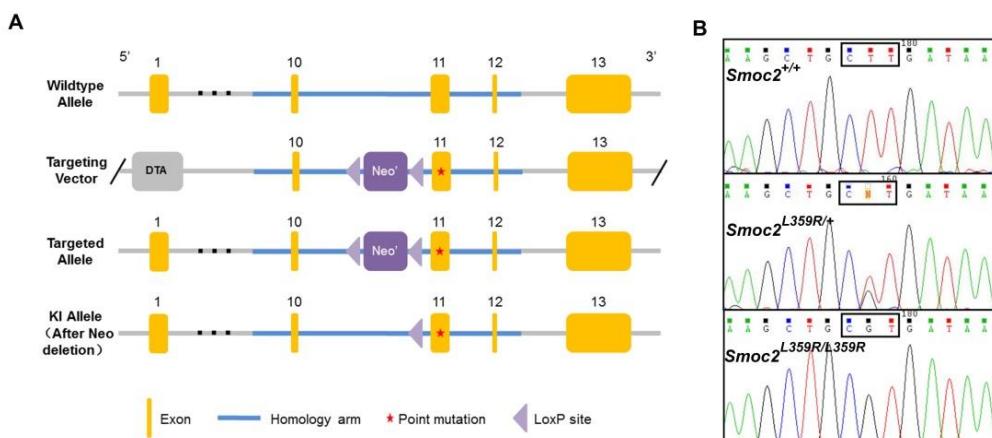
536 16. Xiao Yang, Lin Chen, Xiaoling Xu, Cuiling Li, Cuifen Huang, Deng C-X: **TGF-beta_Smad3 signals**
537 **repress chondrocyte hypertrophic differentiation and are required for maintaining articular**



598


599 Figure 1. Identification of a mutation in *SMOC2* in a Chinese MED family. A:
600 Pedigree of a Chinese family with autosomal dominant MED in this study. B: Clinical
601 photographs and radiographs of the affected individuals in this family. The picture in
602 the left is anterior-posterior (AP) view of the swelling knee joints of IV9, which showed
603 swelling joint and uneven bone density in epiphysis. The picture in the right is clinical
604 photographs of II7, which showed the swelling finger joints. C: Partial *SMOC2*
605 sequence showed the heterozygous c.1076T>G, p.Leu359Arg mutation in exon 11 of
606 the *SMOC2* gene in the affected family members compared to unaffected family
607 members (normal). Mutant codon (CTG to CGG) is marked by a black box.

608


609 Figure 1-figure supplement 1. Evolutionary conservation of the leucine at position 359
610 of SMOC2.

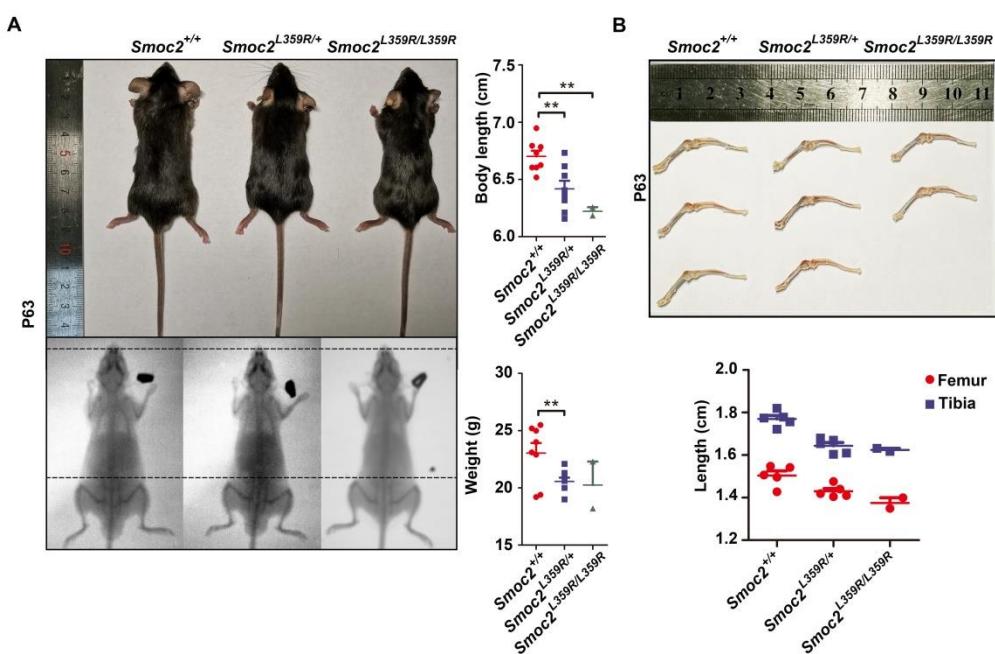
611

612

613 Figure 2. The development of mutant mice was inhibited. A: Photographs and
614 radiographs of *Smoc2*^{+/+}, *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice and femurs and tibias
615 of them at P30. Black dotted lines are aligned at the tip of the nose and the top of the
616 pelvis of the *Smoc2*^{+/+} mouse. C: Body lengths and weights of all mice were measured
617 at P30. (n=8:8:2, ★ P<0.05, ★★ P<0.01 by t-test.). D: Lengths of femurs and tibias
618 of all mice at P30. (n=5:5:2). B: Hematoxylin and eosin (H&E) staining of tibial growth
619 plates and the hypertrophic zone of tibial growth plate from P21 (the first row) and P63
620 (the second row) mice. The left column is tibial growth plates of *Smoc2*^{+/+}, the middle
621 column is tibial growth plates of *Smoc2*^{L359R/+} and the right column is tibial growth
622 plates of *Smoc2*^{L359R/L359R}. RZ, resting zone; PZ, proliferative zone; HZ, hypertrophic
623 zone; GP, growth plate. E: Widths of growth plates, proliferative zones and
624 hypertrophic zones of all mice at P21 (left) and P63 (right) (n=5:5:2).

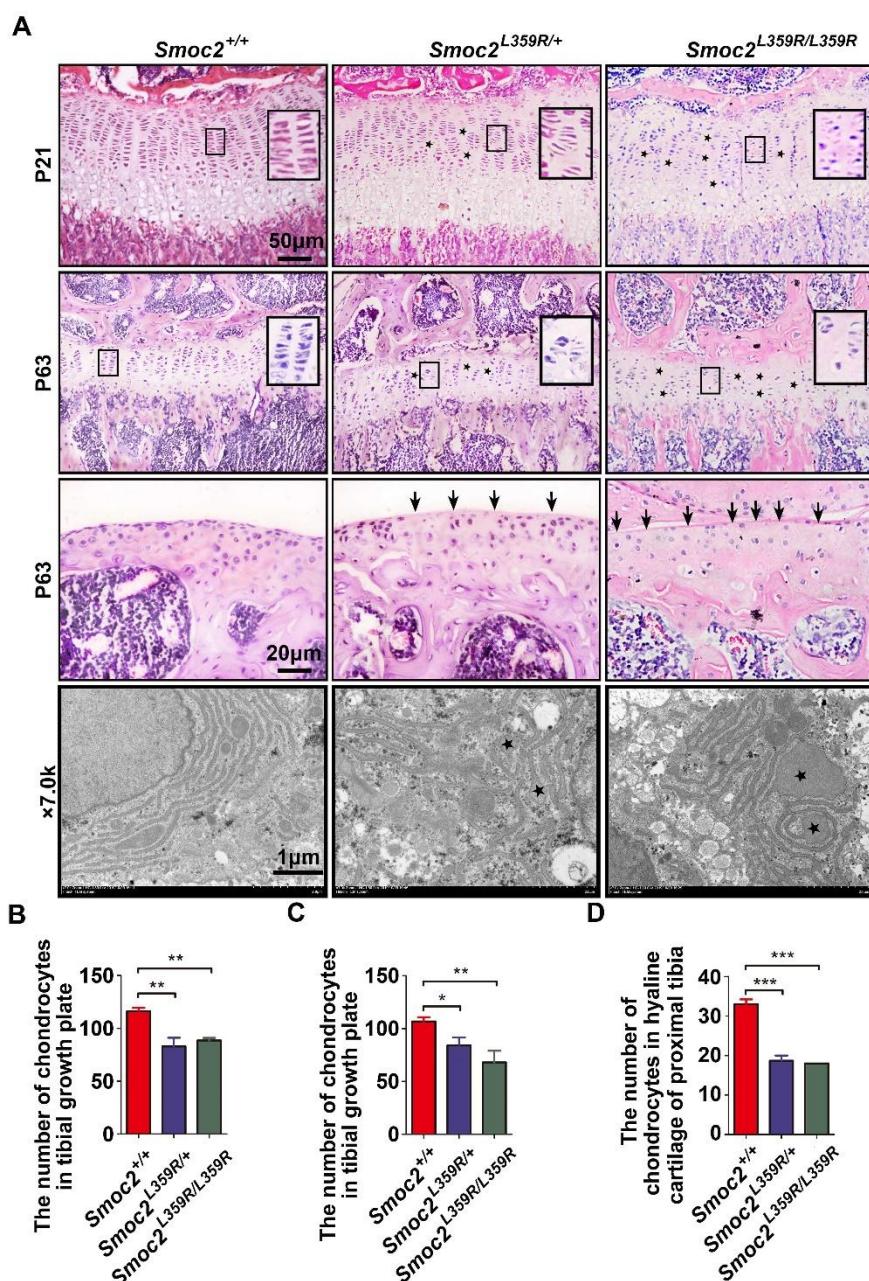
625

626 Figure 2- figure supplement 1. The construction of mutant SMOC2 mouse model. A:

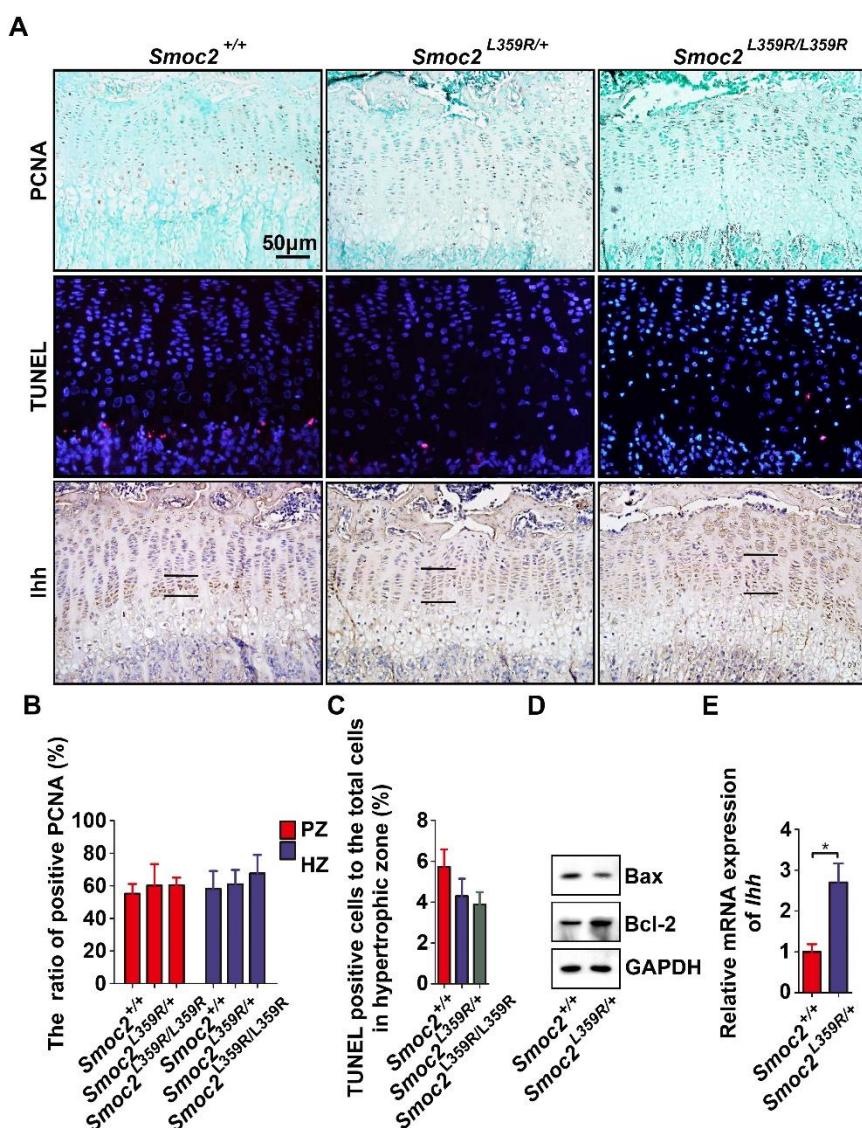

627 The targeting construct with LoxP sequences indicated by arrowheads and the site of

628 the mutation by a red pentagram. B: Sequencing of mutation-positive homologous

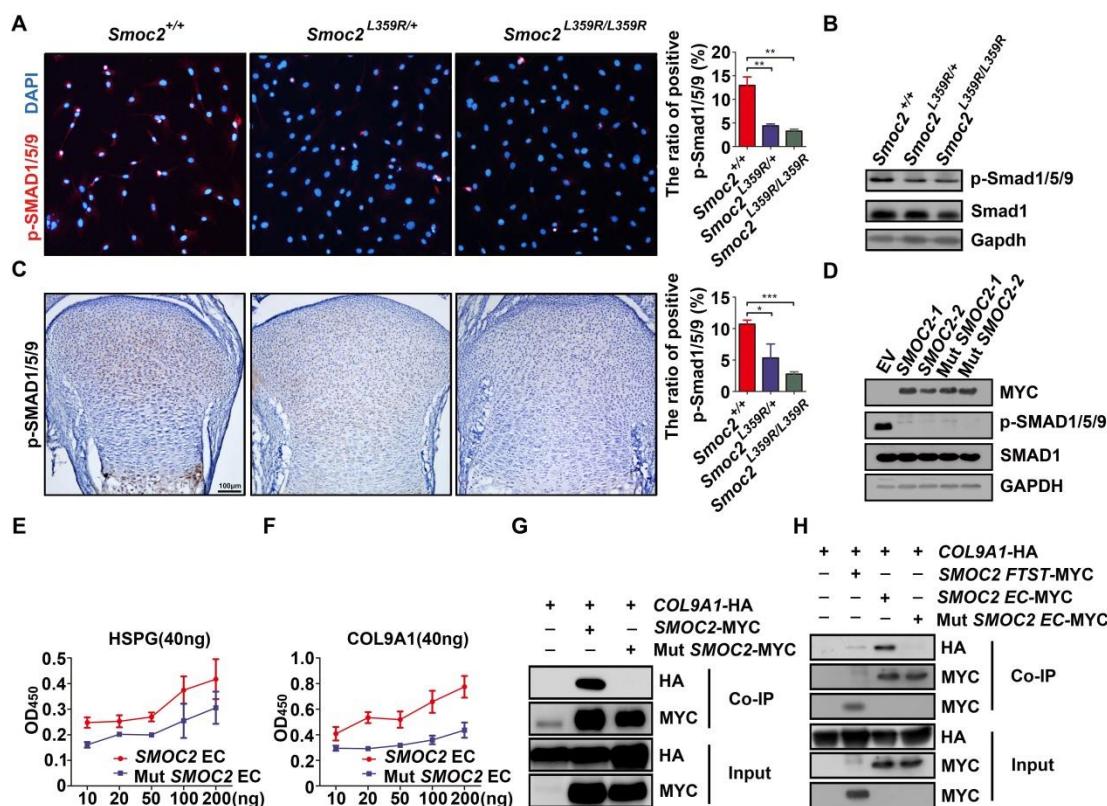
629 recombinants confirmed the presence of the mutation (CTT > CGT).


630

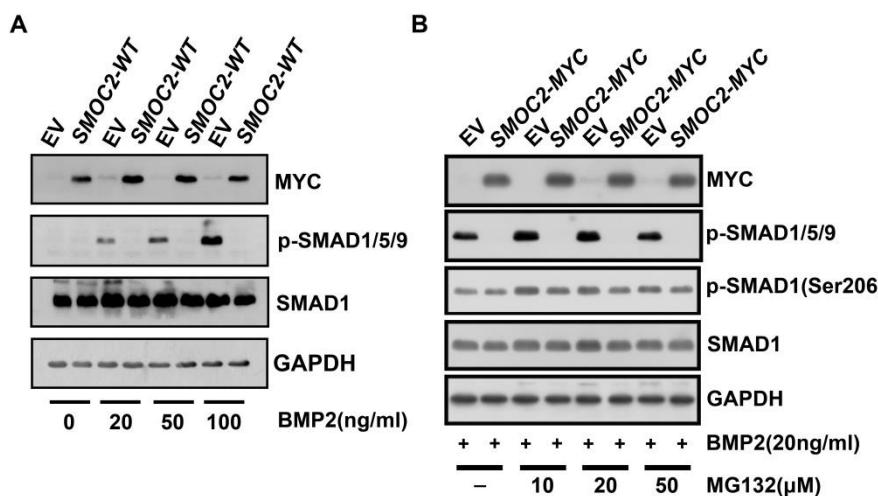
631


632

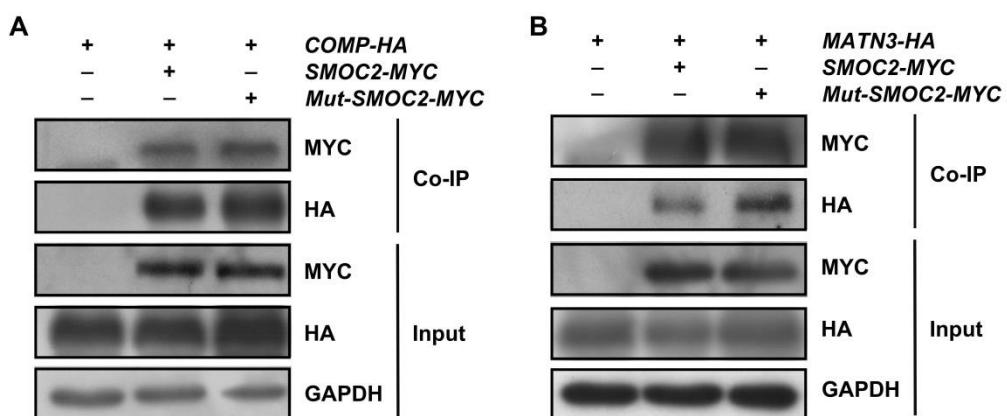
633 Figure 2- figure supplement 2. A: Photographs and radiographs of *Smoc2*^{+/+},
634 *Smoc2*^{L359R/+} and *Smoc2*^{L359R/L359R} mice at P63. Black dotted lines are aligned at the tip
635 of the nose and the top of the pelvis of the *Smoc2*^{+/+} mouse. Body lengths and weights
636 of all mice were measured at P30. (n=8:8:2, ★★P<0.01). B: Lengths of femurs and
637 tibias of all mice were measured at P63.


638

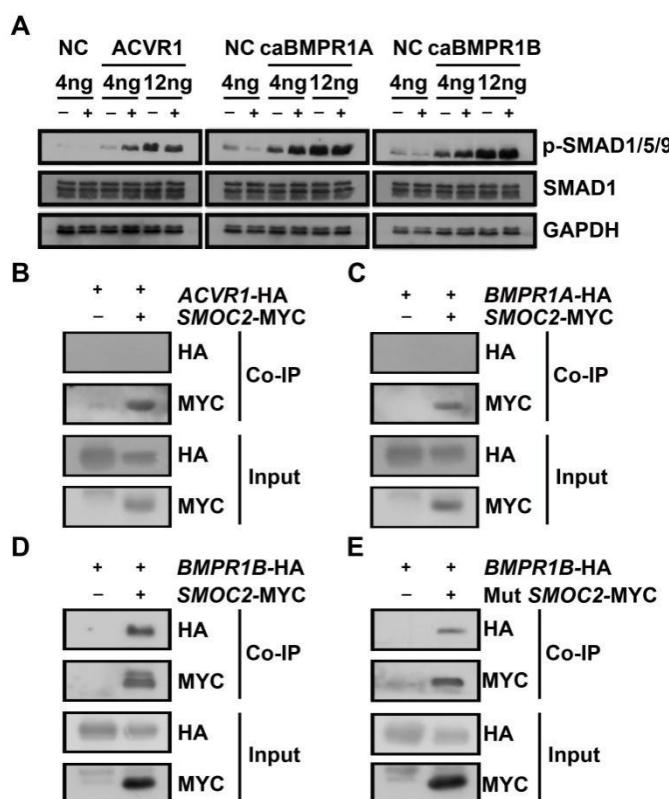
639 Figure 3. Histological analysis of the tibial growth plate showing growth plate
640 abnormalities. A: The first row is H&E staining of the tibial growth plate of P21 mice
641 showing a disrupted proliferative zone with disorganized columns (black box) and
642 some areas of hypocellularity (black pentagram) in the tibial growth plate from
643 $Smoc2^{L359R/+}$ and $Smoc2^{L359R/L359R}$ mice. The second and third rows are H&E staining
644 showing a significantly decreasing cell density (black pentagram) and disorganized
645 columns (black box) in the growth plate and hyaline cartilage (arrowheads) of proximal
646 tibia from $Smoc2^{L359R/+}$ and $Smoc2^{L359R/L359R}$ mice compared to $Smoc2^{+/+}$ mice at P63.
647 The fourth row is ultrastructural analysis of the proximal tibial growth plates of P21
648 mice by transmission electron microscopy (TEM). Deformed cell nuclear, saw-tooth
649 nuclear membrane and dilated cisternae of rough endoplasmic reticulum in
650 chondrocytes from proximal tibial growth plates of P21 $Smoc2^{L359R/+}$ and
651 $Smoc2^{L359R/L359R}$ mice. B-D: Number of chondrocytes in tibial growth plates at P21 and
652 P63 and number of chondrocytes in hyaline cartilage of proximal tibia at P63 (n=5:5:2,
653 $\star P < 0.05$, $\star\star P < 0.01$, $\star\star\star P < 0.001$ by t-test).


654

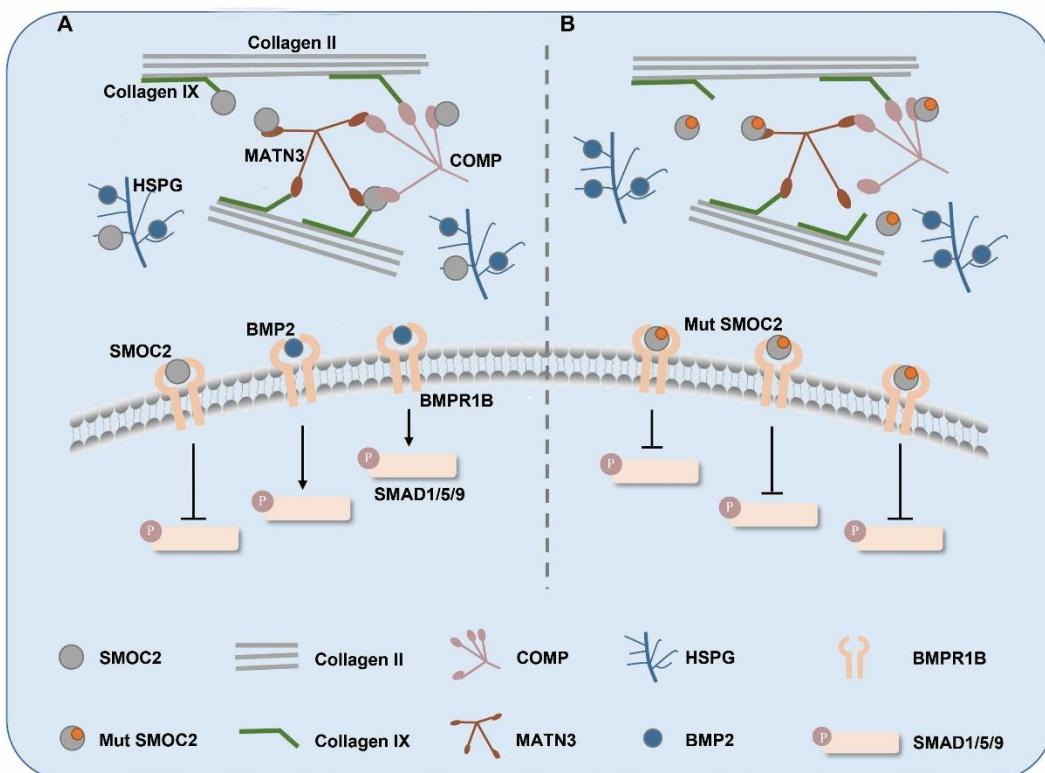
655 Figure 4. Analysis of proliferation, apoptosis and hypertrophy of chondrocytes in tibial
656 growth plate. A: The first row: Immunohistochemistry of cell proliferation by
657 anti-PCNA antibody on P21 mice. B: The relative proliferation was calculated by
658 comparing the number of PCNA-positive chondrocytes to total number of
659 chondrocytes in the proliferative or hypertrophic zone (n=5:5:2). The second row:
660 Apoptosis was measured in the tibia of P21 mice by TUNEL assay and anti-Bax and
661 anti-Bcl-2 antibodies (D). The relative apoptosis was calculated by comparing the
662 number of apoptotic chondrocytes to total number of chondrocytes in the hypertrophic
663 zone. Nuclei were stained with DAPI (blue) and apoptotic cells were labeled by Cy3
664 (red). C: Apoptosis of chondrocytes in the hypertrophic zone (n=5:5:2). D: The
665 expression of Bax and Bcl-2 in *Smoc2*^{L359R/+} and *Smoc2*^{+/+} mice analyzed by western
666 blot analysis. The third row: Immunohistochemistry of cell hypertrophy with anti-Ihh
667 antibodies in P21 mice. The expression area of Ihh (the area between the black lines) in
668 mice. Real-time PCR of the cartilage from proximal tibia of mRNA expression of Ihh
669 (★P<0.05 by t-test) (E).


670

671 Figure 5. BMP signalling could be inhibited by overexpressed SMOC2 and mutant
 672 SMOC2. A: IF analysis of primary chondrocytes from knees showed more positive
 673 signals, shown by red fluorescence, in *Smoc2*^{+/+} mice compared to *Smoc2*^{L359R/+} and
 674 *Smoc2*^{L359R/L359R} mice. Ratio of positive p-Smad1/5/9 was measured (★P<0.05,
 675 ★★★P<0.001 by t-test). B: Western blot analysis of p-SMAD1/5/9 in primary
 676 chondrocytes from knees of mice. C: IHC analysis of expression pattern of
 677 p-Smad1/5/9 in proximal tibial growth plates from P0 mice. Ratio of positive
 678 p-Smad1/5/9 was measured (★★P<0.01 by t-test). D: Western blot analysis of
 679 p-SMAD1/5/9 in HEK293T cells stably transfected with wild-type SMOC2 or mutant
 680 SMOC2. E-F: Solid phase binding assay to detect binding of SMOC2 EC domain or
 681 mutant SMOC2 EC domain to COL9A1 or HSPG. Increasing concentrations of
 682 SMOC2 EC domain or mutant SMOC2 EC domain were added to COL9A1-coated or
 683 HSPG-coated plates. G-H: Co-IP of HA-tagged COL9A1 by MYC-tagged SMOC2
 684 mutant SMOC2, SMOC2 FTST domain, SMOC2 EC domain and mutant SMOC2 EC
 685 domain. HA-tagged COL9A1 could only be detected in the precipitated
 686 immunoprecipitation by MYC-tagged SMOC2 or SMOC2 EC domain.


687

688 Figure 5- figure supplement 1. A: HEK293 cells stably transfected with or without wild
689 SMOC2 were incubated in serum-free medium with BMP2 at the indicated doses for 1h.
690 Phosphorylated SMAD1/5/9 (p-SMAD1/5/9), total SMAD1 and GAPDH in whole cell
691 protein lysates were analyzed by western blot. Phosphorylation of SMAD1/5/9 by
692 BMP2 was blocked in cells stably transfected with wild SMOC2. B: HEK293T cells
693 stably transfected with or without wild-type *SMOC2* -MYC were incubated in
694 serum-free medium with MG132 at the indicated doses for 1 h, then incubated with
695 BMP at 20 ng/ml for 1 h. Western blot analysis of MYC, p-SMAD1/5/9,
696 p-SMAD1(Ser206), SMAD1 and GAPDH in whole cell protein lysates.


697

698 Figure 5- figure supplement 2. Co-IP showed the interaction of SMOC2 and COMP
699 and MATN3. HA-tagged COMP and HA-tagged MATN3 could be detected in the
700 precipitated immunoprecipitation by MYC-tagged wild-type SMOC2 and
701 MYC-tagged mutant SMOC2

702

703 Figure 6. SMOC2 and mutant SMOC2 could bind to BMPR1B. A: Western blot
704 analysis of p-SMAD1/5/9, total SMAD1 and GAPDH in whole cell protein lysates of
705 HEK293T cells transfected with pLVX-IRES-Puro or pLVX-SMOC2 and transiently
706 transfected with pCMV3, pCMV3-ACVR1, pCMV3-caBMPR1A or
707 pCMV3-caBMPR1B. B-E: Co-IP of HA-tagged ACVR1 and BMPR1A and BMPR1B
708 by MYC-tagged SMOC2 and mutant SMOC2. Only HA-tagged BMPR1B could be
709 detected in the precipitated immunoprecipitation by MYC-tagged SMOC2 or mutant
710 SMOC2.

711

712 Figure 7. Schematic representation depicting the molecular interactions resulting in
713 negative regulation of BMP-SMAD signaling by wild-type SMOC2 and mutant
714 SMOC2. A: Wild-type SMOC2 could bind to matrix proteins such as COL9A1 and
715 HSPG and competitively bind to BMPR1B with BMP2. B: Mutant SMOC2 bound to
716 matrix proteins weakly, which led to high level of dissociative mutant SMOC2 released
717 into the matrix and more dissociative mutant SMOC2 competing with BMP2 for
718 BMPR1B and phosphorylation of SMAD1/5/9 was blocked.

719 Table 1. Clinical and Radiological Findings in the Pedigree

Patient (sex)	Age at Onset (years)	Current Age (years)	Height (cm)	Joint Pain	Clinical Findings		Radiological Findings					
					Joint Limitation	Other	Epiphyses	Flat	Small	Irregular	OA	Other
I1(M)	U	D	158	K		K						
II5(M)	U	58	155	K, HA		K, HA						
II7(M)	U	60	160	K, HA		K, HA						
II9(F)	U	53	145	K, H, HA		K, H, HA						
III11(F)	5	33	148	K, H		K, H						
III13(M)	8	30	158	K		K						
III14(M)	6	31	159	K		K		K			K	P ^a
IV9(F)	3	9	119	K			K				K	K ^b

720 Note: U= unknown, D= dead, K= knees, HA= hands, H=hips, P= patella, a = dislocation, b= non-uniform bone mineral density

721 Table 2. Selected Candidate Genes and the Allele Frequency in Normal Population

Gene	Mutation Site	Allele Frequency
<i>INSL5</i>	Exon2: c.197A>G; p. Q66R	0.00003305
<i>MRPS5</i>	Exon5: c.407G>A; p. R136H	0.0001077
<i>ANXA5</i>	Exon4: c.148C>T; p. R50C	0.00004944
<i>KAT6B</i>	Exon11: c.1708C>T; p. R570C	0.00001648
<i>MYO15A</i>	Exon29: c.6316G>A; p. E2106K	0.000008500
<i>LRRC48</i>	Exon4: c.170G>A; p. R57H	0.00003321
<i>DSCAM</i>	Exon32: c.5504C>T; p. T1835M	0.000008279
<i>PABPC3</i>	Exon1: c. 975-979del:p.V325fs	NA
<i>SMOC2</i>	Exon11: c.1076T>G; p. L359R	NA

722

723 Table 3. The number of offspring in different genotypes produced by different mating
724 patterns

Mating		Offspring		
Male	Female	<i>Smoc2</i> ^{+/+}	<i>Smoc2</i> ^{L359R/+}	<i>Smoc2</i> ^{L359R/L359R}
<i>Smoc2</i> ^{+/+}	<i>Smoc2</i> ^{L359R/+}	11	9	0
<i>Smoc2</i> ^{L359R/+}	<i>Smoc2</i> ^{+/+}	28	22	0
<i>Smoc2</i> ^{L359R/+}	<i>Smoc2</i> ^{L359R/+}	48	111	12
<i>Smoc2</i> ^{L359R/L359R}	<i>Smoc2</i> ^{L359R/L359R}	0	0	0

725

726 Table 4 The primers used in this study

Primers	Sequence(5'-3')
<i>Smoc2</i> -iden-F primer	AGCCACCCTTCATCTTGTGCTTCT
<i>Smoc2</i> -iden-R primer	TGACACTGTGCCGGAAAGGACG
<i>SMOC2</i> -wt-F	CCGCTCGAGGCCACCATGCTGCTCCCC CAGCTC
	GTCCTAGACTCGAGTTACAGATCCTCTTGAGA
<i>SMOC2</i> -wt-R	TGAGTTCTGCTCAGAGCCTCCACCCCCTCCTTGT
	TT
<i>SMOC2</i> -mut-F1	CCGCTCGAGGCCACCATGCTGCTCCCCCAGCTC
<i>SMOC2</i> -mut-F2	CTTCAAAC TACGGATAAAA ACT
<i>SMOC2</i> -mut-R1	AGTTTTATCCCGTAGTTGAAG
	GCTCTAGACTCGAGTTACAGATCCTCTTGAGA
<i>SMOC2</i> -mut-R2	TGAGTTCTGCTCAGAGCCTCCACCCCCTCCTTGT
	TT
Ihh-F	CTCTTGCCTACAAGCAGTTCA
Ihh-R	CCGTGTTCTCCTCGTCCT T

727