
HASLR: Fast Hybrid Assembly of Long Reads

Ehsan Haghshenas1,2, Hossein Asghari1,2, Jens Stoye3, Cedric Chauve4,5, and Faraz Hach2,6

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
2 Vancouver Prostate Centre, Vancouver, Canada

3 Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
4 Department of Mathematics, Simon Fraser University, Burnaby, Canada

5 LaBRI, Université de Bordeaux, Bordeaux, France
6 Department of Urologic Sciences, University of British Columbia, Vancouver, Canada

Abstract. Third generation sequencing technologies from platforms such as Oxford Nanopore
Technologies and Pacific Biosciences have paved the way for building more contiguous assemblies and
complete reconstruction of genomes. The larger effective length of the reads generated with these
technologies has provided a mean to overcome the challenges of short to mid-range repeats. Currently,
accurate long read assemblers are computationally expensive while faster methods are not as accurate.
Therefore, there is still an unmet need for tools that are both fast and accurate for reconstructing
small and large genomes. Despite the recent advances in third generation sequencing, researchers tend
to generate second generation reads for many of the analysis tasks. Here, we present HASLR, a hybrid
assembler which uses both second and third generation sequencing reads to efficiently generate accurate
genome assemblies. Our experiments show that HASLR is not only the fastest assembler but also the
one with the lowest number of misassemblies on all the samples compared to other tested assemblers.
Furthermore, the generated assemblies in terms of contiguity and accuracy are on par with the other
tools on most of the samples.
Availability. HASLR is an open source tool available at https://github.com/vpc-ccg/haslr.

Keywords: Hybrid assembly · Third generation sequencing · PacBio · Oxford Nanopore · Illumina.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://github.com/vpc-ccg/haslr
https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

HASLR 1

1 Introduction

Long reads (LRs) generated by third generation sequencing (TGS) technologies such as Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have revolutionized the landscape
of de novo genome assembly. While LRs have higher error rate compared to short reads (SRs)
generated by next generation sequencing (NGS) technologies such as Illumina, they have been
shown to result in accurate assemblies given sufficient coverage. Indeed the length of TGS LRs
enables the resolution of many short and mid-range repeats that are problematic when assembling
genomes from SRs. Recent advances in sequencing ultra-long ONT reads have moved us closer
to the complete reconstruction of entire genomes (including difficult-to-assemble regions such as
centromeres and telomeres) than ever before [19]. Similarly, HiFi PacBio reads have been shown to
be capable of improving the contiguity and accuracy in complex regions of the human genome [30].
These advances toward more accurate and complete genome assembly could not be achieved without
the recent development of assemblers specifically tailored for LRs. These tools assemble LRs either
after an error correction step [14,4] or directly without any prior error correction [17,25,12].

Although LRs are becoming more widely used for de novo genome assembly, using hybrid
approaches (that utilize a complementary SR dataset) is still popular for several reasons: (i) SRs
have higher accuracy and can be generated by Illumina sequencers at a high throughput for a lower
cost; (ii) plenty of SR datasets are already publicly available for many genomes; (iii) for some basic
tasks such as variant calling (SNV and short indel detection), SRs still provide better resolution
due to their high accuracy which often motivates researchers to generate SRs even when LRs are
in hand; and (iv) unlike PacBio assemblies whose accuracy increases with the depth of coverage
thanks to their unbiased random error model [23], constructing reference quality genomes solely
from ONT reads remains challenging due to biases in base calling, even with a high coverage [14,1].
As a result, hybrid assembly approaches are still useful [8,9,10].

Hybrid approaches for de novo genome assembly can be classified into three groups: (i) methods
that first correct raw LRs using SRs and then build contigs using corrected LRs only (e.g. PBcR [13]
and Masurca [36]); (ii) methods that first assemble raw LRs and then correct/polish the resulting
draft assembly with SRs using polishing tools such as Pilon [31] and Racon [29]; and (iii) methods
that first assemble SRs and then utilize LRs to generate longer contigs (e.g. hybridSPAdes [1],
Unicycler [32], DBG2OLC [34], and Wengan [5]).

PBcR and Masurca correct LRs using their internal correction algorithm and then employ
CABOG [21] (Celera Assembler with the Best Overlap Graph) for assembling corrected LRs.
hybridSPAdes and Unicycler are similar in design. Both of these tools first use SPAdes [2] which
takes SRs as input and generates an assembly graph, a data structure in which multiple copies of a
genome segment are collapsed into a single contig (see [35] for more details). This data structure also
records connections between subsequent contigs such that every region of the genome corresponds
to a path in the graph. hybridSPAdes and Unicycler then align LRs to this assembly graph in order
to resolve ambiguities and generate longer contigs. On the other hand, DBG2OLC first assembles
contigs from SRs and maps them onto raw LRs to get a compressed representation of LRs based
on SR contig identifiers, and then applies an overlap-layout-consensus (OLC) approach on these
compressed LRs to assemble the genome. Since compressed LRs are much shorter compared to raw
LRs, building an overlap graph from them is quicker than building it from raw LRs, due to the
faster pairwise alignment. Finally, the more recent tool, Wengan, assembles short reads and then
builds multiple synthetic paired-read libraries of different insert sizes from LR sequences. These
synthetic paired-reads are then aligned to short read contigs and a scaffolding graph is built from
the resulting alignments. In the end, the final assembly is generated by traversing proper paths of
the scaffolding graph.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 E. Haghshenas et al.

Among the above tools, hybridSPAdes and Unicycler have been designed specifically for
bacterial and small eukaryotic genomes and do not scale for the assembly of large genomes. PBcR,
Masurca, DBG2OLC and Wengan are the only hybrid assemblers that are capable of assembling
large genomes, such as the human genome. However, for mammalian genomes, PBcR and Masurca
require a large computational time and cannot be used without a computing cluster. DBG2OLC
is faster due to its use of compressed LRs. Wengan is also a fast assembler and can be used for
assembling large genomes in a reasonable time.

In this paper, we introduce HASLR, a fast hybrid assembler that is capable of assembling large
genomes. HASLR, similar to hybridSPAdes, Unicycler, and Wengan builds SR contigs using a fast
SR assembler (i.e. Minia). Then it builds a novel data structure called backbone graph to put short
read contigs in the order expected to appear in the genome and to fill the gaps between them using
consensus of long reads. Based on our results, HASLR is the fastest between all the assemblers we
tested, while generating the lowest number of mis-assemblies. Furthermore, it generates assemblies
that are comparable to the best performing tools in terms of contiguity and accuracy. HASLR is
also capable of assembling large genomes using less time and memory than other tools.

2 Methods

The input to HASLR is a set of long reads (LRs) and a set of short reads (SRs) from the same
sample, together with an estimation of the genome size. HASLR performs the assembly using a
novel approach that rapidly assembles the genome without performing all-vs-all LR alignments.
The core of HASLR is to first assemble contigs from SRs using an efficient SR assembler and then
to use LRs to find sequences of such contigs that represent the backbone of the sequenced genome.

2.1 Obtaining unique short read contigs

HASLR starts by assembling SRs into a set of short read contigs (SRCs), denoted by C. Assembly
of SRs is a well-studied topic and many efficient tools have been specifically designed for that
purpose. These tools use either a de Bruijn graph [28,3] or an OLC strategy (based on an overlap
graph or a string graph) [27,22] to assemble the genome by finding “proper” paths in these graphs.

Next, HASLR identifies a set U of unique contigs (UCs), those SRCs that are likely to appear
in the genome only once. In order to do this, for every SRC, ci, the mean k-mer frequency, f(ci),
is computed as the average k-mer count of all k-mers present in ci. Note that the value of f(ci)
is proportional to the depth of coverage of ci. Assuming longer contigs are more likely to come
from unique regions, their mean k-mer frequency can be a good indicator for identifying UCs. Let
LCq ⊆ C be the set of q longest SRCs in C, and favg, fstd be the average and standard deviation
of {f(c) | c ∈ LCq}. Then, the set of unique contigs is defined as U = {u | u ∈ C and f(u) ≤
favg + 3fstd}. Our empirical results show that this approach can identify UCs with high precision
and recall (see Supplementary Section S4 for more details).

2.2 Construction of backbone graph

The backbone graph encodes potential adjacencies between unique contigs and thus presents a large-
scale map of the genome, albeit, with some level of ambiguity. Using the backbone graph, HASLR
finds paths of unique contigs representing their relative order and orientation in the sequenced
genome. These paths are later transformed into the assembly.

Formally, given a set of UCs, U = {u1, u2, . . . , u|U |}, and a set of LRs, L = {l1, l2, . . . , l|L|},
HASLR builds the backbone graph BBG as follows. First, UCs are aligned against LRs. Each

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

HASLR 3

�1
�1 �2

�
+

1
�
+

2

�2
�3 �4

�3
�5 �6

�4
�7 �8

{ }�1

�
+

3
�
+

4

{ }�2

�
−

1
�

−

2

{ }�1

�
−

3
�

−

4

{ }�2
�
+

7
�
+

8

{ }�4

�
+

5
�
+

6

{ }�3

�
−

7
�

−

8

{ }�4

�
−

5
�

−

6{ }�3

Fig. 1: Possible orientations of aligning two unique contigs to a long read. The direction of contigs
aligned to long reads shows the strand of their corresponding sequence. These directions guide us
to find the proper edge type. The set of long reads supporting each edge is shown as its label.

alignment can be encoded by a 7-tuple
(
rbeg, rend, uid, ustrand, ubeg, uend, nmatch

)
whose

elements respectively denote the start and end positions of the alignment on the LR, the index of
the UC in U , the strand of the alignment (+ or −), the start and end position of the alignment on
the UC, and the number of matched bases in the alignment. Let Ai =

(
ai1, a

i
2, . . . a

i
|Ai|
)

be the list
of alignments of UCs to li, sorted by rend.

Note that alignments in Ai may overlap due to relaxed alignment parameters in order to
account for the high sequencing error rate of LRs. Thus, in the next step we aim to select a
subset of non-overlapping alignments whose total identity score – defined as the sum of the number
of matched bases – is maximal. Let Si(j) be the best subset among the first j alignments, i.e.
the non-overlapping subset of these j alignments with maximal total identity score. Si(j) can be
calculated using the following dynamic programming formulation:

Si(j) =

{
0 if j = 0

max
{
Si

(
j − 1

)
, Si

(
prev(j)

)
+ aij [nmatch]

}
otherwise

(1)

where prev(j) is the largest index z < j such that aij and aiz are non-overlapping alignments. By

calculating Si(|Ai|) and backtracking, we obtain a sorted sub-list Ri = (ri1, r
i
2, . . . , r

i
|Ri|) of non-

overlapping alignments with maximal total identity score, which we call the compact representation
of read li. Note that since the input list is sorted, prev(.) can be calculated in logarithmic time
which makes the time complexity of this dynamic programming O(|Ai| log |Ai|).

The backbone graph is a directed graph BBG = (V,E). The set of nodes is defined as
V = {u+j , u

−
j | 1 ≤ j ≤ |U |} where u+j and u−j represent the forward and reverse strand of the

UC uj , respectively. The set of edges is defined as the oriented adjacencies between UCs implied by
the compact representations of LRs. Formally each edge is represented by a triplet (uh, ut, supp)
where uh, ut ∈ V and supp is the set of indices of LRs supporting the adjacency between uh and
ut; these triplets are obtained as follows:

E =
⋃

1≤i≤|L| , 1≤j<|Ri|

{(
uhsh , utst , {i}

)
,
(
u
REV (ts)
t , u

REV (hs)
h , {i}

)}

where h = rij [uid], hs = rij [ustrand], t = rij+1[uid], ts = rij+1[ustrand], REV (+) = −, and
REV (−) = +. Figure 1 illustrates the construction of the backbone graph edges for several
combinations of UC alignments on LRs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

4 E. Haghshenas et al.

At the end of this stage, the resulting backbone graph is a multi-graph as there can be multiple
edges between two nodes with different supp. In order to make it easier to process the backbone
graph, we convert it into a simple graph by merging supp of all edges between every pair of nodes
into a set of supporting LRs.

2.3 Graph cleaning and simplification

Ideally, with accurate identification of UCs and correct alignment of UCs onto LRs, the backbone
graph for a haploid genome will consist of a set of connected components, each of which is a simple
path of nodes. In practice, this ideal case does not happen – mainly due to sequencing errors, wrong
UC to LR alignments, and chimeric reads. As a result, some artifactual branches might exist in
the backbone graph forming structures known as tips and bubbles. Tips are dead-end simple paths
with a small length. Bubbles are formed when two disjoint simple paths with similar length occur
between two nodes.

We clean the backbone graph BBG in two stages. First, in order to reduce the effect of wrong
UC to LR alignments, we remove all edges e such that |e[supp]| < minSupp, for a given parameter
minSupp. Second, the graph is simplified by using tip and bubble removal algorithms. There exist
well-known algorithms for these tasks that are commonly used in assemblers [35,2,22]. Note that
our tip and bubble removal procedures require an estimation of the length of simple paths. Such
estimation can be obtained from the length of UCs corresponding to the nodes contained in a
simple path as well as the average length of all LR subsequences that are supporting edges between
consecutive nodes (see Supplementary Section S5 for more details). We denote by G the cleaned
and simplified backbone graph.

2.4 Generating the assembly

The principle behind the construction of the assembly is that each simple path in the cleaned
backbone graph G is used to define a contig of this assembly. Suppose P = (v1, e12, v2, e23, v3, . . . , vn)
is a simple path of G. Although we already have the DNA sequence for each UC corresponding to
each node vi, the DNA sequence of the resulting contig cannot be obtained immediately. This is due
to the fact that at this stage the subsequence between vi and vi+1 is unknown for each 1 ≤ i < n.
Here, we explain how these missing subsequences are reconstructed.

For simplicity, suppose we would like to obtain the subsequence between the pair v1 and v2 in
P . Note that by construction, e12[supp] contains all LRs supporting e12. We can extract a compact
representation of all those LRs and align them to P using a Longest Common Subsequence (LCS)
dynamic programming algorithm forbidding mismatches (only gaps are allowed). We implemented
this LCS algorithm in a way that takes into account the strand of UCs in P (recall that u+j and u−j
correspond to the forward and reverse strand of uj respectively). At this point, we can extract the
subsequence between v1 and v2 from each LR in e12[supp]. To do this, we find the region of UCs
corresponding to v1 and v2 that are aligned to all LRs in e12[supp]. Using the alignment transcript
(i.e. CIGAR string) the unaligned coordinate of each long read is calculated (see Figure 2 for a toy
example). By computing the consensus sequence of the extracted subsequences, we obtain cns12.
Therefore, the DNA sequence corresponding to P can be obtained via CONCAT (u1, cns12, u2,
cns23, u3, . . . , un) where CONCAT (.) returns the concatenated DNA sequence of all its arguments.

In order to generate the assembly, HASLR extracts all the simple paths in the cleaned backbone
graph G and constructs the corresponding contig for each of them as explained above. It is important
to note that each simple path P has a twin path P ′ which corresponds to the reverse complement
of the contig generated from P . Therefore, during our simple path extraction procedure, we ensure
to not use twin paths to avoid redundancy.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

HASLR 5

�
+

�
�

−

�+1

(, , 3)�
+

� �
−

�+1

�1

�2

�3

���� �+1

POA	consensus

[����]�+� [����]�+� [����]�
−

�+1
[����]�

−

�+1

Fig. 2: Example of an edge in backbone graph and its corresponding long read alignments. Partial
Order Alignment (POA) is used in constructing the consensus sequence (see subsection 2.5)

2.5 Methodological remarks

Rationale for using unique short read contigs. Here, we clarify the motivation for
choosing only unique SRCs as the nodes of the backbone graph. Repetitive genomic regions cause
complexities in assembly graphs. The same complexity is reflected in our backbone graph. Repetitive
SRCs would cause branching in the backbone graph and in fact, building the backbone graph using
all SRCs could result in a very tangled graph. Figure 3 illustrates the difference between a backbone
graph built on all SRCs with one built only on unique SRCs on a yeast genome. As it can be seen,
using only unique SRCs for building the backbone graph resolves many of the complexities and
ambiguities in the graph. However, it is important to note that excluding non-unique SRCs could
potentially result in a more fragmented graph (some chromosomes are split into multiple paths
rather than a single one) and assembly.

Fig. 3: Two backbone graphs built from a real PacBio dataset sequenced from a yeast genome.
Each graph is visualized with Bandage [33] and colored using its rainbow coloring feature. Each
chromosome is colored with a full rainbow spectrum. (Left) Tangled graph built from all SRCs.
(Right) Untangled graph built from unique SRCs.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

6 E. Haghshenas et al.

Backbone graph vs. assembly graph. It is important to note that the backbone graph is not
an assembly graph per se, for two reasons. First, the regions between each pair of connected unique
SRCs are not present in the graph. These missing regions are obtained by calculating the consensus
of LR subsequences between each pair of unique SRCs. Second, unlike assembly graphs, there are
some segments of the genome that cannot be translated to a path in the backbone graph. This is
due to the potential fragmentation that was mentioned earlier.

Implementation details. (i) HASLR utilizes a SR assembler to build its initial SRCs. However,
a higher quality assembly that has fewer misassemblies is preferred. For this purpose, HASLR
utilizes Minia [3] to assemble SRs into SRCs. Based on our experiments, Minia can generate
a high quality assembly quickly using a small memory footprint. (ii) For finding UCs, HASLR
calculates mean k-mer frequencies with a small value of k (default k = 55). This information can
be easily obtained by performing a k-mer counting on the SR dataset (for example using KMC [11])
and calculating the average k-mer count of all k-mers present in each SRC. Nevertheless, usually
assemblers automatically provide such information (e.g Minia and SPAdes). HASLR takes k-mer
frequencies reported by Minia for this task. (iii) HASLR uses only longest 25× coverage of long
reads for building the backbone graph which are extracted based on the given expected genome
size. (iv) In order to align UCs to LRs, HASLR employs minimap2 [18]. (v) Graph cleaning is done
with minSupp = 3 meaning that any edge that is supported with less than 3 LRs is discarded.
(vi) Finally, consensus sequences are obtained using the Partial Order Alignment [16,15] (POA)
algorithm implemented in the SPOA package [29]. We have provided the versions of the tools and
the parameters that are used to execute them in Supplements S2 and S3, respectively.

3 Results

We evaluated the performance of HASLR on both simulated and real datasets. We selected five
hybrid assemblers (hybridSPAdes [1], Unicycler [32], DBG2OLC [34], Masurca [36] and Wengan [5])
as well as two non-hybrid methods (Canu [14] and wtdbg2 [25]). All experiments were performed
on isolated nodes of a cluster (i.e. no other simultaneous jobs were allowed on each node). Each
node runs CentOS 7 and is equipped with 32 cores (2 threads per core; total of 64 CPUs) Intel(R)
Xeon(R) processors (Gold 6130 @ 2.10GHz) and 720 GB of memory. Each tool was run with their
recommended settings. See supplementary Sections S2 and S3 for more details about the versions of
tools and the employed commands. Note that for wtdbg2, we used the provided wtdbg2.pl wrapper
which automatically performs a polishing step using the embedded polishing module.

For each experiment, assemblies were evaluated by comparing against their corresponding
reference genome using QUAST [20]. QUAST reports on a wide range of assembly statistics but
we are mostly interested in misassemblies, NGA50 and rate of small errors (mismatch or indel).
QUAST detects and reports misassemblies when a contig cannot align to the reference genome as a
single continuous piece. Misassemblies indicate structural assembly errors. For computing NGA50,
unlike N50 and NG50, only segments of assembled contigs that are aligned to the reference genome
are considered. In addition, QUAST breaks contigs with extensive misassemblies before calculation
of NGA50. Therefore, NGA50 is a good indicator of the contiguity of the assembly, while taking
misassemblies into consideration.

3.1 Experiment on simulated dataset

We evaluated all the selected methods on 4 simulated datasets, namely E. coli, yeast, C. elegans
and human, to provide a wide range of genome sizes and complexity. For each genome, we used

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

HASLR 7

Table 1: Comparison between draft assemblies obtained by different tools on simulated data.

G
e
n
o
m

e

A
ss

e
m

b
le

r

C
o
n
ti

g
s

G
e
n
o
m

e
fr

a
c
ti

o
n

N
G

A
5
0

M
is

a
ss

e
m

b
li
e
s

e
x
te

n
si

v
e
+

lo
c
a
l

M
is

m
a
tc

h
ra

te

In
d
e
l

ra
te

T
im

e

M
e
m

o
ry

(G
B

)

E.coli Canu 1 99.648 4,625,313 0+0 0.86 15.85 30:18 4.16
wtdbg2 135 96.158 107,864 4+79 216.99 492.12 0:46 19.36

hybridSPAdes 1 100.000 4,641,652 0+0 6.18 0.32 8:05 113.92
Unicycler 1 99.997 4,641,530 0+0 3.12 0.45 18:43 21.56
DBG2OLC 2 92.497 2,647,379 0+0 0.28 30.05 4:37 1.35
Masurca 1 99.874 4,636,209 0+4 0.56 0.19 5:21 32.52
Wengan 1 100.00 4,641,731 0+0 2.54 5.36 2:21 3.19
HASLR 1 99.999 4,643,699 0+0 2.00 42.89 0:41 3.04

Yeast Canu 21 98.831 910,628 0+0 3.18 25.44 44:10 5.51
wtdbg2 490 92.871 77,726 24+191 259.00 577.63 1:58 28.35

hybridSPAdes 38 97.840 797,316 2+12 41.54 2.12 19:41 113.93
Unicycler 52 97.893 799,601 0+1 8.81 0.44 57:47 22.99
DBG2OLC 18 98.492 771,063 1+0 5.9 85.95 13:29 1.21
Masurca 17 99.476 919,651 0+3 5.97 0.56 15:10 32.66
Wengan 22 97.065 796,244 0+0 6.14 24.48 4:14 5.55
HASLR 18 96.597 796,649 0+0 5.39 76.63 1:52 10.48

C.elegans Canu 10 99.847 13,775,238 3+1 5.88 67.73 5:15:05 13.76
wtdbg2 4,487 95.468 81,074 194+506 246.33 657.89 15:57 29.45

hybridSPAdes 340 98.643 924,797 67+197 73.26 9.14 3:11:50 114.79
Unicycler NA
DBG2OLC 16 99.692 6,732,354 10+7 8.55 174.21 2:04:23 7.99
Masurca 18 99.609 4,614,507 34+123 14.89 4.56 2:07:41 33.76
Wengan 46 98.917 2,042,350 53+20 7.26 59.81 28:21 11.18
HASLR 25 99.182 6,455,832 0+0 14.74 230.58 10:45 22.42

Human Canu 1461 97.279 15,045,226 854+99 37.7 196.78 NA NA
wtdbg2 122,438 92.735 87,595 3,436+13,041 224.02 598.87 10:25:19 190.07

hybridSPAdes NA
Unicycler NA
DBG2OLC 1,906 91.013 14,385,033 221+246 8.43 201.56 81:18:15 69.53
Masurca NA
Wengan 1776 94.617 11,216,374 185+70 3.84 33.5 20:12:12 38.08
HASLR 897 91.213 17,025,446 2+5 11.32 207.88 6:06:43 58.55

Note: Mismatch and indel rates are reported per 100 kbp. Unicycler crashed on C. elegans dataset due to maximum recursion limit. For the human
dataset, hybridSPAdes and Unicycler failed due to memory limit and Masurca failed due to a segmentation fault. For the human dataset, Canu
was run with option useGrid=true which makes it run on multiple nodes of a cluster, and therefore, the time and memory usage are not available.

ART [7] to simulate 50× coverage short Illumina reads (2×150 bp long, 500 bp insert size mean,
and 50 bp insert size deviation) using the Illumina HiSeq 2000 error model. We also simulated
50× coverage long PacBio reads using PBSIM [24]. In order to capture the characteristics of real
datasets, a set of PacBio reads generated from a human genome (See Supplementary Section S1.1
for details) with P6-C4 chemistry was passed to PBSIM via option --sample-fastq. This enables
PBSIM to sample the read length and error model from the real long reads.

Table 1, shows the QUAST metrics calculated for assemblies generated by different tools.
As it can be seen, HASLR generates assemblies with the lowest number of misassemblies in all
datasets. It is important to note that since reads are simulated from the same reference used for
this assessment, any misassembly reported by QUAST is indeed a structural assembly mistake. In
terms of the contiguity, HASLR achieves NGA50 on par with other tools for all datasets except
for C. elegans where Canu shows an NGA50 twice larger than others tools. On the human dataset,
HASLR generates the most contiguous assembly with an NGA50 of 17.03 Mb and only 2 extensive
misassemblies, although at the price of a lower genome fraction (see Discussion). In addition,
HASLR is the fastest assembler across the board. wtdbg2 has a comparable speed but generates
lower quality assemblies, both in terms of misassemblies and mismatch/indel rate.

It is particularly interesting to compare HASLR with hybridSPAdes, Unicycler and Wengan,
since they share similar design in that they connect short read contigs rather than explicitly
assembling long reads. In addition, Wengan uses short read contigs generated by Minia, similar

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

8 E. Haghshenas et al.

Table 2: Statistics of real long read datasets

Dataset Technology N50 length Estimated
coverage

Total size (Gb) Aligned size (Gb) Avg. alignment
identity (%)

E.coli ONT R9.4 63,747 1,080 5.01 4.31 85.03
(K-12 MG1655) Illumina 2×151 372 1.73 - -

Yeast PacBio 8,561 132 1.61 1.42 86.90
(S288C) Illumina 2×150 82 1.00 - -

C.elegans PacBio 16,675 47 4.73 4.32 87.43
(Bristol) Illumina 2×100 67 6.76 - -

Human PacBio 19,960 59 182.51 163.51 85.85
(CHM1) Illumina 2×151 41 127.76 - -

Note: Alignment statistics were obtaine by aligning long reads against their reference genome using lordFAST [6].

to HASLR. hybridSPAdes and Unicycler do not scale for large genomes as they have been designed
for small and bacterial genomes. On C. elegans dataset, HASLR gives significantly more contiguous
assembly than hybridSPAdes and Wengan without any structural assembly error. For the human
dataset, HASLR has a higher NGA50 while generating significantly less misassemblies.

Note that, HASLR does not employ any polishing step neither internally nor externally. Thus,
the indel rate of the draft assemblies generated by HASLR is less than desirable. However, these
types of local assembly erros can be easily addressed through a polishing step as shown in Table S3.
With a single round of polishing, both indel and mismatches rates match the other tools in two
datasets.

3.2 Experiment on real dataset

To compare the performance of HASLR on real dataset with other tools, we tested them on 4
publicly available datasets, E. coli, yeast, C.elegans, and human. Table 2 contains details about
these real datasets (see Table S1 for the availability of each dataset). Similar to simulated datasets,
on real dataset HASLR generates less misassembly compared to other assemblers while remaining
the fastest. Compared to other hybrid assemblers, HASLR performs similar or better in terms of
contiguity, while stands behind self-assembly tools with a lower NGA50.

For real datasets, we further evaluated the accuracy of assemblies by performing gene
completeness analysis using BUSCO [26], which quantifies gene completeness using single-copy
orthologs. Table 4 shows the results of BUSCO on E. coli, yeast, and C. elegans. We were unable to
obtain BUSCO results for the human genome due to a high run time requirement.

Another observation is that for some experiments, HASLR does not perform as well as others in
terms of genome fraction (see Discussions for more details). However, our gene completeness analysis
shows that HASLR is on par with other tools based on BUSCO gene completeness measure (see
Table 4). Note that very low gene completeness of Canu, wtdbg2, and DBG2OLC on E. coli dataset
could be due to high indel rates of their assemblies.

4 Discussion

HASLR introduces the notion of backbone graph for hybrid genome assembly. This enables HASLR
to keep up with increasing throughput of LR sequencing technologies while remaining time and
memory efficient. The high speed of HASLR is due to two reasons; (i) HASLR uses the fast SPOA
consensus module rather than normal POA implementation, and (ii) HASLR uses only longest
25× coverage of LRs for assembly. Assemblies generated by HASLR are similar to those generated

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

HASLR 9

Table 3: Comparison between assemblies obtained by different tools on real data

D
a
ta

se
t

A
ss

e
m

b
le

r

C
o
n
ti

g
s

G
e
n
o
m

e
fr

a
c
ti

o
n

N
G

A
5
0

M
is

a
ss

e
m

b
li
e
s

e
x
te

n
si

v
e
+

lo
c
a
l

M
is

m
a
tc

h
ra

te

In
d
e
l

ra
te

T
im

e

M
e
m

o
ry

(G
B

)

E.coli Canu 1 99.976 3,647,271 2+6 108.85 1254.40 702:57:07 32.39
(ONT) wtdbg2 9 79.114 141,474 38+72 245.82 1501.74 4:57 28.05

hybridSPAdes 15 99.964 3,863,268 2+7 7.16 0.50 3:38:13 114.29
Unicycler NA
DBG2OLC 1 99.950 3,539,045 3+4 46.86 335.82 8:25 8.74
Masurca 1 99.988 3,892,134 3+7 2.82 0.50 30:28 32.66
Wengan 3 99.998 3,346,596 3+2 4.74 9.24 20:02 14.37
HASLR 2 99.992 3,970,011 2+2 22.62 79.85 3:18 5.78

Yeast Canu 23 99.724 739,932 29+2 8.85 7.99 1:00:19 5.97
(PacBio) wtdbg2 28 97.668 640,895 20+3 10.65 27.17 3:04 16.26

hybridSPAdes 61 97.207 436,584 28+20 44.77 3.71 20:58 114.09
Unicycler 51 97.555 531,185 15+5 15.13 4.22 2:09:27 36.90
DBG2OLC 24 63.275 229,397 25+10 28.37 58.43 9:51 0.99
Masurca 24 99.262 538,374 30+8 11.83 5.85 23:15 32.69
Wengan 29 96.258 528,763 14+10 11.86 34.29 6:38 8.64
HASLR 28 95.735 530,856 11+5 8.13 100.64 2:25 11.30

C.elegans Canu 172 99.665 561,201 723+596 65.28 58.82 4:15:23 11.62
(PacBio) wtdbg2 288 98.994 561,292 329+596 26.82 79.72 14:13 21.19

hybridSPAdes 2,336 96.72 84,003 633+638 108.04 15.96 2:47:32 74.11
Unicycler 858 97.102 139,992 940+692 58.36 45.47 23:49:29 105.06
DBG2OLC 206 99.100 421,196 546+383 44.75 80.61 2:34:44 11.36
Masurca 216 97.013 471,366 368+504 49.20 23.50 1:57:49 33.48
Wengan 270 93.341 341,861 308+336 35.75 121.11 45:45 33.48
HASLR 261 97.431 453,631 259+331 26.08 140.40 15:35 17.93

CHM1 Canu 2,110 96.084 2,329,909 6,715+7,048 145.81 120.69 689:26:01 70.44
(PacBio) wtdbg2 3,723 92.896 2,081,842 3,535+6,286 118.45 72.54 11:35:22 202.41

hybridSPAdes NA
Unicycler NA
DBG2OLC 2,118 95.547 1,599,466 3,718+8,690 116.81 116.89 78:21:08 64.94
Masurca 3,781 93.782 1,761,291 4,984+7,491 180.83 57.53 350:35:59 225.63
Wengan 4,474 88.948 875,489 2,771+7,577 115.65 160.71 18:19:47 112.73
HASLR 1,469 92.664 1,699,092 2,097+7,661 113.06 281.74 6:32:33 60.75

Note: Mismatch and indel rates are reported per 100 kbp. hybridSPAdes and Unicycler failed on human genome datasets due to memory limit.
Unicycler did not finish on E. coli dataset within two weeks.

by best-performing tools in terms of contiguity while having the lowest number of misassemblies.
In other words, we prefer to remain conservative in resolving ambiguous regions without strong
signal rather than aggressively resolving them to generate longer contigs and possibly generating
misassemblies. However the conservative nature of HASLR does not implies it compromises on
assembling complex regions. Every complex region that is covered by a sufficient number of LRs,
together with its flanking unique SR contigs, would be resolved. In fact, based on our manual
inspections, there are regions that HASLR assembles properly but all other tools either misassemble
or generate fragmented assembly (see supplementary Section S7 for visual examples of such cases).

There are a number of future directions that are planned for future releases of HASLR. First,
compared to other tools, HASLR usually has a higher indel rate. Note that most of the small local
assembly mistakes (including mismatch and indel errors) can be fixed by further polishing. But
since a large portion of the assembled genome is built from SRCs, a polishing module could be
specifically designed for HASLR that only polishes the regions between unique SRCs which have
been generated using SPOA. This would enable a faster polishing phase.

HASLR sometimes generates assemblies with relatively lower genome fraction than other tools.
This is more clear when we compare it against Canu, especially on a large and complex genome like
the human genome. The main reason is the lack of unique SRCs in a large region. This limitation
could be mitigated by extracting unused LRs and assembling them in an OLC fashion (e.g. using
miniasm [17]). Note that only a small portion of LRs are unused compared to the original input

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

10 E. Haghshenas et al.

Table 4: Gene completeness analysis

Complete Complete Total
Dataset Assembler Complete (%) single copy (%) duplicate (%) Fragmented (%) Missing (%) BUSCO groups

E.coli Canu 4.1 4.1 0.0 16.8 79.1 440
(ONT) wtdbg2 1.8 1.8 0.0 9.1 89.1 440

hybridSPAdes 100.0 99.5 0.5 0.0 0.0 440
Unicycler NA
DBG2OLC 35.9 35.7 0.2 33.0 31.1 440
Masurca 99.7 98.6 1.1 0.0 0.3 440
Wengan 100.0 99.5 0.5 0.0 0.0 440
HASLR 97.8 97.3 0.5 1.6 0.6 440

Yeast Canu 96.6 94.8 1.8 0.2 3.2 2137
(PacBio) wtdbg2 88.4 86.8 1.6 0.8 10.8 2137

hybridSPAdes 96.6 94.8 1.8 0.1 3.3 2137
Unicycler 96.4 94.7 1.7 0.1 3.5 2137
DBG2OLC 57.1 56.5 0.6 0.5 42.4 2137
Masurca 96.3 94.1 2.2 0.1 3.6 2137
Wengan 96.5 94.9 1.6 0.0 3.5 2137
HASLR 95.8 94.4 1.4 0.1 4.1 2137

C.elegans Canu 97.4 96.8 0.6 1.1 1.5 3131
(PacBio) wtdbg2 97.1 96.5 0.6 1.3 1.6 3131

hybridSPAdes 96.4 95.8 0.6 1.3 2.3 3131
Unicycler 97.7 97.1 0.6 0.7 1.6 3131
DBG2OLC 97.5 95.8 1.7 0.6 1.9 3131
Masurca 95.5 94.1 1.4 0.4 4.1 3131
Wengan 91.6 91.1 0.5 0.9 7.5 3131
HASLR 97.1 96.7 0.4 0.8 2.1 3131

Note: We used enterobacterales odb10, saccharomycetes odb10, and nematoda odb10 gene sets for assessing gene completeness
of E. coli, Yeast, and C. elegans assemblies, respectively. We were not able to obtain the gene completeness results for the human
dataset due to time restrictions.

dataset. As a result, using an OLC approach for such a small set of LRs should not affect the total
running time significantly.

One of the main bottlenecks of OLC-based assembly approach in terms of speed is that they
require to find all overlaps between input reads. Recent LR assemblers have tried to speed up
this process by using minimizers [17,14] or compressed representation of LRs [25] techniques.
However, an all-versus-all alignment is still required in order to generate such a graph. In fact,
OLC-based assemblers can use HASLR (or the idea of backbone graph assembly) as a first step
before performing the computationally expensive all-vs-all alignment step.

An important factor in the contiguity of assemblies generated by HASLR is the length of reads.
Obviously, longer reads would generate a more connected and resolved backbone graph. With
the recent advancements in the Nanopore technology and the introduction of ultra-long Nanopore
reads (whose length can go beyond 1 Mbp), one can expect to get much more contiguous assemblies.
Therefore, supporting ultra-long ONT reads is an important feature to address in the future.

Finally, heterozygosity-aware consensus calling of subreads falling between to unique SRCs
is one of our main future directions. This would be possible via clustering of subreads that fall
between consecutive unique SRCs into two groups and performing consensus calling for each group
separately. This would enable HASLR to perform phased assembly of diploid genomes.

References

1. Antipov, D., Korobeynikov, A., McLean, J.S., Pevzner, P.A.: hybridspades: an algorithm for hybrid assembly of
short and long reads. Bioinformatics 32(7), 1009–1015 (2015)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

HASLR 11

2. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I.,
Pham, S., Prjibelski, A.D., et al.: Spades: a new genome assembly algorithm and its applications to single-cell
sequencing. Journal of computational biology 19(5), 455–477 (2012)

3. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based on a bloom filter. Algorithms
for Molecular Biology 8(1), 22 (2013)

4. Chin, C.S., Peluso, P., Sedlazeck, F.J., Nattestad, M., Concepcion, G.T., Clum, A., Dunn, C., O’Malley, R.,
Figueroa-Balderas, R., Morales-Cruz, A., et al.: Phased diploid genome assembly with single-molecule real-time
sequencing. Nature methods 13(12), 1050 (2016)

5. Di Genova, A., Buena-Atienza, E., Ossowski, S., Sagot, M.F.: Wengan: Efficient and high quality hybrid de novo
assembly of human genomes. bioRxiv p. 840447 (2019)

6. Haghshenas, E., Sahinalp, S.C., Hach, F.: lordfast: sensitive and fast alignment search tool for long noisy read
sequencing data. Bioinformatics 35(1), 20–27 (2018)

7. Huang, W., Li, L., Myers, J.R., Marth, G.T.: Art: a next-generation sequencing read simulator. Bioinformatics
28(4), 593–594 (2011)

8. Jaworski, C.C., Allan, C.W., Matzkin, L.M.: Chromosome-level hybrid de novo genome assemblies as an attainable
option for non-model organisms. bioRxiv p. 748228 (2019)

9. Jiang, J.B., Quattrini, A.M., Francis, W.R., Ryan, J.F., Rodŕıguez, E., McFadden, C.S.: A hybrid de novo assembly
of the sea pansy (renilla muelleri) genome. GigaScience 8(4), giz026 (2019)

10. Kadobianskyi, M., Schulze, L., Schuelke, M., Judkewitz, B.: Hybrid genome assembly and annotation of danionella
translucida. BioRxiv p. 539692 (2019)

11. Kokot, M., D lugosz, M., Deorowicz, S.: Kmc 3: counting and manipulating k-mer statistics. Bioinformatics 33(17),
2759–2761 (2017)

12. Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A.: Assembly of long, error-prone reads using repeat graphs.
Nature biotechnology 37(5), 540 (2019)

13. Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z., Rasko, D.A.,
McCombie, W.R., Jarvis, E.D., et al.: Hybrid error correction and de novo assembly of single-molecule sequencing
reads. Nature biotechnology 30(7), 693 (2012)

14. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.: Canu: scalable and accurate
long-read assembly via adaptive k-mer weighting and repeat separation. Genome research 27(5), 722–736 (2017)

15. Lee, C.: Generating consensus sequences from partial order multiple sequence alignment graphs. Bioinformatics
19(8), 999–1008 (2003)

16. Lee, C., Grasso, C., Sharlow, M.F.: Multiple sequence alignment using partial order graphs. Bioinformatics 18(3),
452–464 (2002)

17. Li, H.: Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics
32(14), 2103–2110 (2016)

18. Li, H.: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18), 3094–3100 (2018)

19. Miga, K.H., Koren, S., Rhie, A., Vollger, M.R., Gershman, A., Bzikadze, A., Brooks, S., Howe, E., Porubsky,
D., Logsdon, G.A., et al.: Telomere-to-telomere assembly of a complete human x chromosome. BioRxiv p. 735928
(2019)

20. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., Gurevich, A.: Versatile genome assembly evaluation with
quast-lg. Bioinformatics 34(13), i142–i150 (2018)

21. Miller, J.R., Delcher, A.L., Koren, S., Venter, E., Walenz, B.P., Brownley, A., Johnson, J., Li, K., Mobarry, C.,
Sutton, G.: Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24(24), 2818–2824 (2008)

22. Molnar, M., Haghshenas, E., Ilie, L.: Sage2: parallel human genome assembly. Bioinformatics 34(4), 678–680
(2017)

23. Myers, G.: Efficient local alignment discovery amongst noisy long reads. In: International Workshop on Algorithms
in Bioinformatics. pp. 52–67. Springer (2014)

24. Ono, Y., Asai, K., Hamada, M.: Pbsim: Pacbio reads simulatortoward accurate genome assembly. Bioinformatics
29(1), 119–121 (2012)

25. Ruan, J., Li, H.: Fast and accurate long-read assembly with wtdbg2. BioRxiv p. 530972 (2019)

26. Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., Zdobnov, E.M.: Busco: assessing genome
assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19), 3210–3212 (2015)

27. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using compressed data structures. Genome
research 22(3), 549–556 (2012)

28. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I.: Abyss: a parallel assembler for short
read sequence data. Genome research 19(6), 1117–1123 (2009)

29. Vaser, R., Sović, I., Nagarajan, N., Šikić, M.: Fast and accurate de novo genome assembly from long uncorrected
reads. Genome research 27(5), 737–746 (2017)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

12 E. Haghshenas et al.

30. Vollger, M.R., Logsdon, G.A., Audano, P.A., Sulovari, A., Porubsky, D., Peluso, P., Concepcion, G.T., Munson,
K.M., Baker, C., Sanders, A.D., et al.: Improved assembly and variant detection of a haploid human genome using
single-molecule, high-fidelity long reads. BioRxiv p. 635037 (2019)

31. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman,
J., Young, S.K., et al.: Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly
improvement. PloS one 9(11), e112963 (2014)

32. Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E.: Unicycler: resolving bacterial genome assemblies from short
and long sequencing reads. PLoS computational biology 13(6), e1005595 (2017)

33. Wick, R.R., Schultz, M.B., Zobel, J., Holt, K.E.: Bandage: interactive visualization of de novo genome assemblies.
Bioinformatics 31(20), 3350–3352 (2015)

34. Ye, C., Hill, C.M., Wu, S., Ruan, J., Ma, Z.S.: Dbg2olc: efficient assembly of large genomes using long erroneous
reads of the third generation sequencing technologies. Scientific reports 6, 31900 (2016)

35. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de bruijn graphs. Genome
research 18(5), 821–829 (2008)

36. Zimin, A.V., Puiu, D., Luo, M.C., Zhu, T., Koren, S., Marçais, G., Yorke, J.A., Dvořák, J., Salzberg, S.L.:
Hybrid assembly of the large and highly repetitive genome of aegilops tauschii, a progenitor of bread wheat, with
the masurca mega-reads algorithm. Genome research 27(5), 787–792 (2017)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 28, 2020. ; https://doi.org/10.1101/2020.01.27.921817doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.27.921817
http://creativecommons.org/licenses/by-nc-nd/4.0/

	HASLR: Fast Hybrid Assembly of Long Reads

