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Abstract

Assessing directional influences between neurons is instrumental to understand how
brain circuits process information. To this end, Granger causality, a technique originally
developed for time-continuous signals, has been extended to discrete spike trains. A
fundamental assumption of this technique is that the temporal evolution of neuronal
responses must be due only to endogenous interactions between recorded units,
including self-interactions. This assumption is however rarely met in neurophysiological
studies, where the response of each neuron is modulated by other exogenous causes such
as, for example, other unobserved units or slow adaptation processes.

Here, we propose a novel point-process Granger causality technique that is robust
with respect to the two most common exogenous modulations observed in real neuronal
responses: within-trial temporal variations in spiking rate and between-trial variability
in their magnitudes. This novel method works by explicitly including both types of
modulations into the generalized linear model of the neuronal conditional intensity
function (CIF). We then assess the causal influence of neuron ¢ onto neuron j by
measuring the relative reduction of neuron j’s point process likelihood obtained
considering or removing neuron 3. CIF’s hyper-parameters are set on a per-neuron basis
by minimizing Akaike’s information criterion.

In simulated data, the proposed method recovered with high accuracy the underlying
ground-truth connectivity pattern. Application of presently available point-process
Granger causality techniques produced instead a significant number of false positive
connections. In real spiking responses recorded from neurons in the monkey pre-motor
cortex (area F5), our method revealed many causal relationships between neurons as
well as the temporal structure of their interactions. Given its robustness our method
can be effectively applied to real neuronal data. Furthermore, its explicit estimate of
the effects of unobserved causes on the recorded neuronal firing patterns can help
decomposing their temporal variations into endogenous and exogenous components.
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Author summary

Modern techniques in Neuroscience allow to investigate the brain at the network level
by studying the flow of information between neurons. To this end, Granger causality
has been extended to point process spike trains. A fundamental assumption of this
technique is that there should be no unobserved causes of temporal variability in the
recorded spike trains. This, however, greatly limits its applicability to real neuronal
recordings as very often not all the sources of variability in neuronal responses can be
concurrently recorded.

We present here a robust point-process Granger causality technique that overcome
this problem by explicitly incorporating unobserved sources of variability into the model
of neuronal spiking responses. In synthetic data sets, our new technique correctly
recovered the underlying ground-truth functional connectivity between simulated units
with a great degree of accuracy. Furthermore, its application to real neuronal recordings
revealed many causal relationships between neurons as well as the temporal structure of
their interactions.

Our results suggest that our novel Granger causality method is robust and it can be
used to study the flow of information in the spiking patterns of simultaneously recorded
neurons even in presence of unobserved causes of temporal variability.

Introduction

Modern neurophysiological recording techniques allow to simultaneously probe the
activities of tens to hundreds neurons [143]. The availability of these high-dimensional
data sets allows to address novel and relevant research questions about the brain. A
particularly important question is to investigate brain functions at the circuit level, by
assessing the flow of information between neurons. To this end, several analytical tools
have been proposed in the past, such as cross-correlogram [4], joint peri-stimulus
histogram [5] or gravitational cluster [6]. While providing noteworthy insights, these
tools have also limitations as (1) they do provide little information about the
directionality of discovered interactions and (2) they do not usually consider the
point-process nature of neuronal spike trains. To overcome both issues Kim et al.
proposed an extension of Granger causality to point processes |7].

Granger causality is an analytical tool originally proposed in the context of
econometric time series [8]. A stochastic process x is said to Granger causally influence
another process y (henceforth denoted with  — y) if knowledge of values of = at times
before ¢t improves, in a statistically significant manner, the prediction of y at time ¢
beyond inclusion of past values of y itself. Granger causality assumes that all sources of
temporal modulations of the processes  and y must be endogenous to the set of
considered processes. That is, they must be entirely explained by the processes’ past
histories and there should be no common unobserved driver of temporal variability [9].
However, this is often not the case in neurophysiological experiments where many of the
causes that produce temporal modulations in neuronal responses are exogenous to the
ensemble of recorded neurons. Indeed, the activity of a neuron at each time point
results from the integration of signals coming from many, potentially thousands, other
neurons, most of which are not concurrently recorded. Furthermore, in many
experimental settings, we are interested in the so-called functional connectivity between
neurons. That is, the amount and directionality of information flow when the brain
state, is perturbed by an event (e.g. sensory stimulation or motor behavior). Under
these conditions, neurons exhibit temporal modulations in the statistics of their firing
patterns that are due to the interactions with neighboring neurons located in the their
local network as well as more distant units in projecting brain regions. Finally, the
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magnitude of neuronal responses often exhibits a physiological, potentially correlated,
trial-by-trial variability, that brings the system further away from the conditions
assumed by Granger causality.

In this paper, we show that, in the presence of exogenously temporally modulated
and trial-by-trial variable spike trains the point-process Granger causality technique
proposed by Kim et al. [7] might recover inaccurate patterns of connectivity. We then
propose two novel methods that address this issue. The first method, called G-ETM, is
designed to extend point-process Granger causality to spike trains whose magnitudes
are modulated by exogenous causes. The second method, called G-ETMV, is
computationally more demanding but it recovers the correct pattens of functional
connectivity between a set of interconnected neurons exhibiting both trial-by-trial
variability and exogenous temporal modulations in their firing patterns. We show the
effectiveness of our new Granger causality techniques by means of quantitative
computer simulations and application to real spike trains recorded from the monkey
pre-motor cortex (area F5).

Results

Throughout this section we will denote as endogenous, temporal modulations in
neuronal responses that are due to interactions between the recorded neurons (including
self-interactions) and as exogenous, temporal modulations that are due to unobserved
causes.

Standard point-process Granger causality fails with spike trains
exhibiting exogenous temporal modulations

To show how standard point-process Granger causality can produce incorrect patterns
of connectivity in the presence of spike trains exhibiting exogenous temporal
modulations, we applied Kim et al.’s Granger method to 40 simulated trials (Fig. [1| A)
of a simple system consisting of two units. The two units were not functionally
connected as their spike trains were generated by means of two independent Poisson
processes (Fig. |1| B). Furthermore, within each trial, they underwent an exogenous
bell-shaped modulation of their firing rates. Responses like these might be recorded, for
example, in motor areas during the execution or preparation of actions (see for Example
Fig. 2 in [10]). In these cases one obvious question that arises is whether the two units
represent subsequent stages of cortical processing, and their responses are thus causally
related, or if they are independently driven by an external, unobserved source.

This relevant question represents a natural application of the Granger causality
framework. Application of Kim et al.’s method to the spikes trains in Fig. [I| A revealed
many causal connections that, although statistically significant, were not actually
present in our system (compare the ground-truth connectivity in Fig. [I| B with the
recovered connectivity in Fig. [1| C). To see why this happened we have to consider the
estimates of the interaction functions (the v terms in Eq. [2| Fig. [I| D). In the Granger
framework, interaction functions describe how the past history of all neurons at different
time lags modulate, at each time point, the activity of a given neuron. In our example,
their ground-truth values are identically zero for all neurons and time lags as there is no
mutual or self interaction at any time lag between the two simulated units. However,
not only their estimated values are different from zero at several time lags, but, in many
cases, these differences are also statistically significant (red dots in Fig. [I| D). This
happened because, the GLM fitting process assigned the variance produced by the
temporal modulations of the spike trains to the only available free parameters. That is,
those related to interactions between neurons (the 7 terms in Eq. . For the specific
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Figure 1. Standard Granger causality fails with spike trains exhibiting
exogenous temporal modulations. (A) Spike trains of two units simulated by
means of two independent Poisson processes. In the top panels, each row represent a
trial (a total of 40 trials were generated) and each vertical line a spike. The bottom
panels show the average firing rate across trials. On each trial, each neuron underwent a
bell-shaped modulation of its firing rate centered around ¢ = 1 s and with a temporal
width of 200 ms. (B) Ground-truth connectivity of the two units. In this representation
a green square represents a significant causal connection from the source to the target
unit, while a black square signifies no causal connection between them. Since the two
units are independent the ground-truth connectivity matrix contains, in this case, only
black squares. (C) Connectivity recovered by the point process Granger causality
technique proposed by Kim et al. [7]. The recovered connectivity matrix contains three
fictitious connections: 1 — 1,1 — 2 and 2 — 1. (D) Ground-truth values (black
curves) and estimates (blue curves) of the interaction functions for the significant
functional connections. Red dots mark values that are significantly different from 0 at
p < 0.05.

data set of Fig. [T] A, inclusion of fictitious causal influences 1 — 1,2 — 2 and 2 — 1
could indeed explain a significant fraction of this variance. This result is not only
incorrect but also not robust. Different data sets, generated according to the same CIFs
as those in Fig. [1} will, in general, produce different fictitious patterns of causal
connectivity.

Extending point-process Granger causality to spike trains
exhibiting exogenous temporal modulations

To overcome this problem we propose here G-ETM (Granger causality with Exogenous
Temporal Modulations): a novel model that extends the computation of Granger
causality to spike trains exhibiting exogenous temporal modulations. To this end, we
exploited the organization of neurophysiological experiments into trials and the
consistency, across trials, of temporal changes in firing rates to divide, for each neuron 4,
the duration T of each trial into N; non-overlapping windows. Within each window, we
model the CIF of a given neuron ¢ as the sum of a baseline rate of activity and the sum
of the influences of all other neurons in the ensemble (including neuron ¢ itself). Having
one additional parameter for each interval allows us to explicitly take into account
transient changes in the CIF of neurons due to exogenous, unobserved factors.
Application of G-ETM to the spike trains of Fig. [I| produced the correct pattern of
causal connectivity (Fig. 2] A). Furthermore, our technique produced also an estimate of
the exogenous temporal modulations of the two simulated units that correctly captured
their ground-truth values (Fig. [2| B). This happened because we now explicitly model
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Figure 2. Application of our G-ETM Granger causality method to the

spike trains of Fig. [1} (A) ground-truth (upper panel) and recovered (bottom panel)
connectivity matrices. (B) Estimated (blue curves) and ground truth (black curves)
interaction functions. (C) Estimates of the exogenous components of firing patterns.
That is, changes in firing rates that are not due to interactions with other neurons.
Symbols are as in Fig.

exogenous temporal changes of firing rates by means of the terms ~; 4 in Eq.
Therefore, the GLM fitting process no longer needs to generate fictitious connections to
explain the variance that they produce.
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Figure 3. Application of G-ETM to a complex system. (A) Ground-truth
connectivity pattern. (B) Connectivity pattern estimated by applying Kim et al.’s
method [7]. (C) Connectivity pattern estimated by means of our G-ETM method. (D)
Estimated (blue curves) and ground-truth (black curves) interaction functions of the
significant causal connections. (E) Estimates of the exogenous components of firing
patterns. Symbols are as in Figs. [T and

We next evaluated G-ETMon a more complex system composed of 9 units
subdivided into two disjoint (i.e. not interacting) subsets: units 1-3 and 4-9 (Fig.|3| A)
respectively. Within each simulated 3 s trial, units’ firing patterns were determined by
(1) influences from other units in the same subset and (2) bell-like exogenous
stimulation that for each unit peaked at a different time in the interval between t =1 s
and t = 2 s. This example is meant to model the case of simultaneous recordings from
two areas during occurrence of an experimental event. In this setting, the question
arises of whether there is any functional connectivity between the two recorded areas
and, if so, what is its directionality. In our simulated network, there was no direct
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connectivity between the two areas (i.e. the two subset of units). Application of Kim et
al.’s method provided an inaccurate estimate of the local pattern of the connectivity
both within and between the two subsets of units (Fig. [3| B). In particular, it produced
several additional false-positive connections suggesting an incorrect pattern of inter-area
connectivity. In an experimental setting, this pattern of result would provide support
for the incorrect conclusion of a functional connectivity between the two areas. On the
contrary, G-ETM recovered the correct pattern of causal connectivity both within and
between the two subsets of units (Fig. [3] C). Furthermore, it also provided an accurate
estimate of the interaction functions between units (Fig. [3| D). It is worth noting that
temporal changes in the units’ firing rates were almost entirely due to exogenous
stimulation (Fig. 3| E). This means, that our method was sensitive enough to detect
influences between units, even when, as is often the case for real neurons, they produced
only minimal changes in their firing rates.

To provide a more general and thorough validation of G-ETM we performed a series
of Montecarlo simulations (Fig. [4)). To this end, we simulated 40 trials of a network
consisting of 4 neurons and 6 connections whose placement (i.e. connected nodes and
directionality of the connection), type (i.e. excitatory or inhibitory) and strength were
randomly determined (but did not change across trials). In addition to mutual and self
influences the spike rates of the 4 neurons underwent also an exogenous bell-shaped
modulation. For each neuron the modulation peaked always at the same time that was
however different across neurons and distributed in the interval t =1 s and t =2 s. We
then estimated causal connectivity by applying both Kim et al.’s and our method and
compared these two connectivity patterns with the known ground-truth connectivity
(Fig. [4] A). We iterated this procedure 100 times randomly determining the network
structure at each run. Consistent with the intuition provided by Figs. [1| and
application of Kim et al’s method produced false positives (i.e. deeming a connection
significant when it is not present in the network) in 42 % of the cases, which exceeds by
almost 10-fold the set statistical threshold of p < 0.05 (Fig. [4/ B). On the contrary,
G-ETM not only provided a comparably good estimate of the connectivity pattern
(85 % vs. 88 % correct for our and Kim et al.’s methods respectively) but also produced
a percentage of false positives compatible with the selected statistical threshold (4.2 %,
Fig. [4| B). These results further show that G-ETM provides an accurate estimate of the
causal influences in a network of neurons in the presence of exogenous temporal
modulations of their firing rates.

A generate data set apply compare ground-truth B
Granger and recovered connectivity

; rn.s.4

# | #false | #false 100 CJGET™
correct |positives [negatives|

Mlkim etal.
—*

B )
n— Kim et al.

50

percentage

# #false | #false
correct |positives [negatives|

false positives  correct

Figure 4. Montecarlo validation of G-ETM (A) Pictorial exemplification of our
procedure (see main text for further details). In brief, we first randomly generated a
connectivity pattern in a network of 4 neurons. We then applied Kim et al.’s and
G-ETM Granger techniques to a data set consisting of 40 simulated trials for each
neuron. Finally, we compared ground-truth connectivity with that estimated by the two
methods. (B) We repeated this procedure for 100 runs to estimate the percentage of
correct and false positive connections recovered by the two methods. Statistically
significant differences are marked by an asterisk.
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Application to real spike train data

In a further step we applied G-ETM to real spike-train data. To this end, we
simultaneously recorded the response of 12 neurons from the monkey pre-motor cortex
(area F5) during the preparation of goal-directed motor acts. The task of the monkey
was to attend to a briefly flashed cue indicating a to-be-executed action and to withhold
movement execution until a subsequent go signal occurring on randomly between 0.8
and 1.2s after cue onset. Fig. shows the responses of the 12 recorded neurons during
this motor preparation period. In each panel, t = 0 marks cue presentation.

We collected data from a total of 57 trials and analyzed neuronal responses recorded
in the interval from 0.5 s before until 1 s after cue presentation. Consistent with
previous studies of monkey pre-motor cortex [11], the responses of neurons in area F5
were significantly modulated by the preparation of a motor act, exhibiting both phasic
and transient modulations in their firing rates (Fig. . We applied G-ETM to these
spike trains. The results of our analysis revealed a complex pattern of Granger
connectivity with both self- and mutual interactions between the recorded neurons
(Fig. ) Application of Kim et al.’s method recovered a different pattern of
connectivity exhibiting a higher number of mutual influences between neurons
(off-diagonal elements in Fig. ) Although in this case, we do no have the
ground-truth connectivity pattern, quantitative simulations reported in Figs. [3] and [4]
strongly suggest that these additional causal connections are likely false positives.

Interestingly, examination of the recovered interaction functions (Fig. ) suggests
that both self- and mutual interactions are time-dependent with a general trend of
being inhibitory at shorter time scales and excitatory at longer time scales. Finally,
examination of the recovered exogenous components of the firing patterns (Fig. )
shows that for some units (e.g. units 6 or 11) their temporal modulations could be only
partially explained by exogenous influences and the remaining part was explained by
self- or mutual interactions with other units. This result suggests that, in addition to
recovering patterns of causal connectivity, G-ETM can be also effectively used to
decompose the firing pattern of recorded units into exogenous (i.e. due to unobserved
units) and endogenous (i.e. due to observed units) components.
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Figure 5. Application of G-ETM to real spike trains. (A) Connectivity pattern
estimated by our G-ETM method. (B) Connectivity pattern estimated by applying Kim
et al.’s method [7]. (C) Estimated interaction functions of the significant causal
connections. (D) Estimates of the non-stationary components of firing patterns.
Symbols are as in Figs. [
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Accounting for trial-by-trial variability

We have so far assumed that the stimulus-evoked responses of neurons are stereotyped
and do not change across trials. However, while maintaining the same overall shape, the
magnitude of neuronal firing patterns can often exhibit considerable variability across
trials. It has been shown that these trial-by-trial variations can produce spurious
patterns of Granger causality and this problem becomes even more severe when these
variations are correlated across neurons [12,[13]. Fig. |§| shows an example of such
problems in a very simple system composed of two simulated units. In this example, on
each trial p, the activity of unit ¢ was generated by means of an inhomogeneous Poisson
process with firing probability A; , - A;(t), where the factor A;, sets the overall
magnitude of the response \;(t) in trial p. The processes A\; and A2 were independent
and both underwent a bell-shaped temporal modulation of their firing rates centered at
t =1 (Fig.[6] B). We set A1, = Ay, Vp to correlate the trial-by-trial variability of the
two units (Fig. |§| C). Application of G-ETM recovered in this case an incorrect pattern
of causal connectivity. This happened because, trial-by-trial changes in response
magnitude produced additional variance in the data that could not be accounted for by
the exogenous components of our G-ETM model (see the mismatch between the blue
and black curves in Fig. |§| E). Therefore, the GLM fitting process attempted to explain
this additional variance by means of the other available free parameters. That is, those
related to interactions between neurons. Indeed, for this specific realization of spike
trains, inclusion of fictitious causal influences 1 — 2, 2 — 1 and 2 — 2 significantly
improved the percentage of explained variance (Fig. |§| F) thus producing an incorrect
pattern of Granger connectivity.

To take into account correlated trial-by-trial variability in the magnitude of neuronal
responses we extended our G-ETM model. To this end, we further augmented it with a
set of A; , additional parameters that model the response magnitude of neuron ¢ in trial
p (see Methods section for further details). Application of this new model (G-ETMV:
Granger causality with Exogenous Temporal Modulations and trial-by-trial Variability)
to the spike patterns in Fig. [6] B did not only recover the correct pattern of connectivity
(compare Fig. |§| A and Fig. |§| G) but it also provided a faithful estimate of the response
magnitudes A; ;, across trial and neurons (Fig. [6| C). Furthermore, it also provided a
more precise estimate of the exogenous temporal modulations of neuronal responses
(Fig. |§| H). Taken together, results in Fig. |§| further support the notion that, in Granger
causality, the presence of unaccounted variance (in this case trial-by-trial variability)
can produce spurious patterns of functional connectivity.

We next validated our G-ETMV method by means of a series of Montecarlo
simulations. These simulations had the same structure as those in Fig. [f] with the
notable difference that, to produce correlated trial-by-trial variability the firing rates of
all neurons were multiplied, on each trial, by the same factor randomly selected in the
interval [.5, 1.5). Consistent with the intuition provided by Figs. |§| application of our
G-ETM method produced a false positive in 14 % of the cases; a value that is
significantly above the set statistical threshold of p < 0.05 (Fig. @ On the contrary,
G-ETMYV not only provided a significantly better estimate of the connectivity patterns
(97 % vs. 92 % correct for the G-ETM and G-ETMV models respectively) but also
maintained the percentage of false positives compatible with the set statistical threshold
(6 %, Fig. @ These results show that G-ETMYV is an effective technique to estimate
causal influences between neurons that exhibit exogenous temporal modulations in their
firing rates whose magnitude is variable across trials and correlated across units.
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Figure 6. Trial-by-trial variability and Granger causality. The panel exemplify
how trial-by-trial variability can affect Granger causality measures even when
non-stationarity in firing rates is taken into account and how G-ETMYV can successfully
address this issue. (A) Ground-truth connectivity of our simple 2-neuron system (i.e. no
connectivity). (B) Spike trains of the two independent units undergoing non-stationary
changes in their firing rates and correlated trial-by-trial variability of response
magnitudes. The red curves in the bottom panel represent the firing rate of the single
trials, while the thick black line represents the average firing rate. (C) Ground-truth
trial-by-trial variability of the responses of the two neurons. The black curve represents,
for each trial, the overall level of activation of the two units. (D) In the presence of
correlated trial-by-trial variability our G-ETM method recovers an incorrect
connectivity pattern. (E-F) Ground-truth values (black curves) and estimates (blue
curves) of the exogenous components of the firing rates (panel E) and of the interaction
functions for the significant causal connections (panel F) recovered by G-ETM. (G-H)
The correct patterns of connectivity (panel G) and exogenous components (panel H) are
instead recovered by our G-ETMV method. (H) G-ETMV also provides a faithful
estimate of the trial-by-trial response variability of both neurons.

Discussion

A fundamental goal of Neuroscience is to characterize the brain functional circuits
underlying perception, cognition and action. Granger causality addresses this problem
by detecting the flow of information between simultaneously recorded physiological
signals [14]. In previous work, Kim and co-workers proposed a point-process extension
of Granger causality that allowed to investigate functional connectivity directly at the
spike train level [7]. As any standard Granger causality techniques also Kim et al.’s
technique assumes that input time series are jointly stationary. That is, their temporal
modulations must be entirely due to the series’ past histories. This assumption is
however rarely met in real neurophysiological experiments. Indeed, neuronal networks
are characterized by a high degree of convergence and the activity of a given neuron is
the result of the integration of the outputs of many, potentially thousands, projecting
units, which is often not technically possible to concurrently record. Furthermore, brain
networks often exhibit slow changes in their global state, which makes the magnitude of
neuronal responses vary across trials and be correlated between units.

Here, we first showed that applying standard point-process Granger causality to
spike trains that exhibit exogenous temporal modulations produces a non-negligible
number of artefactual causal links between neuronal activities. In an experimental
setting, these results would suggest the existence of fictitious connectivity patterns and
would induce incorrect conclusions concerning the underlying information flow. To
overcome these problems, we proposed here two novel point-process Granger causality
techniques: G-ETM and G-ETMV. G-ETM is computationally less demanding and
specifically designed for the case of spike trains exhibiting temporal modulations while
G-ETMV is more computationally demanding but also handles the case of trial-by-trial,
potentially correlated variability in neuronal responses. The choice of which one to use
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Figure 7. Montecarlo validation of G-ETMYV. (A) Percentage of correct and
false positive connections estimated by G-ETM and G-ETMYV respectively when applied
to spike trains exhibiting both exogenous temporal modulations and trial-by-trial
variability. Montecarlo simulations have the same structure as in Fig. |§| A. (B)
Scatterplot of estimated vs. ground-truth trial-by-trial variability coefficients (i.e. the
terms A; , in Eq. @ The dots cluster around the unitary slope line (red line),
indicating that estimates were close to their ground-truth values.
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depends on a trade-off between available computational resources and a-priori
hypotheses that the Experimenter has concerning a specific data set.

The jointly stationarity assumption gives Granger causality several appealing
characteristics [14]. However, at the same time, it greatly limits its potential
applications, as very often we are interested in investigating the information flow in
brain networks undergoing stimulus-evoked state transitions whose causes are exogenous
to the networks themselves. To extend Granger causality to these cases two main, not
mutually exclusive, methods have been proposed in the literature. The first method
consists in performing some form of pre-processing on the data to render them
stationary and then apply Granger causality to this new stationary data set. For
example, simple linear trends can be removed by differentiation while more complex
non-stationary components can be removed by subtracting the ensemble average or the
estimated evoked response from each trial [15,/16]. These techniques are however
designed for time-continuous or continuously sampled data and cannot be directly
applied to spike trains given their point-process nature. Furthermore, the removal of the
ensemble average assumes that each trial is a realization of the same underlying
stochastic process, an assumption that is not always met in practice [12]. The second
method consists in using time-varying models to fit the data [17.{18]. These extensions
to Granger analysis can effectively deal with time series exhibiting exogenous temporal
modulations. However, they possess no underlying test statistics and thus significance
of the estimated parameters and model comparison must be assessed by means of
empirical and computation-intensive bootstrapping techniques [17}/18].

The Granger causality techniques proposed here overcome both problems. Since they
directly model the neurons’ CIF they can be applied to point-process data.
Furthermore, they use time- and trial-dependent models of neuronal responses and can
thus recover the correct patterns of directed connectivity from spike trains containing
exogenous temporal modulations and trial-by-trial variability. Notably, both techniques
use generalized linear models to estimate the underlying neuronal CIF. Thus, we could
use the rich theoretical framework developed for this class of models and, particularly,
the test statistics developed to assess the goodness-of-fit of a given model and the
significance of the estimated parameters. This aspect was particularly relevant for
Granger causality analysis as this technique is heavily based on model comparison.
Finally, both G-ETM and G-ETMYV produce an estimate of the effects of both observed
and unobserved causes on neuronal responses. Thus, in addition to estimating
functional connectivity, they can be also used to decompose the spiking activity of each
unit into endogenous (i.e. observed) and exogenous (i.e. unobserved) components.
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At the practical level, the results of our Montecarlo simulations stress the
importance of carefully checking that the data set under scrutiny meets the assumptions
of Granger causality [19]. Indeed, as shown in Figs. B@ D and|[7] A, applying
Granger causality analysis to spike trains that violate the assumptions of a given model
produces a number of false positive (i.e. artefactual) connections well above the selected
significance level. In these cases, incorrect conclusions might be drawn concerning the
underlying connectivity pattern.

In summary, we presented here two novel point-process Granger analysis techniques,
namely G-ETM and G-ETMYV, that can correctly detect directed influences between
neurons whose responses exhibit exogenous temporal modulations and correlated
trial-by-trial variability. These novel techniques allow to investigate the information flow
during stimulus-evoked periods and thus to reveal how neurons interact not only during
baseline conditions, but also when their responses are modulated by exogenous
stimulation.

Materials and methods

We first briefly review the point process Granger causality method proposed by Kim
and co-workers [7].

A point process is a time series of discrete events that occur in continuous time [20].

Given an observation interval (0,77, let 0 < u} < --- < “3 <o <ul <T be aset of
J* spike times point process observations for i = 1,--- , Q recorded neurons. Let N;(t)
denote the number of spikes of neuron 7 in the time interval (0, ¢] with ¢ € (0,7]. A point
process model of a spike train is completely characterized by its conditional intensity
function (CIF) );, given the past spiking history H;(t) of all neurons in the ensemble:

Nt (0) = i DN B) N0 = L) "

where H;(t) denotes the spiking history of all the neurons in the ensemble up to time ¢
including neuron i itself.

The function A; needs to be estimated from data. To this end, we first computed the
history H;(t) of each neuron i in M; non overlapping rectangular windows of duration
W. We then denoted with R, ,, the spike count of neuron ¢ (1 < ¢ < Q) in the interval
m (1 < m < M;) and used a generalized linear model (GLM) framework to model the
logarithm of the CIF as a linear combination of the R, ., [21}22]:

Q M1
log\i(t|ri, Hi(t)) = vio + Z Z Yi,q,mBqm(t) (2)

g=1m=1

where ; o relate to a baseline level of activity of neuron ¢ and the to-be-estimated
interaction function +; 4., represents the effect of ensemble spiking history Ry ., (t) on
the firing probability of neuron .

Casting the estimate of \; into an auto-regressive GLM framework allows an
extension of Granger causality to point processes [7]. Indeed, following the definition of
Granger causality, one can infer the potential causal connection j — ¢ of neuron j onto
neuron 4 by comparing the deviance of the full model in Eq [2| with that of a reduced
model X} that excludes the effects of neuron j onto neuron i:

Q M;
logX] (t|vi, Hi(t)) = 7i0 + Z Z Yi,gmBqm (1) (3)
q=1,q#j m=1
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If both models describe the data well then the difference of their deviances can be
asymptotically described by a chi-square distribution and one can then use the
theoretical machinery developed for this distribution to infer statistical significance [7].

Accounting for temporally modulated spike trains

An assumption of standard Granger causality is that the examined stochastic processes
are jointly stationary. That is, their temporal evolution must be entirely due to their
past histories. To easily convince ourselves why this is the case, let us look at Eq.[2| In
this equation, the CIF is assumed to depend, through the terms R, (¢) only on the
past history H;(t) of the neuronal ensemble. If the statistics of the spike trains are
jointly stationary so are also the terms R, ,, (). This ensures that the GLM fitting
process will converge to meaningful values for the parameters v and that the difference
of the deviances of models 2] and [3| will asymptotically follow a chi-square distribution.
However, in the presence of spike trains exhibiting exogenous temporal modulations, the
terms Ry ., (t) will also be, in general, non-stationary and thus the GLM fitting process
may converge to non-meaningful values or not converge at all. Furthermore, the model
in Eq. [2| will, in general, no longer provide a good description of the data. As a
consequence, the deviances of models [2| and [3| might no longer asymptotically follow a
chi-square distribution. In this case, the problem of statistically comparing them may
even become ill-posed.

To overcome this limitation we first need to understand the characteristics of
temporal modulations in spike trains. Neurophysiological experiments are usually
organized into trials. Within each trial, an experimental event occurs (e.g. a sensory
stimulus is presented, a movement is performed, etc.) that produces modulations in
neuronal activities. For data analysis purposes, the continuously recorded neuronal
spike trains are then off-line segmented into trials centered around the presented
experimental event. A common assumption in analyzing neuronal responses is that the
modulations produced by the exogenous event has the same time-course and amplitude
across trials. Under this assumption we can thus deal with this non-stationarity by
explicitly including it in our model.

To this end, for each neuron 7 we subdivide the duration T" of each trial into IV;
non-overlapping windows of duration T'/N;. Within each window we then model the
CIF as the sum of the to-be-estimated effect of an exogenous event (the experimental
event) and the influences of the other neurons. Our model becomes thus:

Q M,
logAi(t]vi, Hi(t)) = a ey, + Z Z Yi,qymRq,m (1) (4)

g=1m=1

where 0 < t < T and the a; . (with 1 < ¢ < N) are a set of INV; additional parameters
(one for each of the intervals in which we have subdivided a trial for neuron ¢) that
explicitly model changes in firing rates due to exogenous effects (i.e. effects not due to
interactions with self or other neurons).

Model parameters are estimated by means of a GLM fitting process and the
potential causal influence of neuron j onto neuron i is assessed, similar to the method
proposed by Kim et al. [7], by comparing the deviance of the model in Eq. 4] with that
of a reduced model A/ that excludes the effects of neuron j onto neuron i:

Q M;
log\] (thyi, Hi(1)) = airang + D D VigmBam(t) (5)
q=1,g#j m=1

Notably, the GLM fitting process provides not only an estimate of the interaction
functions ~; 4 but also of the exogenous modulations ;. of neuronal responses.
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To select the values of M; and N; we repeated the fitting process using models
having different values of M; and N; and we then selected the model that minimized
Akaike’s information criterion (AIC) [7}123].

Accounting for trial-by-trial variability

We have so far assumed that stimulus-evoked responses are stereotyped and that their
trial-by-trial variability is entirely due to a noise process. However, neuronal responses
can exhibit considerable task-related variations across trials that cannot be captured by
a noise process. Notably, correlated variations of response magnitudes can modulate
cross-correlation or spectral coherence measures resulting in spurious patterns of
Granger causality [12}[15]. To avoid these artifacts we need to explicitly include in our
model potential trial-by-trial variations in response magnitudes. To this end, we added
to our model a set of parameters A; , that represents the amplitude of the
non-stationary response component of neuron ¢ in trial p:

Q M,
logXi p (s Hi(t)) = Aip + QLN t Z Z Vi,g,mPg,m (t) (6)

g=1m=1

where ); ,, is the CIF of neuron ¢ in trial p. Notably, the fitting process produces also an
estimate of the parameters A;, whose values can be used to assess the consistency of
response magnitudes across trials. Also in this case, the potential causal influence of
neuron j onto neuron ¢ is assessed by comparing the deviance, across all trials, of the
model in Eq. |§|with that of a reduced model )\g,p that excludes the effects of neuron j
onto neuron ¢.

Generation of synthetic spike trains

For our simulations we set the temporal granularity to 1 ms. For each neuron ¢ and trial
p, spike trains were then generated by extracting, for each trial and 1 ms interval, a
random number 7 uniformly distributed between 0 and 1. A spike was assumed to have
occurred if r < A; ,(¢|vs, Hi(t))A (where \; represents the time-dependent firing rate in
spikes per second and A = 0.001 s = 1 ms); otherwise, no spike was generated.

At each time ¢, the firing rate A; , was computed as:

where A; , models trial-to-trial variations of the activity of neuron 1, A?yp isa
(t—7)2
baseline level of activity, B;e 7 is a non-stationary Gaussian-shaped modulation of

the spike rate centered, within each trial, at time 7; and with 7y determining its
duration. The term > > ... represents the influence of all other neurons including
neuron ¢ itself. The network topology as well as the functional interactions between
neurons are determined by appropriately setting the parameters d; 4,m. In all our
simulations we set 75 = 200 ms.
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