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SUMMARY

T cell exhaustion limits immune responses against cancer and is a major cause of resistance to CAR-
T cell therapeutics. Using a model wherein tonic CAR signaling induces hallmark features of
exhaustion, we employed a drug-regulatable CAR to test the impact of transient cessation of receptor
signaling (i.e. “rest”) on the development and maintenance of exhaustion. Induction of rest in exhausting
or already-exhausted CAR-T cells resulted in acquisition of a memory-like phenotype, improved anti-
tumor functionality, and wholescale transcriptional and epigenetic reprogramming. Similar results were
achieved with the Src kinase inhibitor dasatinib, which reversibly suppresses CAR signaling. The
degree of functional reinvigoration was proportional to the duration of rest and was associated with
expression of transcription factors TCF1 and LEF1. This work demonstrates that transient cessation of
CAR-T cell signaling can enhance anti-tumor potency by preventing or reversing exhaustion and
challenges the paradigm that exhaustion is an epigenetically fixed state.
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INTRODUCTION

Chimeric antigen receptors (CARs) combine a tumor antigen-recognition domain with
intracellular signaling domains, thereby enabling recognition and killing of tumor cells in a major
histocompatibility complex (MHC)-independent manner (Lim and June, 2017; Mackall et al., 2014).
CAR-T cells mediate high response rates in relapsed/refractory high-grade B cell malignancies, but
less than 50% of patients experience long-term disease control and CAR-T cells have not demonstrated
reproducible efficacy against solid tumors (Davila et al., 2014; Lee et al., 2015; Majzner and Mackall,
2019; Maude et al., 2014). T cell exhaustion has been implicated as an important factor limiting the
efficacy of CAR-T cells against cancer (Eyquem et al., 2017; Fraietta et al., 2018a; Fraietta et al.,
2018b) and can be driven by excessive CAR signaling as a result of high antigen burden or tonic
signaling induced by antigen-independent clustering of the CAR receptor (Long et al., 2015; Lynn et
al., 2019). We hypothesized that transient cessation of CAR signaling would enable exhausted CAR-T
cells to regain functionality and form a memory pool, similar to the effects observed following antigen
clearance of acute infections (Wherry et al., 2004).

Using a drug-regulatable platform (Banaszynski et al., 2006; Banaszynski et al., 2008) wherein
a tonically signaling CAR was modified with a C-terminal destabilizing domain (DD) to enable drug-
dependent control of CAR protein levels, we observed that transient inhibition of CAR surface
expression, and thereby tonic CAR signaling (i.e. “rest”), prevented cells from developing exhaustion,
instead redirecting them to a memory-like fate with enhanced anti-tumor potency. Similarly, transient
rest in a population that had already acquired functional, transcriptional and epigenetic hallmarks of
exhaustion, but not aPD-1 blockade, induced impressive functional reinvigoration that was associated
with global transcriptional and epigenetic reprogramming. We observed similar phenotypic and
functional reinvigoration following transient exposure to dasatinib, a Src kinase inhibitor that potently
and reversibly inhibits TCR and CAR signaling (Lee et al., 2010; Mestermann et al., 2019; Schade et
al., 2007; Weber et al., 2019). Collectively, these results challenge the paradigm that exhaustion is an
epigenetically fixed state (Pauken et al., 2016; Philip et al., 2017) and reveal that transient cessation of
CAR signaling may provide a new strategy for augmenting the function of exhausted human CAR-T
cell populations.

RESULTS

A GD2-targeting CAR modified with a destabilizing domain exhibits drug-dependent, analog
control of expression and function in vitro and in vivo.

We previously demonstrated that some CARs, like those incorporating a GD2-specific 14g2a
scFv and CD28 co-stimulatory domain, undergo antigen-independent, tonic CAR signaling due to
spontaneous receptor clustering, which promotes hallmark features of exhaustion in human T cells
(Long et al., 2015; Lynn et al., 2019). To test whether prevention of tonic signaling during ex vivo
expansion would preserve CAR-T cell functionality and improve anti-tumor potency, we incorporated
an FK506 binding protein 12 (FKBP) destabilizing domain (DD) (Banaszynski et al., 2006) into the
endodomain of the GD2-targeting CAR (GD2.28C.FKBP). The DD induced rapid proteasomal
degradation of the CAR fusion protein at baseline (Figures 1A and 1B), whereas in the presence of
shield-1, which specifically binds to and stabilizes the FKBP DD, CAR degradation was prevented and
the GD2.28(.FKBP CAR was expressed on the cell surface in a dose- and time-dependent manner
(Figures 1B and 1C). Removal of shield-1 from GD2.28(.FKBP-expressing T cells lead to a rapid
decrease in CAR surface protein, with a degradation half-life of approximately 1 hour (Figure 1C). To
determine whether the dynamic range of CAR expression induced by the DD was sufficient to modulate
biologic reactivity and to directly assess the relationship between CAR expression level and anti-tumor
function, we co-cultured GD2.28(.FKBP CAR-T cells with Nalm6 leukemia engineered to overexpress
GD2, GFP, and luciferase (Nalm6-GD2) in the presence of increasing concentrations of shield-1. We
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observed drug-dependent, analog control of tumor-induced cytokine secretion (Figure 1D) and
cytotoxicity (Figure 1E), demonstrating that CAR expression levels within the dynamic range obtained
in this model system enable tuning of CAR-T cell function.

To interrogate DD-CAR functionality in vivo, we substituted the FKBP DD for an E. coli-derived
dihydrofolate reductase DD (ecDHFR) (lwamoto et al., 2010). Expression of GD2.28{.ecDHFR CAR is
regulated by the well-tolerated, FDA-approved antibiotic, trimethoprim (TMP), and demonstrated a
dynamic range comparable to that of the GD2.28(.FKBP CAR (Figure S1C). Using an NSG mouse
model of NalIm6-GD2 leukemia, intraperitoneal administration of TMP induced surface CAR expression
(CAR ON), upregulation of the T cell activation marker CDG9 in CAR-T cells isolated from blood and
spleen (Figure S1B), and robust anti-tumor potency compared to mice receiving vehicle (CAR OFF) or
mock T cells (Figures 1F-G and S1C). Together, these data demonstrate drug-dependent control of
DD-CAR expression and anti-tumor efficacy both in vitro and in vivo.
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Figure 1: A GD2-targeting CAR
modified with a destabilizing domain
(DD) exhibits drug-dependent, analog
control of expression and function in
vitro and in vivo. A) Schematic
depicting drug-dependent control of DD-
CAR fusion protein. B) Flow cytometry
demonstrating dose-dependent control
of GD2.28(.FKBP expression via shield-
1. Histogram data shows one
representative donor and the dose-
response curve shows mean + SEM
from 3 independent donors. C) Flow
cytometry  demonstrating ON/OFF
kinetics of the GD2.28¢.FKBP CAR,
which was measured by adding or
removing shield-1 from  cell cultures
and assessing CAR surface expression
at the times indicated. Histograms show
data from one representative donor and
CAR induction and CAR disappearance
curves show mean + SEM of 3 individual
donors. D-E) Concentrations of shield-1
were added to cells 16 hours prior to co-
culture with Nalm6-GD2 leukemia. (D)
Dose-dependent regulation of IL-2 and
IFNy secretion via shield-1. Error bars
represent mean + SEM of 3 individual
donors. (E) Dose-dependent regulation
of cell killing against Nalm6-GD2
leukemia via shield-1 (1:2 E:T,
normalized to t=0). Error bars represent
mean * SD of ftriplicate wells.
Representative donor from 3 individual
donors. F-G) 1x10° Nalm6-GD2
leukemia cells were engrafted in mice at
day 0 and 2x10° GD2.28(.ecDHFR
cells expanded in the absence of TMP
for 15 days in vitro were infused IV on
day 7 post-engraftment. Mice were
dosed 6 days per week with vehicle
(ddH20, CAR OFF) or 200mg/kg TMP
(CAR ON). (F) Bioluminescence
imaging of the tumor and (G) mouse
survival data indicate TMP-dependent
anti-tumor activity in CAR ON mice
compared to CAR OFF mice.
Representative experiment from 3
independent experiments (n=5
mice/group). Statistics were calculated
using log-rank  Mantel-Cox  test
(p<0.0001).
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Cessation of tonic CAR signaling augments CAR-T cell potency and redirects CAR-T cell fate
away from exhaustion and towards a memory-like state.

We next sought to determine whether drug-dependent control of DD-CAR expression could
prevent exhaustion induced by tonic CAR signaling. Similar to stably expressing GD2.28¢ CAR-T cells
(Long et al., 2015), GD2.28C.FKBP CAR-T cells cultured in the presence of shield-1 (CAR ON)
exhibited antigen-independent phosphorylation of CAR CD3( (CD3C) (Figure 2A) and features of T cell
exhaustion, including elevated expression of inhibitory receptors PD-1, TIM-3, and LAG-3 (Figure 2B),
whereas CAR-T cells cultured in the absence of shield-1 (CAR OFF) did not. GD2.28(.FKBP or
GD2.28(.ecDHFR T cells that were expanded in the CAR OFF state, but were provided drug just prior
to antigen challenge (OFF/ON) exhibited superior cytotoxicity (Figure 2C), tumor-induced cytokine
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Figure 2: Prevention of tonic CAR signaling augments anti-tumor functionality in vitro and in vivo. A) Western blot demonstrating
reduced total and phosphorylated CAR CD3( in GD2.28(.FKBP cells cultured in the absence of shield-1 (CAR OFF) compared to those
cultured in the presence of shield-1 (CAR ON), indicating reduced tonic signaling. Representative donor from 3 individual donors. B) Flow
cytometry demonstrates diminished inhibitory receptor expression in CAR OFF GD2.28(.FKBP CAR-T cells compared to CAR ON CAR-T
cells. C-D) GD2.28(.FKBP CAR-T cells expanded in the absence of shield-1 for 15 days and treated with shield-1 during a co-culture assay
(OFF/ON, green) exhibited (C) superior cytotoxicity against 143B osteosarcoma (1:8 E:T, normalized to t=0) and (D) increased IL-2 and IFNy
secretion in response to Nalm6-GD2 leukemia compared to those treated with shield-1 during both expansion and co-culture (ON/ON, blue)
and those treated with vehicle for during both expansion and co-culture (OFF/OFF, red). Data represent the mean of triplicate wells (C) or the
mean * SD. Representative donor from 3 or more donors. E-G) 1x10° Nalm6-GD2 leukemia cells were infused IV into NSG mice at day 0 and
2x108 GD2.28¢.ecDHFR CAR-T cells expanded in the presence or absence of trimethoprim (TMP) for 15 days in vitro were infused IV on day
7 post-engraftment. Mice were dosed 6 days per week with vehicle (water, OFF/OFF) or 200mg/kg TMP (ON/ON and OFF/ON). (F) Tumor
growth was measured via bioluminescent imaging. Mock T cell-treated or vehicle-treated mice (OFF/OFF) demonstrated rapid tumor growth
(left). TMP-treated mice that received T cells grown in the absence of TMP (OFF/ON) exhibited superior tumor control and (right) prolonged
survival (p<0.0001 log-rank Mantel-Cox test) compared to those that received CAR-T cells expanded in the presence of TMP (ON/ON).
Representative experiment from 3 independent experiments (n=5 mice per group). (G) Peripheral blood was sampled on day 28 post-
engraftment during the representative experiment shown in Figure 2F. Data demonstrate enhanced CAR-T cell expansion of OFF/ON CAR-
T cells compared to ON/ON CAR-T cells (n=5 mice/group from 1 experiment). Statistics were calculated using two-tailed unpaired student’s t
test (C, last timepoint), one-way ANOVA and Tukey’s multiple comparisons test (D,G), or log-rank Mantel-Cox test (F). *, p<0.05; **, p<0.01;
****p<0.0001; ns, p>0.05
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secretion (Figure 2D), and enhanced efficacy and cell expansion in vivo (Figures 2E-G). Collectively,
these observations confirm the deleterious effects on T cell function caused by tonic CAR signaling and
demonstrate that prevention of tonic signaling during ex vivo expansion augments CAR-T cell
functionality.
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Figure 3: Cessation of tonic CAR signaling redirects CAR-T cell fate. A) Human T cells expressing the tonically signaling, high-affinity GD2-targeting
CAR modified with an FKBP12 DD (HA.28(.FKBP) were cultured in the presence of shield-1 from D1-7, after which shield-1 treatment was sustained
(Always ON) or discontinued (Restedpr-11). Cells were collected on D11 for flow cytometry and tumor co-culture assays, and on each day between D7-
11 for mass cytometric analysis. B) Flow cytometry on D11 demonstrates reduced inhibitory receptor co-expression on Restedpr.11 compared to Always
ON. Error bars represent mean + SEM of 3 individual donors. C) IL-2 secretion in response to Nalm6-GD2 leukemia on D11. Shield-1 was added to
Restedpr-11 16 hours prior to tumor challenge in order to normalize CAR expression for the assay. Error bars represent mean + SD of triplicate wells from
one representative donor (n=5 individual donors). D-H) A force-directed layout (FDL) was constructed from 20,000 CAR+/CD8+ events analyzed by mass
cytometry. Events were equally sampled from Always ON and Restedpr.11 cells collected on each day between D7-11 (i.e. 2,000 cells per
condition/timepoint). Cells repel based on expression of 20 surface and 2 intracellular markers (Figure S2B) and grey edges connect cells from adjacent
days (1 representative donor from 3 individual donors). D) Exhaustion score (left) for each cell was calculated as mean expression of PD-1, TIM-3, LAG-
3, 2B4, CTLA-4, BTLA, and CD39 normalized to mean expression of these markers in control HA.28z.FKBP T cells cultured in the absence of shield-1.
Similarly, memory score (right) was calculated using CD45RA, IL-7R, CD27, CD197 markers. Local polynomial regression fitting exhaustion and memory
scores in 2,000 sampled cells from Always ON and Restedbnz.11 conditions over time. Shaded regions indicate 95% confidence intervals. E) Timepoint
analysis demonstrates that D11 cells are concentrated phenotypically distinct regions 1-4 (Figure S2C). F) Regions 1 and 2 comprise 95% D11 Always
ON cells, whereas regions 3 and 4 contain 97% and 94% D11 Restedor-11 cells. G) Marker expression demonstrates that regions 1 and 2 overexpress
CD39, 2B4, TIM-3 and T-bet, whereas regions 3 and 4 demonstrate low levels of these markers and region 4 expresses high levels of IL7R and CD45RA.
H) Violin plots of D11 cell exhaustion and memory scores contained within regions 1-4 show quartiles with a band at the mean. Statistics were calculated
using one-way ANOVA and Dunnett’'s multiple comparisons test. **, p<0.01; ****, p<0.0001; ns, p>0.05



To further explore the impact of cessation of CAR signaling on the development of exhaustion,
we regulated CAR expression in HA.28C-CAR-T cells (Fig. S2A), which manifest extremely potent tonic
signaling and acquire functional, transcriptomic and epigenetic hallmarks of exhaustion by D11 (Fig.
3A-C) (Lynn et al., 2019). When compared to HA.28(.FKBP CAR-T cells that were continuously
cultured with shield-1 (Always ON), cells from which shield-1 was removed on D7 (Restedp7-11)
demonstrated decreased inhibitory receptor expression and superior functionality upon tumor challenge
on D11 (Figures 3A-C). To more extensively define changes in cell phenotype that occur during
transition to exhaustion between D7 and D11 and the impact of rest on this process, we performed
single cell analysis of 27 proteins associated with T cell exhaustion, activation, or memory (Figure S2B).
Always ON cells manifested time-dependent increases in exhaustion score (normalized mean
expression of PD-1, TIM-3, LAG-3, CTLA-4, BTLA, 2B4, and CD39), whereas Restedp7.11 cells
demonstrated time-dependent increases in memory score (normalized mean expression of CD45RA,
IL-7R, CD27, CD197), indicating a divergence in cell phenotypes.

Unbiased multidimensional analyses using force-directed layouts (FDLs) (Good et al., 2019;
Samusik et al., 2016), which map phenotypically similar cells closely together and dissimilar cells farther
apart, illustrated phenotypic trajectories towards exhaustion or memory-like cell fates. Always ON and
Restedp7.11 CAR-T cells displayed substantial phenotypic evolution during D7-11 (Figure 3E), but
manifested disparate phenotypes by D11 that were spatially distributed between 4 distinct regions on
the FDL (Figure S2C). The majority of Always ON cells resided in Regions 1 or 2, while the majority of
Restedpr.11 cells resided in Regions 3 or 4 (Figure 3F). FDLs also revealed heterogeneity within the
exhausted and memory subsets, since Region 1 was defined by a higher exhaustion score and
increased CD39 compared to Region 2 (Figure S2D), whereas Region 4 was defined by a higher
memory score and increased expression of IL7RA and CD45RA compared to Region 3 (Figures 3G,
3H and S2E). Restedpr.11 cells also exhibited a sharp decline in T-bet and Blimp-1 expression levels
and co-expression frequency (Figure S2F), consistent with transcriptional reprogramming of the
population (Joshi et al., 2007; Rutishauser et al., 2009).

The redirection of cell fate induced by rest during D7-11 was most likely due to population-wide
changes rather than outgrowth of a rare subpopulation. This is supported by the detection of modest
differences in cell fold change, Ki-67 expression, and cleaved PARP (cPARP) between Always ON and
Restedpr.11 cells (Figure S2G and S2H) (Joshi et al., 2007; Rutishauser et al., 2009). Moreover, TCF1
expression, which is associated with a progenitor exhausted cell population that retains anti-tumor
functionality and is responsive to checkpoint blockade (Chen et al., 2019c; Im et al., 2016; Jadhav et
al., 2019; Utzschneider et al., 2016), was similar in both Always ON and Restedp7.11 conditions and
represented approximately 10% of total CD8+ CAR-T cells on D11 (Figure S2I). Collectively, these
observations indicate that transient cessation of CAR signaling prior to exhaustion onset alters the
differentiation trajectory of large fraction of CAR-T cell populations rather than inducing outgrowth of a
minor subset of highly proliferative, apoptosis-resistant, or TCF1+ progenitor exhausted Restedpr-11
cells.

Transient rest reverses phenotypic and transcriptomic hallmarks of exhaustion

Since cessation of tonic CAR signaling alters CAR-T cell fate during the transition to exhaustion,
we hypothesized that this approach could also reprogram T cell populations on which exhaustion is
already imprinted. To test this, we compared D15 Always ON HA.28{.FKBP CAR-T cells to those which
had been rested from D11-15 (Restedp11-15, Figure 4A). Since PD-1 and PD-L1 are both expressed on
activated T cells (Latchman et al., 2004) (Figure S2E), in some experiments we included a condition
wherein Always ON T cells were cultured with aPD-1-blocking antibody from D7-15 to compare the
degree of reprogramming induced by checkpoint blockade with that of transient rest. As expected,
Always ON cells analyzed on D15 exhibited robust tonic CAR signaling, elevated surface expression
of immune checkpoint receptors (PD-1, TIM-3 and LAG-3), and an effector-like phenotype (Figures 4B-
D, S3A-C) compared to Always OFF cells. In contrast, Restedp11-15 cells displayed diminished tonic
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CAR signaling, marked reduction in checkpoint receptor expression, and increased frequencies of a
stem cell memory-like subset (CD45RO-, CCR7+) compared to Always ON and Always ON + aPD-1 T
cells. Sequential RNA sequencing on D7, D11 and D15 demonstrated that transcripts which were
positively or negatively associated with exhaustion underwent rapid and complete reversal to baseline
Always OFF levels in rested cells by D11 or D15, whereas inclusion of aPD-1 in Always ON T cell
cultures minimally affected gene expression (Figures 4E and S3D).

Unbiased principal component analysis (PCA) at each timepoint showed significant overlap
between Always OFF and rested conditions, which separated from Always ON and Always ON + aPD-
1 cells along PC1 (Figures 4F and S3E), illustrating the high degree of transcriptomic reprogramming
induced by rest. Hierarchical clustering of the top 500 genes driving the variance in PC1 identified
exhaustion-associated genes (PDCD1, ENTPD1, BATF3, NR4A1) and memory-associated genes
(IL7R, LEF1, KLF2, BACHZ2), which were differentially expressed in exhausted cell conditions versus
rested conditions (Figure 4G). Statistical analyses of D15 samples confirmed transcriptomic reversal,
since Restedpi1.15 T cells significantly upregulated memory/quiescence-associated genes (SELL,

DO D1 D15
A i o ; B

Always oN |} | PD-1 TIM-3 LAG-3 Figure 4: Transient rest reverses
phenotypic and transcriptomic

1 1 .
i ON ' hallmarks of exhaustion. A) Human

1
1 1
- ) k A | ‘ Always ON T cells expressing HA.28(.FKBP were
Always OFF D:”f o D:ﬁ .| L .| Always OFF  cultured in the presence (Always ON,

Always ON + aPD-1) or absence

Always ON + «PD-1

DO D1 D7 D15
Restednrrs b ¥ OFF 1

R (Always OFF) of stabilizing drug
L1 1 (shield-1 or trimethoprim, TMP) from
y oN o1 OFF ois ™ ! S D1-D15, or cultured with shield-1
T 1 starting at D1 and rested for 4 or 8 days
D TEffectorMemory-Iike Tstem ceil Memory-like (ReStedD7.15, Restedm1.15). Cells were

Always Always  Always * —_— collected on D7, D11, and D15 for
ON ON+aPD-1  OFF estedp;y s — FACS and bulk RNA sequencing. B-D)

o 4o daten | [pre dzos | [z Laza | lazz [ ez | feso | 104 80 Flow cytometry of CD8+ CAR+ T cells
P4 B/ o\ ] 5 ‘ :
8 .

—T -
O

60 demonstrated (B) reversal of inhibitory

4567215 | (3527 | 224 | 188 579 | |412  [74s3 | 461 [ 369 40 'ﬁ.L recept.or expression and (C-D)
induction of a stem cell memory-like

20 phenotype in rested conditions
0 compared to Always ON cells.
E Upregulated genes G Histograms and contour plots are
during exhaustion representative of at least 3 donors. Bar

graphs show mean + SEM of 3

independent donors. The inset in

subfigure 4C illustrates quadrants that

represent effector-memory-like

- phenotype (EM, top-left) and stem cell
- memory-like phenotype (SCM, bottom-
right). E-G) Bulk RNA sequencing
analyses of mixed CD4+/CD8+
HA.28(.FKBP CAR-T cells
demonstrate (E) rapid and dramatic

CCR7

CD45RO+ CCR7- (%)
CD45RO- CCR7+ (%)

3.5

4% Always ON
3.0 ¥ Aways ON + aPD-1 :| .
*

=& Always OFF I

2.5 Restedp;.45

v Restedp1.15
2.0

Day7 Day1l Day15

Mean gene expression
(log2 TPM)

Normalized Counts

IAIways ON
— ™" Aways ON + aPD-1

I Always OFF
|

Downregulated genes
during exhaustion | |

c
'§A 35 & Always ON l e B E=E-=E Spn alterations in exhaustion signature
- 2 Always ON + aPD-1 | - = B=S== (Figure S3D) gene expression
2 3.0 < Always OFF * e e = EE&;M subsequent to rest. Error bars
XS ./.4 Restedpy 15 ‘ = - ENTPD1 represent the mean + SEM of 2-3
§ 25 Restedp .15 ‘ = =8 =&= ZEB2 independent donors. Two-way ANOVA
= : E = BATF demonstrates significant differences in
Day7 ~ Dayt1  Day15 ‘ == BATF3  mean exhaustion signature gene
F = IRF8 expression between Always ON and
Day 15 i EE:)’:; rested conditons on D15. (F)
s Unbiased principal component
= analysis of D15 cells shows global
= = transcriptomic  reprogramming  of
° ® Always ON B = rested cells to resemble Always OFF
§ ® Always ON + oPD-1 = = controls. (G) A heatmap of the top 500
§ . ® Always OFF 7 genes driving principal component 1
2 L/ Restedp;_1s cDas (PC1) highlights clusters of
& Restedp4s = IL7R exhaustion- and memory-associated
g BACH2 genes that change in rested cells.
LEF1 Statistics were calculated using one- or
il KLF2 two-way ANOVA and Dunnett’s
v/ KLF3 multiple comparisons test. *, p<0.05;

; - ** p<0.01; ****, p<0.0001.

PC1 54% variance



LEF1, FOX03) and downregulated canonical exhaustion-associated genes (CTLA-4, IRF4, BATF3,
TOX2, NR4A3) compared to Always ON T cells (Figure S3F). GSEA analyses confirmed that genes
which were up- and down-regulated in rested conditions compared to Always ON overlap with memory
and exhaustion genes, respectively, from published chronic LCMV murine studies (Wherry et al., 2007;
Wherry et al., 2004) (Figure S3G). Finally, both exhausted and rested populations on D15 contained
~1,000-3,000 unique TCR clonotypes and exhibited similar clonotypic diversity (Bolotin et al., 2017)
(Figure S3H and S3l). These data are consistent with a model wherein rest-induced changes occur
broadly within the population under study, rather than preferential expansion of a small subset of cells,
which would result in reduced clonotypic diversity.
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bearing tumor cells. Prior to antigen challenge, we treated CAR-T cells with shield-1 for approximately
16 hours to normalize CAR surface expression across experimental groups (Figure 5A). On D15,
Rested7.1s and Rested11.15 T cells demonstrated a remarkable enhancement in cytotoxicity and bulk
cytokine secretion compared to exhausted Always ON cells (Figure 5B, 5C and S4A). Single cell
functional analyses via flow cytometry revealed that approximately 60% of Always OFF and rested
CAR-T cells were polyfunctional and capable of secreting at least two cytokines, whereas less than
20% of Always ON T cell exhibited these features (Figure 5D, 5E and S4B). These data demonstrate
that functional reinvigoration can be accomplished in a substantial fraction of cells following transient
cessation of CAR signaling. In contrast, PD-1 blockade enhanced cytotoxicity but did not significantly
increase the bulk IL-2 or IFNy secretion, frequency of cytokine-secreting cells, or sensitivity to low
antigen compared to rested conditions (Figures 5B, 5C, 5D, 5E, 5F, 5G, S4A and S4B), indicating that
functional reinvigoration via cessation of chronic signaling is mechanistically distinct from that of
checkpoint blockade. Finally, we tested whether rested HA.28C.ecDHFR CAR-T cells would exhibit
more durable and potent anti-tumor efficacy in vivo (Figures 5H and S4D). In contrast to exhausted
Always ON T cells, which failed to control tumor growth, Restedprz.15, and Restedp11.15 T cells either
cured or maintained the tumor at levels comparable to Always OFF (Figure 5, Figure S4E). These data
demonstrate that transient cessation of CAR signaling substantially augments the capacity for CAR-T
cells to mount a durable anti-tumor response in vivo.

Rest induces wholescale remodeling of the exhaustion-associated epigenome

To determine the impact of transient cessation of CAR signaling on the epigenome, we used
ATAC-seq (Buenrostro et al., 2013) to analyze differences in chromatin accessibility between Always
ON, Always OFF, Rested7.15s and Rested11.15s HA.28C.FKBP CD8+ CAR-T cells (Figure 6A). Temporal
analysis of epigenetic reprogramming in this model system revealed that T cells that experienced
continuous tonic CAR signaling (Always ON) underwent the most dramatic alterations in chromatin
accessibility within the first 7 days (~48,000 peak changes), with fewer changes occurring between D7-
11 (~2,300 peak changes) and D11-15 (~2,000 peak changes) (Figures 6B and S5A). Remarkably, 4
days of rest occurring between D7-11 (Restedp7-11) or D11-15 (Restedp11-15) was associated with
~19,000 and ~15,500 peak changes, respectively (Figure 6B), many of which were differentially
accessible compared to Always ON cells (Figure S5B). These included exhaustion-associated genes
ENTP1 and BATF3 and the stemness-associated gene TCF7 (Figures 6C). These results align with
our observations of rapid phenotypic, functional and transcriptional reprogramming following 4 days of
rest.

Unbiased Pearson correlation and PCA analyses indicate that rest results in global, wholescale
remodeling of the epigenome. Always ON cells treated with or without anti-PD-1 cluster together along
PC1 on D11 (66.51% variance) and D15 (58% variance) and exhibit highly correlated genomic
accessibility profiles (Figures 6D, S5C and S5D). In contrast, Rested CAR-T cells exhibit clear
separation from Always ON and cluster together with Always OFF cells along PC1 (Figure 6D, S5C
and S5D).
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p<0.01; ***, p<0.001; ns, p>0.05
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AP-1 family TF motifs (BATF, BATF3, JUNB, NFATC2), which are known to promote T cell
exhaustion (Kurachi et al., 2014; Lynn et al., 2019; Man et al., 2017; Martinez et al., 2015; Scott-Browne
et al., 2016), were highly enriched in accessible regions of the Always ON epigenome, but rendered
less accessible following rest (Figures 6E and 6F). TF binding motifs for genes that have been
implicated in T cell memory were exclusively accessible in rested conditions (TCF7/TCF7L2, LEF1,
RUNX family, FOXO family) (Hu and Chen, 2013; Jadhav et al., 2019; Kratchmarov et al., 2018;
Michelini et al., 2013; Milner et al., 2017; Rao et al., 2012; Sullivan et al., 2012; Wang et al., 2018; Xing
et al.,, 2016), whereas those associated with T cell exhaustion (EOMES, TBX21) demonstrated
exaggerated inaccessibility compared to Always OFF control cells (Figure 6F), raising the prospect that
T cell rest could induce a unique program to drive the development of memory-like T cells. Gene set
enrichment of the genes associated with differentially accessible peaks at D15 revealed biological
processes that are enriched (packaging of telomeres, G1 phase) or diminished (Akt signaling,
apoptosis, negative regulation of Wnt signaling, chromatin silencing complex) in rested conditions
(Figure SSE), consistent with induction of a quiescent/memory T cell phenotype following rest.

Recent studies suggest that the epigenetic modifier, enhancer of zeste homolog 2 (EZH2), which
catalyzes trimethylation on histone 3 at lysine 27 (H3K27me3) as a subunit of the polycomb repressive
complex 2 (PRC2), prevents hematopoietic stem cell exhaustion and is critical for T cell differentiation,
maintenance of T cell memory, and antitumor immunity (Chen et al., 2019b; He et al., 2017; Kamminga
et al., 2006). To test whether EZH2 function is involved in reversal of exhaustion in this model, we
rested Always ON exhausted CAR-T cells in the presence of the EZH2 selective inhibitor tazemetostat
(EZH2i) from D11-15. EZH2i treatment had no effect on Always ON or Always OFF T cells, but
attenuated the rescued IL-2 secretion in Restedpi1-15 CAR-T cells compared to vehicle controls,
suggesting that rest induces active chromatin remodeling in exhausted CAR-T cells via EZH2 (Figures
6G and 6H). Of note, EZHZ2 inhibition did not affect rest-induced reversal of the exhausted cell surface
phenotype (Figure S5F), consistent with the observation that the epigenetic mechanisms governing
exhausted T cell phenotype and dysfunction are distinct (Scott et al., 2019).

Reinvigoration of exhausted CAR-T cells using the Src kinase inhibitor dasatinib

We and others recently demonstrated that dasatinib, an FDA-approved tyrosine kinase inhibitor,
suppresses CAR-T cell activation via rapid and reversible antagonism of proximal T cell receptor (TCR)
signaling kinases (Mestermann et al., 2019; Weber et al., 2019). Consistent with our previous findings,
dasatinib-treated HA.28( CAR-T cells exhibited undetectable phosphorylation of CAR CD3( and
ERK1/2 compared to those treated with vehicle (Figure S6A), indicating that dasatinib potently
suppresses tonic signaling in CAR-T cells. We hypothesized that dasatinib-induced inhibition of tonic
CAR signaling could be used to induce rest and reverse exhaustion. Indeed, Dasatinibps-15, Dasatinibpz-
15 and Dasatinibp11-15 cells exhibited diminished inhibitory receptor expression, functional reinvigoration
as measured by antigen-induced cytokine production (Figures S6B and S6C), and improved control of
tumor growth following adoptive transfer (Figures 7A). CAR-T cells expressing GD2.BB(, which also
exhibit tonic signaling (Long et al., 2015), were also enhanced following ex vivo dasatinib treatment in
a 143B osteosarcoma xenograft model (Figure S6D), indicating that dasatinib provides an approach to
mitigate deleterious CAR signaling in pre-clinical or clinical CAR manufacturing settings.

These experiments also revealed, however, that Dasatinibp11-15 cells did not demonstrate
equivalent anti-tumor functionality to Dasatinibps.15 and Dasatinibpz.15 cells, raising the prospect that
these cells encountered a point of irreversibility in this model system and/or they experienced an
inadequate period of rest to restore functionality. To determine which of these factors was responsible
for the incomplete reinvigoration observed in Dasatinibp11-15 cells, we sought to interrogate exhaustion
reversibility using a more protracted in vitro time course, wherein cells were rested in increments of 3-
4 days from D4 until D25 (Figure 7B). Since dasatinib completely suppresses CAR-T cell signaling and
function (Figure S6A) (Mestermann et al., 2019; Weber et al., 2019), whereas DD-CARs in the OFF
state exhibited some leakiness in expression and function (Figures 1, S1B and S1C), we opted to utilize
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dasatinib to induce rest in the protracted model system. All groups of dasatinib-treated HA.28C CAR-T
cells analyzed on D25 demonstrated diminished exhaustion marker expression and increased stem
cell memory-associated CD62L and CD45RA expression (Figures 7C and S6E). Dasatinib-treated
groups also exhibited diminished expression of T-bet and increased  Figure 7: Reinvigoration of exhausted

expression of stemness-associated transcription factors LEF1 and  CAR-T cells using the Src kinase
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and duration of rest, which was independent of the time at which rest was initiated (Figures 7H, S6G
and S6H). Collectively, these results demonstrate that pharmacologic antagonism of TCR signaling
kinases reinvigorates exhausted CAR-T cells, raising the prospect that transient suppression of chronic
TCR/CAR activation signals can reverse the exhaustion program.

DISCUSSION

Chronic antigen stimulation induces T cell exhaustion, a differentiation state associated with a
heritable epigenetic imprint that is distinct from that found in effector and memory T cells (Pauken et
al., 2016; Philip et al., 2017; Schietinger et al., 2012; Schietinger et al., 2016; Sen et al., 2016; Wherry
et al., 2007; Zajac et al., 1998). PD-1 blockade can reinvigorate exhausted T cells (Barber et al., 2006)
and therapeutic agents targeting the PD-1/PD-L1 axis have improved outcomes for many patients with
cancer, but durable anti-tumor effects occur in only a fraction of those treated (Ribas and Wolchok,
2018). One explanation for the limited efficacy of PD-1/PD-L1 blockade relates to its inability to reverse
the exhaustion-associated epigenetic imprint (Pauken et al., 2016). Recent studies have identified TOX,
TOX2, and AP-1 family members as central regulators of human T cell exhaustion that promote
widespread transcriptional and epigenetic dysregulation (Alfei et al., 2019; Khan et al., 2019; Scott et
al., 2019; Seo et al., 2019; Wang et al., 2019; Yao et al., 2019). These findings have enabled new
approaches to mitigate exhaustion, including enforced expression of c-Jun (Lynn et al., 2019) or
CRISPR-mediated deletion of TOX, TOX2, or NR4A family TFs (Chen et al., 2019a; Seo et al., 2019).
However, such modifications do not result in wholescale remodeling of the exhaustion-associated
epigenome, suggesting that exhaustion is an epigenetically fixed cell state.

In this report, we modified a validated in vitro model of CAR-associated T cell exhaustion,
wherein tonic CAR signaling induces hallmark phenotypic, functional, transcriptomic and epigenetic
features of exhaustion within 11 days (HA.28%) (Lynn et al., 2019), to enable precise, drug-dependent
control of CAR signaling. Consistent with murine models of viral infection wherein antigen clearance
induces T cell memory rather than exhaustion (Joshi et al., 2007; Rutishauser et al., 2009; Wherry et
al., 2007; Wherry et al., 2004), early cessation of tonic CAR signaling (Restedp7-11) redirected T cell
differentiation away from exhaustion and towards a memory-like state (Figure 3). Importantly, when
inhibition of CAR signaling was delayed until D11, a time when cells had already acquired hallmark
features of T cell exhaustion, we also observed impressive functional reinvigoration associated with
global phenotypic, transcriptomic and epigenetic reprogramming (Figures 4-7). Similar results were
obtained using the Src kinase inhibitor dasatinib to inhibit CAR signaling, wherein functional
reinvigoration was observed even in CAR-T cells subjected to tonic signaling for longer periods (Figure
7).

Several groups have sought to identify subsets of exhausted T cells that retain the capacity for
reversal of the exhaustion program (Im et al., 2016; Miller et al., 2019; Utzschneider et al., 2016;
Utzschneider et al., 2013). In murine models of LCMV, “progenitor exhausted” T cells, which are defined
by expression of the stemness transcription factor TCF1 (gene name Tcf7), are essential for providing
the proliferative burst observed following PD-1 blockade (Chen et al., 2019c; Im et al., 2016; Jadhav et
al., 2019; Miller et al., 2019; Utzschneider et al., 2016). Similarly, murine tumor models have revealed
that exhaustion reprogrammability is associated with increased accessibility at the Tcf7 locus (Philip et
al., 2017). Finally, in melanoma patients treated with PD-1/PD-L1 blockade, lower levels of Tcf7
expression served as a biomarker for resistance to this therapy (Sade-Feldman et al., 2019). One model
to explain our findings posits that cessation of tonic CAR signaling induces preferential expansion of
pre-dysfunctional, progenitor exhausted T cells. Consistent with this, rested CAR-T cell populations
exhibited increased accessibility at the Tcf7 locus, enriched Tcf7 binding motifs within accessible
regions of the genome, and increased frequency of TCF1+ cells compared to exhausted CAR-T cells
(Figures 6F and 7D, S2I and S6F). However, TCF1+ cells in reinvigorated dasatinib-treated groups did
not co-express PD-1 or other immune checkpoint receptors (Figures 6C and 6D), a canonical feature
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of progenitor exhausted T cells (Chen et al., 2019c; Im et al., 2016; Jadhav et al., 2019; Miller et al.,
2019; Utzschneider et al., 2016).

An alternative model posits that some exhausted cell populations that have acquired the
hallmark epigenetic imprint retain the capacity for epigenetic remodeling to resemble healthy, non-
tonically signaling CAR-T cells. Results demonstrating that tazemetostat, an EZHZ2 inhibitor, prevents
functional reinvigoration induced by rest in this model system are consistent with epigenetic
reprogramming rather than enrichment of progenitor exhausted cells (Figure 6). Moreover, clonotypic
analyses demonstrated similarly high levels of TCR diversity in both exhausted and rested cell
populations, indicating that transcriptional and epigenetic alterations induced by rest are unlikely to
occur via preferential expansion of a small subset of clones. Future studies are warranted to better
define the specific cell populations that may undergo epigenetic reprogramming following T cell rest
and to identify the precise role of EZH2 on remodeling of the exhaustion-associated epigenetic imprint.

Irrespective of mechanism, these results demonstrate that cessation of CAR signaling is a potent
maneuver that results in augmented function in cell populations that are transitioning to exhaustion or
in those already imprinted with hallmark features of exhaustion, and is distinct from that which can be
achieved with PD-1/PD-L1 blockade. Advances in synthetic biology have enabled the development of
several tunable CAR platforms which have been optimized to mitigate CAR-mediated toxicity (Bejestani
et al., 2017; Cho et al., 2018; Leung et al., 2019; Rodgers et al., 2016; Wu et al., 2015). Our data
suggest that such platforms, including the DD-CAR system described here, may enhance CAR-T cell
potency as a result of temporal control of CAR-T cell signaling. Pulsed CAR expression instead of
constitutive expression may allow for rest phases that collectively mitigate/reverse exhaustion and
augment durability. Consistent with this, a recent study testing a regulatable CD19-targeting CAR
against non-malignant B cells in a murine model demonstrated that CAR-T cells provided a longer rest
phase exhibited superior antigen-induced expansion compared to those that received rest for a shorter
period (Viaud et al., 2018). Similarly, short-term dosing of dasatinib in vivo augmented CD19-targeting
CAR-T cell responses in a leukemia xenograft model (Mestermann et al., 2019), which we speculate
may result from the phenomena described here. Furthermore, our work demonstrates that
pharmacologic inhibition of tonic CAR signaling via dasatinib could be used to prevent T cell exhaustion
during ex vivo expansion of clinical CAR-T cell products, and thereby enhance functionality following
adoptive transfer (Figures 7 and S6).

The findings presented here also indicate that therapies designed to transiently inhibit TCR
signaling might enhance functionality of exhausted, non-engineered T cell populations. Indeed,
improved antigen-specific T cell function has been associated with antigen clearance in humans with
hepatitis C infection treated with direct acting anti-viral therapies (Burchill et al., 2015; Kohli et al., 2015;
Martin et al., 2014; Shrivastava et al., 2017; Wieland et al., 2017). In this setting, a sizable fraction of
patients with ongoing viral replication at the time of cessation of anti-viral therapy ultimately clear the
virus, consistent with reinvigoration of antiviral immunity. Similarly, an immunomodulatory effect of
dasatinib on T cells has been associated with improved anti-tumor immunity (Hekim et al., 2017).
Collectively, these observations suggest that transient cessation of TCR signaling could provide a
widely applicable but underappreciated approach to enhance functionality in populations of exhausted
human T cells.

In summary, we demonstrate that transient cessation of CAR signaling can reverse dysfunction
and induce epigenetic reprogramming in exhausted human CAR-T cell populations. These results
suggest that CAR-T cell therapeutics designed to incorporate periods of rest may exhibit increased
potency compared to constitutive platforms, and raise the prospect that targeting proximal TCR/CAR
signaling kinases may represent a novel immunotherapeutic strategy for mitigating T cell exhaustion.
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METHODS

REAGENT OR RESOURCE SOURCE IDENTIFIER
Mass Cytometry Antibodies and Reagents

Anti-cPARP (clone Asp214) BD 300443
Anti-CD27 (clone 323) Biolegend 302839
Anti-CD62L (clone DREG-56) Biolenged 304835
Anti-CD4 (clone RPT-T4) Fluidigm 3145001B
Anti-CD8 (clone RPT-T8) Fluidigm 3146001B
Anti-CD28 (clone CD28.2) Biolegend 302937
Anti-PDL1 (clone 29E.2A3) Fluidigm 3148017B
Anti-CD45R0 (clone UCHL1) Fluidigm 3149001B
Anti-OX-40 (clone ACT35) Fluidigm 3150023B
Anti-2B4 (clone C1.7) Biolegend 329502
Anti-TIM-3 (clone F38-2E2) Fluidigm 3153008B
Anti-CXCR3 (clone G025H7) Fluidigm 31560048
Anti-4-1BB (clone 4B4-1) Fluidigm 3158013B
Anti-Blimp-1 (clone UCHT1) Biolegend 300402
Anti-T-bet (clone 4B10) Biolegend 3160010B
Anti-CTLA-4 (clone 14D3) Fluidigm 3161004B
Anti-CD25 (clone M-A251) BD 555430
Anti-BTLA (clone MIH26) Fluidigm 3163009B
Anti-CD39 (clone A1) Biolegend 328221
Anti-LAG-3 (clone 874501) Fluidigm 31650288
Anti-CCR7 (clone G043H7) Fluidigm 3167009A
Anti-IL-7R (clone A019D5) Fluidigm 3168017B
Anti-CD45RA (clone HI100) Fluidigm 3170010B
Anti-Ki-67 Biolegend 350523
Anti-CD95 (clone DX2) Biolegend 305631
Anti-PD-1 (clone EH12.2H7) Fluidigm 3174020B
Anti-Eomes (clone WD1928) eBioscience 14-4877-82
DNA intercalator Fluidigm 201191B
Cisplatin Fluidigm 201064
Cell-ID 20-Plex Pd Barcoding Kit Fluidigm 201060

EQ Four Element Calibration Beads Fluidigm 201078
Flow Cytometry Antibodies and Reagents

Anti-14g2A idiotype antibody (clone 1A7) NIH

Anti-CD4 (clone SK3) BD 563550
Anti-CD8 (clone SK1) BD 564912
Anti-PD-1 (clone eBioJ105) eBioscience 25-2799-42
Anti-TIM-3 (clone F38-2E2) Biolegend 345030
Anti-LAG-3 (clone 3DS223H) eBioscience 12-2239-42
Anti-CD39 (clone A1) Biolegend 328226
Anti-CD62L (clone DREG-56) BD 562719
Anti-CCRY7 (clone 150503) BD 562555
Anti-CD45R0 (clone UCHL1) BD 25-0457-42
Anti-CD45RA (clone L48) BD 649458
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Anti-T-bet (clone 4B10) Biolegend 644819
Anti-LEF1 (clone C12A5) Cell Signaling 14440S
Anti-TCF7 (clone C63D9) Cell Signaling 6709S
Anti-IL-2 (clone MQ1-17H12) Biolegend 500326
Anti-IFNy (clone 4S.B3) Biolegend 502530
Anti-TNFa (clone MAb11) Biolegend 502940
Anti-CD69 (FN50) Biolegend 310930
Anti-CD107a (clone H4A3) Biolegend 328634
Monensin eBioscience 00-4505-51
Fixable Viability Dye eBioscience 65-0866-14
FoxP3 Transcription Factor Staining Buffer Set eBioscience 00-5523-00
CountBright Absolute Counting Beads Thermo Scientific | C36950
DyLight 650 Microscale Antibody Labeling Kit Thermo Fisher 84536
DyLight 488 Microscale Antibody Labeling Kit Thermo Fisher 53025

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled
by the Lead Contact, Crystal L. Mackall (cmackall@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary human T cells

Anonymous healthy donor buffy coats were obtained from the Stanford University Blood Center
(Stanford, CA) under a University Institutional Review Board-exempt protocol. Primary CD3+ T cells
were subsequently isolated from buffy coats via negative selection (described in METHOD DETAILS).

Cell Lines

143B osteosarcoma cells (ATCC) were stably transduced to express GFP, firefly luciferase, and CD19
(143B-GL). Nalm6 B-ALL cell line that was stably transduced to express GFP and firefly luciferase
(Nalm6-GL) was provided by David Barrett. Nalm6-GL was co-transduced with cDNAs for GD2
synthase and GD3 synthase in order to induce overexpression of GD2 (Nalm6-GD2). Single cell clones
were then chosen for high antigen expression. All cell lines were cultured in complete media (RPMI
supplemented with 10% FBS, 10mM HEPES, 2mM GlutaMAX, 100 U/mL penicillin, and 100ug/mL
streptomycin (Gibco)).

Murine xenograft models

NOD/SCID/IL2Ry™~ (NSG) mice were bred, housed, and treated under Stanford University APLAC-
approved protocols. 6-8 week old male or female mice used in experiments were healthy and
immunocompromised, drug and test naive, and were not involved in previous procedures. Mice were
housed in sterile cages in the barrier facility located in the Veterinary Service Center (VSC) at Stanford
University with a 12-hour light/dark cycle. Mice were monitored daily by the VSC husbandry staff and
were euthanized upon manifestation of hunched posture, impaired mobility, rough coat, paralysis, or
tumor sizes that exceeded the limits designated in approved animal protocols. For xenograft
experiments using Nalm6-GD2, 1x10¢ tumor cells in 200uL PBS were engrafted via intravenous
injection. 1-2x108 CAR-T cells suspended in 200uL PBS were subsequently infused intravenously on
day 7 post-engraftment. Tumor burden was monitored via bioluminescence imaging using a Spectrum
IVIS instrument and quantified using Living Image software (Perkin Elmer). For xenograft experiments
using 143B cells, 1x106 tumor cells in 100uL PBS were engrafted via intramuscular injection into the
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flank and 10x108 CAR-T cells suspended in 100uL PBS were infused intravenously on day 3 post-
engraftment. Tumor size was monitored via caliper measurements. Mice were randomized to ensure
equal tumor burden before CAR-T cell treatment. For experiments involving GD2.28£.ecDHFR or
HA.28(.ecDHFR-expressing CAR-T cells, 200uL of vehicle (ddH20, Thermofisher, # 10-977-023) or
200uL of 200mg/kg trimethoprim lactate resuspended in ddH20 (TMP, Bioworld, #42010018-3) was
injected into mice intraperitoneally 6 days/week.

METHOD DETAILS

CAR construct design

GD2.28¢, GD2.BBL, and HA.28L CARs (Long et al., 2015; Lynn et al., 2019) were constructed in pELNS
lentiviral vectors and/or MSGV retroviral vectors. Codon-optimized gene fragments that included a
portion of the CAR CD3z domain sequence (downstream of the BmgBI restriction site) and FKBP12 or
ecDHFR destabilizing domains were generated by IDT. Fragments were then inserted into
pPELNS.GD2.28¢ and pELNS.HA.28( vectors at the 5 BmgBI restriction cut site within the CAR CD3z
domain and the 3’ Sall site downstream of the stop codon using T4 DNA Ligase (New England Biolabs,
#M0202L), which enabled insertion of the DD without introduction of any additional nucleotides or linker
sequences. Plasmids were amplified by transforming XL-10 gold ultracompetent cells per the
manufacturer’s protocol (Agilent Technologies, #200315), and final sequences were validated via DNA
sequencing from Elim Biopharmaceuticals.

Virus production

For third generation, self-inactivating lentiviral production, 15 million 293T cells were plated on a
15cm dish for 24 hours prior to transfection. On the day of transfection, 120uL of lipofectamine 2000
(Thermofisher, #11668500) was mixed with 1.5mL of room temperature Opti MEM (Fisher Scientific,
#31-985-088) for 5 minutes. A mixture of 18ug pRSV-Rev plasmid, 18ug pMDLg/pRRe (Gag/Pol),
7ug pMD2.G (VSVG envelope), and 15ug pELNS vector plasmid in 1.5mL Opti MEM were added in
dropwise fashion to the lipofectamine mixture and allowed to incubate for 30 minutes at room
temperature. The 3mL transfection mixture was then added to 17mL of 293T complete medium
(DMEM, 10% FBS, 1% Penicillin/streptomycin/glutamine), which was then applied to 293T cell plates.
At 24- and 48-hours post-transfection, supernatant was collected, spun down at 500g, passed
through at 0.45um syringe filter (Millipore, #SLHVO033RB), and frozen at -80C. Retrovirus was
produced in the 293GP packaging cell line as previously described (Long et al., 2015). Briefly, 70%
confluent 293GP 15cm plates were co-transfected with 20ug MSGV vector plasmid and 10ug RD114
envelope plasmid with lipofectamine 2000. Viral supernatants were collected at 48- and 72-hours
post-transfection, centrifuged to remove cell debris, and frozen at -80C for future use.

T cell isolation

Primary human T cells were isolated from healthy donor buffy coats using the RosetteSep Human T
cell Enrichment kit (Stem Cell Technologies), Lymphoprep density gradient medium, and SepMate-50
tubes according to the manufacturer’s protocol. Isolated T cells were cryopreserved at 1-2x10” T cells
per vial in CryoStor CS10 cryopreservation medium (Stem Cell Technologies).

Lentiviral and retroviral transduction

Human T cells were transduced with lentivirus by adding thawed lentiviral supernatant directly onto 0.5-
1x108 T cells plated in 12- or 24-well plates. For retroviral transduction, non-tissue culture treated 12-
or 24-well plates were coated overnight with 1mL or 0.5 mL of 25ug/mL retronectin in PBS (Takara),
respectively. Plates were washed 2X with PBS and blocked with 2% BSA + PBS for 15 minutes.
Thawed retroviral supernatant was added at ~1mL per well and centrifuged at 3200 RPM for 1.5-2
hours at 32C before the addition of 0.5-1x10° T cells.
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CAR-T cell culture

Cryopreserved T cells were thawed and activated on day 0 with Human T-Expander o CD3/CD28
Dynabeads (Gibco) at 3:1 bead:cell ratio in T cell media (AIMV supplemented with 5% FBS, 10mM
HEPES, 2mM GlutaMAX, 100 U/mL penicillin, and 100ug/mL streptomycin (Gibco). Recombinant
human IL-2 (Peprotech) was provided at 100 U/mL. Lentiviral transduction was done on day 1 and
retroviral transductions were done on days 2 and 3 post-bead activation. Magnetic beads were removed
on day 4, and T cells were fed with fresh culture medium every 2-3 days and normalized to 0.5 x 108
cells/mL. For culture conditions requiring oPD-1, Sug/mL nivolumab was added on D7 and
supplemented every 2-3 days. For culture conditions requiring shield-1 (1uM unless otherwise noted),
trimethoprim (1uM unless otherwise noted), dasatinib (1uM), or tazemetostat (1uM), freshly thawed
drug was mixed with T cell culture medium and supplemented every 2-3d ays. HA.28(.FKBP CAR-T
cells were rested via removal of either shield-1 or trimethoprim from the culture medium, whereby cells
were washed 2X in PBS (changing conicals in between washes to ensure complete drug washout) and
resuspended in fresh T cell culture medium lacking shield-1/trimethoprim.

Immunoblotting

Whole-cell protein lysates were obtained in non-denaturing buffer (150 mmol/L NaCl, 50 mmol/L Tris-
pH8, 1% NP-10, 0.25% sodium deoxycholate). Protein concentrations were estimated by using with
DC Protein colorimetric assay (BioRad, 5000116). Per sample, 20ug of protein was mixed with 5X
reducing loading buffer (Pierce, 39000), boiled at 95C for 5 min and loaded onto 11% PAGE gels. After
electrophoresis, protein was transferred to PVF membranes. Signals were detected by enhanced
chemiluminescence (Pierce) or with the Odyssey imaging system. Representative blots are shown. The
following primary antibodies used were purchased from Cell Signaling: total ERK1/2 (no. 9102) and
Phospho-ERK1/2 (no. 9101). The CD3( (4A12-F6) and phospho-CD3¢ (EP265(2)Y) antibodies were
purchased from Abcam.

Cytokine secretion assays

5x10* CAR-T cells and 5x10* tumor cells were cultured in 200uL T cell media (no supplemented IL-2)
with or without shield-1/trimethoprim in 96-well flat bottom plates for 24 hours. For 1A7 anti-idiotype
stimulation, serial dilutions of 1A7 were immobilized to Nunc Maxisorp 96-well ELISA plates (Thermo
Scientific) in 1X Coating Buffer (BioLegend) overnight at 4C. Wells were washed once with PBS and
1x10° CAR-T cells were plated in 200uL T cell media (no supplemented IL-2) and cultured for 24h.
Triplicate wells were plated for each condition. In some conditions, stabilizing drug (shield-1 or
trimethoprim) was added to DD-CAR-T cells in order to normalize CAR expression across experimental
conditions (Figure 5A). Culture supernatants were collected and analyzed for IL-2 and IFNy
concentration via ELISA using the manufacturer’s protocol (BioLegend).

Incucyte killing assay

5x10* GFP+ tumor cells were co-cultured with CAR-T cells in triplicate at a 1:1, 1:2, 1:4, or 1:8
Effector:Target ratio in 200uL T cell media lacking IL-2 in 96-well flat bottom plates. Plates were imaged
every 2-6 hours for up to 120 hours using the IncuCyte ZOOM Live-Cell analysis system (Essen
Bioscience). 4 images per well at 10X zoom were collected at each time point. Total integrated GFP
intensity per well or total GFP area (um?/well) was assessed as a quantitative measure of live, GFP+
Nalm6-GD2 or GFP+ 143B-GL tumor cells, respectively. Values were normalized to the t=0
measurement. Effector:Target (E:T) ratios are indicated in the Figure legends.

Flow cytometry and cell sorting
CAR-T cells were washed 2X in FACS buffer (2% FBS + PBS) prior to cell surface staining with
fluorescent-labeled antibodies. Cells were resuspended in 100uL of antibody mastermix and incubated
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at 4C for 30 minutes. Cells were washed 2X in FACS buffer and analyzed on a BD Fortessa running
FACS Diva software or sorted at the Stanford Shared FACS Facility on a BD FACSAria running FACS
Diva software. For experiments involving staining of intracellular transcription factors, cells were surface
stained as described above, then fixed, permeabilized and labeled according to the FoxP3
Transcription Factor Staining Buffer Set manufacturer’s protocol (eBioscience, # 00-5523-00). The 1A7
anti-14G2a idiotype antibody used to detect surface CAR was obtained from NCI-Frederick, which was
conjugated in-house with Dylight488 and/or 650 antibody labeling kits (Thermo Fisher).

Intracellular cytokine staining

CAR-T cells and 143B-GL were plated at a 1:1 E:T ratio in T cell medium (no supplemented IL-2)
containing 1X monensin (eBioscience) and 1ulL/test CD107a antibody (Clone H4A3, BioLegend) for 5-
6 hours. After incubation, intracellular cytokine staining was performed using the FoxP3 Transcription
Factor Staining Buffer Set according to the manufacturer’s protocol.

Murine blood and spleen analysis

To calculate circulating numbers of adoptively transferred human T cells, peripheral blood was sampled
from live mice via retro-orbital blood collection under isoflurane anesthesia. 50uL blood was labeled
with anti-CD45 (eBioscience), lysed using BD FACS Lysing Solution, and quantified using CountBright
Absolute Counting beads (Thermo Fisher) on a BD Fortessa cytometer. For phenotypic analysis of
blood and spleen, mice were euthanized and blood was harvested via cardiac puncture. Spleens were
mechanically dissociated and washed 2X in PBS. Both blood and spleen were treated with ACK lysis
buffer (Fisher Scientific, # 50-751-7469) for 5 minutes at room temperature. The reaction was quenched
with FACS buffer, washed 2X, stained with anti-human antibodies (as described in “Flow Cytometry”)
and analyzed on a BD Fortessa cytometer.

Mass Cytometry

1-2 x 10% T cells from each culture condition were washed 2X in PBS (Rockland). Cells were
resuspended in 1mL of 250nM cisplatin + PBS (Fluidigm Catalog: 201064), which was used to assess
cell viability. After a 3-minute incubation at room temperature, the cisplatin reaction was quenched with
cell staining media (CSM, 1X PBS with 0.05% BSA and .02% sodium azide). Cells were washed 2X in
PBS and incubated in CSM + anti-CCR7 and anti-CXCR3 antibodies for 30 minutes at room
temperature. These cell surface proteins were undetectable when labeled post-fixation, and thus,
required labeling at this step. After 2 washes, cells were then fixed with 1.6% paraformaldehyde + PBS
for 10 min at room temperature, followed by 2 washes with 1X PBS. Samples were subsequently flash
frozen on dry ice for further use. Upon thawing and washing in CSM, barcoding was performed using
a palladium-based approach using the Cell-ID 20-Plex Pd Barcoding Kit manufacturer’s protocol
(Fluidigm Corporation). Cell samples were mixed together and treated as one sample for all subsequent
steps. Titrated amounts of each cell surface antibody were mixed, filtered through a 0.1um spin filter
(Millipore), and added to the merged barcoded sample for 30 minutes at room temperature. Cells were
then washed 2X with CSM and permeabilized by adding ice cold methanol for 10 minutes at 4C,
followed by two washes with CSM. Finally, samples were resuspended in IR-intercalator (0.5uM iridium
intercalator and 1% PFA in 1X PBS), washed 1X with CSM and 2X with ddH20, and filtered through a
50um cell strainer (Thermofisher). Cells were then resuspended at 1x10° cells/mL in ddH20 with 1x
EQ four-element beads (Fluidigm Corporation, #201078). Cells were acquired on a Fluidigm Helios
mass cytometer.

ATAC-seq

CAR-T cells were sorted on CD8 (see Cell Sorting) and processed for ATAC-seq, which was carried
out as previously reported (Corces et al., 2017). Briefly, 50,000 cells from each sample were sorted by
FACS, centrifuged at 500g at 4°C, then resuspended in 50uL of cold ATAC-seq Resuspension Buffer
(RSB) (10 mM Tris-HCI, 10 mM NaCl, 3mM MgClI2) supplemented with 0.1% NP-40,0.1% Tween-20,
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and 0.01% Digitonin. Samples were incubated on ice for 3 minutes, then washed with 1 mL RSB
supplemented with 0.1% Tween-20. Nuclei were pelleted at 500g for 10 minutes at 4°C. The nuclei
pellet was resuspended in 50 yL transposition mix (25 yL 2x TD buffer, 2.5 yL transposase (lllumina),
16.5 yL PBS, 0.5 pyL 1% digitonin, 0.5 yL 10% Tween-20, 5 yL H20) and incubated at 37°C for 30
minutes in a thermomixer set to 1000 RPM. DNA clean up was achieved using the Zymo DNA Clean
and Concentrator-5 Kit (#D4014). Libraries were PCR-amplified using the NEBNext Hi-Fidelity PCR
Master Mix and custom primers (IDT) as described previously (Buenrostro et al., 2013). Libraries were
sufficiently amplified following 5 cycles of PCR, as indicated by qPCR fluorescence curves (Buenrostro
et al., 2013). Libraries were cleaned and purified using the Zymo DNA Clean and Concentrator-5 Kit
and subsequently quantified with the KAPA Library Quantification Kit (#KK4854). Libraries were
sequenced on the lllumina NextSeq at the Stanford Functional Genomics Facility with paired-end 75bp
reads.

QUANTIFICATION AND STATISTICAL ANALYSES

Mass cytometry data processing and analysis

Acquired data was normalized and debarcoded using MATLAB-based software (Finck et al., 2013;
Zunder et al., 2015). FCS files were imported into Cytobank and traditional handing gating was used to
select single, viable CAR+/CD8+ T cells. New FCS files were then exported and arcsinh-transformed
with a co-factor of 5, after which 2,000 cells were randomly downsampled per FCS file (i.e. per
condition/timepoint). Additional columns were added to each FCS file representing: day of collection
(numeric value 7-11), timepoint (numeric value 1-5), and exhaustion and memory scores. Exhaustion
score for each cell was calculated as mean expression of PD-1, TIM-3, LAG-3, 2B4, CTLA-4, BTLA,
and CD39 normalized to mean expression of these markers in control HA.28C.FKBP T cells cultured in
the absence of shield-1 at each time point. Similarly, memory score was calculated using CD45RA, IL-
7R, CD27, CD197 markers. Sampled/edited FCS files from days 7-11 for each condition were
concatenated, creating an Always ON and Restedpz.11 files each with 10,000 total events. To create
force-directed layouts (FDLs), we used Vortex software (Samusik et al., 2016). Edges, a basis for
spring-like attractive forces between single cells within the FDL, connected each cell to its 10 nearest
neighbors and were limited to cells of adjacent timepoints. Likewise, cell dissimilarity, which acts as
repulsive forces between single cells within the FDL, was calculated based on angular (cosine) distance
in indicated dimensions (Figure S2B).

Bulk RNA-seq analysis

Bulk RNA-seq_was performed by BGlI America (Cambridge, MA) using the BGISEQ-500 platform, single
end 50bp-read length, at 30 x 10° reads per sample. Paired-end reads were aligned and quantified
using Kallisto (version 0.44) (Bray et al., 2016) index against hg38 reference genome. The Gencode
transcript annotations (version 27) were used for genomic location of transcriptomic units. Reads
aligning to annotated regions were summarized as counts using R package tximport (version 1.12.3).
Differential expression analysis of sample comparisons across various timepoints were performed
using DESeq2 (version 1.24.0) (Love et al.). FDR cutoff of 0.05 was used for gene selection. Principal
component analysis was performed on reads counts processed using variance-stabilizing
transformation build into the DESeq2 package. PCA plots were generated using ggplot2 (2.3.2.1) in R
(3.5.1). Gene set enrichment analysis was performed using the GSEA software (Broad Institute) as
described (Mootha et al., 2003; Subramanian et al., 2005). Raw RNA-seq FASTQ files were used as
input to perform quantitation of TCR receptor profiling using MiXCR tool (Bolotin et al., 2017). Briefly,
reads were aligned to the V, D, J and C genes, assembled, and clonotypes were computed after filtering
and error correction steps. Clonotypes were further assessed using tcR, which enabled computation of
clontype abundance and diversity estimations based on the CDR3 amino acid length and V gene usage
(Nazarov et al., 2015).
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ATAC-seq data processing

ATAC-seq libraries were processed following the pepatac pipeline (http://code.databio.org/PEPATAC/)
using default options and aligned to hg19. Briefly, fastq files are trimmed to remove lllumina Nextera
adapter sequences, and pre-aligned to the mitochondrial genome to remove mitochondrial reads. Multi-
mapping reads aligning to repetitive regions of the genome were also filtered. Bowtie2 was used to
align to the hg19 genome. Samtools was used to identify uniquely aligned reads and Picard was used
to remove duplicate reads. The resulting deduplicated aligned BAM file was used for downstream
analysis. Peaks were called on individual samples by the pepatac pipeline using MACS2. A merged
peak list was created as previously described(Corces et al., 2018). All individually-called peaks were
compiled, then rank-ordered by signal intensity (i.e., peak height). Starting with the first peak, any
overlapping peaks are removed; any remaining peaks then overlapping with the second-strongest peak
are removed, and so on, until a set of unique non-overlapping peaks remained. These peaks were
resized to a standard 500bp width around the peak summit. Read counts in the merged peak set for
each sample were generated with the bedtools intersect -c command. Merged signal tracks were made
using aligned BAM files as inputs with the UCSC bigWigMerge and bedGraphToBigWig tools. The
outlier samples (one D7 Always ON sample and one D15 Always OFF sample) were excluded from all
ATAC-seq analyses, including merged conditions, as they did not cluster with replicates (see below
ATAC-seq analysis).

ATAC-seq analysis

The peak count table was pre-processed in R. It was depth normalized to account for differences in
sequencing depth, then log-transformed with a pseudocount of 1. The resulting matrix was then quantile
normalized across samples using the normalize.quantiles function in the preprocessCore library. Batch
effects by patient were corrected with the removeBatchEffect function in the limma library. Differential
peak calls across different conditions, using samples from different patients as replicates, were made
using edgeR. P-values were adjusted by the Benjamini-Hochberg method. The number of significantly
differentially accessible peaks was shown using the adjusted p-value less than or equal to 0.05 as a
cutoff, aggregated by their logFC from the edgeR output. Samples were initially analyzed based on
their pairwise Pearson correlation to determine if replicates clustered as expected. Only peaks with a
read in at least half (18/36) of the samples were included, and the correlation was computed on the
log-transformed counts. One outlier each from the D7 Always ON and D15 Always OFF samples were
observed and subsequently excluded from downstream analyses. PCA plots were generated using the
decomposition. PCA function in the sci-kit learn package in Python. PCA plots were generated using
batch-corrected, quantile-normalized, log-transformed peak counts (with a pseudocount of 1). Only
peaks with at least 5 counts-per-million in at least 9/36 of the samples were used. Homer was used to
compute relative motif enrichment of the peaks contributing to the loadings of the first three components
of the PCA analysis described above. The 5000 peaks most contributing to the PC in either direction
based on their loadings were used. These peaks represent the peaks whose accessibility across
samples most contributes to a given principal component. The findMotifsGenome function in Homer
was used using these peaks relative to the background of the merged peak set (not the entire genome,
but the merged peak set generated as described above). The motif enrichment thus represents the
specific enrichment of those PCs against the background of CAR-T cell specific peaks, not just CAR-T
cell specific peaks enriched over the entire genome. K-means clustering was performed on peaks using
the cluster. KMeans function in sci-kit learn with the following arguments: n_cluster=6, n_init=100,
max_iter=1000, precompute_distances=True. 6 clusters were chosen based on k=6 representing the
inflection point of the sum of squared errors decline as k was increased from 1 to 25. K-means clustering
was computed across the D15 samples, using only peaks that were significantly differentially expressed
between any pair of D15 samples, z-normalized across samples. Heatmaps are shown clustered using
ward clustering and Euclidean distance. ChromVAR was used to compute the relative differential
accessibility of known transcription factor motifs across different samples as previously described
(Rubin et al., 2019; Schep et al., 2017). Briefly, peaks counts were GC-corrected using the addGCBias

22



function and the Jaspar motifs list was used to compute motif deviations with the getJasparMotifs,
matchMotifs, and computeDeviations functions. Peak deviations were ranked by their variability across
samples (standard deviation), and the most-variable deviations were shown. Note that some motifs are
closely related and therefore behave similarly, and these closely related motifs were not collapsed or
removed.

Statistical Analysis

Unless otherwise stated, statistical analyses for significant differences between groups were conducted
using 1- or 2-way ANOVA (unpaired, assumed Gaussian distribution, assumed equal standard
deviations) and Dunnett’'s multiple comparisons test (comparing all groups to Always ON or Vehicle
controls) using GraphPad Prism 7. Survival curves were compared using the Log-rank Mantel-Cox test.
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Figure S1: A GD2-targeting CAR fused to an ecDHFR destabilizing domain exhibits rapid ON/OFF kinetics and drug-dependent, analog control
of expression and function in vivo. Related to Figure 1. A) CAR-T cells were stained with 1A7 anti-CAR idiotype antibody and analyzed via flow
cytometry. Dose-dependent control (left) and ON/OFF kinetics (middle, right) were demonstrated via trimethoprim (TMP). CAR MF| was used to generate
non-linear dose-response curves. Error bars represent mean + SEM of 3 individual donors. B) 1x10° Nalm6-GD2 leukemia cells were engrafted in mice.
On days 5-7 post-engraftment, mice were dosed with vehicle (water, CAR OFF) or 200mg/kg trimethoprim (TMP, CAR ON) once daily. On day 7 post-
engraftment, 1x10” GD2.28;.ecDHFR CAR-T cells were infused. 24 hours after CAR-T cell infusion, peripheral blood and spleens were harvested for
flow cytometry analyses. Contour plots demonstrate a TMP-dependent increase in co-expression of CAR and the activation marker CD69 in CAR ON
mice compared CAR OFF mice. Representative mouse from n=7 total mice from 2 independent experiments. C) 1x10° Nalm6-GD2 leukemia cells were
engrafted in mice at day 0 and 2x10° GD2.28¢.ecDHFR CAR-T cells expanded in vitro in the absence of TMP for 15 days were infused IV on day 7
post-engraftment. Mice were dosed 6 days per week with vehicle (CAR OFF) or 200mg/kg TMP (CAR ON). Bioluminescence imaging of the tumor

indicates TMP-dependent anti-tumor activity in CAR ON mice compared to CAR OFF mice (n=5 mice/group). Representative experiment (also shown
in Figure 1F-G) from 3 individual experiments.
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Figure S2: Mass cytometry demonstrates altered phenotypic features of rested HA.28(.FKBP CAR-T cells. Related to Figure 3. A) Flow
cytometry of HA.28{ CAR fused to an FKBP DD (HA.28(.FKBP) exhibits drug-dependent regulation of surface expression and rapid ON (T12
max=6.09hr) and OFF kinetics (T12min=0.91hr). Error bars represent the mean + SEM of 3 individual donors. B) Heavy metal-conjugated antibody panel
used in mass cytometry experiments (27 antibodies, blue indicates markers used to generate the force directed layouts). C) Regions 1-4 (blue boxes)
were identified based on the location of cells within the FDL on D11 (black box). D) CD39 expression over time in CD8+/CAR+ T cells. E) Heatmap
demonstrates differences in cell phenotype between regions 1-4. Marker expression was normalized to the maximum value within each row. F) T-bet
and Blimp-1 expression levels and co-expression frequency decreased over time in rested cells compared to Always ON cells. G) Fold change in
CAR-T cell expansion between D7 and D11. Statistics were calculated using two-tailed paired student’s t test. **, p<0.01. H) Always ON and Restedpr-
11 CAR-T cells exhibit similar levels of cleaved PARP-1 (cPARP) and Ki-67. Violin plots of single cells show quartiles with a band at the mean. 1)
Intracellular flow cytometry at D11 indicates low, comparable levels of TCF1 expression between Always ON and Restedpr.11 cells. TCF1+ gating
was determined based on the TCF1+ naive cell population. The histogram (top) shows data from 1 representative donor and the bar graph (bottom)
represents the mean + SEM of 3 individual donors. Statistics were calculated via one-way ANOVA and Dunnett’'s multiple comparisons test. ***,
p<0.001; ns, p>0.05. FDLs and other measurements from mass cytometry experiments were derived from 1 representative donor (n=3 individual
donors).
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Figure S3: Phenotypic and transcriptional reprogramming of exhausted CAR-T cells via rest. Related to Figure 4. A) Western blot of CAR-T
cells collected on D15 demonstrates reduced phosphorylated CAR CD3(¢ and phosphorylated ERK1/2 in Restedpr.15 and Restedp11-15s CAR-T cells
compared to Always ON cells. Representative donor from 3 individual donors. B-C) Flow cytometry demonstrates reversal of inhibitory receptor
expression to Always OFF levels upon rest, regardless of whether rest is started at D7 (Restedpr.11, Restedpr.15) or D11 (Restedpi1.15). (B) displays
mean = SEM of 6 individual donors and (C) displays one representative donor from 3 individual donors. D-G) Bulk RNA sequencing data of unsorted
HA.28(.FKBP CAR-T cells (Figures 4E-G). (D) Data analysis pipeline for generating an Always ON exhaustion signature, which is comprised of 708
and 442 transcripts that are up- or downregulated in Always ON T cells, respectively. E) Principal component analyses of D7 (left) and D11 (right)
RNA-sequencing data. F) Volcano plot of differentially expressed genes between Restedp11.15 cells and Always ON cells on D15. Genes were filtered
for those that exhibited log2(fold change)>0.5 or <-0.5 and p(adjusted)<0.05. G) GSEA: gene sets that are downregulated in Always OFF, Restedpr-
15 and Restedp11.15 cells compared to Always ON cells demonstrate significant overlap with genes upregulated in Exhausted versus Memory CD8+
(top) in a mouse model of chronic LCMV (Wherry et al. Immunity, 2007). Conversely, gene sets that are upregulated in Always OFF, Restedp7.15 and
Restedp11-15 cells compared to Always ON cells demonstrate significant overlap with genes downregulated in Exhausted versus Memory CD8+ (top)
in the LCMV model. GSEA - gene set enrichment analysis, NES — normalized enrichment score, FDR — false discovery rate. H-l) MiXCR analyses
of TCR clonality on D15 RNA-seq samples show (H) the relative abundance of clones for each sample and (l) Gini-Simpson Index measuring
clonotypic diversity for 3 donors. Bracketed bar in (I) indicates the same statistical significance for all sample comparisons. Statistics were calculated
using one-way ANOVA and Dunnett’s (B) or Tukey’s (I) multiple comparison’s test. *, p<0.05; **, p<0.01 ***, p<0.001; ****p<0.0001; ns, p>0.05
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Figure S4: Transient rest functionally reinvigorates exhausted CAR-T cells. Related to Figure 5. A) HA.28(.FKBP CAR-T cell IL-2 (left) and
IFNy (right) secretion in response to co-culture with Nalm6-GD2. Error bars represent + SD of triplicate wells from one representative donor (related
to Figure. 5C). B) Intracellular cytokine staining of CD8+ CAR+ T cells of rested groups demonstrates significantly increased frequency of cytokine-
secreting cells. Representative histograms (left) and quantification of multiple donors (right) are shown. Error bars represent mean + SEM of 3
individual donors. C) Dose-dependent control of HA.28(.ecDHFR expression (left) and ON/OFF kinetics (middle, right) were demonstrated via
trimethoprim (TMP). CAR MFI was used to generate non-linear dose-response curves. Error bars represent mean + SEM of 2-3 individual donors. D)
Flow cytometry of HA.28(.ecDHFR conditioned as described in Fig. 4A. E) Quantification of tumor bioluminescence data from the experiments
described in Figures 5H and 5l. Representative experiment from 3 individual experiments (n=3-5 mice/group). Statistics were calculated using two-
way ANOVA and Dunnett’'s multiple comparisons test. *, p<0.05; **, p<0.01 ***, p<0.001; ****p<0.0001
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Figure S5: Epigenetic reprogramming of exhausted CAR-T cells via rest. Figure 6. A) Peak accessibility changes between timepoints were
calculated based on p adjusted<0.05. Bar graphs display merged data from 2-3 donors. B) D15 differentially accessible peaks compared to Always
ON (FDR<0.05). C) Pearson correlation and hierarchical clustering of ATAC-sequencing data from each condition and timepoint outlined in Figure
6A. Always OFF, Restedpr-15, and Restedp11.15 conditions cluster together, while Always ON and Always ON + aPD-1 comprise a different cluster.
Heatmap generated with merged data from 2-3 individual donors. D) Unbiased principal component analysis of chromatin accessibility was assessed
on D7, D11, and D15. Plots were generated with ATAC-seq data from 2-3 individual donors. E) K-means clustering of D15 differentially accessible
peaks identified 6 distinct clusters. GSEA (gene ontology and MSigDB) of these clusters revealed biological processes that are enriched (packaging
of telomeres, G1 phase) or diminished (Akt signaling, apoptosis, negative regulation of Wnt signaling, chromatin silencing complex) in rested
conditions, consistent with quiescence and T cell memory. F) Flow cytometry at D15 demonstrates that tazemetostat treatment (EZH2i, red) does not

affect phenotypic alterations that occur in Restedp11.15 cells compared to Always ON cells. Representative donor of 2 individual donors.
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Figure S6: Dasatinib prevents tonic CAR signaling, reverses the exhaustion phenotype, and functionally reinvigorates exhausted CAR-T
cells. Related to Figure 7. A) D15 HA.28{ CAR-T cells cultured in the presence of dasatinib from D4-15 (Dasatinibps.15) demonstrates reduced
phosphorylation of CAR CD3( and phosphorylation of ERK1/2 compared to vehicle-treated cells (Veh). Representative donor from 3 individual donors.
B) Flow cytometry of D15 CD8+ CAR+ T cells demonstrates reversal of inhibitory receptor expression in cells rested via dasatinib (Dasatinibpz.15,
Dasatinibp11.15) compared to exhausted vehicle-treated controls (Vehicle). Histograms show 1 representative donor of 3 individual donors. C) Dasatinib
was removed from CAR-T cell cultures approximately 16 hours prior to co-culture with Nalm6-GD2 leukemia on D15 and IL-2 and IFNy secretion was
subsequently assessed. Error bars represent mean = SD of triplicate wells from 1 representative donor (n=3 donors). D) 0.5x10° 143B-GL
osteosarcoma cells were engrafted in the flank of NSG mice, and 1x10” CAR+ GD2.BB{ CAR-T cells that had been cultured in the presence of vehicle
(DMSO) or dasatinib for 10 days were infused on day 3 post-engraftment. Tumor size was monitored via caliper measurements. CAR-T cells cultured
in dasatinib exhibited superior tumor control to those cultured in vehicle. Error bars represent mean + SEM of 5 individual mice from 1 experiment. E-
F) Quantification of D25 (E) exhaustion marker and (F) transcription factor expression via flow cytometry. Error bars represent mean MFI + SEM of
3-4 individual donors. Bracketed horizontal bars indicate the same statistical significance across all conditions compared to Vehicle controls. G) Co-
culture assays with Nalm6-GD2 leukemia were conducted on D15, D18, D22, and D25. IL-2 and IFNy secretion levels from CAR-T cells cultured with
dasatinib for 7-8 days were normalized to Dasatinibpas-2s for each individual timepoint. Graphs display data from 4-5 individual donors. These data are
also represented in Figure 7H, but were replotted here to illustrate cytokine secretion when duration of rest is normalized across conditions. H)
HA.28(.FKBP CAR-T cells were cultured in a protracted in vitro time course, as outlined in Fig. 7B. Similar to data shown with dasatinib (Fig. 7F-H),
rested HA.28(.FKBP CAR-T cells exhibit reinvigoration at both early and late timepoints compared to Always ON cells. Furthermore, their capacity
for reinvigoration is correlated to duration of rest. Error bars represent mean + SD of 2-3 wells from one representative donor (n=3 individual donors).
Statistics were calculated using one-way ANOVA and Dunnett’s multiple comparisons test. *, p<0.05; **, p<0.01 ***, p<0.001; ****p<0.0001; ns,
p>0.05
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