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ABSTRACT:

Environmentally induced changes in the epigenome help individuals to quickly
adapt to fluctuations in the conditions of their habitats. Here we explored those
changes in Arabidopsis thaliana plants subjected to multiple biotic and abiotic
stresses, and identified transposable element (TE) activation in plants infested
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with the green peach aphid, Myzus persicae. We performed a genome-wide
analysis of DNA methylation, mMRNA expression, mMRNA degradation and small
RNA accumulation. Our results demonstrate that aphid feeding induces loss of
methylation of hundreds of loci, mainly TEs. This loss of methylation has the
potential to regulate gene expression and we found evidence that it is involved in
the control of key plant immunity genes. Accordingly, we find that mutant plants
deficient in epigenetic silencing show increased resistance to M.persicae
infestation. Collectively, our results show that changes in DNA methylation play
a significant role in the regulation of the plant transcriptional response and
induction of defense response against aphid feeding.

INTRODUCTION:

While adaptation to long-term environmental changes involves genetic variation,
fluctuating stresses are normally coped through the modulation of the
transcription machinery (Lamke & Baurle, 2017). Several mechanisms govern the
transcriptional response during stress including transcription factors (TFs) and
epigenetic regulation (Gutzat & Mittelsten Scheid, 2012). In eukaryotic organisms
epigenetic modifications of chromatin and DNA are the core of genome stability
regulation through the control of transposable element (TE) expression and
transposition (Law & Jacobsen, 2010). Epigenetic modifications consist of
covalent and reversible marks that are deposited on both the DNA and the
histones. DNA methylation constitutes a vital and widespread mark in plant
genomes, where it can happened in three different sequence combinations: the
symmetric contexts CG and CHG, and the asymmetric CHH (where H can be A,
CorT) (Law & Jacobsen, 2010). This repressive mark is established by the action
of small RNAs (sRNAs) through a pathway named RNA-directed DNA
methylation (RdDM) and can be actively removed from any context by the action
of DNA glycosylases (Matzke & Mosher, 2014, Zhang, Lang et al., 2018). The
modifications that occur in the tails of histones can be active or repressive marks.
For example, H3K4 mono-, di- and tri-methylation (H3K4me1, H3K4me2 and
H3K4me3) are associated with highly transcribed genes (Zhang, Bernatavichute
et al., 2009), H3K27 tri-methylation (H3K27me3) and is mainly found in silenced
genes (Zhang, Clarenz et al., 2007) and H3K9 di-methylation (H3K9me2) is rarely
seen in genes while is predominantly present in TEs, where it correlates with the
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presence of DNA methylation, leading to transcriptional silencing and the
formation of heterochromatin (Zhou, Wang et al., 2010).

TEs are a source of new mutations and genetic/genomic variation and,
interestingly, of new regulatory regions for genes (Kidwell & Lisch, 1997, Lisch,
2009). Several agricultural traits like orange, maize and apple color or pepper
pungency are regulated by TEs that inserted in new locations and created new
expression patterns for the gene/s in the vicinity of the insertion (Butelli,
Licciardello et al., 2012, Dooner, Robbins et al., 1991, Tanaka, Asano et al., 2019,
Zhang, Hu et al., 2019). These TE domestication events are especially important
for plant interaction with their environment (Annacondia, Mageroy et al., 2018).
Different abiotic and biotic stresses (including drought, salinity, heat, cold,
ultraviolet radiation, chemical agents and viral, viroid, bacterial and fungal
infections) show examples of TE domestication events that influence gene
expression and/or induce changes in the epigenetic regulation of repeats
(Annacondia et al., 2018, Mozgova, Mikulski et al., 2019). Defense genes are
interesting examples of the interaction between epigenetic regulation and gene
regulation and evolution, since most nucleotide binding site and leucine-rich
repeat domain protein (NBS-LRR) genes accumulate in heterochromatic clusters
populated by TEs (Meyers, Kozik et al., 2003). As an example of the role of
epigenetic regulation in their transcriptional control, several defense genes such
as RECOGNITION OF PERONOSPORA PARASITICA 7 (RPP7), RPP4 and
RESISTANCE METHYLATED GENE 1 (RMG1) are transcriptionally regulated by
domesticated TEs (Tsuchiya & Eulgem, 2013, Yu, Lepere et al., 2013,
Zervudacki, Yu et al., 2018). Additionally, mutants of different DNA methylation,
RdDM and small RNA pathways regulate immunity to bacterial and fungal
infection (Agorio & Vera, 2007, Dowen, Pelizzola et al., 2012, Lopez, Ramirez et
al., 2011, Yu et al., 2013). Intriguingly, some biotic stresses can induce tolerance
towards the pathogen in the subsequent generation (Boyko, Blevins et al., 2010,
Boyko, Kathiria et al., 2007, De Vos & Jander, 2009, Kathiria, Sidler et al., 2010,
Luna, Bruce et al., 2012, Slaughter, Daniel et al., 2012), a phenomenon that could
be explained by changes in the methylation status of the DNA or chromatin rather
than by spontaneous mutagenesis and reversion (Annacondia & Martinez, 2019,
Boyko & Kovalchuk, 2011, Luna & Ton, 2012).
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The relationship between pathogens and host plants involves an
interaction between both genomes and leads to events of coevolution. An
example of this interaction takes place between plants and insects. Both groups
interact in different ways and have influenced each other during evolution (e.g.
the appearance in land plants of entomophily (Darwin, 1899) or carnivory (Renner
& Specht, 2013) or the artificial selection of insects that evolve resistance to
plants with defense genes (Bown, Wilkinson et al., 1997). Plant-insect
interactions are classified as mutualistic, antagonistic or commensalistic.
Although they are basic for the ecological equilibrium, some of them can be a
threat for the agricultural ecosystems and, by hence, to food production.
Herbivory insects represent approximately 50% of the total insect species
(Schoonhoven, van Loon et al., 2005) and are considered a threat to plant
productivity. They are among the stresses that induce trans-generational
acquired resistance, pointing to a potential role of epigenetic regulation of plant
defense (De Vos & Jander, 2009, Rasmann, De Vos et al., 2012). Nevertheless,
how this epigenetic response is established during insect infestation is poorly
characterized.

Here, we report that epigenetic control is an important part of the Arabidopsis
thaliana defense response against the infestation by the green peach aphid
Myzus persicae. Our analysis of DNA methylation, mRNA, small RNAs and
MRNA cleavage changes induced in plants exposed to aphid feeding shows that
the response of the plant is characterized by a transcriptional reprogramming and
methylation changes in TEs. These TEs are normally associated with
repressive/heterochromatic marks and dependent on the RdDM pathway for their
silencing. Along with this, we find that upon infestation certain differentially
methylated regions (DMRs) are associated with infestation-responsive genes and
TF binding sites. Finally, we find that mutant plants deficient in epigenetic
silencing show increased resistance to M.persicae infestation. Together, our data
uncovers a novel role of plant epigenetic control in the induction of the

transcriptional response to aphid feeding.

RESULTS:
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Meta analysis of TE activation identifies Myzus persicae as a potential
inducer of epigenetic changes

To identify stresses that alter the epigenetic regulation in Arabidopsis thaliana,
we performed a meta-analysis of TE expression from ATH1 microarray datasets,
which have been widely used by the community. The ATH1 microarray contains
1155 TE probes used to track changes in transcript abundance influenced by
epigenetic reprogramming (Slotkin, Vaughn et al., 2009). We investigated TE
expression under different stresses including abiotic (heavy metal presence,
exposure to heat, cold, spaceflight or UV light among others) and biotic (viral,
oomycete, bacterial and insect infection/infestation) (Figure 1A, Supplementary
Table 1 and data not shown). We found that, in general, these stresses can
induce a modest reactivation of TEs, although this response is dependent on the
specific stress (Figure 1A and B). Interestingly, biotic stress seems to activate TE
expression more consistently than the abiotic stresses analyzed here (Figure 1A-
B). This analysis identified that among the stresses inducing TE reactivation,
M.persicae infestation after 72 hrs induces the highest TE transcription.
M.persicae is a major agricultural pest to a large variety of plants that include
stone fruits, potato and horticultural crops (Louis & Shah, 2013). A high number
of TEs (533 TEs, 46.1% of all the TEs represented in the ATH1 microarray, Figure
1B) show evidence of transcriptional activation when plants were under attack
from M.persicae compared to control plants. This reactivation included more than
40% of all the DNA transposons and retrotransposons represented in the ATH1
microarray and is enriched in Gypsy and Copia retrotransposons and TIR DNA
transposons (Figure 1C). Analysis of the reactivation indicated that TE activation
takes place at 48 hrs and increases by 72 hrs pi (Supplementary Figure 1,
average fold change value for retrotransposons at 72 hrs pi 3.64x and 4.4x for
DNA transposons). Other cases of largescale TE activation are seen when DNA
methylation, histone modification and/or heterochromatin formation are lost
(Lippman, Gendrel et al., 2004, Lippman, May et al., 2003, Panda, Ji et al., 2016,
Zilberman, Gehring et al., 2007). Together, these results indicate that M.persicae
infestation results in TE activation, potentially due to a large-scale change in the

epigenome.
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Transcriptional response to aphid feeding in Arabidopsis is characterized
by transcription factor activity

The extent of TE reactivation observed in our meta analysis could be biased by
the presence of TE probes on the ATH1 microarray. To monitor the transcriptional
changes under aphid infestation, we repeated the experiment described in (De
Vos, Van Oosten et al., 2005) and analyzed in Figure 1 at 72 hrs post infestation
(p.i.) and prepared and sequenced high-throughput mRNA libraries
(Supplementary Table 2). First, we focused on understanding the genic
transcriptional changes taking place in Arabidopsis infested with M.persicae. This
analysis revealed that 267 genes are significantly differentially expressed, with
almost all of these being upregulated (265 genes, Figure 2A and Supplementary
Table 2). As expected, the analysis of the GO categories for significantly
upregulated genes indicates that these genes are associated with the response
to stress or environmental stimuli (Figure 2B and C and Supplementary Figure
2A). Interestingly differentially expressed genes contain a significant
overrepresentation of mobile mMRNAs (24.34% of differentially expressed genes,
two tailed p<0.0001 calculated by a Chi-squared test with Yates correction)
(Thieme, Rojas-Triana et al., 2015) (Supplementary Figure 2B).

We further analyzed the molecular functions of these stress-responsive genes by
checking the GO term enrichment according to molecular function (Figure 2D).
This revealed an overrepresentation of DNA binding/transcription factor
categories, indicating that these transcriptional regulators are an important part
of the response to aphid feeding (Figure 2D). Interestingly, several well-studied
TFs show a strong upregulation (higher than 1.5 log2 fold change) including
several members of the WRKY and ERF families (Figure 2E), which have been
previously associated with the response against aphid feeding (Gao, Kamphuis
et al., 2010). In summary, the transcriptional response against aphids shows an
overrepresentation of TF activity.

Complex transcriptional and posttranscriptional regulation of TEs during
aphid infestation

Our previous analysis of ATH1 public datasets indicated a potential reactivation
of TEs during aphid infestation. However, the TE probes on the ATH1 array do
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not represent the genomic distribution of TEs, and favor Helitron elements that
resemble genes. Accordingly, we explored TE transcriptional and
posttranscriptional regulation by performing RNA, PARE and sRNA sequencing,
which target (respectively) mRNAs, mRNAs targeted for degradation and sRNAs
derived from Pol Il and Pol IV activity (Figure 3). For the production of PARE
libraries we used the same tissue as in our mRNA analysis, with plants infested
with M.persicae for 72hrs. Analysis of RNA sequencing indicated that,
surprisingly, TE changes at the steady-state mRNA level, if any, are minimal
(Figure 3A). This difference between the microarray and mRNA-seq data may be
due to the ability to map sequencing reads to TEs and/or the degradation of TE
mRNAs that will still be detected by 3’ microarray probes. On the other hand,
PARE sequencing was able to identify changes of TE expression that experience
uncharacterized posttranscriptional regulation (Figure 3B). We identified 73 TEs
that increase their transcription during aphid infestation while 42 are
downregulated (Figure 3B). This apparently contradictory output from RNA and
PARE sequencing indicates that there is indeed transcriptional reactivation of
TEs, but these transcripts are regulated at the posttranscriptional level since they
are only detectable by PARE sequencing, which specifically captures mRNAs
with a 5’ P that are degradation intermediates (Addo-Quaye, Eshoo et al., 2008,
German, Pillay et al., 2008, Hou, Lee et al., 2016, Pelechano, Wei et al., 2015,
Yu, Willmann et al., 2016).

Next, the analysis of our sRNA sequencing revealed more dramatic differences
taking place almost exclusively at 24 nt TE-derived sRNAs (Figure 3C-D and
Supplementary Figure 3B-H). This loss of 24 nt sSRNAs is more pronounced on
long transposons of the Gypsy, Copia, MuDR and LINE families (Figure 3E and
Supplementary Figure 3B). Long retrotransposons are located in centromeric and
pericentromeric regions, which are the genomic habitats of Gypsy and
Copia/LINE elements, respectively (Underwood, Henderson et al., 2017).
Altogether, this indicates that the loss of RADM activity under aphid feeding takes

place mainly at centromeric and pericentromeric regions.

Lastly, we analyzed the connection between the changes observed at the
transcriptional (RNA and PARE sequencing) and sRNA level. First, 43.27% of
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TEs with evidence of transcription (TEs with reads in either RNA or PARE
sequencing libraries) are associated with loss of 24 nt sSRNAs (Figure 3F). Most
of these TEs are detected by PARE sequencing (Supplementary Figure 3A),
which might indicate that TE mRNA degradation could be associated with
alternative pathways of 24 nt biogenesis. Nevertheless, TEs detected as
upregulated by PARE sequencing are mostly associated with loss of 24 nt sSRNAs
(Figure 3G, example shown in Figure 3H). This fact, together with the lack of
evidence for production of 24 nt sSRNAs from polyadenylated transcripts during
aphid infestation favors the hypothesis that loss of 24 nt sRNAs causes the
transcriptional upregulation of TEs. In summary, our RNA, PARE and sRNA
sequencing data indicates that during aphid infestation plants reduce the activity
of the RdDM pathway, leading to the transcriptional reactivation of TEs that are,
in turn, regulated at the posttranscriptional level.

Differential methylation of the Arabidopsis genome upon aphid infestation
The transcriptional changes observed and the loss of TE-derived 24 nt sSRNAs
lead us to analyze the levels of DNA methylation. Genomic DNA was isolated,
treated with sodium bisulfite and sequenced at 26.4 x average coverage
(Supplementary Table 2). The data was plotted as a heat map on all five
chromosomes comparing the control and aphid infested samples (Figure 4A).
This data reveals a strong enrichment of DNA methylation in the pericentromeric
heterochromatin, as expected from somatic tissues. A global analysis of the
methylation level at genes and TEs for each methylation context revealed that,
overall, no dramatic differences exist between the control and aphid infested
samples in the overall profiles (Figure 4B). This is expected, since aphids cause
very subtle wounding due to their feeding strategy.

To identify regions in the genome harboring differential methylation upon aphid
feeding we determined differentially methylated regions (DMRs) (Catoni, Tsang
et al., 2018). This analysis revealed the presence of DMRs for all the DNA
methylation contexts and associated both with hypo- and hypermethylation
(Supplementary Figure 4A and Figure 4E). The CHG context has the greatest
amount of DMRs (1123) followed by CG (691) and CHH (311). Furthermore, while
CG DMRs are both present at genes and TEs, most of CHG and CHH DMRs are
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associated with TEs (Figure 4C). Interestingly, TEs located at DMRs are mostly
the same TEs that lose 24 nt sSRNAs (Figure 4D). DMRs in the CG context have
low CHG and CHH methylation values and the changes experienced during aphid
feeding in these contexts are not significant (Figure 4E), pointing to their
association with gene body methylation (Figure 4C). CHG and CHH DMRs on the
other hand are highly dynamic and experience significant changes in other
methylation contexts (especially in the CHG and CHH contexts) in the regions
that experience hypo and hypermethylation (Figure 4E). Due to the tight
association between CHG and CHH methylation with H3K9me2 (Du, Johnson et
al., 2015), this might indicate that a strong reorganization of heterochromatin

takes place in these regions upon aphid feeding.

The relatively low number of DMRs and the lack of overall changes in the global
profiles of DNA methylation may indicate that methylation changes only take
place in specific regions. To test if DMRs might be associated with particular
histone marks, we retrieved public datasets of different histone modifications
coverage in Arabidopsis somatic tissues (Luo, Sidote et al., 2013) and checked
the enrichment of those histone marks in our identified DMRs. Hypomethylated
DMRs in the CHH context show enrichment in the permissive mark H3K18ac,
while showing low amounts of the repressive marks H3K27me3 and H3K9me?2
when compared to hypermethylated DMRs (Figure 4F and Supplementary Figure
4B-D). This indicates that removal of CHH methylation during aphid infestation
only takes place at regions of the genome that have a high level of permissive
histone marks and a low level of repressive histone marks. Furthermore,
hypomethylated CHH DMRs show an enrichment in Helitron elements (two tailed
p=0.0045 calculated by a Chi-squared test with Yates correction compared to
presence of Helitron elements in the whole genome, Figure 4G), which are known
to locate in the proximities of genes and influence their expression (Underwood
et al., 2017). Therefore, upon aphid feeding, very localized methylation changes
take place mainly associated with epigenetic labile TE regions.

Stress-induced changes in methylation are associated with expression
changes in defense-associated genes
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Changes in TE methylation can influence the expression of neighboring genes
(Wang, Weigel et al., 2013). To test if this occurs during aphid feeding, we
obtained the list of neighbor genes within a 4kb window (2 kb upstream and
downstream) for each DMR. This strategy identified 1010 genes associated with
hypermethylated DMRs and 661 genes associated with hypomethylated DMRs
(Supplementary Table 4). Since hypomethylation is expected to affect gene
expression we focused our analysis on this category. Genes located in the
proximities of hypomethylated DMRs are associated with oxygen binding,
translation regulator activity, nuclease and motor activity, and fruit ripening and
cell death when associated by biological function (>1.5 fold enrichment,
Supplementary Figure 5A-B). When the GO categories are restrained to genes
that show a significant change of expression (16 genes), we obtained an
enrichment in genes with protein biding activity functions, and fruit ripening, cell
death, pollination; and response to endogenous, chemical, external and biotic
stimulus when grouped by biological function (>2 fold enrichment, Figure 5A).
The partial lack of a higher number of genes with significant changes in
expression associated with hypomethylated DMRs indicates that the presence of
a hypomethylated DMR is not a condition to induce significant changes in gene
expression per se. Probably, other regulatory elements are needed to reprogram
the transcriptional response to aphid feeding.

We identified several significantly overexpressed genes located in the proximity
of CHH hypomethylated DMRs that are related to plant defense (Figure 5B-E).
These genes include AP2C1, a PP2C-type phosphatase that modulates innate
immunity (Schweighofer, Kazanaviciute et al., 2007), ACS6, a 1-
aminocyclopropane-1-carboxylic acid synthase a rate-limiting enzyme that
catalyses the committing step of ethylene biosynthesis (Joo, Liu et al., 2008),
SYP122, a Qa-SNARE proteins that drive vesicle fusion and are important for cell
growth and expansion and pathogen defense (Waghmare, Lileikyte et al., 2018),
GERS an stress-responsive glucosyltransferases, rab-like GTPase activators and
myotubularin domain protein involved in ABA-mediated stress responses (Baron,
Schroeder et al., 2014), the ethylene response factor ERF022 and the caffeoyl-
CoA 3-O-methyltransferase CCOAMT involved in the lignin biosynthesis pathway
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the accumulation of which induces resistance to aphid feeding (Wang, Sheng et
al., 2017).

Next, we explored whether the expression of these genes was also altered in
epigenetic mutants (not during aphid feeding). We used public data from Pol V
and AGO4 mutants (Rowley, Rothi et al., 2017, Zhu, Rowley et al., 2013). Pol V
and AGO4 are components of the RADM pathway that produces sRNAs to target
genomic regions and introduces DNA methylation (Matzke & Mosher, 2014). Pol
V produces long non-coding transcripts that guide Pol IV-derived 24 nt sRNAs
loaded into AGO4 to chromatin (Wierzbicki, Ream et al., 2009). Mutations in
AGO4 or PolV impair RdDM-dependent methylation especially in the CHH
context, and indeed 82% of loci regulated by Pol V or Pol IV are also regulated
by AGO4/AGO6 (Duan, Zhang et al., 2015). Differentially expressed genes
associated with DMRs are significantly enriched in genes regulated by the RdDM
pathway components AGO4 and/or Pol V (31.25% overlap, two tailed p<0.0001
calculated by a Chi-squared test with Yates correction, Figure 5F-G).
Interestingly, although some genes show a similar expression pattern between
the RADM mutants and the aphid-infested samples (e.g. GERS, ACS6, Figure
5G) others show opposing patterns of expression between the aphid infested
samples and the RADM mutants (notably CCOAMT and GDU4). This different
expression pattern led us to question if the expression of these genes could be
regulated by TFs that are not overexpressed in the RADM mutants. Interestingly,
the analysis of TF binding motifs present in the DMRs of differentially expressed
genes associated with loss of CHH methylation showed several highly enriched
including B3 binding domain-containing TFs like B3/ARF, AP2/B3 and B3 (20.65,
11.8 and 8.6 fold enrichment respectively, Supplementary Figure 5C and E).
Several TFs of these families are differentially expressed in the aphid infested
samples, while they do not show this pattern of expression in RdADM mutants
(Supplementary Figure 5D). This indicates that differential expression of TFs
likely leads to the observed differences in the expression pattern between aphid
infested samples and RADM mutants. Overall, our data indicates that DNA
methylation changes are associated with gene expression changes, likely in
combination with TF-induced expression.
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Epigenetic mutants show enhanced defense against aphids

Finally, we tested whether different Arabidopsis mutants defective in epigenetic
regulation are more resistant to aphid infestation. For this, we analyzed aphid no-
choice settling where 10 aphids were transferred to a random caged leaf (Figure
6A). We performed this test in different mutants including the histone remodeler
DDMT1, the triple mutant defective in maintenance of non-CG methylation ddc
(drm1 drm2 cmt3), the main subunit of the principal factor of the RADM pathway
RNA Pol IV (nrpd1) and the H3K9me2 methyltransferase KYP (Figure 6B). Our
analysis indicated that, from these components, mutations in nrpd1 (the largest
subunit of Pol 1V) and kyp show a reduced number of aphids settled, and only

kyp had a significant decrease (Figure 6B).

This indicates that, first, heterochromatin maintenance (regulated by DDM1) and
maintenance of non-CG methylation (ddc) are not fundamental to elicit a defense
response against aphid feeding. Second, our result indicates that the roles of
KYP in the regulation of H3K9me2 and CHG methylation (Jackson, Lindroth et
al., 2002) and/or its uncharacterized role for the maintenance of CHH methylation
(Stroud, Greenberg et al., 2013) are an important part of the defense response
against aphid infestation. This result correlates with our observed reduction of
sRNAs in centromeric and pericentromeric regions (rich in H3K9me2) and the
observed changes in CHH and CHG methylation (tightly associated with
H3K9me?2). Interestingly KYP has been previously associated with the regulation
of the defense against geminiviruses (Castillo-Gonzalez, Liu et al., 2015, Raja,
Sanville et al.,, 2008, Sun, Tee et al., 2015) and the maintenance of (-
aminobutyric acid (BABA)-induced priming of the salicylic acid (SA)-dependent
defense response (Luna, Lopez et al., 2014). In summary, our proof-of-concept
analysis indicates that, indeed, mutants in different layers of epigenetic regulation
show enhance resistance against aphid settlement.

DISCUSSION

Organisms monitor environmental conditions and adapt their development
according to them. Plants have developed elegant mechanisms of gene
regulation adapted to their sessile nature. One of such mechanisms is epigenetic
regulation, which could maintain modified transcriptional states through cell
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division and be reversible once the trigger condition disappears. Although it has
been widely proposed that epigenetic regulation is an important part of the stress
response, we lack a comprehensive knowledge of the genomic loci that are
susceptible to those epigenetic changes and their variability between stresses.
Here, we demonstrated that aphid feeding induces changes in the epigenetic
regulation of the plant genome and that these changes affect the transcriptional
response. Our data suggest that these epigenetic changes are taking place
mainly in TEs. We hypothesize that these changes could be important for
recruiting TFs that in turn affect the expression of a specific set of defense genes.
This will explain while despite having a relatively high number of DMRs (Figure
4), only a very small subset enriched in specific TF-binding motifs are associated
with transcriptional changes (Figure 5 and Supplementary Figure 5). An
alternative hypothesis to this is that DNA methylation changes are downstream
of TF binding, a situation that has been described in human dendritic cells (Pacis,
Mailhot-Leonard et al., 2019). Nevertheless, the presence in our analysis of a
high number of DMRs without effects at the transcriptional level points against
this hypothesis.

Despite their subtle wounding strategy, aphid feeding activates hormonal signals
that trigger the reprogramming of the plant transcriptome (Couldridge, Newbury
et al., 2007, De Vos et al., 2005, Gao et al., 2010, Kusnierczyk, Winge et al.,
2007, Moran, Cheng et al., 2002). Interestingly, the transcriptional changes
identified by RNA sequencing show enrichment in genes associated with TF-
related activities (Figure 2). These TFs include AR2/ERF and WRKY TFs, which
have been associated previously with the transcriptional response against aphid
infestation (Foyer, Verrall et al, 2015, Kloth, Wiegers et al.,, 2016).
Counterintuitively, our analysis of the transcriptional and posttranscriptional
regulation of TEs during aphid infestation indicated that it is more complex than
initially expected from the analysis of the ATH1 data. Our analysis revealed that
TEs experience a decrease in the activity of the RADM pathway translated in a
loss of 24 nt sSRNAs that leads to their transcriptional reactivation, which is only
detectable in deep sequencing experiments via PARE sequencing. This indicates
that posttranscriptional regulation of RNA might be an important part of the stress
response to aphid feeding. Indeed, posttranscriptional regulation of RNA
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metabolism is a known regulator of the stress response in eukaryotes (Blevins,
Tavella et al., 2019, Harvey, Dezi et al.,, 2017, Jung, Park et al., 2013,
Marondedze, Thomas et al., 2019). These mechanisms could buffer excessive
TE transcription to avoid their activity and maintain genome stability during stress-
induced transcriptional reprogramming (in our case, loss of 24 nt sSRNAs).

The changes of TE activity at the posttranscriptional level prompted us to profile
the genome-wide methylation changes under aphid infestation (Figure 4). Our
genome-wide analysis of DNA methylation changes induced by aphid feeding
show that methylation changes happen primarily at genes (in the CG context)
and TEs (in the CHG and CHH contexts). CHH hypomethylated DMRs take place
only at epigenetically labile regions characterized by low levels of the repressive
histone marks H3K27me3 and H3K9me2 and high levels of the transcriptionally
permissive mark H3K18ac. As expected, CHH hypomethylated DMRs are
predominantly found at Helitron TEs, which are known to influence gene
expression (Figure 4). An analysis of the presence of genes in a 4kb window
showed us the potential transcriptional changes associated with these DMRs.
Between differentially expressed genes associated with DRMs, we found several
genes related to the defense response at different levels as AP2C1
(Schweighofer et al., 2007), ACS6 (Joo et al., 2008), SYP122 (Waghmare et al.,
2018), GERS5 (Baron et al., 2014), the ethylene response factor ERF022 and
CCOAMT (Wang et al., 2017) (Figure 5). Interestingly, 31.25% of the differentially
expressed genes associated with CHH DMRs are also differentially expressed in
nrpe1 and/or ago4 mutants, indicating an influence of the RdDM pathway in the
regulation of this response (exemplified by GERS in the data showed in Figure
5G). Together with this observation, we found that DMRs associated with
differentially expressed genes show an enrichment in binding motifs for certain
families of TFs including the AP2-ERF/B3, which has 7 members significantly
upregulated upon aphid infestation (Supplementary Figure 5D). These TFs show
a modest upregulation in the nrpe1 mutant and none in an ago4 mutant, which
could be one of the reasons why the transcriptional response differs between
aphid infested samples and RdDM mutants. While aphid feeding induces the
expression of several TFs, RADM mutants lack the presence of aphid-induced
TFs that would stimulate the defense transcriptional response. As a proof-of-
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concept, we tested if Arabidopsis mutants defective in DNA and histone
methylation have a differential susceptibility to aphid infestation (Figure 6). Our
analysis indicated that mutations in Pol IV and KYP show increased resistance
to aphid settling, confirming the importance of epigenetic regulation in the
response against aphids. In Arabidopsis defense genes are located in
pericentromeric regions which are densely populated by TEs (Meyers et al.,
2003). KYP and PollV have a known role in the repression of TEs, so we
speculate that their lack of function can also facilitate the transcription of genes
located in the proximities of TEs. In KYP and NRPD1 mutants, the enhanced
activation of defense genes (via transcription or binding of TFs) will explain the
increased defense against aphid feeding. Indeed, most of the differentially
expressed genes with a proximal CHH DMR identified in our analysis have a TE
in the proximities of their regulatory regions (Figure 5).

It is tempting to speculate that together with the downregulation of the epigenetic
silencing at DMRs, the observed overexpression of mobile mMRNAs and decrease
of 24nt sRNAs would trigger transcriptional or posttranscriptional changes on
gene expression at distal tissues, other than leaves, including the precursors of
the reproductive structures. Myzus persicae is known to trigger a
transgenerational defense phenotype (De Vos & Jander, 2009). TE silencing is
reinforced in the shoot apical meristem (SAM) by the RdADM pathway, what leads
to the correct transmission of the right epigenetic states for TEs during vegetative
growth (Baubec, Finke et al., 2014). A potential lack of mobile 24nt (Molnar,
Melnyk et al., 2010) or 21nt (Dunoyer, Schott et al., 2010) TE-derived siRNAs in
the SAM or the reproductive structures, could lead to epigenetic states that could
be inherited. Further analysis of the effect of localized stresses on distal tissues
and their offspring could share light into the existence of such an elegant
overlapping of pathways potentially regulating transgenerational inheritance.

In summary, the evidence presented in our work indicates that changes in
epigenetic control are part of the defense response against aphid infestation in
Arabidopsis thaliana. Intriguingly this response is more complex than previously
thought and may involve the interplay between epigenetic and transcriptional
regulation. Our work exemplifies the importance of epigenetic regulation in the
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stress response and the epigenetic plasticity of plant genomes subjected to
stress.

MATERIALS AND METHODS:

Plant and insect material

Arabidopsis thaliana (Columbia wild type Col-0, ddm1-2, ddc, nrpd1a-4 and kyp-
6) were sown into potting soil (P-Jord, Hasselfors Garden, Orebro, Sweden). At
four leaf stage seedlings were selected by uniformity and carefully re-planted into
plastic pots (9 x 9 x 7 cm) with one plant per pot at temperature 20-22°C and
70% relative humidity. Plants were grown under L16:D8 light cycle. The light was
provided by OSRAM FQ, 80 Watt, Hoconstant lumix, Germany with a light
intensity of 220 ymol photons m? s-'. Green peach aphid Myzus persicae (Sulzer)
was reared in cultures on potted rapeseed plants Brassica napus L. under the
same climate conditions as the test-plants but in different climate chambers.

Aphid settling test

An aphid no-choice settling test (Ninkovic, Olsson et al., 2002) was used to
investigate aphid behavioral response to different Arabidopsis mutants. One
randomly chosen leaf was placed inside a transparent polystyrene tube (diameter
1.5 cm, length 5 cm). The lower end of the tube was plugged with a plastic sponge
through which the leaf entered via a slit. Ten wingless M.persicae of second to
fourth larval instars were placed inside the tube. The upper end of the tube was
sealed with nylon net. Leaf of each treatment plant placed inside the tube
represented a replicate. The number of aphids settled on the leaf was recorded
after 2 h, which is sufficient time for aphids to settle and reach the phloem (Prado
& Tjallingii, 1997).

Tissue for sRNA, RNA, PARE and bisulfite sequencing

5-week-old plants were infested with 40 wingless M.persicae of second to fourth
larval instars and covered with net cage. After 72 hours all aphids were carefully
removed by brush and all Arabidopsis rosette leaves were sampled into Falcon
tubes extraction bag before being placed in liquid nitrogen. Tissue was collected


https://doi.org/10.1101/2020.01.24.916783
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.24.916783; this version posted January 25, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

from all tested mutants. Each frozen plant sample was stored at -70 °C before
RNA and DNA extraction.

DNA and RNA extraction

Total RNA was extracted using TRIzol reagent (Life Technologies) following the
manufacturer instructions. mMRNA for RNA and PARE sequencing was obtained
by purification with the NEB mRNA isolation kit (New England Biolabs). RNA for
sRNA library preparation was enriched with the mirVana miRNA Isolation Kit (Life
Technologies). Genomic DNA was extracted using the DNeasy Plant Mini Kit
(Qiagen).

Small RNA, RNA and PARE sequencing and analysis

sRNA libraries were produced using the TruSeq Small RNA Sample Preparation
Kit (lllumina). Each library was barcoded and sequenced in one lane of an
lllumina HiSeq 2000. mRNAs for RNA libraries were isolated using the NEB
Magnetic mRNA Isolation Kit (New England Biolabs). RNA libraries were
produced using the NEBNext Ultra Il Directional RNA Library Prep Kit for lllumina
(New England Biolabs). Each library was barcoded and sequenced in one lane
of an lllumina HiSeq 2500. PARE libraries were prepared according to Zhai et al
(2014). mRNAs for PARE libraries were isolated using the NEB Magnetic mMRNA
Isolation Kit (New England Biolabs), custom adapters for selecting 5’-P mRNAs
and primers from the TruSeq Small RNA Sample Preparation Kit (lllumina) for
multiplexing the libraries as indicated in Zhai et al (2014). The resulting
sequences were de-multiplexed, adapter trimmed, and filtered on length and
quality. sSRNAs were matched to the Arabidopsis genome, and sequences that
did not perfectly align were discarded. Library size was normalized by calculating
reads per million of 18-28 nt genome-matched sRNAs. sRNA and PARE
alignments were performed using bowtie (Langmead, Trapnell et al., 2009) with
the following parameters —t —v2 that allow 2 mismatches to the alignments. RNA
sequencing paired reads were aligned to the Arabidopsis TAIR10 genome using
bowtie2 (Langmead & Salzberg, 2012) with default parameters. HTSeq-counts
(Anders, Pyl et al., 2014) was used to count reads per gene and the count tables
were used in DESeq2 (Love, Huber et al., 2014) to infer significant expression.

In htseg-counts for TE analysis the minimum alignment quality value was set to
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0 to allow the count of multimapping reads, while this value was set to 10 for
analysis of gene expression. Volcano plots were created using ggplot2
(Wickham, 2009). All these tools were used through the Galaxy platform (Afgan,
Baker et al., 2018). Heat map for the analysis of microarray data was produced
using Heatmapper (Babicki, Arndt et al., 2016).

Bisulfite sequencing analysis

Adapters and 10 bases from 5' ends from reads were trimmed using Trimgalore
0.6.1. Clean reads were mapped to the reference genome TAIR 10 using bismark
(Krueger & Andrews, 2011) allowing one mismatch per 25 nt seed. Forward and
reverse reads were mapped independently. Alignments at the same position
were removed using deduplicate_bismark script, including alignments of reads 1
and 2 together. Conversion rate of cytosines were obtained using
bismark_methylation_extractor, the first 7 bases from 5' end and 13 from 3' end
of each read were ignored. The mean conversion rate for the four samples was
99.72%, and the estimated false positive methylation rates were 0.28%. Tile
values for genomic DNA methylation were obtained using the Circos: Interval to
Tiles pipeline in the Galaxy platform (Afgan et al., 2018). Circular plots were
obtained using J-Circos (An, Lai et al., 2015).

DMR identification

The DMR analysis was carried on with the R package DMRcaller (Catoni et al.,
2018), control samples and infected samples were pooled. In order to compare
both pools the genome was divided in equal bins of 50 pb size. The DMR were
then computed by performing Fisher's exact test between the number of
methylated reads and the total number of reads in both conditions for each bin.
The obtained p-values were then adjusted for multiple testing using Benamini and
Hochberg's (Benjamini & Hochberg, 1995) method to control the false discovery.
Bins with less than 3 cytosines in the specified context or less than 0.25 difference
in methylation proportion between the two conditions or an average number of
reads lower than 8, were discarded. Finally bins that were at less than 300 pb

were joined.

Transcription factor binding site prediction
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Transcription factor binding site prediction was performed using the plant
transcription factor database (http://planttfdb.cbi.pku.edu.cn/). The prediction tool

was used for the sequences of the CHH DMRs indicated.
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FIGURE LEGENDS:

Figure 1. M.persicae infestation induces TE reactivation. A. Meta-analysis of
TE expression in the ATH1 microarray in several stresses. Heat map of the
expression values of the indicated treatment relative to their respective control.
In experiments with several bioreplicates the mean values between bioreplicates
was used. B. Number of TEs reactivated in the analyzed stresses grouped by fold
categories. C. Percentage of reactivated TEs belonging to different categories in

the ATH1 microarray.

Figure 2. Aphid feeding-induced changes in gene expression. A. Volcano
plot depicting gene expression in the comparison aphid vs control sample. Dots
colored in red indicated genes with significant upregulation. B. Bubble graph
depicting the GO term overrepresentation test for upregulated genes grouped by
biological function. Bubbles in blue show GO categories enriched two fold or
more. C. Biomap of upregulated genes. D. Bubble graph depicting the GO term
overrepresentation test for upregulated genes grouped by molecular function.
Bubbles in blue show GO categories enriched two fold or more. E. Examples of
different transcription factors showing upregulation during aphid infestation.

Figure 3. Changes induced at TE expression by aphid feeding. A. Volcano
plot depicting TE mRNA-seq expression in the comparison aphid vs control RNA
samples. Dots colored in red indicated genes with significant upregulation. B.
Volcano plot depicting gene expression in the comparison aphid vs control PARE
samples. Dots colored in red indicated genes with significant upregulation. C.
Global sRNAs profiles of control and stressed samples. D. TE-derived sRNA
profiles of control and stressed samples. E. Relative accumulation of 21,22 and
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24 nt sRNAs in control (C) and aphid infested samples (Mper) for TEs of different
sizes. Values shown are relative to control, where accumulation values for each
SRNA category were set to 1. F. Venn diagram showing the overlap between the
TE populations identified from each of the different RNA sequencing analyses.
G. Venn diagram depicting the overlap of TEs upregulated two fold in the PARE
sequencing data and TEs losing or gaining two fold 24 nt sSRNAs. G. Screenshot
of a genome browser showing the accumulation of PARE reads and 24 nt sSRNAs
in control and aphid samples for two of the TEs upregulated in the PARE libraries

and showing a decrease of 24 nt sSRNA accumulation.

Figure 4. DNA methylation changes induced by aphid feeding. A. Genome-
wide methylation levels for each of the C methylation contexts (CG, CHG and
CHH) in control and aphid infested samples. B. DNA methylation coverage for
genes and TEs for each C methylation context. C. Hypermethylation and
hypomethylation DMRs identified for each C methylation context. D. DMR co-
localization with different genomic entities. E. Cytosine methylation values at
hypermethylation and hypomethylation DMRs for each methylation context.
Asterisks indicate the different levels of significance between the comparisons
(*<0.05, **<0.01, ***<0.001). p-value was calculated using an unpaired t-test. F.
H3K27me3, H3K9me2 and H3K18ac enrichment relative to H3 for
hypermethylated and hypomethylated DMRs. p-values were calculated using an
unpaired t-test. G. Categorization of TEs co-localizing with CHH
hypermethylation and hypomethylation DMRs in comparison to all the TEs in the
TAIR10 Arabidopsis genome.

Figure 5. Transcriptional changes associated with DMRs. A Bubble graph
depicting the GO term overrepresentation test for upregulated genes grouped by
molecular (left panel) or biological function (right panel). Bubbles in blue show
GO categories enriched two fold or more. B-E Examples of upregulated genes
associated with CHH DMRs. F. Venn diagram depicting overlap between
differentially and significant expressed genes in pol v, ago4 and DMR associated
genes in aphid infested samples. G. Expression of CHH associated differentially
expressed genes in pol v, ago4 and aphid infested samples. Only values from
significant differences are shown (p-value<0.05).
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Figure 6. Epigenetic mutants are resistant to aphid settlement. A. Depiction
of the aphid settlement experiment carried out in our analysis. In brief, 10 aphids
were moved to a single caged leaf (attached to the plant) from 10/25 individual
Arabidopsis plants. B. Aphid settlement test in different epigenetic mutants. p-
values shown were calculated using an unpaired t-test. “n” indicates the number

of individuals analyzed.

Supplementary Figure 1. Expression fold change of TEs belonging to different
categories in the Myzus persicae ATH1 datasets at 48 and 72 hrs pi.

Supplementary Figure 2. A. Complete biomap of upregulated genes. B. Venn
diagram showing the overlap between the whole mobile mRNAs identified in

Arabidopsis and the differentially expressed genes during aphid infestation.

Supplementary Figure 3.

A. Venn diagram showing the overlap of TEs detected by PARE and RNA seq
and the TEs that show loss or gain of 24 nts in SRNA sequencing experiments.
B. Relative accumulation of 21, 22 and 24 nt sRNAs in aphid infested samples
(Mper) relative to control (C) for various TE families. Accumulation values in the
control sample were set to one. (C-H) Global sRNAs profiles of control and
stressed samples mapping to intergenic regions (C), coding sequences (D),
miRNAs (E), tasiRNAs (F), exons (G) and introns (H).

Supplementary Figure 4. A. Number of hypomethylated (blue) and
hypermethylated (red) DMRs present in aphid infested samples for the different
DNA methylation contexts. B-D. Histone mark enrichment relative to H3 for
hypermethylated and hypomethylated DMRs in the CG (B), CHG (C) and CHH
(D) contexts. P-values were calculated using an unpaired t-test.

Supplementary Figure 5. A-B. Bubble graph depicting the GO term
overrepresentation test for all genes associated with DMRs grouped by molecular
(A) or biological (B) function. Bubbles in blue show GO categories enriched 1.5
fold or more. C. Fold enrichment of transcription factor binding sites at CHH
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DMRs harboring a differentially expressed gene vs all CHH DMRs. D. Examples
of different ERF and ERF/AP2 transcription factors showing upregulation during
aphid infestation in nrpde1, ago4 and aphid infested RNA sequencing libraries.
Only values of significant differentially expressed genes is shown. E. B3, AP2
and ERF binding sites located at CHH DMRs associated with differentially

expressed genes.
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Supplementary Figure 4
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