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Abstract:

Motivation:  Clinical applications of genome re­sequencing technologies typically generate large

amounts of data  that need to be carefully annotated and interpreted to  identify genetic variants

associated with pathological conditions. In this context, accurate and reproducible methods for the

functional   annotation   and   prioritization   of   genetic   variants   are   of   fundamental   importance,

especially when large volumes of data ­ like those produced by modern sequencing technologies ­

are involved.

Results:  In this paper, we present VINYL, a highly accurate and fully automated system for the

functional annotation and prioritization of genetic variants in large scale clinical studies. Extensive

analyses   of   both   real   and   simulated   datasets   suggest   that   VINYL   show   higher   accuracy   and

sensitivity when compared to equivalent state of the art methods, allowing the rapid and systematic

identification of potentially pathogenic variants in different experimental settings. 

Availability: VINYL is available at http://beaconlab.it/VINYL.
Contact: matteo.chiara@unimi.it

Introduction 

Applications of modern high throughput genome sequencing technologies to healthcare and clinical

practice are  driving  a major  breakthrough  in medical  science  (Saudi  Mendeliome Group 2015,

UK10K Consortium 2015, Kowalski et al 2019). The unprecedented ability to interrogate the (more

than) 3 billion pairs of nucleotides that compose our genome, in a systematic and reliable manner,

provides a formidable tool for the characterization and functional annotation of the human variome,

that is, the complete set of genetic variants found in the human population (Gurdasani et al 2015,
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Kowalski et al 2019, Nagasaki et al 2015). In these settings, the capacity to link genetic variants

with phenotypic traits, pathological conditions, and/or positive or adverse reactions to therapies and

medications will  be of  instrumental  importance for  the development of  informed approaches to

medical science, such as precision medicine (Lu et al, 2014), that is the possibility for  patients to be

treated based on their genetic background, or predictive medicine (Kotze et al,  2015) where risk

factors for various diseases can be accounted beforehand and suitable measures instituted in order to

prevent   the  disease  or  mitigate  its   severity.  Accordingly,     numerous  countries   and   institutions

worldwide   are  already  undertaking   or   are   planning   to   launch   large­scale   projects   aiming   to

sequence an increasing proportion of their population. These include, among the others, the UK10K

project in the United Kingdom (UK10K Consortium et al, 2015), the All of Us research program by

the NIH (All of Us Research program investigators, 2019) , the French Plan for Genomic medicine

funded by the French Ministry of Health (Lethimonnier and Levy, 2018), and the European '1+

Million Genomes' initiative promoted by the European Community (Saunders et al 2019). 

While the possibility to sequence an unprecedented number of human genomes could form the basis

for  a  new revolution   in  medical  science  and human genetics,   the  need  to  handle,  analyze  and

interpret   large  collections  of   “big”  genomic  data   is   posing  major   challenges   to  genomics  and

bioinformatics which at present remain unresolved (Alyass et al, Klein et al 2017, 2015, Horowitz

et al,  2019, Stark et  al  2019).  These limitations are both technical,  due to the need to develop

dedicated infrastructures for the handling, sharing and processing of the data, and methodological,

due to the need to integrate multiple bioinformatics tools and data formats into complex analysis

workflows­ which in turn require a substantial effort for their set up and optimization (Canzoneri et

al 2019, Ginsburg and Phillips 2018, Servant et al 2014). More important, a typical Next Generation

Sequencing assay can detect in the order of ten of thousands or even millions of genetic variants, all

of which need to be carefully annotated and interpreted in order to identify genetic traits possibly

associated with a pathological condition of interest (Elbeck et al 2017).   This process, which is

known as “variant prioritization” or “variant filtration”, typically requires manual curation by an

expert clinician,  and  represents a major bottleneck for the application of large scale genotyping

assays in clinical settings (Frebourg et al 2014, Jalali et al 2017). Moreover ­although very detailed

and rigorous guidelines for the interpretation and analysis of genetic variants in clinical settings are

currently available­ it is not uncommon for different institutions/operators to apply slightly different

criteria and filters, thus limiting the overall reproducibility of the results of this type of analysis

(Pabinger et al 2014).
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In this paper, we present VINYL, a novel fully automated workflow for the prioritization of genetic

variants in clinical studies. By building on guidelines and recommendations derived from clinical

practice   (Richards  et  al,  2015),  VINYL derives  a  pathogenicity   score  by  aggregating  different

sources of evidence and annotations obtained from publicly available resources for the functional

annotation of human genetic variants. Several studies (Cirulli et al 2015, Lee et al 2014, Moutsianas

et al 2015, Guo et al 2016, Li et al 2008) have reported that populations of affected individuals are

expected to harbor an excess of deleterious or slightly deleterious variants at disease­associated loci

with respect to a matched population of unaffected controls. VINYL uses this principle to optimize

the computation of its composite pathogenicity score.   An automatic procedure based on survival

analysis is applied, wherein the optimal balance between the components of the scoring system as

well as the ideal threshold for the identification of potentially pathogenic variants are established by

identifying  the  scoring system that  maximize  the difference between  the  number of  potentially

pathogenic variants identified in a  population of affected individuals and the equivalent figure from

a population of matched controls.  We perform extensive simulations based on publicly available

human genetic data to  demonstrate the validity of our approach,  and test the ability of  VINYL to

detect different types of genetic variants associated with pathological conditions.  Finally, we apply

our   tool   to   a   cohort   of   38   patients   with   a   diagnosis   of   dilated   cardiomyopathy   (DCM),

arrhythmogenic right ventricular cardiomyopathy (ARVC) or hypertrophic cardiomyopathy (HCM)

who were previously subjected to genotyping by targeted resequencing of a panel of 115 genes

associated   with   cardiomyopathies/channelopathies   (Forleo   et   al,   2017).   We   show   that,   while

attaining very low levels of false positives, VINYL compares favorably to other state of the art

methods for the prioritization of genetic variants both on real and simulated data. More importantly,

we demonstrate that our tool is capable to correctly identify all   the variants that were previously

classified as Pathogenic/Likely Pathogenic by careful expert manual curation on the Forleo et al

dataset.   All   in   all,   we   believe   that   by   providing   a   rapid   and   systematic   approach   for   the

prioritization of genetic variants, VINYL can greatly facilitate the identification of pathogenic or

potentially   pathogenic   variants   in   large   scale   clinical   studies.     VINYL   is   available   at:

beaconlab.it/VINYL. To facilitate the usage of the tool and to improve the reproducibility of the

analyses, VINYL is incorporated into a dedicated instance of the popular Galaxy workflow manager

(Afgan et al, 2018), along with a highly curated collection of tools and resources for the functional

annotation of genetic variants.
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Methods

Implementation of VINYL

VINYL is implemented as a Laniakea (Tangaro et al, 2018) Galaxy (Afgan et al, 2018) instance

based on Galaxy release 18.05.   Annotation of VCF files is performed by the Annovar software

(Wang   et   al,   2010),   using   a   collection   of   “standard”   resources   maintained   by   the   Annovar

developers   along  with   a   selection  of   custom annotation   tracks.    These   include   the  OregAnno

database (Griffith et al 2008), the Ensembl regulatory build annotation (Zerbino et al 2016),   the

NHGRI­EBI GWAS catalog (Buniello et al, 2019) and the ncER score, which provide fine­grained

annotations of non­coding and regulatory genomic elements (Wells et al 2019).     A complete list

of the annotation tracks that are currently supported by VINYL along with a brief description is

reported in Supplementary Table S1.  The VINYL application itself is implemented as a collection

of Perl and R scripts and  is composed of 3 main modules:

● the optimizer, which computes the optimal weights for the components of the pathogenicity

score by performing a grid search over the parameter space;

● the threshold optimizer,   that derives the optimal score threshold for  the identification of

likely pathogenic variants 

● and the score calculator, the main tool which computes the pathogenicity scores.

These tools can be executed independently, or via an automated workflow which is available in the

VINYL Galaxy instance.  All the software is currently available from http://beaconlab.it/VINYL. A

detailed manual for the usage of VINYL is available at http://90.147.75.93/galaxy/static/manual/. 

VINYL is available as a standalone command line­tool from https://github.com/matteo14c/VINYL. 

Computation of the pathogenicity score
 

VINYL   computes   its   pathogenicity   score   directly   from   an   Annovar   annotated  VCF  file.

Annotations that should be considered for the computation of the score can be specified by a plain

text configuration file. Currently VINYL can discriminate between 11 different types of functional

annotations, including ­among the others­ databases of human genetic variation (RV), the predicted
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functional   effects  of   the  variants   (FE)   and/or   their  presence/absence   in  databases  of   clinically

relevant genetic variants (DB). A complete list is reported in Supplementary Table S2 (and in the

online manual).   The score itself is computed as an aggregated score that combines all the different

types of functional annotation by the means of a simple linear formula:

 

      Pat Score= DB+RV+FE+NS+OR+eQ+AD+mi+Reg+TF+GW+Sp

Single components of the score are computed according to the following rules:

● DBs of pathogenic variants (DB):  the score is incremented if variants are described as

Pathogenic   or   Likely   Pathogenic   in   publicly   available   resources   of   clinically   relevant

variants.  The   score   is   decreased   for   variants   that   are   reported   as   “Benign”  or   “Likely

Benign”. Users can provide a description of the disease and its symptoms using   a simple

configuration   file.   Only   entries   that   match   these   keywords   are   considered   for   the

computation on the score. In the current implementation of VINYL the Clinvar (Landrum et

al, 2014) database is used as the main source for the annotation of disease­associated genetic

variants

● Rare Variants (RV):  the score is   increased if  a genetic  variant  shows a   Minor Allele

Frequency (MAF) lower than a user­defined cutoff ­typically the prevalence of the disease­

in public databases of human genetic variation

● Functional effect of the variant (FE): the score is increased if the variant is predicted to

have a deleterious functional effect (splicing variants, stop­gain, frameshift variants).  

● Disruptive non­synonymous (NS): the score is incremented for non­synonymous variants

that are predicted to have a disruptive effect. Tools to be considered for the evaluation of the

effect of NS variants can be specified at runtime.Predictions are derived from the dbNFSP

database (Liu et al, 2016) version 3.5a. 

● Overrepresentation (OR): if a genetic variant with MAF ≤0.01 (the frequency cut­off that

is normally considered for the definition of “common” Single Nucleotide Polymorphism)  is

found in N or more affected individuals the score is incremented. The value of N is specified

at runtime, or set to  10% of the size of the cohort otherwise.

● eQTLs (eQ):  when a variant  is  associated with an eQTL according  to  the GTEx study

(GTEx Consortium, 2013)  the score is incremented. A list of relevant (to the pathological

condition) tissues for the annotation of eQTLs (according to the GTEx nomenclature) can be

provided by users in the form of a simple text file.
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● Disease­associated genes (AD):  the score is incremented if a genetic variant is associated

with genes previously implicated in the disease or in similar pathological conditions. Users

can provide a list of disease­related genes by means of a simple configuration file

● miRNA binding site (mi): the score is increased if the variant is associated with a known

miRNA binding site

● Regulatory element (Reg):  the score is  incremented if  the variant  is part  of a genomic

regulatory element  (promoter,  enhancer,  silencer),    according  to   the OregAnno database

(Griffith et al 2008), the Ensembl regulatory build annotation (Zerbino et al 2016)

● TF binding site (TF): the score is increased if the variant is associated with a transcription

factor binding site, according to the OregAnno database (Griffith et al 2008), the Ensembl

regulatory build annotation (Zerbino et al 2016)

● GWAS (GW):  the score is incremented if the variant is associated with a phenotypic trait

relevant for the pathological condition according to one or more GWAS studies. Similar to

the DB score, only entries matching a user­specified list of keywords are considered for the

computation of this score  

● Splicing   variants   (Sp):  the   score   is   incremented   if   the   variant   is   reported   to   have   a

deleterious effect on a splice site according to the  dbscsnv11 (Jian et al, 2014) database

Additionally,  users  can configure   the  behavior  of  VINYL by providing configuration  files  and

parameters, to specify a disease model (Autosomic Dominant, Autosomic Recessive or X­linked), a

list of symptoms associated with the disease for a more accurate evaluation of the entries reported in

publicly available databases (DB and GW scores),  or to define a set of genes implicated with the

pathological condition of interest and/or tissues to be considered for the evaluation of expression

quantitative trait loci (eQTLs), to be used for the computation of the AD ad eQ scores respectively.

When a disease model is specified, only genetic variants that are inherited according to that model

are considered for the computation of the score.  

Optimization of the pathogenicity score

Genetic algorithms, as implemented in the genalg (Willighagen and Ballings, 2015) R library, are

used to identify optimal weights for the components of the pathogenicity score by performing a

search  on  the  parameter   space.    Score  distributions  are  computed   for  a  population  of  affected

individuals  (A) and a population of healthy controls (C).    The optimal  scoring system and  the

corresponding threshold for the identification of potentially pathogenic variants are established by
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an iterative survival analysis based on the Wang Allison method (Wang et al, 2004). For every

scoring system,  possible cut­off values spanning from the maximum score to the minimum score

with an interval of 0.5 are evaluated, and the number of predicted potentially pathogenic variants

identified   in   the  A and C populations  are   recorded.    A Fisher’s  Exact   test   is  used  to   test   the

significance of the over­representation of likely pathogenic variants in A with respect to C. Finally,

the scoring system (and the corresponding threshold value) that maximizes the difference between

the number of potentially pathogenic variants identified in  the  population of  affected individuals

with   respect   to   the   control  population,  and   that,   at   the   same   time,  minimizes   the   number   of

potentially  pathogenic variants   identified  in  the control  population    is  selected.    The following

equation is used to define the optimality criterion: 

Optimal Score=argmax< 0.5*­log10 (Fpv) +0.3*(Ffc)  ­0.2 *PC >

Fpv= p­value for the over­representation of likely pathogenic variants in A according to the Fisher’s

Exact Test. Ffc= ratio between the proportion of likely pathogenic variants identified in A and C

respectively.  PC= number of potentially pathogenic variants  identified in C.  Coefficients of the

equation have been derived empirically, to obtain a reasonable balance between the maximization

of the number of potentially pathogenic variants identified in A, and the minimization of the, likely

false positive, pathogenic variants identified in C. Values can be modified by the users at runtime.

Of notice, in all the experimental settings tested in this work no detectable changes in the sensitivity

and specificity of VINYL were observed when different values were applied, suggesting that the

genetic   algorithms   used   for   the   optimization   of   the   VINYL   pathogenicity   score   can   robustly

converge   to   the   optimal   solution,   irrespective   of   slight   variations   in   the   formulation   of   the

optimization function.

Utilities for the post­processing of VINYL’s output 

All the utilities for the post­processing of VINYL’s output files are implemented in the form of

standalone R scripts. Principal Component Analysis is performed by the means of the prcomp R

function from the stats package (R Core Team 2018). Graphical representation of the results is

obtained by the means of the R ggplot2 package (Wickham 2016). 
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Variant calling and simulation of disease­causing variants

In  the present study, variant calling was performed by the CoVaCS pipeline (Chiara et al 2018).

Simulation of disease­causing genetic variants was performed by the means of the Hapgen2  (Su et

al 2011)  program using the haplotype files of the TSI (Toscani in Italia) population from the 1000G

study to provide the genetic background. 

The latest version of Hapgen2 was obtained from: 

https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html, while haplotype files from 

the 1000G project were obtained from: 

https://mathgen.stats.ox.ac.uk/impute/impute_v1.html#Using_IMPUTE_with_the_HapMap_Data. 

To simulate different levels of association with pathological conditions, three different distributions

of Odds Risk Ratios, with an average Risk Ratio of 3,10 and 20 respectively, were simulated using

the rnorm function in R. Standard deviation was set to 10% of the average.

Cohorts   of   different   size,   formed  by  25,   50   and  100   individuals   respectively  were   simulated,

including a variable number of polymorphic positions: 1000, 5000 and 10000,  to simulate different

sequencing strategies.     Disease­associated variants have been simulated by randomly selecting a

matched   number   of   rare   variants   (Minor   Allele   Frequency  ≤0.001)   with   different   predicted

functional effects, including splice site variants, variants in promoter regions, frameshift variants,

variants in miRNA target regions, stop­gain/stop­loss variants. At every iteration, a total number of

75 distinct disease causing variants were simulated, of which a maximum of 10 were implicated in a

known pathological condition according to ClinVar. 

In the analysis of the Forleo et al (2017) dataset the TSI (Toscani in Italia) population from the

1000G (The 1000 Genomes Project Consortium, 2015) study was used as the “control” population.

Execution of Privar and KGGseq

The latest versions of KGGseq (Li et al 2012) and Privar (Zhang et al 2013) were obtained from

http://grass.cgs.hku.hk/limx/kggseq/   and   http://paed.hku.hk/genome/software.html,   respectively.

Privar was executed using the “Literature­based strategy” with default parameters. A custom list of

disease­associated genes (identical to that used for VINYL) was provided by the means of the  “­

customlist” parameter.

KGGseq was applied using the strategy illustrated in the reference manual for the prioritization of

genetic variants associated with rare Mendelian diseases; “the “­­candi­list” and “­­phenotype­term”

parameters were used to provide a list of disease­associated genes and a list of symptoms of the

disease under study, respectively. Both lists were completely identical to the lists used in VINYL to
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provide the same type of information. Consistent with the parameters used in VINYL, the cut­off

frequency for rare alleles was set to 10e­4.

Results

VINYL: an automated tool for variant prioritization

VINYL provides  a   fully  automated  system for   the  prioritization  of  pathogenic  variants,  which

­similar   to   the   guidelines   used   in   clinical   practice­   includes   a   scoring   system   based   on   the

integration of different types of annotations.  By leveraging the Galaxy workflow manager, VINYL

is made available through a powerful and user­friendly web­based graphical interface and allows

collaborative and highly reproducible analysis of large amounts of data.   Encrypted data volumes

are used to ensure data protection. Users can upload their data to VINYL in the form of plain VCF

files.  Variants  annotation   is  performed by  the  Annovar  software  (Wang et  al,  2010),  which   is

available in VINYL along with an extensive collection of resources for the annotation of genetic

variants   (see   Table   S1).   Additional   information,   which   is   used   for   the   computation   of   the

pathogenicity   score,   including   for   example   the   symptoms   and   prevalence   of   the   pathological

condition under study, the model of inheritance of the disease,    the types of predicted functional

effects that should be considered deleterious, the specific computational tools to be used for the

prediction of the functional effects of genetic variants, can be specified by users at run­time using

simple  configuration   files   in  plain   text   format   (see  Material   and  Methods,   and  Supplementary

Materials) .

The  main  output   consists   of   a   tabular   file,   where   variants   are   ranked   according   to   their

pathogenicity   score   and   the   threshold   for   the   identification   of  pathogenic   variants   is   derived

automatically.   Additional utilities (see below) can be used to perform more fine­grained analyses

for the identification of genes that display a significant over­representation of high scoring variants,

or for the stratification of patients in groups by dimensionality reduction techniques. Moreover,

along with a carefully curated collection of tools and resources for the functional annotation of

genetic  variants,   the  VINYL Galaxy  instance   incorporates  also a    collection  of   reference  data,

including VCF files of 26 distinct human geographic populations from the 1000 Genomes study

(The 1000 Genomes Project Consortium, 2015), which can provide a suitable background control

population for most clinical studies.  The features contained in VINYL and the rationale used in the

implementation of the tool are briefly outlined in Figure 1. 
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Evaluation of VINYL on simulated data

The ability of VINYL to correctly identify genetic variants associated with pathological conditions

has been evaluated by performing extensive simulations of disease­associated variants derived from

real human haplotypes and comparing the performances attained by our tool with two other popular

methods for the prioritization of genetic variants:  Privar (Zhang et al, 2013) and KGGseq (Li et al,

2012). Different scenarios were simulated in order to evaluate the impact of the analysis of cohorts

of different size (25, 50 and 100 individuals), the number of disease­associated variants (20, 50 and

100), the strength of the association of these variants with the pathological condition (odd risk ratio

of 5, 10 and 20) and the total number of variants included in the call­set (1000, 5000 and 10000), a

proxy for evaluation of the usage of different sequencing strategies (from targeted resequencing of a

limited number of genes to  WES).  Finally,   to  investigate  the ability of  the tools considered  to

correctly prioritize disease­associated variants of different types, a matched number of variants with

different predicted functional effects were simulated (see Materials and Methods).  

As  outlined   in  Table  1  and  Figure  2,  we observe   that,  while  achieving a   remarkable   level  of

accuracy,   with   a   false   positive   rate   that   is   consistently   below   1%,   VINYL   demonstrates   an

improved   sensitivity   in   the   detection   of   disease­associated   genetic   variants   compared   to   both

KGGseq and Privar, resulting in a significantly increase in AUC (area under the curve) in all the

simulations performed in this study. These results suggest that the approach adopted by VINYL can

outperform currently available state of the art methods in the prioritization of disease­associated

genetic variants. This notwithstanding, we notice that­ as expected­ the performances of VINYL are

strongly influenced by the composition and the size of the input dataset, as we observe an increase

in sensitivity when large cohorts of patients are analyzed and/or when the number of pathogenic

variants included in the simulated cohort is increased (Table 1). Interestingly  however, we notice

that the size and breadth of the input dataset­ both in terms of the number of individuals considered

and number of genetic  variants  that  are analysed­  do not  seem to have a major   impact  on the

specificity of our tool, as we do not observe any detectable change in the False Discovery Rate

when a higher number of variants and/or larger cohorts of individuals are considered.  Since, unlike

other similar methods, VINYL requires a population of negative controls to derive and optimize its

variant  prioritization system, we reasoned  that  the choice of  the correct background population

could have a major impact on the accuracy or our tool, thus limiting the applicability of VINYL to

only cases when a control population with a similar genetic background is available.   To test this

hypothesis   we   repeated   our   analyses   of   simulated   data   by   using   3   distantly   related   human
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geographic  populations:  CEU (Northern  Europeans   from Utah),  CHB (Han Chinese)   and ESN

(Esan in Nigeria) from the 1000G study as a control.  While we observe no detectable change in the

accuracy of VINYL (Supplementary Table S3), we notice that the sensitivity of our method seems

to be significantly decreased when a  “mismatched” control population is used, and especially when

distantly related populations are considered.  Unsurprisingly, we notice that the importance of the

scores   related   to   allele   frequency   and   over­representation   of   alleles   in   the   population   were

systematically reduced in these settings, suggesting that reduction in sensitivity could be related to

the   presence   of   mildly   deleterious   polymorphisms   showing   a   population   biased   frequency

distribution.  To  test   this  hypothesis  we  repeated   these  analyses  by  excluding   from  the  control

population all the alleles with a minor allele frequency ≥0.01 and showing a difference in allele

frequency of 4 fold or greater between any of the 26 geographic populations included in the 1000G

study. When these population biased alleles are removed from the control population, a marked

increase in sensitivity (Supplementary Table S4) is observed, suggesting that the effectiveness of

the approach adopted by VINYL could be sensibly reduced in the presence of diffuse geographic

allele frequency distribution biases. Accordingly, VCF files filtered from population biased alleles

have been incorporated in the main Galaxy VINYL instance to serve as an alternative reference for

studies where a geographically matched control population is not available.   

Importantly, we notice that, irrespective of the parameters of the simulations and of the reference

control population used, on our simulated dataset VINYL show a consistently higher   sensitivity

and  specificity than any of Privar or KGGseq.

Evaluation of VINYL on real data 

To evaluate the performances of our tool in a realistic scenario, VINYL was applied to a real dataset

composed   of   38   Italian   patients   affected   by   different   types   of   cardiomyopathies,   which   were

previously   subjected   to  genotyping  by   targeted   resequencing  of   a  panel  of  115  genes.  Expert

manual   curation  of   the  data   resulted   in   the   identification  of  27  pathogenic/likely  pathogenetic

variants (Forleo et al, 2017). Genetic profiles of 107 individuals of Italian ancestry included in the

1000G study (TSI: Toscani in Italia) were used as a control population. Only variants associated

with the 115 genes sequenced in Forleo et al. were considered. A total of 53 potentially pathogenic

variants (4.02% of the total number) were prioritized by VINYL on this dataset. Notably, all the 27

variants selected by manual curation were recovered, thus achieving perfect accuracy on this dataset

(Figure 3A and 3C). On the other hand, only 1 out of 3739 genetic variants in the control population
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displayed a  pathogenicity  score  higher   than   the  pathogenicity  score  cut­off  value   identified  by

VINYL,  suggesting   that  our  method achieves  high   levels  of   specificity   (Figure  3B).    Notably,

neither Privar  or  KGGseq were able to recover the complete collection of  the 28 validated and

manually curated pathogenic variants (19 and 21 for Privar and KGGseq, respectively) on the same

dataset, although the number of variants prioritized by these tools was higher  than  the number of

variants prioritized by VINYL: 84 and 83 respectively for Privar and KGGseq, corresponding to

c.a. 6% of the total number of variants in the population of affected individuals.  Conversely,  both

KGGseq and Privar predicted an increased  number of pathogenic and/or likely pathogenic variants

on the healthy control population: 21 and 22 for Privar and KGGseq respectively, which represent

approximately 0.5% of all the variants in the control population (Figure 3B). Taken together. these

observations  suggest  that  VINYL achieves higher levels of sensitivity and specificity  (Figure  3)

also on this dataset.  

Post­processing of the results

Along with tools and resources for variant prioritization, the Galaxy implementation of VINYL

incorporates helper applications and utilities to facilitate the post­processing of the data and the

interpretation   of   the   results.  These   include   a   dimensionality   reduction   analysis   tool,   based   on

Principal Component Analysis (PCA), which can be used for patients stratification, or to identify

groups of patients with similar/related disease­associated mutations, and a “burden analysis” utility

which can assist in the identification of genes showing a significant increase of pathogenic or likely

pathogenic variants. Both utilities produce an explicative graphical output and accept the tabular

files generated  by VINYL as their main input. An example of the application of these utilities to

the Forleo et al dataset is depicted in Figure 4. The PCA analysis displayed in Figure 4A clearly

separates controls from affected individuals which split in 2 distinct groups. This could be useful for

a better stratification of patients based on profiles of presence/absence of potentially pathogenic

variants. As depicted in Figure 4B, the output of VINYL’s burden test analysis consists of a panel

where, for every gene, the distribution  of VINYL  pathogenicity scores, as observed in the cohort

of affected individuals, is  compared to the corresponding distribution in the control population. A

Mann   Whitney   Wilcoxon   test   is   used   to   identify   genes   showing   a   significant   increase   in

pathogenicity   score.  Only   genes   showing   a   significant   p­value   are   reported   in   the   output.   To

facilitate a rapid comparison, score distributions are represented in the form of   boxplots. Dotted

lines are used to indicate the “pathogenicity” cut­off value. 
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Discussion

The   application   of   genome   sequencing   technologies   to   clinical   practice   is   promising   a   major

breakthrough in clinical sciences. However,   the systematic  integration of genomics into clinical

applications poses several challenges, most of which remain unresolved at present.  Among these,

the   systematic   functional   annotation   and   interpretation   of   genomic   variants   for   the   rapid

identification of genetic traits that might be linked to a pathological condition, a process which is

commonly referred to as “variant prioritization” is certainly one of the most critical.

Indeed, this process constitutes one of the major bottlenecks for the rapid analysis of the data, as

manual   curation   by   an   expert   clinician   is   normally   required.   Moreover,   since   different

operators/researchers tend to use slightly different methods, criteria, and resources for the functional

annotation   of   genetic   variants,   the   results   of   these   analyses   are   not   always   comparable   or

reproducible,  a consideration that limits the possibility to integrate and compare large dataset in a

systematic manner and can constitute an issue when the health of patients is at stake.      

Here we introduce VINYL, a fully automated system that provides access to a wealth of resources

and   databases   for   the   functional   annotation,   and   more   important   to   a   highly   accurate   and

reproducible method for the prioritization of pathogenic and potentially pathogenic genetic variants.

The variant prioritization strategy adopted by VINYL is directly derived from guidelines and best

practices that are normally applied in large scale clinical studies and consists in the computation of

a composite score that combines different sources of annotation. VINYL extends this approach by

using a rapid and rigorous method for the optimization of the scoring system and the selection of a

threshold for the identification of potentially pathogenic variants based on the simple observation

that a cohort of affected individuals should show an increased number of potentially pathogenic

genetic variants when compared to a population of healthy individuals. The method is designed to

guarantee high levels of flexibility and permits the incorporation of different types of annotations

and resources  by  the  user.    By building  on  the popular  Galaxy workflow manager,  VINYL is

accessible   through a  simple yet  powerful  web  interface,  which enables  collaborative work and

facilitates the reproducibility of bioinformatics analyses. Encrypted data volumes are used to ensure

high levels of data protection.  Extensive simulations and analysis of a real dataset, suggest that the

approach   adopted   by   VINYL   achieves   high   levels   of   sensitivity   and   specificity   in   different

experimental conditions, and more important that our method outperforms currently available state

of   the  art   tools   in  all   the  conditions  herein   tested.  Although  the   requirement  of    a  genetically

homogeneous     “control”   population,   and   the   need   for   a   relatively   large   cohort   of   affected

individuals, limit the applicability of VINYL in cases where only a very limited number of samples
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is available (see for example analyses of TRIOs or of single patients), we believe that the approach

adopted   by   VINYL   is   well   grounded.   Furthermore,   this   approach   is   bound   to   increase   its

performances over time as it will greatly benefit from the growing number of publicly available

data that are being deposited in dedicated databases of genotype­phenotype association   such as

dbGAP (Mailman et al 2007) and EGA (Lappalainen et al 2015). Indeed, the availability of more

data will help in the construction of more accurate scoring systems for  specific diseases, which in

turn could become applicable also to the analysis of single samples.

Taken together, we believe that, in the light of the results presented in the current study, VINYL

will represent a valuable resource to assist in the annotation and prioritization of genetic variants in

clinical studies. 
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Table Legends

Table1: Sensitivity and specificity on simulated data.  Levels of sensitivity and specificity of VINYL, Privar and
KGGseq on simulated data.  A) Dataset  with 1000 polymorphic sites.  B) Dataset  with 5000 polymorphic sites.  C)
Dataset with 10000 polymorphic sites. Sizes of the simulated cohorts (25,50 or 100 individuals) are reported in the first
column. Tools are indicated in the second column. Corresponding levels of sensitivity and specificity attained by each
tool, are reported in the subsequent columns.  Columns 3 to 4, 5 to 6 and 7 to 8, report the values for the simulation of
pathogenic variants with an odd Risk Ratio of 3, 10 and 20 respectively. 

1000

A
RiskRatio~3 RiskRatio~10 RiskRatio~20

Sens Spec Sens Spec Sens Spec

25
VINYL 73,01 99,66 78,89 99,29 89,95 99,69

Privar 54,97 93,44 59,79 91,64 61,58 93,57

KGGSeq 62,29 95,55 64,03 96,77 59,93 96,96

50
VINYL 78,64 99,52 86,14 100,36 94,35 99,72

Privar 56,66 94,01 58,60 90,04 59,95 90,79

KGGSeq 63,92 95,05 66,37 96,60 65,90 94,56

100
VINYL 82,69 99,89 90,47 99,04 96,27 99,82

Privar 55,80 89,87 58,06 91,34 59,63 91,77

KGGSeq 66,34 96,14 64,47 96,59 66,91 96,58
5000

B
RiskRatio~3 RiskRatio~10 RiskRatio~20

Sens Spec Sens Spec Sens Spec

25
VINYL 76,95 99,32 82,90 99,33 91,50 99,96

Privar 58,27 92,47 61,67 91,70 63,30 92,99

KGGSeq 63,21 95,55 64,52 95,93 60,60 96,13

50
VINYL 80,75 99,41 87,12 99,54 96,03 99,26

Privar 56,84 93,54 58,84 89,80 62,40 90,36

KGGSeq 63,68 94,42 69,78 95,94 67,35 94,10

100
VINYL 84,53 99,25 93,83 99,17 99,86 99,63

Privar 58,47 89,89 62,42 90,59 60,78 91,06

KGGSeq 66,86 95,47 66,53 96,27 67,71 96,36
10000

C
RiskRatio~3 RiskRatio~10 RiskRatio~20

Sens Spec Sens Spec Sens Spec

25
VINYL 78,41 99,48 84,01 99,40 92,23 99,66

Privar 62,70 92,60 64,17 91,87 64,53 93,11

KGGSeq 69,85 95,75 67,57 96,08 61,25 96,30

50
VINYL 82,95 99,55 88,44 99,63 98,29 99,45

Privar 59,84 93,69 62,06 89,87 65,02 90,52

KGGSeq 65,59 94,59 73,40 96,07 68,64 94,27

100
VINYL 88,38 99,42 97,32 99,39 99,29 99,85

Privar 61,53 89,91 65,48 90,77 64,08 91,12

KGGSeq 68,82 95,49 70,21 96,28 72,02 96,51
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Figure Legends

Figure1: Outline of the variant prioritization strategy adopted   by VINYL.  Genetic variants  identified from a
cohort of affected individuals (orange) and a cohort of healthy controls (purple) are subjected to variant annotation. A
scoring algorithm is subsequently used to compute a pathogenicity score based on the predicted functional effect of the
variants. Different scoring schemes are evaluated and distributions of pathogenicity scores are compared between the 2
cohorts (affected and controls). The scoring system that maximizes the difference of the  score distribution between the
2 population is selected. The corresponding cut­off score for the identification of potentially pathogenic variants is
identified as   the  threshold  that  maximizes   the number of potentially  pathogenic variants   in   the cohort  of  affected
individuals, while at the same time minimizing the number of potentially pathogenic variants in the control population.
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Figure2: Boxplot of AUC values.  Distribution of ROC Area Under the Curve (AUC) values for KGGseq, VINYL and Privar in the detection of simulated pathogenic variants.
Distributions of AUC are represented in the form of a boxplot. Panel A, B and C indicate simulations with odd Risk Ratio values of 3, 10 and 20 respectively.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.917229doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.917229
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Comparison of VINYL with other start of the art methods for variant prioritization. A) proportion of
variants in the population of affected individuals prioritized by each tool. B) Proportion of variants prioritized by each
tool   in   the  population  of   controls.  These   represent   likely   false  positive   calls.  C)  Proportion  of  manually   curated
pathogenic   variants   according   to   Forleo   et   al   2017   recovered   by   each   tool.   Orange=VINYL,   Blue=Privar,
Green=KGGseq.
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Figure 4: PCA and boxplot analysis of VINYL score. A) Principal component analysis of patients and controls based on
VINYL pathogenicity scores. The figure indicates the presence of 2 distinct groups of patients (orange). Both groups of
patients are well separated from the control group (purple). B) Comparison of VINYL gene score distribution identifies
genes that show a significant increase in pathogenicity score in the population of affected individuals, with respect to the
equivalent scores as derived from the control population. Score distributions of each gene are represented in the form of a
boxplot. Orange indicates affected individuals, purple indicates controls. Names of the genes and the corresponding Fisher p­
value for the increase in score are reported on the top. Dotted red lines indicate the cut­off value used for the identification of
pathogenic variants.
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