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ABSTRACT 

By virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) 

has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, 

immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely 

limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. For example, at high 

flow speed (i.e., high throughput), the integration time of the image sensor becomes short, resulting in reduced 

sensitivity or pixel resolution. Here we present an optomechanical imaging method that overcomes the trade-off 

by virtually “freezing” the motion of flowing cells on the image sensor to effectively achieve 1,000 times longer 

exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput 

IFC of single cells at >10,000 cells/s without sacrificing sensitivity and spatial resolution. The availability of 

numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate 

classification with deep learning, as evidenced by our demonstration of unique applications in hematology and 

microbiology.   
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INTRODUCTION 

Over the last decade, imaging flow cytometry (IFC)1-9 has opened a new window on biological and medical 

research by offering capabilities that are not possible with traditional flow cytometry. IFC provides quantitative 

image data of every event (e.g., cells, cell clusters, debris), allowing the morphometric characterization of single 

cells in large heterogeneous populations1,2 and further advancing our understanding of cellular heterogeneity10. 

Furthermore, conventional digital analysis tools in flow cytometry such as histograms and scatter plots are 

readily available to IFC users, but with much richer information about the acquired events by virtue of the image 

data1,2. The availability of the big data produced by IFC is well aligned with the pressing need for progressively 

larger biomedical datasets for efficient and accurate data analysis with the help of machine learning (e.g., deep 

learning) to make better decisions in biomedical research and clinical diagnosis11,12. Recent studies show that 

IFC is highly effective for the localization and enumeration of specific molecules such as proteins, nucleic acids, 

and peptides3,6, the analysis of cell-cell interaction13 and cell cycle12,14, the characterization of DNA damage and 

repair15, and fluorescence in situ hybridization (FISH)16.  

Unfortunately, the performance and utility of IFC are constrained by the fundamental trade-off between 

throughput, sensitivity, and spatial resolution17-22. As the flow speed is increased for higher cell throughput, the 

integration time of the image sensor is inevitably required to be shorter for blur-free image acquisition. A 

detrimental consequence of this effect is reduction in sensitivity or need for decreased pixel resolution to 

compensate for the reduced sensitivity. To circumvent this problem, time delay and integration (TDI) with a 

CCD image sensor has been introduced into IFC by Amnis Corporation1,2. The TDI is based on the accumulation 

of multiple exposures of a flowing cell with multiple rows of the CCD’s photo-sensitive elements by 

synchronizing its motion by charge transfer with the exposures1,2,19, but sacrifices throughput due to the limited 

readout rate of the CCD (up to ~100 MS/s), resulting in a throughput of 100 – 1,000 cells/s (depending on the 

required spatial resolution)1,2,19, which is 10 – 100 times lower than that of conventional non-imaging flow 

cytometry. Furthermore, the CCD suffers from large readout noise (typically tens of photoelectrons), limiting its 

detection sensitivity. Another approach to overcoming the trade-off is single-pixel imaging that achieves both 

high throughput and high spatial resolution20-22, but comes at the expense of sensitivity. Also, a combination of 

parallelized microchannels, stroboscopic illumination, and image acquisition with a high-speed CMOS image 

sensor has been demonstrated to achieve high-throughput IFC18, but also suffers from low sensitivity. A common 

trait of these techniques is the compromise of one of the key parameters in favor of the others, hence limiting 

the utility of IFC to niche applications.  

Our optomechanical imaging method, which we refer to as virtual-freezing fluorescence imaging (VIFFI), 

overcomes the above trade-off and hence achieves high throughput (>10,000 cells/s), high spatial resolution 

(~700 nm), and high sensitivity simultaneously when combined with IFC (namely, VIFFI flow cytometry). 

Specifically, the method is based on the principle that the motion of a flowing cell is virtually “frozen” on an 

image sensor by precisely cancelling the motion with a flow-controlled microfluidic chip, a speed-controlled 

polygon scanner, and a series of timing control circuits in order to increase the exposure time of the image sensor 
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and form a fluorescence image of the cell with significantly high signal-to-noise ratio (SNR). Two additional yet 

essential elements of VIFFI flow cytometry that maximize the effect of virtual freezing are a light-sheet 

excitation beam scanner that scans over the entire field of view (FOV) during the exposure time of the image 

sensor and the precise synchronization of the timings of the image sensor’s exposure and the excitation beam’s 

illumination and localization with respect to the rotation angle of the polygon scanner. As a result of combining 

these elements, our virtual-freezing strategy effectively enables 1,000 times longer signal integration time on the 

image sensor, far surpassing previous techniques23,24, and hence achieves microscopy-grade fluorescence 

imaging of cells at a high flow speed of 1 m/s.  

 

RESULTS 

Schematic of VIFFI flow cytometry 

As schematically shown in Fig. 1a (see Supplementary Fig. 1 for a detailed schematic), our VIFFI flow cytometer 

consists of (i) a flow-controlled microfluidic chip, (ii) a light-sheet optical excitation system composed of 

excitation lasers (Nichia NDS4216, λ = 488 nm, MPB Communications 2RU-VFL-P-5000-560-B1R, λ = 560 

nm, see Methods), an excitation beam scanner (acousto-optic beam deflector, ISOMET OAD948), and a 

cylindrical lens (f = 18 mm), (iii) a sCMOS camera (PCO edge 5.5), and (iv) an optical imaging system composed 

of an objective lens (NA = 0.75, 20x), a 28-facet polygon scanner as a fluorescence beam scanner (Lincoln Laser 

RTA-B) whose mirror facets are placed in the Fourier plane of fluorescence from the flowing cells, two relay 

lens systems with magnifications of 0.2 and 5, each of which is composed of four achromatic lenses, designed 

to meet the facet size and avoid unwanted aberrations, and a tube lens (f = 180 mm) to form a wide-field 

fluorescence image of the flowing cells on the camera (see Methods, Supplementary Fig. 2, Supplementary Fig. 

3, Supplementary Fig. 4, Supplementary Fig. 5, and Supplementary Fig. 6 for more details of the design). The 

polygon scanner is used to cancel the flow motion of the flowing cells on the camera by rotating the scanner in 

the opposite direction to the flow at the angular speed corresponding to the flow and hence to produce a blur-

free fluorescence image of the virtually stationary cells on the camera (Fig. 1a, Supplementary Movie 1). 

However, since this motion cancellation strategy itself is insufficient for microscopy-grade imaging of cells in a 

high-speed flow due to the residual motion blur caused by the longitudinal variations of the flow speed of cells 

and aberration (image distortion) in the imaging system that inevitably arise in a significantly large FOV, the 

localized (but highly efficient) light-sheet excitation beam is scanned in the opposite direction to the flow to 

illuminate the entire FOV while limiting the local exposure time to 10 µs [given by the beam size (26 μm) 

divided by the relative scan speed of the excitation beam (2.54 m/s), see Methods], which greatly relaxes the 

requirement for the flow speed precision and reduces the aberration in the imaging system for blur-free image 

acquisition in the VIFFI flow cytometer (Fig. 1b). As a result, much longer integration time on the camera can 

be achieved as long as the fluorescence from the cells stays in a single mirror facet of the polygon scanner (see 

Supplementary Fig. 2). The scanner keeps rotating during the image data transfer of the camera so that its next 

facet comes to the Fourier plane of the fluorescence from the cells when the next frame of the camera starts (see 
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Methods for more details). This sequence is carefully designed and optimized such that the camera’s neighboring 

frames have a slightly overlapped imaging area in order to exclude a dead imaging area, accommodate randomly 

distributed cells in line (which are subject to Poisson statistics), and maximize the throughput of the VIFFI flow 

cytometer (Fig. 1c). All the frames are continuously acquired at a frame rate of 1,250 fps and stored on a solid-

state drive up to 1 TB (0.44 MB/frame × 2,270,000 frames), allowing a non-stop image acquisition of up to 

18,000,000 cells at 10,000 cells/s (Supplementary Fig. 5).  

 

Characterization of VIFFI flow cytometry 

As a proof-of-principle demonstration, we used the VIFFI flow cytometer to perform sensitive blur-free 

fluorescence imaging of fast-flowing biological cells that would be too dim to visualize without VIFFI. Without 

VIFFI, the camera’s exposure time is only limited to 0.3 µs given by the pixel size (325 nm) divided by the flow 

speed (typically >1 m/s for high-throughput operation) in order to obtain a blur-free fluorescence image of fast-

flowing cells. Specifically, we used immortalized human T lymphocyte cells (Jurkat) and microalgal cells 

(Euglena gracilis) for the demonstration (Fig. 2a). Fig. 2b, Fig. 2c, and Fig. 2d show fluorescence images of the 

cells obtained by IFC without VIFFI with an exposure time of 0.3 µs, IFC without VIFFI with an exposure time 

of 340 µs, and IFC with VIFFI with an exposure time of 340 µs, respectively. Here, with an average interval of 

50-100 µm between consecutive cells, the flow speed of 1 m/s corresponds to a throughput of >10,000 cells/s 

(as experimentally shown in Supplementary Fig. 7), which is equivalent to the throughput of commercially 

available non-imaging flow cytometers25 (while the throughput value in flow cytometry generally depends on 

various factors such as cell size and cell concentration). The rotation of cells in the flow is negligible during the 

exposure time of the camera since the local exposure time of 10 µs is sufficiently short for the potential rotational 

motion of the cells to occur. It is evident from the comparison of the fluorescence images that VIFFI significantly 

improved the spatial resolution and SNR in the images without sacrificing the throughput (see Methods, 

Supplementary Fig. 8 and Supplementary Fig. 9 for more details).  

The high sensitivity of VIFFI flow cytometry allows for fluorescence imaging of various types of cells (e.g., 

cancer cells, microalgal cells, budding yeast cells, white blood cells) flowing at a high speed of 1 m/s (Fig. 3a 

through Fig. 3f). For example, the ability to enumerate localized fluorescent spots by FISH imaging (Fig. 3a) 

indicates its potential application to real-time characterization of gene copy number alterations in circulating 

tumor cells in blood17. Also, it enables precise analysis of the cell cycle of budding yeast (Saccharomyces 

cerevisiae) cells (Fig. 3b). In addition, it is useful for identifying fine morphological and structural features of 

single cells in large populations, such as the indented elliptical shape of Chlamydomonas reinhardtii cells (Fig. 

3c), the boundary (cell surface) localization of the epithelial cell adhesion molecule (EpCAM) in circulating 

tumor cells (Fig. 3d), nuclear lobulation in murine neutrophils (Fig. 3e), and lipid-droplet localization in E. 

gracilis cells (Fig. 3f) that have not been possible with previous high-throughput imaging flow cytometers at 

this flow speed20,26 due to their limited imaging sensitivity. Below we used murine white blood cells and E. 

gracilis cells to show practical applications of VIFFI flow cytometry. 
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Applications of VIFFI flow cytometry 

One of many applications where VIFFI flow cytometry is effective is to significantly improve statistical accuracy 

in the identification and classification of white blood cells based on morphological phenotypes (e.g., size, shape, 

structure, nucleus-to-cytoplasm ratio) – a routine practice for clinical diagnoses in which the cell throughput and 

hence classification accuracy are limited due to the manual examination of cells under conventional microscopes 

by skilled operators. Specifically, we used the VIFFI flow cytometer to obtain a large number of high-resolution, 

high-SNR fluorescence images of murine lymphocytes and neutrophils (Fig. 4a, Supplementary Fig. 10). The 

images enable the accurate quantification of nuclear lobulation by analyzing the ratio in area between the nucleus 

and enclosing box (the rectangular box with the smallest area within which the nucleus lies), which effectively 

brings out the differences between the two types of cells including their distinct heterogeneity in population 

distribution (Fig. 4b, Methods). Also, the obtained images quantitatively elucidate morphological features of 

each cell type such as cell area with high precision (Supplementary Fig. 11). Furthermore, the information-rich 

cell images allow the use of a deep neural network for cell classification with even higher accuracy. Specifically, 

we employed a convolutional neural network (CNN) with 16 layers (VGG-16)27 (see Methods for details of 

training) and achieved a high classification accuracy of 95.3% between the two populations. A scatter plot of the 

cells obtained from 4,096 features generated by VGG-16 through t-distributed stochastic neighbor embedding 

(t-SNE)28 shows an obvious separation between the populations (Fig. 4c), indicative of the high classification 

accuracy. The plot also shows the existence of one or more sub-populations among neutrophils, suggesting a 

possibility that neutrophils can further be classified into sub-types, which potentially has a significant biological 

implication in the field of immunology29.  

Another unique application of VIFFI flow cytometry is the determination of the population, morphological 

properties, and spatial distribution of specific intracellular molecules in large heterogeneous cell populations. 

Specifically, we used the VIFFI flow cytometer to study lipid droplets (i.e., neutral lipid storage sites) within 

single cells of E. gracilis, a unicellular photosynthetic microalgal species known to produce wax esters suitable 

for biodiesel and aviation biofuel30. While recent studies show that lipid droplets play a key role in lipid 

biosynthesis, mobilization, and homeostasis, little is known about microalgal lipid droplets31 despite their 

importance for efficient microalgae-based biofuel production. As shown in Fig. 5a, the VIFFI flow cytometer 

enables high-throughput single-cell imaging of numerous E. gracilis cells under two culture conditions 

(nitrogen-sufficient and nitrogen-deficient). Here, nitrogen deficiency is an environmental stress condition 

known to induce microalgae (including E. gracilis) to accumulate lipids in the cell body. From the acquired 

high-resolution, high-SNR images, we were able to localize and enumerate intracellular lipid droplets and 

quantify their areas (Fig. 5b, Fig. 5c, see Supplementary Fig. 12 for CNN-based classification results) with sub-

1 µm resolution and sub-100 nm precision (Supplementary Fig. 13, Supplementary Fig. 14). These results 

indicate that, while there is no significant difference in the average lipid droplet area per cell between the two 

cultures, there is an obvious difference in the distribution of the number of lipid droplets per cell between them. 
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In addition, we found that the degree of heterogeneity in the cell populations is comparable to or even larger 

than the overall separation between them. Furthermore, the obtained images (Supplementary Fig. 15 and 

Supplementary Fig. 16) indicate that the intracellular lipid droplet accumulation occurred non-uniformly, which 

was more prominent in the cells under the nitrogen-sufficient condition. These results provide an important 

insight into the lipid biosynthesis of E. gracilis and hence efficient metabolic engineering32.  

 

DISCUSSION 

With the flexibility and scalability of VIFFI flow cytometry, its capabilities can further be enhanced in various 

directions. First, while we used two colors in our proof-of-principle demonstration, fluorescence imaging in 

several colors can easily be conducted with a proper set of dichroic beamsplitters. Second, VIFFI flow cytometry 

is essentially compatible with advanced image-sensor-based fluorescence microscopy techniques such as 

structured illumination microscopy33, making it feasible to perform super-resolution fluorescence IFC. Third, 

the flow speed (i.e., throughput) can be increased as long as it obeys the trade-off relation between the flow 

speed, the FOV in the y direction, and the exposure time, as shown in Supplementary Fig. 3. As the magnification 

of the fluorescence imaging system also affects the flow speed, a lower magnification value enables higher flow 

speed at the cost of pixel resolution. Fourth, recent advancement of machine learning methods will help further 

enhance the capability of data analysis obtained by VIFFI flow cytometry. Finally, since the data transfer rate of 

the sCMOS camera is a performance-limiting factor, future advances of the image sensor technology are 

expected to further increase the cell throughput and the number of fluorescence colors. With these additional 

capabilities, potential applications of VIFFI flow cytometry are enormous and impactful for biological, 

pharmaceutical, and medical sciences.  

 

METHODS 

Optical design 

The optical system of the VIFFI flow cytometer was designed so that it has both subcellular spatial resolution 

and high throughput comparable to conventional (non-imaging) flow cytometers. On the basis of this concept, 

we firstly chose an objective lens (Olympus UPLSAPO20x, NA = 0.75) and a tube lens (Olympus U-TLU, f = 

180 mm) to obtain subcellular resolution. Subsequently, we determined the magnification of the relay lens 

systems M and 1/M and the number of facets of the polygon scanner N by considering the following constraints: 

(i) The image frames should be concatenated so that whole images of all flowing cells fall in one of the 

continuous frames (Fig. 1c); (ii) The fluorescence beam size in the polygon scanner’s facet should be smaller 

than the facet size (Supplementary Fig. 2a). In addition, we considered specifications of the sCMOS camera and 

polygon scanner (Lincoln Laser RTA-B) such as the frame period 𝑇𝑠 = 0.8 ms (frame rate: 1,250 fps) with 

the region of interest of 2560 × 88 pixels, sensor size in the direction corresponding to the cell flow 𝐿𝑥 =
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16.6 mm, and inner diameter of the polygon mirror of the scanner 𝑑𝑝 = 70 mm. The above constraints are 

expressed by the following equations: 

 

4𝑓𝑜𝑀 {
2𝜋

𝑁
+ sin−1 [(−

𝑑𝑜𝑀

𝑑𝑝
+ sin 𝛼) cos

𝜋

𝑁
] − sin−1 [(

𝑑𝑜𝑀

𝑑𝑝
+ sin 𝛼) cos

𝜋

𝑁
]} > 0,  (1) 

𝑣𝑇𝑠𝑁

4𝜋𝑓𝑜
< 𝑀 <

𝐿𝑥𝑁

4𝜋𝑓𝑡
,     (2) 

 

where 𝑓𝑜, 𝛼, 𝑑𝑜, 𝑣, 𝑓𝑡 denote the focal length of the objective lens (9 mm), the nominal incidence angle of 

the fluorescence to the polygon scanner (45 degrees), the back-aperture diameter of the objective lens (13.5 mm), 

the flow speed of the cells (1 m/s), and the focal length of the tube lens (180 mm), respectively. The left hand 

side of Eq. 1 corresponds to the maximum scan range of the polygon scanner on the object and thus represents 

the maximum exposure duration. A plot of the maximum scan range under the above constraints is shown in 

Supplementary Fig. 2b. The scan range divided by the flow speed represents the upper limit on the exposure 

time. The figure shows that a lower magnification value is beneficial for obtaining a longer exposure time. As a 

trade-off, in practice, a relay lens system with a lower magnification tends to have larger aberration, which 

degrades the imaging quality. Therefore, we chose M = 0.2 and N = 28 so that the aberration that occurs in the 

relay lens systems does not significantly degrade the imaging quality (see below for the detailed design of the 

relay lens systems) while significant improvement of the imaging sensitivity is obtained. 

 

Excitation beam scan 

The excitation beam scan is an essential part of the VIFFI flow cytometer to enable its exceptionally long 

exposure time for fast-flowing cells. A schematic of the beam scan is shown in Supplementary Fig. 4a. A focused 

excitation beam with a diameter of 26 μm in the cell flow direction is scanned in the direction opposite to the 

cell flow at 2.54 m/s (a speed relative to flowing cells), limiting the local exposure time to 10 μs. Since the FOV 

of the camera in the object plane moves together with the cell flow during the exposure time, the scan range (525 

μm) is shorter than the FOV in the flow direction (830 μm), which significantly reduces the off-axis aberration 

components such as image distortion and field curvature. In particular, the image distortion that occurs between 

the object and the polygon scanner causes position-dependent errors of the motion cancellation effect of the 

polygon scanner and hence residual motion of the cell images, which limits extension of the exposure time. We 

experimentally determined the speed of the residual motion using obtained images of fluorescent particles. The 

results shown in Supplementary Fig. 4b indicate that the speed range of the residual motion is ±1.5% with the 

beam scan while it is at least ±6% without the beam scan. Assuming a typical speed fluctuation of flowing cells 

in a microfluidic channel of 1.5%, the factors for the extension of exposure time per pixel in the VIFFI flow 

cytometer are (0.015 + 0.015)-1 ≈ 33 with the beam scan and (0.06 + 0.015)-1 ≈ 13 without the beam scan. 

Moreover, due to the confined excitation beam width in the flow direction (~3% of the FOV of the sCMOS 
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camera), the excitation efficiency improves by a factor of 1/0.03 ≈ 33 under a certain excitation beam power 

whereas the total exposure time of the camera is extended by the same factor. As a result, the improvement factor 

of the imaging sensitivity of the VIFFI flow cytometer is 33 × 33 ≈ 1,000 with the beam scan while it is limited 

to ~13 without the beam scan. 

 

Data acquisition sequence 

A schematic of the data acquisition sequence is shown in Supplementary Fig. 5. A trigger signal from a 

photodetector that indicates the polygon scanner’s angle is used to generate external trigger signals for the 

camera’s start of exposure and the waveform generator’s signal output. Then, the excitation beam is scanned for 

~320 μs during the camera’s exposure time (~340 μs), which is set shorter than the upper limit determined by 

the design of the imaging optical system (420 μs). The camera outputs image data right after its exposure time. 

We set the total period of the image acquisition procedure to be slightly less than the polygon scanner’s scan 

period (800 μs) by adjusting the number of pixel lines in the y direction in the object plane so that every external 

trigger signal successfully triggers the camera’s exposure start. 

 

Relay lens systems 

We designed the relay lens systems using OpticStudio (Zemax, LLC). Considering cost effectiveness, our design 

assumed only off-the-shelf achromatic lenses from major optics companies. Also, we assumed four achromatic 

doublets for constituting a single relay lens system rather than two to reduce the total aberration. We created a 

macro that automatically evaluates the total aberration of ~10,000 relay lens systems, each of which has a 

different combination of the four achromatic doublets with the designated magnification (0.2) and with an 

optimized configuration found by the optimization function of OpticStudio. Thus, we found that a relay lens 

system shown in Supplementary Fig. 6a has diffraction-limited imaging performance. We employed this system 

to both of the relay lens systems in the setup of the VIFFI flow cytometer. We evaluated optical transfer functions 

(OTFs) of the whole relay system that consists of the two relay lens systems and a polygon scanner using a 

combined optical model shown in Supplementary Fig. 6b. The OTFs were calculated at different positions in the 

image plane indicated in the upper part of Supplementary Fig. 6c, considering the dynamic localized illumination 

of the excitation beam during the rotation of the polygon scanner. As shown in Supplementary Fig. 6c, we 

confirmed that the relay system does not suffer from significant image degradation over the entire FOV.  

 

Constructed optical setup 

A complete schematic of the VIFFI flow cytometer is shown in Supplementary Fig. 1. The optical system 

consists of a light-sheet optical excitation system, an imaging optical system, and an angle detection system for 

a polygon scanner. In the light-sheet optical excitation system, excitation beams with the desired spatiotemporal 

profiles in the object plane are created. Two excitation beams from laser sources [Nichia NDS4216 (λ = 488 

nm), MPB Communications 2RU-VFL-P-5000-560-B1R (λ = 560 nm)] are scanned by a beam scanner (acousto-
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optic deflector, ISOMET OAD948) and are focused on a microfluidic channel through cylindrical lenses (f = 80 

mm in the x direction and f = 18 mm in the z direction). The designed Gaussian beam diameters (1/e2 intensity) 

on the object plane are 26 μm × 5.2 μm and 23 μm × 6.4 μm (x × z, see Supplementary Fig. 1 for the coordinates) 

for the beams of 488 nm and 560 nm, respectively. Since the AOD’s beam-deflection angle for a certain 

frequency of the driving signal is proportional to the wavelength of the incident beam, the scan range for the 

488-nm beam, which has the shorter scan range, is set so that it covers the entire FOV. Therefore, the effective 

exposure time of the 560-nm excitation beam is slightly shorter (488/560 = 86%) than that of the 488-nm 

excitation beam. In the imaging system, fluorescence images of flowing cells are captured by a sCMOS camera 

(PCO edge 5.5). Fluorescence signals from the flowing cells are relayed by two relay lens systems with 

magnifications of 0.2 and 5, respectively, such that images of the cells are formed on the sCMOS camera through 

a tube lens. The magnification of the imaging system is set to be 20x. A polygon scanner (Lincoln Laser RTA-

B) is placed in a conjugate plane of the exit pupil of the objective lens (Olympus UPLSAPO20x, NA = 0.75) 

that is created between the two relay lens systems. The fluorescence is split into shorter and longer wavelength 

components by a dichroic mirror (Semrock ff580-fdi01, edge wavelength: 580 nm), each of which forms an 

image on the sCMOS camera at a different position. The orientation of the sCMOS camera in the optical setup 

is set by taking its data readout sequence into consideration. Since the sCMOS camera reads out the pixel data 

line-by-line, the frame rate does not depend on the region of interest in the line direction. Therefore, to operate 

the camera at the maximum pixel data rate, we set the camera so that the flow direction coincides with the line 

direction of the camera. In the angle detection system, a timing trigger for synchronized operation of the polygon 

scanner, beam scanner, and sCMOS camera is generated. A laser beam that reflects at the polygon scanner is 

focused on a pinhole aperture and is detected by a photodetector. The output voltage signal of the photodetector 

is used as the timing trigger and then sent to the external trigger input of a trigger generator (Teledyne LeCroy 

Wavestation 2052). Trigger signals generated by the trigger generator are sent to the external trigger input of the 

sCMOS camera and the Waveform generator (RIGOL DG 4202) so that they start exposure and generation of a 

driving signal for the beam scan. 

Depending on the application, different configurations can be employed. For the experiments in Fig. 3c, 

Fig. 3d, and Supplementary Fig. 7, we used a 405-nm excitation laser (Oxxius LBX-405-300-CSB-PP) for 

obtaining images of C. reinhardtii and PC-9 cells. For the experiments in Fig. 3a and Supplementary Fig. 9, we 

used a 488-nm excitation laser (Coherent Genesis CX 488 STM) for FISH imaging and the evaluation of the 

imaging sensitivity, respectively, where the laser beam illuminates the microchannel through an objective lens 

(Leica, 20x, NA = 0.75) with carefully designed Gaussian beam diameters (1/e2 intensity) in the object plane of 

31 μm × 62 μm (x × y, see Supplementary Fig. 1 for the coordinates). We used the same laser for imaging of S. 

cerevisiae cells (Fig. 3b) in the standard illumination configuration shown above. 

 

Digital image processing and deep learning 
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A schematic of our digital image processing is shown in Supplementary Fig. 10. From a raw image frame, we 

extracted the region of the image of each color channel. Then, we created a binary mask image for each color 

channel using standard image segmentation methods. Subsequently, morphological features were calculated 

from masked or non-masked images of each channel. For murine white blood cells, we calculated the cell nucleus 

area and enclosing box area (the smallest rectangular box area within which the nucleus lies). For E. gracilis 

cells, we obtained the number of lipid droplets by counting local maximum points in the images. In order to 

count lipid droplets, we first set the approximate lipid droplet size and intensity threshold. After that, we used 

the approximate lipid droplet size to find the areas with the maximum and minimum intensities. Then, we picked 

the maximum-intensity areas whose intensity differences with surrounding minimum-intensity areas were larger 

than the threshold and created a Boolean map which showed the positons of the lipid droplets. In addition, we 

used a CNN called VGG-16, which is a well-known CNN model, to differentiate between different cell types in 

our experiments. We made changes to the input layer of the original VGG-16 model in order to make it applicable 

to our image data. As shown in Supplementary Fig. 20, the VGG-16 model consists of five convolution segments 

and a fully connected classifier. Each convolution segment is made of a few convolution layers that extract the 

features of the image data, and one maximum pooling layer at the end to reduce the data volume. At the fully 

connected classifier, 4,096 features extracted by the convolution segments were converted into one dimension 

that provided the classification results. For example, if the input data is a 224 × 224 RGB image, which can be 

presented as a 224 × 224 × 3 matrix, the first convolutional layer in the first segment (conv1_1) transforms this 

image into a 224 × 224 × 64 volume. As the image goes through the network, this volume becomes smaller in 

width and height, but larger in depth. The pooling layer in the fifth segment (pool_5) generates a 7 × 7 × 512 

volume. When the image goes to the final segment, the 7 × 7 × 512 volume which represents all the feature of 

the image with local information is mapped to 4,096 features. After that, the very last layer applies the Softmax 

function to the data in order to generate a probability distribution. To illustrate the classification accuracy as a 

scatter plot, the 4,096 features were also converted to two meta-features through t-SNE, which is a method to 

reduce the dimensionality of multi-dimensional data. 

 

Microfluidic chip 

A commercially available glass microfluidic chip with dimensions of 400 µm × 250 µm (Hamamatsu J12800-

000-203) was used for the experiments. The microfluidic chip is capable of hydrodynamic focusing in both the 

lateral and depth directions. Suspended cells in a glass syringe were introduced into the channel by a syringe 

pump (Harvard apparatus 11 Elite) at a fixed volumetric flow rate. The sheath fluid was also introduced by the 

same syringe pump. The ratio of the volumetric flow rates of the sample flow and sheath flow was set to 1:700, 

corresponding to a sample flow diameter of ~13 μm. Based on the theoretical position-dependent variation of 

the flow speed of a laminar flow, the error in the flow velocity in the FOV is less than 1%. We also used a 

microfluidic platform described in Ref. 26 for obtaining FISH images (Fig. 3a) and for the evaluation of the 
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imaging sensitivity (Supplementary Fig. 9), and a polydimethylsiloxane (PDMS)-based microfluidic chip with 

a hydrodynamic focuser in the y direction for imaging of C. reinhardtii cells.  

 

Preparation of Jurkat cells for two-color imaging 

Jurkat cells were obtained from DS Pharma Biomedical (EC86012803-F0) and cultured in Dulbecco’s Modified 

Eagle Medium (DMEM) with 10% fetal bovine serum, 1% penicillin streptomycin, 1% non-essential amino 

acids at 37°C, and 5% CO2. The cells were placed into Corning® T75 flasks (catalog no. 431464) and allowed 

to spread for 3 days. They were stained with 10 µM CellTracker Red (Thermo Fisher Scientific) and 1 µM SYTO 

16 (Thermo Fisher Scientific) in FBS-free culture media at 37°C for 45 min. Imaging was performed after 

washing the cells with PBS. 

 

Preparation of Jurkat cells for FISH imaging 

FISH imaging of Jurkat cells in suspension was performed according to the protocol of Basiji et al.19 Before they 

were loaded into the VIFFI flow cytometer, the cells were stained by 1/1000 diluted 7-AAD Viability Dye 

(0.005% (w/v) as the original solution, Beckman Coulter, A07704) for counterstaining. 

 

Preparation of C. reinhardtii cells 

C. reinhardtii TKAC1017 was obtained from the Tsuruoka, Keio, Algae Collection (TKAC) of T. Nakada in the 

Institute for Advanced Biosciences at Keio University, Japan. It was cultured in culture flasks (working volume: 

20 mL) using a modified AF-6 culture medium34. The culture was maintained at 25°C and illuminated in a 14:10-

hour light:dark pattern (approximately 120 μmol photon/m2/s). A group of C. reinhardtii cells was pre-cultured 

in a modified AF-6 medium. C. reinhardtii cells (~5 × 106 cells/mL) in early stationary phase were concentrated 

to ~3 × 108 cells/mL by centrifugation and immediately used for VIFFI flow cytometry. 

 

Preparation of S. cerevisiae cells 

S. cerevisiae heterozygous gene deletion mutant of RPC10/rpc10Δ was purchased from EUROSCARF 

(http://www.euroscarf.de/, accession number: Y22837) and used for VIFFI flow ctyometry as a representative 

of S. cerevisiae cells having a characteristic morphological phenotype of elongated cell shape35. Cell culture, 

fixation, and fluorescent staining were performed according to the methods described previously36 with some 

modifications. S. cerevisiae cells were grown at 25°C in YPD liquid medium containing 1% (w/v) Bacto yeast 

extract (BD Biosciences, San Jose, CA), 2% (w/v) Bacto peptone (BD Biosciences), and 2% (w/v) glucose. After 

incubation for 16 h, S. cerevisiae cells in logarithmic phase were fixed in YPD medium supplemented with 

formaldehyde (final concentration, 3.7%) and potassium phosphate buffer (100 mM [pH 6.5]) for 30 min at 25°C. 

Before VIFFI flow cytometry, cell-surface mannoproteins were stained by 1 mg/mL fluorescein isothiocyanate 

(FITC)-conjugated concanavalin A (Sigma-Aldrich, St. Louis, MO) in P buffer (10 mM sodium phosphate and 
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150 mM NaCl [pH 7.2]) for 10 min. After washing with P buffer twice, the S. cerevisiae cells were suspended 

in PBS. 

 

Preparation of PC-9 cells 

PC-9 (human lung cancer) cells were cultured in RPMI-1640 medium (Sigma-Aldrich, R8758-500 mL) 

supplemented with 10% fetal bovine serum (FBS, BOVOGEN, catalog no. SFBS-F lot no. 11555), 100 units/mL 

penicillin, and 100 µg/mL streptomycin (Wako, 168-23191, Tokyo, Japan) using a 100-mm tissue culture dish 

(Sumitomo, MS-13900, Tokyo, Japan) until the cells reached near-confluency. The cells were detached from the 

dish by incubating with 2 mL of 0.25 % (W/V) trypsin-EDTA (Wako, 205-16945, Tokyo, Japan) for 10 min at 

37 ºC, collected by centrifugation (Hitachi, CF7D2, Tokyo, Japan) for 3 min, and resuspended in RPMI-1640 

medium containing 10 % FBS at 1 × 105 cells/mL. The cells were incubated with 1 mM 5-ALA in PBS at 37 ºC 

for 3 h. After incubation, the 5-ALA solution was removed, and the cells were washed with PBS. The collected 

cells were stained by 1 mL of PBS containing 10 μL of anti-EpCAM antibody (VU-1D9, GeneTex, Irvine, CA). 

After 30 min of incubation at ambient temperature, the cells were washed with 1 mL of PBS twice and reacted 

with 2.5 μL of Alexa Flour 488 goat anti-mouse IgG1 (A21121, Invitrogen, Carlsbad, CA) , and 2,000x diluted 

Hoechst 33342, H3570 (Invitrogen, Carlsbad, CA), in PBS at ambient temperature for 20 min, followed by 

washing with 1 mL of PBS twice. The resultant stained cells were resuspended in 1 mL of PBS and stored at 

4 °C with light blocked until use. 

 

Preparation of murine neutrophils and lymphocytes 

The femur bones from C57BL/6 female mice (8 weeks old) were collected by cutting above and below the joints. 

Bone-marrow cells were washed out of each bone by inserting a needle (26 gauge) with a sterile syringe filled 

with PBS/2% Fetal Bovine Serum (FBS) into one side of the bone. After removing red blood cells by lysis buffer 

(Sigma-Aldrich), white blood cells were stained with biotinylated anti-Ly6G antibody (RB6-8C5, BioLegend). 

The cells were secondary-stained with V500-conjugated Streptavidin (BD Biosciences) and Pacific Blue-

conjugated anti-CD3ɛ (145-2C11), -CD4 (RM4-5), -CD8α (53-6.7), -B220 (RA3-6B2), -NK1.1 (PK136) 

antibody (BioLegend). Neutrophils and lymphocytes were sorted by FACSAria IIµ (BD Biosciences) as V500 

and Pacific Blue single positive cells, respectively, which had no overlap in excitation and emission spectra in 

the analysis of our imaging flow cytometer. Neutrophils and lymphocytes were suspended in FBS-free RPMI 

1640 culture medium and stained with 1 µM SYTO16 and 10 µM CellTracker Red. The cells were incubated at 

37°C for 45 min, then washed and re-suspended in PBS. 

 

Preparation of E. gracilis cells 

E. gracilis NIES-48 was obtained from the Microbial Culture Collection at the National Institute for 

Environmental Studies37. It was cultured in culture flasks (working volume: 20 mL) using a modified AF-6 

culture medium34. The culture was maintained at 25°C and illuminated in a 14:10-hour light:dark pattern 
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(approximately 120 μmol photon m-2 s-1). A group of E. gracilis cells was pre-cultured in a modified AF-6 

medium. The cells were cultured in the nitrogen-deficient medium for five days and denoted as cells in “nitrogen-

deficient condition”. For the observation of intracellular lipid bodies, a stock solution of 1-mmol 

BODIPY505/515 (Thermo Fisher Scientific, USA) in dimethyl sulfoxide containing 1% ethanol was prepared. 

Both the nitrogen-sufficient and nitrogen-deficient E. gracilis cells (~106 cells/mL) were stained with 10 µM of 

BODIPY505/515 in de-ionized water, incubated without light for 30 min, washed, suspended in de-ionized water, 

and immediately used for imaging. 

 

Imaging sensitivity 

The imaging sensitivity of VIFFI flow cytometry is evaluated by SNR in comparison with conventional methods. 

Here we evaluate the SNR of a fluorescence image obtained by an imaging flow cytometer by using the SNR of 

the camera readout per pixel. The signal level in the unit of the number of electrons is expressed by  

 

𝑆 ~ 𝑃𝐶−1𝑇𝑛𝑠𝜂yield𝜂img𝜂sensor,    (3) 

 

where P, C, T, n, s, ηyield, ηimg, and ηsensor denote the power of the excitation beam, the cross section of the 

excitation beam, the time of the excitation beam illumination for a single fluorescent molecule, the number of 

fluorescent molecules in a single pixel area, the absorption cross section of the fluorescent molecule, the quantum 

yield of the fluorescent molecule, the photon collection efficiency of the imaging system, and the quantum 

efficiency of the image sensor, respectively. Assuming that the detection noise consists of shot noise and readout 

noise, the SNR is given by 

 

𝑆

𝑁
=

𝑆

√𝑆+𝜎2
,     (4) 

 

where σ denotes the readout noise of the image sensor. The SNRs of VIFFI flow cytometry, TDI-based IFC 

(Merck Millipore ImageStream®X Mark II), and stroboscopic illumination IFC18 are shown in Supplementary 

Fig. 8. The parameters used for the calculations are summarized in Supplementary Table 1. Since the values of 

ηsensor and σ were unknown for ImageStream®X Mark II, we estimated them from the specifications of a 

commercial TDI-CCD camera (Hamamatsu C10000-801), which has similar specifications of image acquisition 

with ImageStream®X Mark II. For a fair comparison, we assumed the identical cross section of the excitation 

beam and 10% lower efficiency in the excitation beam power and the image formation for VIFFI flow cytometry, 

considering the power loss at the excitation beam scanner, the relay lens systems, and the polygon scanner. As 

shown in Supplementary Fig. 8, VIFFI flow cytometry has a comparable SNR with the TDI-based IFC at various 

numbers of fluorescent molecules per pixel, but TDI-based IFC fails to go beyond the flow speed of ~0.04 m/s 

(corresponding to a throughput of ~400 cells/s at an average cell spacing of 100 μm and a pixel size of 0.325 
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μm) due to the limited readout rate of the CCD (up to ~100 MS/s). Also, in comparison with stroboscopic 

illumination IFC, VIFFI flow cytometry provides a significantly higher SNR by more than a factor of 30 due to 

VIFFI’s much longer exposure time, enabling image acquisition with a reasonable SNR even at a high flow 

speed of ~1 m/s (corresponding to a throughput of ~10,000 cells/s at an average cell spacing of 100 μm and a 

pixel size of 0.325 μm). Consequently, VIFFI flow cytometry is the only method that enables high-SNR 

fluorescence IFC of cells flowing at a flow speed as high as 1 m/s. 

It is important to note that the required SNR strongly depends on the application and the techniques of 

image processing. Overall, the analysis that uses finer structures of images tends to require higher SNRs. In fact, 

larger objects or structures in an image are preserved after low-pass filtering, enabling the analysis at an 

improved SNR. On the contrary, if a target object has a single pixel size, low-pass filtering decreases the signal 

level as well as the noise level, resulting in the loss of the fine structure without significantly improving the SNR. 

To compare VIFFI flow cytometry with conventional methods in imaging sensitivity, we measured its 

detection limit in terms of molecules of equivalent soluble fluorochrome (MESF), which is the most commonly 

used parameter for evaluating the detection sensitivity of imaging and non-imaging flow cytometers. Our results 

[MESF = ~50 for the green and red channels (ch1 and ch2), Supplementary Fig. 9] indicate the high sensitivity 

of the VIFFI flow cytometer even at a high flow speed of 1 m/s. On the other hand, it is important to note that 

identical measurement conditions (e.g., flow speed, excitation laser power) are required for a fair apple-to-apple 

comparison between this value and those of other imaging or non-imaging flow cytometers. Unfortunately, while 

the MESF values of commercial imaging or non-imaging flow cytometers are available, these conditions are not 

often disclosed in their brochures or specification sheets. Therefore, it is ideal to discuss the SNR shown above 

along with the MESF for a fair apple-to-apple comparison between different imaging or non-imaging flow 

cytometers including the VIFFI flow cytometer.  

 

Data acquisition speed 

The data acquisition speed of IFC is evaluated by the (effective) line rate. The cell throughput is a common index 

of the data acquisition speed of flow cytometry, but it may cause confusion in the case of IFC because it is 

influenced by other parameters such as pixel size and cell spacing. In other words, the cell throughput has trade-

off relations with other parameters, complicating the comparison between different IFC systems. Parameters 

related to the data acquisition speed for VIFFI flow cytometry and TDI-based IFC (ImageStream®X Mark II) 

are summarized in Supplementary Table 2. The effective line rate is calculated as the flow speed divided by the 

pixel size in the flow direction and is given by 3.1 MHz and 0.12 MHz for VIFFI flow cytometry and 

ImageStream®X Mark II (assuming 60-X magnification), respectively. On the other hand, the throughput is 

proportional to the line rate such that their relation is formulated by 𝑓th = 𝑝𝑥𝑓𝑥/𝑙𝑥, where fth, px, lx, and fx denote 

the cell throughput, the pixel size (pixel resolution) in the object plane in the flow direction, the average cell 

spacing, and the line rate, respectively. The pixel size affects the data volume and information content of a single 

cell image. The average cell spacing is determined by sample preparation, not by the instruments. Therefore, for 
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a fair apple-to-apple comparison of different imaging flow cytometers, the cell throughput should be compared 

under the same conditions of pixel size and average cell spacing. In this manner, the VIFFI flow cytometer has 

a factor of 26 higher cell throughput than ImageStream®X Mark II.  

 

Trade-off relations between SNR, pixel size, FOV, and flow speed 

The trade-off relations between SNR, the pixel size, FOV, and flow speed are formulated by  

 

𝐹𝑂𝑉𝑥−𝑙0

𝑣
≈

𝐹𝑂𝑉𝑥𝐹𝑂𝑉𝑦

𝑓p𝑠p
+ 𝑡exp1,     (5) 

𝑡exp2 =
𝐿scan

𝑣
,       (6) 

𝑆

𝑁
≈ 𝛽√min(𝑡exp1, 𝑡exp2),     (7) 

 

where FOVx, FOVy, l0, v, fp, sp, texp1, texp2, Lscan, S, and β denote the FOV in the flow direction, the FOV in the 

direction perpendicular to the flow direction, the overlapped length between consecutive frames in the flow 

direction, the flow velocity, the pixel data rate of the sCMOS camera (572 MHz), the pixel area, the upper limit 

on the exposure time determined by the camera’s data transfer speed, the upper limit on the exposure time 

determined by the maximum scan range in the polygon scanner (the left hand side of Eq. 1), the maximum scan 

range on the object, the signal level, and the proportionality coefficient, respectively. Eq. 5 represents the frame 

period. The first term of the right hand side in Eq. 5 represents the readout time of the camera. Eq. 6 gives the 

constraint on texp2 set by Lscan, which is determined by the design of the optical imaging system as discussed in 

Section 1 (see also Supplementary Fig. 2). If we assume an arbitrary design in the optical imaging system, Eq. 

6 is negligible. In Eq. 7, we assumed that only the shot noise predominantly contributes to the SNR on the basis 

of the results in Section 15. For more rigorous calculations accounting for the readout noise which is important 

in the case of low SNRs, we may need to modify Eq. 7 on the basis of Eq. 4. Eqs. 5-7 provide a comprehensive 

overview of the trade-off relations as well as their quantification. Supplementary Fig. 3 shows an example of a 

specific trade-off relation between FOVy and v, which can be derived from Eq. 5. 

From a practical point of view, it is convenient to rewrite Eq. 5 using adjustable parameters of a system 

such as the magnification of the imaging system (M) and the number of lines in the direction perpendicular to 

the flow direction (Ny). Some of the above parameters are expressed by  

 

𝐹𝑂𝑉𝑥 =
𝐿𝑥

𝑀
,     (8) 

𝐹𝑂𝑉𝑦 =
𝑁𝑦𝑑p

𝑀
,     (9) 

𝑠p =
𝑑p

2

𝑀2 ,         (10) 
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where dp denotes the pixel size of the camera (6.5 μm). Then, Eq. 5 is rewritten as 

 

𝐿𝑥/𝑀−𝑙0

𝑣
≈

𝐿𝑥

𝑓p𝑑p
𝑁𝑦 + 𝑡exp1.       (11) 

 

Practically, we adjust the values of M (via the choice of the objective lens), Ny (via the configuration of the 

camera), and v (via the setting of the flow system) to find the best balance between the sensitivity, FOV in the 

direction perpendicular to the flow direction, the pixel size, and the throughput using Eq. 6, Eq. 7, and Eq. 11. 

The spatial resolution is another important parameter of the system that is not considered in the above discussion, 

but is also adjusted via the choice of the objective lens. 

 

Data availability 

The data that supports the plots and findings is available from the corresponding authors upon request. 

 

Code availability 

Our image analysis codes are available from the corresponding authors upon request. 
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Fig. 1 VIFFI flow cytometry. a, Schematic and functionality. The side inset shows the effect of VIFFI on the 

formed images of cells on the sCMOS camera. The upper inset shows scanned light-sheet excitation of cells 

flowing in the microfluidic channel. The motion of a flowing cell is virtually “frozen” on the camera by precisely 

cancelling the motion in order to increase the exposure time of the image sensor and form a fluorescence image 

of the cell with 1,000-fold increase in the camera’s integration time. b, Comparison in image acquisition on the 

sCMOS camera with and without the beam scan. c, Serial image frames acquired by the sCMOS camera.  
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Fig. 2 Demonstration of VIFFI flow cytometry. Immortalized human T lymphocyte cells (Jurkat) and E. gracilis 

cells are used for all cases. a, Fluorescence images of the cells at rest obtained by conventional fluorescence 

microscopy. b, Fluorescence images of the cells in a 1-m/s flow obtained by IFC without VIFFI with an exposure 

time of 0.3 µs. c, Fluorescence images of the cells in a 1-m/s flow obtained by IFC without VIFFI with an 

exposure time of 340 µs. d, Fluorescence images of the cells in a 1-m/s flow obtained by IFC with VIFFI with 

an exposure time of 340 µs. Green: nucleus for Jurkat cells (stained by SYTO16), lipids for E. gracilis cells 

(stained by BODIPY505/515). Red: cytoplasm for Jurkat cells (stained by CellTracker Red), chlorophyll for E. 

gracilis cells (autofluorescence). It is clear from the comparison of the fluorescence images that VIFFI 

significantly improved the spatial resolution and SNR in the images without sacrificing the throughput. 
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Fig. 3 Fluorescence images of diverse cell types obtained by VIFFI flow cytometry. All the images were obtained 

at a flow speed of 1 m/s. a, FISH images of Jurkat cells. Two bright spots (shown in yellow-white) corresponding 

to two copies of chromosome 8 are evident in each cell. b, Fluorescence images of S. cerevisiae whose cell wall 

was stained by FITC-concanavalin A, showing budding daughter cells from their mother cells. c, 

Autofluorescence images of C. reinhardtii cells, showing their characteristic morphological features (indented 

elliptical shape at the head). d, Three-color fluorescence images of human lung adenocarcinoma cells (PC-9). 

Red: protoporphyrin IX induced by 5-aminolevulinic acid; Green: EpCAM stained by VU-1D9; Blue: nucleus 

stained by Hoechst 33342. e, Two-color fluorescence images of murine neutrophils. Green: nucleus stained by 

SYTO16; Red: cytoplasm stained by CellTracker Red. f, Two-color fluorescence images of E. gracilis cells. 

Green: lipids stained by BODIPY505/515; Red: autofluorescence of chlorophyll. 
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Fig. 4 High-throughput, high-content screening of murine neutrophils and lymphocytes with VIFFI flow 

cytometry. a, Libraries of fluorescence images of the cells (n = 10,000 for each group) obtained by VIFFI flow 

cytometry. The cytoplasm was stained by CellTracker Red (shown in red) while the nucleus was stained by 

SYTO16 (shown in green). Different color scales are used for the fluorescence images of murine neutrophils 

and lymphocytes for higher image contrast. See Supplementary Fig. 17 and Supplementary Fig. 18 for more 

images. b, Histogram of the cells in the ratio in area between the nucleus and enclosing box. c, t-SNE plot of the 

cells obtained with 4,096 features by VGG-16. A sub-type of neutrophils is evident at around (t-SNE 1, t-SNE 

2) = (−70, 40).  
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Fig. 5 High-throughput, high-content screening of E. gracilis cells. a, Fluorescence images of nitrogen-sufficient 

(+N) and nitrogen-deficient (−N) E. gracilis cells (n = 12,000 for each group) obtained by VIFFI flow cytometry. 

The lipids (shown in green) were stained by BODIPY505/515 while chlorophyll (shown in red) was 

autofluorescent. See Supplementary Fig. 15 and Supplementary Fig. 16 for more images. b, Histograms of E. 

gracilis cells in the average droplet area per cell. c, Histograms of E. gracilis cells in the number of intracellular 

lipid droplets per cell. Yellow plus signs in the insets indicate the locations of lipid droplets within the cell body. 

It is important to note that while the average droplet area does not change under two culture conditions, the 

number of lipid droplets varies significantly. The near-origin peak of the E. gracilis –N histogram is due to 

isolated lipid droplets, presumably caused by the fracture of cells in the sample preparation process (see 

Supplementary Fig. 19). 
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