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Abstract

Anticipating the genetic and phenotypic changes induced by natural or artificial selection

requires reliable estimates of trait evolvabilities (genetic variances and covariances). However,

whether or not multivariate quantitative genetics models are able to predict precisely the

evolution of traits of interest, especially fitness-related, life-history traits, remains an open20

empirical question. Here, we assessed to what extent the response to bivariate artificial

selection on both body size and maturity in the medaka Oryzias latipes, a model fish species,

fits the theoretical predictions. Three populations were selected for divergent body size while

maintaining a constant selection pressure against late maturity. The observed evolutionary

trends did not match the predictions from a bivariate quantitative genetics ”animal” model.25

The most parsimonious model identified environmental, but not genetic, covariances between

both traits, which cannot explain why body size did not evolve in the line selected for a smaller

body length. We investigated alternative mechanisms (including genetic drift, inbreeding

depression, natural selection, scaling or genetic asymmetry issues, and undetected genetic

correlations) but could not attribute the deviation from theory to any single explanation.30

Overall, these results question the ability of multivariate quantitative models to provide

valid and operational predictions of the evolutionary response to multivariate selection on

complex traits.

Keywords Animal model, Artificial selection, Asymmetric response, Bayesian mixed mod-

els, Bivariate selection, Evolvability, G-matrix, Genetic constraints, Model selection.35
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1 Introduction

Quantitative genetics offer simple and practical models to understand the evolution of quan-

titative traits in populations (Falconer & MacKay, 1996; Lynch & Walsh, 1998). In practice,

these models are used both to analyze past selection response (identifying the factors involved

in phenotypic change), and to predict the potential response to selection in a population. The40

rate of phenotypic change per generation is estimated by multiplying a measurement of the

standing genetic (heritable) variation by a measurement of the strength of selection. In the

simplest univariate model (the ”breeder’s equation”, Lush, 1937), the genetic variation can

be quantified by the heritability h2 (proportion of the phenotypic variance that is heritable

between parents and offspring). This setting is convenient when a unique trait is under se-45

lection, such as in some selective breeding programs, but becomes rapidly limited when the

selection pressure is more complex and targets multiple traits at once. Multivariate models

generally propose a slightly different setting, and quantify evolvability through the ”G” ma-

trix of additive genetic (co)variances across traits, and selection through a vector of selection

gradients β (Lande, 1979; Lande & Arnold, 1983; Blows, 2007; McGuigan, 2006). This ap-50

proach offers efficient tools to explore theoretically and estimate empirically the properties of

multivariate evolution and genetic constraints in complex and integrated biological systems

(Cheverud, 1984; Hansen & Houle, 2008; Houle et al., 2017).

Although the data from various organisms and different kinds of traits are heterogeneous

and experimental results lack consistency, the general pattern that seems to emerge from55

artificial selection experiments considering several traits is that quantitative genetics may

predict short-term direct responses (phenotypic change of a single selected trait) convinc-

ingly (Sheridan, 1988; Walsh & Lynch, 2018, p. 606), correlated responses (genetic change

in a trait that is genetically correlated to a selected trait, without being the target of selec-

tion) at least qualitatively (Gromko, 1995), while the response to multivariate selection (in60

which the selection gradient affects several traits) may be complex and inconsistent in some

cases (Roff, 1997, p. 188, Roff, 2007 for review). Whether this lack of prediction power roots
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into experimental issues, unrealistic assumptions and flaws in the multivariate quantitative

genetics theory (e.g. inappropriate abstraction of proximal physiological mechanisms, Davi-

dowitz et al., 2016), or poor understanding of the nature and stability of genetic correlations65

(which could be extremely environmentally-labile, Gutteling et al., 2007), largely remains to

be determined.

In a companion paper, Renneville et al. (Under Review) investigated the phenotypic

consequences of artificial selection on the medaka fish (Oryzias latipes) for a broad set of

morphological, physiological, and life history traits, among which two were under direct70

selection. Wild-caught fish were submitted to 6 generations of truncation selection on fish

length at 75 days (and thus, somatic growth rate). The experimental procedure generated

three populations; a Large line, in which only large fish were bred, a Small line, in which

only small fish were bred, mimicking harvest-like selection regime, and a Control line, in

which fish were bred independently from their size. As the experimental design discarded75

de facto immature fish from the breeding pool, all three lines were thus also affected by a

selection pressure for early maturity, a trait that was phenotypically correlated with size.

Selection was thus essentially bivariate, in divergent directions across lines for body size and

in the same direction (but with different intensities) for maturity. As extensively described in

Renneville et al. (Under Review), after 6 generations of artificial selection, all lines evolved,80

but phenotypic response did not follow the selection differentials. Fish body size evolved only

in the Large line, but not in the Small line, which remained statistically indistinguishable

from the Control line. Conversely, the frequency of mature fish did not increase in spite

of a positive selection differential in all three lines. These results confirm that anticipating

qualitatively and quantitatively the consequences of multivariate selection on fish morphology85

and physiology cannot be based on the fitness function, but also needs to account for a deeper

understanding of the functional and evolutionary relationships between selected traits.

Here, we will investigate to what extent multivariate quantitative genetic models, which

include explicit genetic covariance components, could explain and predict such a counter-
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intuitive selection response. We estimated genetic and environmental (co)variance compo-90

nents with statistical mixed effect models accounting for the experimental pedigree structure

on the > 5000 phenotyped fish, from which genetic trends could be estimated. The anal-

ysis indicated that the selection response on maturity was coherent given the direction of

the selection gradients, but the asymmetric response of body size could not be explained by

classical quantitative genetics. Overall, both the direction and the magnitude of the selec-95

tion response remained inconsistent with multivariate predictions, even when accounting for

possible environmental (non-genetic) trends.

2 Materials and Methods

2.1 Biological material and experimental procedure

The initial population was derived from 100 wild adult medaka (Oryzias latipes) individuals100

sampled in June 2011 in Kiyosu (Aichi Prefecture), Japan. In order to keep track of the

pedigree, fish were kept as 15-individual full-sib ”families” in 3L aquariums. After two

generations of random mating, the F1 mature individuals were split into three breeding groups

(Large, Small, and Control), and artificial selection was further performed for 6 generations,

up to generation F7. Every generation, fish were artificially selected on body size at 75105

days, conditional on sexual maturity (which, for practical reasons, was defined based on the

presence of secondary sexual characters). Standard length (Sdl) was first measured at 60

days from the pictures of individual fish (length from snout to the base of the caudal fin),

and 10 out of '15 families were preselected in each line based on their average length. At

about 75 days, pairs were formed by selecting the two largest (respectively, smallest and110

random) males and females in each family. Immature fish were discarded from the breeding

pool. Selection on maturity was necessary to (i) ensure the synchronization of all three lines,

(ii) avoid selecting individuals that would never reach the reproductive stage, and (iii) limit

sex identification mistakes when making pairs, as sex determination in immature fish requires
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molecular techniques. All fish (including non-selected families and non-selected individuals in115

selected families) were photographed, and their standard length (abbreviated as Sdl below)

and maturity (Mat) status was individually recorded. Detailed experimental procedures are

provided in Renneville et al. (Under Review).

The unavoidable increase in the inbreeding coefficient across generations was limited by

a specific procedure. Every generation in all three lines, twenty theoretical pairs of fish (two120

males and two females from each of the 10 families pre-selected at 60 days) were determined

by a computer resampling procedure (selection of the pairing pattern minimizing the median

inbreeding coefficient), and this theoretical pairing pattern was followed as close as possible

when fish were selected after 75 days. By generation F7, assuming no inbreeding in the F1

population, the mean inbreeding coefficients were F = 0.11 in the Large line, F = 0.091 in125

the Control line, and F = 0.085 in the Small line. As the inbreeding coefficient is expected

to increase by a factor 1−1/2Ne every generation, inbreeding population size estimates were

about Ne ' 27, Ne ' 33, and Ne ' 35 in Large, Control, and Small lines, respectively. This

procedure thus made it possible to maintain an average effective population size around 30

in all three lines.130

2.2 Data analysis

The dataset consists in the measurement of body size (in mm) at about 75 days, the sex, and

the maturity status for each of the n = 5285 fish of the experiment. The father and the mother

of each fish was recorded, except for generation F0. All the data analysis was performed with

R version 3.4.4 (R Core Team, 2018). Inbreeding and coancestry coefficients were calculated135

with the package kinship2 (Therneau & Sinnwell, 2015). An archive containing datasets and

scripts to generate tables and figures is provided as a supplementary file.

Realized selection differentials for body size were calculated as the difference between the

weighted average of the parental phenotype and the average offspring phenotype, weights

being proportional to the number of surviving offspring. Averages were normalized by the140
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Control line mean body length in parental and offspring generations. The regression coeffi-

cient (linear model without intercept) of the cumulated response to selection (relative to the

Control line) on the cumulated selection differential was considered to be an approximation

for heritability h2, the ratio between heritable (additive) genetic variance and phenotypic

variance.145

Selection gradients on standard length (βSgl
) and on maturity (βMgl

) were estimated

independently every generation g for each selected line l as the coefficients of a multivariate

linear regression wigl/w̄gl = βSgl
Sdligl +βMgl

Matigl + εigl, where wigl/w̄gl is the relative fitness

of individual i, Sdligl its body size, and Matigl its maturity status, encoded as 0 or 1. Both

”artificial” and effective (or realized) gradients (Walsh & Lynch, 2018, p. 487) were reported;150

for artificial selection gradients, fitness was 1 or 0 depending on the breeding status, while

for effective gradients fitness was approximated by the number of offspring recorded in the

database (i.e. having survived for 75 days). The later accounts for potential differences

in survival and fertility among artificially selected breeders, and reflects the real selection

pressure including natural selection.155

Genetic and environmental variance components were estimated from the selection re-

sponse with a bivariate mixed-effect linear model framework (’animal’ model) (Lynch &

Walsh, 1998; Sorensen & Gianola, 2007; Thompson, 2008), which general setting was as

follows. As we were considering two traits, the phenotype of an individual i (1 ≤ i ≤ n) is

bivariate (y1i , y2i), each trait following the classical infinitesimal model in quantitative ge-160

netics, e.g. y1i = µ1 + α1i + e1i , where µ1 is the grand mean of trait 1 at the first generation

(model intercept), α1i is the additive genetic (breeding) value of individual i for trait 1, and

e1i is an environmental (non-heritable residual) deviation. The variance-covariance matrix

of all 2n breeding values [α11 , . . . , α1n , α21 , . . . , α2n ]T is the Kronecker product G⊗A, where

G is the 2×2 additive variance-covariance matrix between both traits (additive genetic vari-165

ances on the diagonal, additive genetic covariance off-diagonal), and A, a n× n square and

symmetric matrix, is the genetic relationship matrix (which elements are twice the coefficient
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of coancestry of each pair of individuals, calculated from the pedigree). In a similar way, the

variance-covariance matrix of the 2n residuals is E⊗ In, where E is the 2× 2 environmental

variance-covariance matrix between both traits, and In is the identity matrix of size n.170

This theoretical setting had to be slightly modified to fit our dataset. The second trait

(maturity) is the stochastic realization of an underlying probability pm of maturing before

75 days. Phenotypic values were thus considered to be on the probit scale (which fits with

the assumption that maturity is a threshold character). In such a model, the mean and

the variance are not independent, and the residual variance cannot be estimated. We also175

considered additional random effects: an aquarium effect (351 levels) to account for the fact

that fish in the same aquarium shared a common environment (in addition of sharing the same

parents), and a generation effect (8 levels) to account for inter-generational environmental

variation. Both additional random effects were defined by 2× 2 variance-covariance matrices

with three independent parameters (variance for Sdl, variance for Mat, and covariance).180

The model was fitted in a Bayesian framework with the package MCMCglmm (Hadfield,

2010). Markov chains were run for 105 iterations, with a burn-in of 104, and the state of

the chain was stored every 100 iteration (nit = 900 data points). In practice, 12 chains

were run in parallel and analyzed together with the tools from the package coda (Plummer

et al., 2006). Priors for the random effects were inverse-Wishart with two degrees of freedom185

(ν = 2), and identity matrices Λ = I2 as variances. The prior for the residuals was the same,

except that the variance of the binomial trait VE(Mat) was fixed to 1. We used ”parameter

expanded priors” for random effects to improve convergence, with αµ = 0 and αV = 1000.

Such priors can be considered as informative compared to the improper ν = 0.002 suggestion

(de Villemereuil, 2012), but using informative priors was necessary to limit convergence190

and stationarity issues with the most complex models, while remaining denser around zero

compared to the ν = 3 possibility (uniform marginal distribution for correlations). The

influence of the prior on the posterior distribution was assessed for the most parsimonious

model, for which convergence issues were limited.
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We performed model selection based on the Deviance Information Criterion (DIC) (Spiegel-195

halter et al., 2002), from a minimal model (only genetic and residual variances) to a full model

(genetic, residual, aquarium, and generation variances, as well as genetic and residual covari-

ances). DIC is only an approximate (but simple and operational) criterion for model selection

in Bayesian models (Plummer, 2008; Hooten & Hobbs, 2015), its known caveats are probably

not problematic for the current analysis (linear model and non-mixture distributions). We200

also assessed the goodness of fit of a model M by computing a posterior predictive p-value

pM = #(ssM < ssdata)/nit, which counts the frequency at which the residual sum of squares

ss =
∑n

i = [(predi − obsi)/predi]
2 of a dataset simulated from the model posterior distri-

bution is less than the residual sum of squares of the real data. The best balance between

underfitting and overfitting is achieved when pM = 0.5.205

3 Results

3.1 Selection gradients

Selection gradients were constant and repeatable throughout the experiment (Figure 1 A).

The mean realized gradient on Sdl in the Large line was 0.47 mm−1± s.d. 0.08 (i.e. in average,

being 1 mm larger increased relative fitness by 0.47), −0.32 mm−1 ± 0.13 in the Small line,210

and 0.05 mm−1±0.16 in the Control line. Although the experimental procedure was identical

in all three lines regarding maturity (only mature fish were kept for breeding), the fact that

both traits were phenotypically correlated generated different selection gradients. Selection

on maturity was rather large in the Small line (2.49 ± 0.78 expressed in inverse maturity

probability, i.e. an increase in 10% in maturity probability raises the relative fitness by 25%),215

and more moderate in Control (0.86 ± 0.97) and Large (−0.71 ± 0.79) lines. The slightly

negative gradient in the Large line is a consequence of the phenotypic correlation between

size and maturity raw-scaled probability (large selected fish are enriched with individuals

that should not have been mature if average sized). In sum, selection was bivariate and not
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symmetric among lines; the gradients in the Small line were for smaller body size and high220

maturity, there was no gradient on body size in the Control line but a slight gradient for

larger maturity, and the Large line was selected for a larger body size, with a small (or even

slightly negative) gradient on maturity.

−3 −2 −1 0 1 2 3

−
5

0
5

10
15

Selection gradient on Body size (mm−1)

S
el

ec
tio

n 
gr

ad
ie

nt
 o

n 
M

at
ur

ity
 (

pr
ob

−1
)

012

34
5
6

0 1
2 3 4

5 6

0

1

2
3

4
5

6
Control
Large
Small

Artificial

Realized

A

−5 0 5 10

−
0.

5
0.

0
0.

5
1.

0
1.

5
Cumulative Sdl selection differential (mm)

S
dl

 r
es

po
ns

e 
to

 s
el

ec
tio

n 
(m

m
)

12 345 67

B

1
2

3

4

5

6

7

h2 = 0.11 +/− 0.03

B

1

2

3

45

6

7
h2 = −0.03 +/− 0.03

B

Figure 1: A: Bi-dimensional cumulative selection gradients in all three lines. Intended
”Artificial” gradients (assuming no natural selection) are indicated in light colors, realized
gradients are in dark. Generation numbers are indicated in the figure. B: Cumulative se-
lection differentials vs. cumulative selection response for Body size in Large and Small lines,
centered on the Control line. The regression coefficient (calculated independently for both
lines) is an estimate of heritability.

3.2 Phenotypic response to selection

The phenotypic response to selection is presented in Figure 2 for fish length and maturity.225

For both traits, time series were characterized by substantial generation-specific effects. By

generation F6 (assuming that the size similarity in all F7 fish is accidental), artificial selection

has generated a ' 1.2mm difference between the Large and the Control lines (about a 6%

increase in length, equivalent to a ' 18% increase in mass). Virtually all the phenotypic

difference was built in two generations of selection, and there was no more phenotypic progress230

from generations F3 to F6. Surprisingly, there were no significant differences between the

Control and the Small line, i.e. the Small line did not respond to selection on size. Realized
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centered responses. Generations F0 and F1 (common to all lines) are drawn in black. Error
bars stand for standard errors of the means.

heritabilities on body size was positive in the Large line (h2 = 0.11± s.e. 0.03), and virtually

zero in the Small line (h2 = −0.03± 0.03) (Figure 1 B).

The evolution in maturity was characterized by an irregular decrease, especially in the235

Control and Large lines. As for fish length, maturity was largely affected by generation-

specific effects, especially in F3, when maturity dropped from 95% to 75% in all three lines

before increasing again to 90% in F4. Overall, the general pattern for the bivariate selection

response is featured by (i) a modest selection response in the Large line for body size, but not

in the Small line, and (ii) a global evolutionary trend for maturity in the direction predicted240

by selection gradients relative to the Control line. The theoretical qualitative predictions are

thus partially fulfilled for the Large line, but not for the Small line.
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3.3 Genetic response to selection

A series of mixed-effect ”animal” models of various complexities were defined, the simplest

one consisting in genetic variances for both traits and a residual variance only for body size245

(no residual variance to be estimated for maturity due to the binomial nature of the trait),

while the most complex one featured genetic, residual, aquarium, and generation variances, as

well as genetic and residual covariances (Sup. Mat. 1). The most parsimonious model based

on the Deviance Information Criterion (DIC) had six variance components: two genetic

variances VG (but no covariance), residual variance VE for body length (by construction, the250

residual variance for maturity is fixed) and residual covariance CE between both traits, and

two generation effect variances VF . The differences in both information criteria (DIC) and

goodness of fit estimates (predictive posterior p-values) were substantial, and model selection

was conclusive about the exclusion of genetic covariances between body length and maturity,

as well as aquarium effects.255

Note, however, that the variance components were not independent. For instance, aquar-

ium effects and genetic effects were partly confounded, as fish sharing the same aquarium

were full sibs. Including aquarium effects in the model thus decreased substantially the vari-

ance of genetic effects (Sup. Mat. 2). In a similar way, models including genetic covariances,

which were discarded by the model selection procedure, tended to estimate large and signif-260

icant genetic covariances (correlation about 0.7), as well as larger genetic variances (twice

or even more). This is an indication that the exclusion of genetic covariance in the most

parsimonious model was not due to a lack of statistical power, but rather to a poor model

fit.

Table 1 reports the variance components from the best model as the median and support265

interval of the posterior distribution in a Bayesian framework. Model stationarity was unprob-

lematic with the default (expanded) priors, but posteriors displayed a substantial amount of

autocorrelation (Sup. Mat. 4). The additive genetic variance for body size was VG(sdl) = 1.6

mm2, which is more than estimated from realized heritabilities (VA = h2VP ' 0.11×5.3 = 0.6
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2.5% 50% 97.5%
VG(Sdl) 1.32 1.58 1.85
VG(Mat) 0.11 0.21 0.37
VE(Sdl) 3.49 3.71 3.94

CE(Sdl,Mat) 1.78 1.85 1.91
VF (Sdl) 0.47 1.35 5.83
VF (Mat) 0.49 1.39 7.16

Table 1: Posterior median and 95% support interval from the MCMCglmm model fit. V and
C stand for variance and covariances, respectively, and subscripts indicate different random
effects: additive genetic effects G, residual effects E, and generation effects F . Sdl is assumed
to be Gaussian, and Mat is binomial, on a probit scale (its residual variance VE(Mat) is fixed
to 1 instead of being estimated).

mm2). The residual covariance between both traits was substantial, corresponding to a cor-270

relation r ≈ 0.88 between residual body size and residual probit maturity probability. Most

variance components happened not to be sensitive to the prior, except VG(Mat) and VF (Mat),

which estimates were substantially lower when the prior was denser around 0 (Sup. Mat. 3),

although all support intervals largely overlapped. This suggests that the data was weakly

informative when estimating variances on maturity, and illustrates the difficulty in defining275

good priors for covariance matrices (Gelman et al., 2006; Alvarez et al., 2014).

The generation effect variance was relatively high, especially for Maturity. This generation

effect not only captures inter-generational fluctuations, but it also corrects for a general trend

in the time series for both traits. Figure 3 displays the genetic (average of breeding values

posterior distributions) and non-genetic (from the generation effects) trends from the best280

model.

3.4 Selection response prediction

In addition to providing the theoretical framework to design statistical models for the esti-

mation of variance components, quantitative genetics also aims at predicting the selection

response from the genetic architecture of phenotypic traits. In practice, testing the predic-285

tive power of such models requires a specific protocol, as genetic variance components need
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Figure 3: Estimated dynamics of genetic (left and center) and generation (right) effects. The
figure is based on the average of the posterior distribution for each breeding value (genetic
trend) and for each level of the generation effect. For genetic trends, breeding values were
averaged conditional on the line (Large, Small, and Control lines).

to be estimated from the starting population (from e.g. an experimental cross design) and

compared to the realized selection response. Although we do not have access to a direct

measurement of additive variance components in the starting population here, we estimated

the G matrix by fitting the animal model on the Control line individuals (including F0 and F1290

generations), and compared the predicted selection response to the observed response from

the selected lines (no overlap between both datasets). The best model for the Control-only

data also excluded genetic covariances. Even when considering uncertainties due to the es-

timation procedure and genetic drift, there was no overlap between predicted and observed

evolution for body size, while the prediction was convincing for maturity (Figure 4). There-295

fore, even if the selection response of body size appeared to occur in the expected direction

in the Large line, the magnitude of the realized response was largely overestimated.

4 Discussion

4.1 Selection response

We performed a large-scale artificial selection experiment on medaka body size for 6 gener-300

ations, keeping track of individual pedigrees. Three lines (Large, Small, and Control lines)

were differentially selected for body length at 75 days of age, conditional on maturity. As
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Figure 4: Predicted vs. realized selection responses. The G matrix was estimated by running
the animal model on the control line, and the expected selection response was simulated
by applying the Lande equation ∆z = Gβ (Lande & Arnold, 1983) recursively over six
generations, using the selection gradients β estimated in Figure 1. Plain lines: expected
genetic responses (Large line in red, Small line in blue); symbols: actual phenotypic responses
corrected for the generation effect estimated in Figure 3. Shaded areas represent the 95%
support interval of the predicted selection response from 10,000 simulations (G matrices
being sampled randomly from the Markov chain, and genetic drift being simulated by adding a
random (Gaussian) cumulated deviation of variance VG/Ne every generation, takingNe = 30).

maturity and body size are phenotypically correlated in fish, this selection procedure gen-

erated a complex bi-dimensional selection pattern on two life history traits. After removal

of non-heritable trends and noise with a random effect (’animal’) model, the selection re-305

sponse pattern matched only partially the expected bidirectional response. Maturity evolved

according to the predicted response (the Large line evolved late maturity compared to the

Control line, while the Small line evolved early maturity). The phenotypic response on ma-

turity was affected by a (supposedly non-genetic) downward trend, opposite to the selection

gradient. For body size, Large and Control lines responded in the direction of selection gra-310

dients (larger body size and stasis, respectively), but, surprisingly, the Small did not evolve a

smaller body length, and remained identical to the Control line throughout the experiment.

Here again, even in the Large line, the magnitude of the empirical response was smaller than

the theoretical prediction.
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Environmental effects In spite of the tight control over environmental conditions (con-315

stant food, lightning, water quality and temperature), the data analysis highlighted a sub-

stantial amount of generation-specific effects that obscured the genetic selection response.

Generations F0, F1, and F4 appear to be substantially ”better” (larger body size and higher

maturity frequency) than e.g. F3 and F7. The fact that ”good” generations were closer to

the beginning of the experiment tends to generate an overall decreasing trend, which was320

difficult to interpret. A candidate explanation relies on an increase in inbreeding, which is

unavoidable in such an experiment. However, the optimized pairing protocol limited the

increase in inbreeding below 10% from generations F0 to F7 (Sup. Mat. 5). Furthermore, we

found no correlation between phenotypic traits and inbreeding coefficient within generations.

Thus, we deem it unlikely that inbreeding depression could cause the observed drop in matu-325

rity frequencies (and, to a lower extent, in body size). We also noticed ”outlier” generations

for various indicators; for instance, generation F5 was featured by a neat increase in within-

family variance in body size for all three lines (across-family variance and average phenotypes

were not affected by this phenomenon, Sup. Mat. 6), and generation F7 was characterized by

an almost-complete loss of phenotypic differences in body size across lines, paralleled by a330

divergence for maturity. Again, it was not possible to relate these observations to particular

events in the laboratory.

Evolutionary trends One of the most unexpected result of this experiment was the lack

of response to selection on body size in the Small line, in spite of a substantial and consistent

selection gradient. This lack of response was confirmed by the breeding value predictions335

from the animal model, and is necessarily associated with genetic or physiological factors

that broke the assumptions of the infinitesimal model. The failure of the infinitesimal model

was confirmed by the differences in variance components estimated from different generations

or different selected lines (Sup. Mat. 7), which suggests that some model assumptions did

not hold. However, genetic variances computed from the posteriors of the estimated breeding340

values did not show any strong trend (Sup. Mat. 8), excluding a drastic change in the genetic
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architecture in the course of the experiment. Walsh & Lynch (2018, p. 611) proposed a list

of 13 possible explanations for asymmetric selection responses, which we tried to address as

thoroughly as possible (Table 2).

None of these explanations, taken individually, was particularly convincing. The potential345

for genetic drift to generate unexpected evolutionary patterns is substantial, and ruling out

the influence of drift in laboratory experiments in notoriously difficult (Lynch, 1988). Con-

trary to common belief, replicating selection lines would not have helped to rule out genetic

drift, as the sampling variance on the mean of two replicates of size Ne/2 is the same as on

the mean of a single replicate of size Ne. Nevertheless, several independent lines of evidence350

tend to exclude genetic drift as a major explanatory factor of the observed response. First,

the observed response does not lie within the theoretical support interval (Figure 4), showing

that the response was significantly less than the theoretical expectation even when account-

ing for drift. Second, estimated additive genetic variances, as estimated by the animal model,

are rather small compared to phenotypic variances (estimated heritabilities between 10 and355

30% depending on the model). As the variance of the deviation due to drift is proportional

to the genetic variance, low-heritability traits are expected to be rather insensitive to drift.

Finally, the average breeding values estimated by the animal model (which accounts for drift)

are quite stable across generations both for body size and maturity, which is compatible with

the inbreeding effective population size Ne ' 30 estimated from the pedigree, and excludes360

drift as a major driver of the evolution of selected lines.

The fact that Large and Small lines were set in different competitive environments ap-

pears as an appealing explanation for the asymmetric response. Indeed, in order to keep track

of the pedigree, fish were raised in the same tank as their full-sibs. If small or large body

size was partly correlated to any competitive behavioral trait, the environment was varying365

during the experiment, as fish from the Large line were competing with better competitors

every generation. This mechanism could have biased the selection response estimate in the

Large line, and explain the lower-than-expected body-size response to selection. However, it

17

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916361doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916361


Design artefacts

Drift Difficult to exclude formally, but convergent evidence dismisses
this possibility (further discussed in the text).

Scale effects Could not explain the absence of selection response.

Different effective differentials The selection procedure normalized the number of offspring irre-
spective to fertility differences. Effective selection gradients were
calculated. No difference in hatching nor mortality rates across
treatments. Natural selection against extreme phenotypes was de-
tected (Renneville et al., Under Review), but both selected lines
were affected symmetrically.

Undetected environmental trends Less likely in controlled laboratory environments. An overall trend
was detected, but no reason to expect different abiotic environmen-
tal conditions across lines. The competitive environment evolved
(fish were raised with sibs), this possibility is further discussed in
the text.

Effects of previous selection Two generations of random mating were performed before the first
generation of selection, which is expected to limit linkage disequi-
librium in F1.

Selection on correlated characters The analysis accounts for the two traits that were artificially se-
lected.

Nonlinear parent-offspring regression

Major genes with dominance Parent-offspring regression is rather linear (Sup. Mat. 9).

Genotype × Envir. interactions The abiotic environment was identical across lines (randomized
aquariums). Differences in competitive environments are expected
to build up progressively, not to stop selection response from the
first generation.

Departure from normality Could not explain the absence of selection response.

Other sources

Genetic asymmetries Could not explain the absence of selection response in spite of the
presence of additive genetic variance.

Inbreeding depression Limited increase in inbreeding coefficient, and no within-
generation correlation with selected traits (Sup. Mat. 5).

Maternal effects Father-offspring and Mother-offspring regressions were very simi-
lar (Sup. Mat. 9).

Associative effects Unlikely in controlled laboratory conditions.

Table 2: Why do quantitative genetics predictions fail? Thirteen possible explanations for
asymmetric responses, as proposed by Walsh & Lynch (2018).
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is less convincing that fish from the Small line could not become smaller because they were

competing with worse competitors. Additional indirect evidence comes from an independent370

phenotyping experiment in which fish from the present selection experiment at later gen-

erations were raised in individual tanks without competition (Diaz-Pauli et al., 2019). In

this phenotyping experiment, the genetic difference between the Large and Small lines was

not larger than we found here, indicating that removing competition did not magnify the

phenotypic effects of selection on medaka body size.375

Finally, natural selection against a small body size could not be formally excluded as

a cause of the asymmetric response, although it appears unlikely due to several consistent

observations: (i) the Control line was affected by a general phenotypic (but not genetic)

trend towards smaller body size, not larger; (ii) differences in fertility and mortality rates

were limited by the experimental procedures, as the number of progeny per fish pair was380

normalized whenever possible; (iii) the difference between artificial selection gradients and

realized gradients was reasonably small, (iv) natural selection on body length could be indi-

rectly estimated (Renneville et al., Under Review), and appeared to affect both small and

large fish.

Selection response on maturity also followed an unexpected pattern. First, it was affected385

by a general downward trend in all three lines, in spite of a positive gradient in Small and

Control lines. As noticed in companion paper I (Renneville et al., Under Review), this trend

vanished when maturity was corrected for body size, i.e. the intergeneration phenotypic

trends affecting both selected traits (Figure 3) were consistent, and the decrease in maturity

rate can be interpreted as a consequence of the downward environmental trend on body390

size, combined with a strong positive phenotypic correlation between both traits. Second,

once corrected for this general trend, the genetic response of maturity followed the selection

gradients qualitatively, but not quantitatively, as (i) the amplitude of the response was weak

compared to the expectation from the estimates of additive variance, and (ii) the response

was symmetric in spite of asymmetric selection gradients (Figure 4).395
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4.2 Strengths and weaknesses of the experimental design

Generalizing results obtained from model species in laboratory to wild species of interest is

not straightforward, as differences in environment may condition trait means, trait variances,

and genetic correlations (Gutteling et al., 2007; Postma, Visser, et al., 2007). The develop-

ment of the ’animal’ statistical model makes it possible to evaluate genetic components from400

observations in unmanipulated wild populations (Kruuk, 2004; Wilson et al., 2010). How-

ever, this approach remains particularly sensitive to e.g. gene-by-environment interactions,

and the causal factors of observed trends may be difficult to identify formally (Postma &

Charmantier, 2007; Walsh & Lynch, 2018). In contrast, controlled experiments (typically,

complex breeding schemes) can only be carried out in laboratory conditions, and experimen-405

tal approaches are often the only way to study key questions in population management,

even when studying complex marine ecosystems (Suquet et al., 2005).

Artificial selection has long been proven to be an efficient way to simulate evolutionary

processes in controlled conditions (Hill & Caballero, 1992; Conner, 2003). Here, we applied

a classical truncation selection scheme, with substantial improvements compared to classical410

mass breeding experiments: (i) we kept track of the pedigree during the whole experiment,

(ii) crosses were optimized to limit inbreeding, which kept the effective population size above

Ne = 27 in all three lines, (iii) we recorded fecundity and mortality rates in all families,

making it possible to evaluate the potential strength of natural selection, (iv) we raised a

control line in the same conditions as selected lines, which helps distinguishing non-genetic415

and genetic trends, and (v) we selected explicitly on both body size and maturity, and

considered both life history traits simultaneously in our analysis. The main drawback of this

approach is an increased cost and human power involved, which necessarily limits the size of

the experiment in terms of replicates (three lines in total) and duration (almost 3 years, for

8 generations and 6 episodes of selection, which may not be conclusive for low-evolvability420

traits). Nevertheless, in spite of such logistic limitations, our > 5000 fish pedigree displayed

sufficient statistical power to (i) exclude models involving genetic covariances between body
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size and maturity, (ii) reject the infinitesimal model predictions, and (iii) discard genetic

drift as a major explanatory factor. In sum, the size of the experiment might be too limited

to fully understand how life-history traits respond to complex multivariate selection, but is425

sufficient to conclude that this response does not follow quantitative genetics predictions.

4.3 Consistency with previous results

Due to their close relationship with fitness, life history traits are suspected to behave dif-

ferently from other (morphological, physiological, behavioral) characters. Their heritability

is lower (Price & Schluter, 1991; Roff, 1997) (probably due to a larger residual variance430

rather than a low genetic variance, Houle (1992)), and fitness-related traits have long been

expected to display specific correlation patterns. In the wild, selection should indeed erode

genetic variation for fitness, and thus only leave alleles with negatively correlated effects on

positively-selected traits. Yet, such a negative genetic correlation may not always translate

into a negative phenotypic correlation, as non-genetic residual positive covariances (typically,435

access to abundant food resources can improve all fitness-related components simultaneously)

may dominate the phenotypic covariance structure (Lande, 1982; Reznick, 1985). Moreover,

genetic polymorphism in genes involved in the efficiency of resource acquisition could also

generate positive (genetic) covariances (Houle, 1991), hampering the derivation of strong

theoretical predictions about the sign of genetic covariances among life history traits. Meta-440

analyses support the idea that correlations between life history traits range between −1 and 1

depending on traits and organisms, being slightly positive on average, but lower than between

other kinds of traits (Roff, 1996). Our results featuring the absence of detectable genetic cor-

relation between growth and maturity, associated with a strong residual correlation are thus

not unexpected.445

Less expected, however, was the lack of response to directional selection in the Small

line. Fish artificially-selected for large or small size generally respond to selection in both

directions (Diaz Pauli & Heino, 2014), symmetrically (as in the Atlantic silverside, Conover
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& Munch, 2002, or in zebrafish, Amaral & Johnston, 2012) or slightly asymmetrically with

a slower response in the Small line (in guppy, van Wijk et al., 2013). In the only experiment450

in which maturity was probably selected together with size (zebra fish, Uusi-Heikkilä et al.,

2015), the response was complex and asymmetric (no size change and later age maturation

in the Large line, smaller adult size and maturation at a smaller size — but not age — in

the Small line).

4.4 Consequences on the response of life history traits to selection455

pressure

One of the most appealing applications of quantitative genetics outside of their original

plant and animal breeding field is related to the prediction of the evolutionary consequences

of human activity and/or environmental change on natural populations (Shaw, 2019). For

instance, size-selective harvesting induces direct selection pressures on body size, and reduces460

life expectancy, which generates complex selection pressures on correlated life history traits

(including growth rate, fertility, survival, and age at maturity) (Heino et al., 2015). Long-

term evolutionary trends towards smaller body size, earlier maturity, and as a consequence,

lower fecundity are frequent in highly-harvested species (Trippel, 1995; Law, 2000). It is

therefore increasingly recognized that fisheries management programs should account for465

evolutionary change in life history traits (Kuparinen & Merilä, 2007; Fenberg & Roy, 2008;

Laugen et al., 2014).

Accounting for evolutionary response management strategies for in wild populations gen-

erally relies on standard models in ecology and quantitative genetics, which assume that

evolution can be reliably predicted when genetic trait variances and covariances are known470

(Diaz Pauli & Heino, 2014), which is generally not the case. Here, we show that such standard

expectations may not be fulfilled, which questions the possibility to apply general recipes.

First, the absence of genetic covariance between growth rate and maturity rules out the

correlated-response hypothesis, and suggests that, at least in some species, maturity could
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evolve independently from body size. In this context, observed evolution towards small body475

size and earlier maturity, which is widely observed in long-term exploited populations, has to

be interpreted as the result of bivariate selection rather than the result of indirect selection

due to genetic correlations. However, our results support the idea that bivariate selection re-

sponse is hardly predictable even in a controlled environment, which questions the robustness

of fishery management genetic models. Although we lack a clear explanation about why some480

heritable characters may not evolve when selected together, this phenomenon may decrease

our confidence in the estimates of phenotypic trajectories for populations under anthropic

pressure.
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Supplementary material 1615

Model selection

V S
G V M

G CSM
G V S

E V M
E CSM

E V S
A V M

A V S
F V M

F ∆ DIC PPP

gr X X X – 9806 0.00
gR X X X – X 304 1.00
Gr X X X X – 7740 0.00

GR X X X X – X 1738 0.00
gRa X X X – X X X 559 0.02

GRa X X X X – X X X 1132 0.00
gRaf X X X – X X X X X 252 0.17

GRaf X X X X – X X X X X 797 0.00
gRf X X X – X X X 0 0.32

GRf X X X X – X X X 1431 0.00

General overview of the models considered in the model selection procedure. The table
indicates which variance (V) and covariance (C) components were considered for each model
(uniquely indexed by a code indicated in the first column). Superscripts S and M stand for620

Standard lenght and Maturity, respectively. Note that the residual variance for maturity, V M
E ,

is fixed and thus never included in any model. Four variance components were considered,
genetic (g), residual (r), aquarium (batch) (a), and generation (f). Capital letters stand for
the full covariance structure (variances and covariances), while lower-case letters indicate
the absence of covariance (diagonal covariance matrix). The deviation to the best model625

in Deviance Information Criterion (DIC) units is indicated, as well as an estimate of the
Bayesian Posterior Predictive P-value (PPP) (probability for a dataset simulated from the
model to be closer to the predicted values than the real data, pM = 0.5 is expected when the
model M can perfectly generate the data).
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Posteriors for genetic variances and covariances

2.5% VG(Sdl) 97.5% 2.5% VG(Mat) 97.5% 2.5% CG(Sdl,Mat) 97.5%

gr 2.29 2.64 3.03 4.99 9.86 30.98
gR 1.61 1.88 2.16 0.52 0.73 1.02
Gr 3.82 4.19 4.59 30.92 52.10 110.88 9.83 12.87 18.85

GR 2.49 2.85 3.24 2.18 3.23 4.81 1.58 2.09 2.74
gRa 0.10 0.28 0.52 0.03 0.18 0.39

GRa 0.63 1.01 1.46 0.72 1.37 2.30 0.57 0.97 1.48
gRaf 0.10 0.25 0.46 0.01 0.08 0.20

GRaf 0.67 1.14 1.66 0.41 0.98 2.10 0.41 0.88 1.55
gRf 1.32 1.58 1.85 0.11 0.21 0.37
GRf 2.24 2.65 3.08 0.91 1.46 2.65 1.05 1.43 2.05

Median and 95% support interval of the posterior distribution for genetic variance com-
ponents (additive variance for body size, additive variance for maturity, and additive ge-
netic covariance when relevant) for all tested models. Models are labeled as described in635

Sup. Mat. 1. Variance components are not independent, genetic variances estimates decrease
when the aquarium effect is included in the model (aquariums are shared by full-sibs, so that
the variance between aquariums is expected to capture around half the genetic variance in
the population), and the genetic covariance reaches high levels when residual covariances are
excluded.640
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Supplementary material 3

Sensitivity to the prior
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VE(Sdl)Λ = I, ν = 2
Λ = I, ν = 3
Λ = I, ν = 0.002
Λ = I, ν = 2, αµ = 0, αV = 1000
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Posterior distribution of variance components from the best model under four prior Inverse-
Wishart (ν, Λ) distributions. When the number of degrees of freedom ν is small (ν < 1 in645

our two-dimensional case), the prior density is larger at the vicinity of zero, but using such an
improper prior raised convergence and stationarity issues with models including more random
effects. Expanded priors (represented in orange) implemented in MCMCglmm (marginally)
improves the mixing of the chains, and were used as default priors for random effects.

31

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 24, 2020. ; https://doi.org/10.1101/2020.01.23.916361doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.23.916361


Supplementary material 4650

Model convergence

Autocorrelation and effective size

Lag 1 Lag 5 Lag 10 Lag 50 Lag 100 Eff. Size

VG(Sdl) 0.93 0.82 0.74 0.40 0.21 2990.00
VG(Mat) 0.99 0.97 0.95 0.83 0.73 405.02
VE(Sdl) 0.94 0.77 0.64 0.25 0.14 3838.79

CE(Sdl,Mat) 0.95 0.80 0.69 0.33 0.19 2927.38
VF (Sdl) 0.28 0.15 0.15 0.15 0.14 958.43
VF (Mat) 0.19 0.08 0.08 0.07 0.06 2071.86

Autocorrelation for the random effect parameters was assessed with the autocorr.diag

function from package coda. The effective size (sample size adjusted for autocorrelation) was655

evaluated with the function effectiveSize from the same package.
. Among all variance components, only the genetic variance for maturity displays a

problematic autocorrelation.

Stationarity
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660

The vast majority of MCMC chains pass the Heidelberg stationarity test implemented in the
heidel.diag function from the coda package (null hypothesis H0: the chain is stationary at
least over its last half, the dashed line illustrates the 5% threshold, 66 out of 72 chains —
92% — are above the threshold vs. 68 under H0).
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Inbreeding
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Top: Distribution of the inbreeding coefficients across families in the course of the experiment
(assuming no inbreeding in F0). Bottom: relationship between the inbreeding coefficient of
families (normalized by the average of the line each generation) to phenotypic traits (centered
on the line and generation mean). None of these regressions are statistically significant.670
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Phenotypic Variance
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Dynamics of the phenotypic variance across (left) and within (right) aquariums during the
selection experiment. The traditional decomposition of genetic variances states that VP =
VG+VE, where VP , VG and VE stand for the phenotypic, genetic, and residual variances. The675

vast majority of quantitative genetics models assume a constant residual variance. In our
dataset, the phenotypic variance for body size could further be split into two components;
the variance across family means in each line at a given generation, and the variance within
families. The variance across families (or aquariums) catches half the genetic variance, as
well as the batch (aquarium) effect, which is part of the environment. It is rather constant680

through time, and almost identical in all three lines. The within-family variance catches the
other part of the genetic variance (brother-sister genetic differences) as well as the residual
variance (which includes microenvironmental, developmental, and measurement error). This
is also very similar in all three lines, but it displays an unexplained peak (increase by more
than 100%) in generation F5.685
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Model fitting on partial datasets
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The animal model estimates variance components in the starting population (F0) accounting
for drift and selection in subsequent generations. As a consequence, if the assumptions of the690

infinitesimal model hold, fitting the model on partial datasets should not affect the estimates
(while the posterior distribution is expected to be wider due to the decrease in information).
We split the dataset according to (i) generations (fitting the model on generations F0 to F3,
and from F4 to F7), and (ii) to the selected line (Large, Small, and Control lines), fitting the
model excluding sequentially each line. In the figure, ”Ref” stands for the posterior from the695

best model, asterisks indicate a significant (α < 5%) difference with the best model. The
estimates for genetic variances increase for all sub-datasets, and residual variances and co-
variances decrease accordingly. The most straightforward explanation is that the parameters
estimated from the full dataset result from a compromise between early/late generations and
selection lines, and that the goodness of fit of the model improves when fitted on partial700

data. Note that most posterior distributions largely overlap, suggesting that the estimated
parameters remain meaningful.
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Genetic Variance
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Estimated dynamics of the genetic variance, estimated as the variance of the mean posterior705

of individual breeding values for each selection line each generation. Posteriors were the same
as the ones used to compute the dynamics of the mean genetic value for the best model (gRf),
displayed in Figure 3.
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Parent-offspring regression710
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C: Control line
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The mid-parent-offspring regression coefficient estimates trait heritability. In addition, the
shape of the parent-offspring relationship is indicative of potential deviations from the in-
finitesimal model assumptions. In particular, a non-linear parent-offspring relationship may
indicate strong dominance, epistasis, or genetic asymmetries, which could explain asymmetric
responses to selection.715

A. Taking all selected lines into account, normalizing by generation phenotypic averages
to cancel out generation effects, the parent-offspring relationship appears to be slightly non-
linear (significant quadratic component: y = c + h2x + k2x, with h2 = 0.083 ± s.e.0.021
being an estimate of heritability (Pr(h2 = 0) = 6.57 · 10−5), the quadratic term being also
significant (Pr(k2 = 0) = 5.81 · 10−5).720
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B. However, considering each line separately, the pattern rather reflects different linear
relationships in all three lines. The Large line response to selection shifts the offspring
phenotype upwards, while the Small line lack of response sets the average offspring at the
same level as the Control. Non-linearity in this case is the consequence, rather than the
cause, of the asymmetric response.725

C. When considering the Control line alone, which has the most statistical power because
of the large variance in parental phenotypes, the quadratic term disappears, supporting the
fact that the parent-offspring regression is linear (h2 ' 0.14,Pr(h2 = 0) = 0.00698,Pr(k2 =
0) = 0.62)

D. Running mother-offspring and father-offspring regressions independently provide very730

similar results. Focusing on the control line sub-dataset, the mother-offspring regression leads
to h2 = 0.089±0.031 (s.e.), while the father-offspring regression results in h2 = 0.081±0.032.
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