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Synopsis  23 

Background: Melioidosis is a neglected tropical disease caused by the Gram-negative soil 24 

bacterium Burkholderia pseudomallei. Current treatment regimens are prolonged and costly, 25 

and acquired antimicrobial resistance has been reported for all currently used antibiotics.  26 

Objectives: Efforts to develop new treatments for melioidosis are hampered by the risks 27 

associated with handling pathogenic B. pseudomallei, which restricts research to facilities with 28 

Biosafety Level (BSL) 3 containment. Closely related Burkholderia species that are less 29 

pathogenic can be investigated under less stringent BSL 2 containment. We hypothesized that 30 

near-neighbour Burkholderia species could be used as model organisms for developing 31 

therapies that would also be effective against B. pseudomallei.  32 

Methods: We used microbroth dilution assays to compare the susceptibility of three Australian 33 

B. pseudomallei isolates and five near-neighbour Burkholderia species – B. humptydooensis, 34 

B. thailandensis, B. oklahomensis, B territorii and B. stagnalis – to antibiotics currently used 35 

to treat melioidosis, and general-use antibacterial agents. We also established the susceptibility 36 

profiles of B. humptydooensis and B. territorii to 400 compounds from the Medicines for 37 

Malaria Venture Pathogen Box.  38 

Results: From these comparisons, we observed a high degree of similarity in the susceptibility 39 

profiles of B. pseudomallei and near-neighbour species B. humptydooensis, B. thailandensis, 40 

B. oklahomensis and B. territorii. 41 

Conclusions: Less pathogenic Australian Burkholderia species B. humptydooensis, B. 42 

thailandensis, B. oklahomensis and B. territorii are excellent model organisms for developing 43 

potential new therapies for melioidosis. 44 
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Introduction  45 

Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis,1, 2 a 46 

neglected tropical disease with an estimated 165,000 cases and 89,000 deaths per year.1 47 

Mortality rates for infected individuals vary between 10% in Darwin (Northern Territory, 48 

Australia),3 where state-of-the-art intensive care facilities are available; and over 40% in 49 

endemic regions in southeast Asia, where health resources are more limited.4 B. pseudomallei 50 

is intrinsically resistant to many antibiotics, which limits treatment options; but importantly, 51 

environmental isolates and primary B. pseudomallei isolates (from melioidosis patients prior 52 

to antibiotic exposure) are almost universally susceptible to the first-line drugs used for 53 

melioidosis therapy, including ceftazidime, meropenem and cotrimoxazole.5-7 54 

In instances where melioidosis is incorrectly diagnosed, initial treatment includes 55 

conventional large spectrum antibiotic classes, such as aminoglycosides (e.g. streptomycin, 56 

gentamicin and kanamycin), early generation β-lactam antibiotics (e.g. penicillin), 57 

fluoroquinolones (e.g. ciprofloxacin) and macrolides (e.g. erythromycin). These generalised 58 

treatments have little effect on B. pseudomallei, and therefore, result in a low rate of success 59 

during periods of misdiagnosis.6, 8-10 The limited effectiveness of many therapeutics against B. 60 

pseudomallei is due to intrinsic and developed resistant to many antibiotics, via a number of 61 

different mechanisms including reduced permeation,11 drug efflux,5, 12, 13 enzymatic drug 62 

inactivation,14, 15 or mutations.16-18 63 

The current therapeutic strategy for treating correctly diagnosed melioidosis patients 64 

involves a two-phase schedule, comprising an acute intravenous phase followed by an oral 65 

eradication phase.19 The standard first-line therapy in Australia for the acute phase is 66 

ceftazidime for 10 – 14 days, while meropenem is used for severe infections or where treatment 67 

with ceftazidime has failed.6, 19 The length of the oral eradication phase, which is most 68 

commonly co-trimoxazole (trimethoprim-sulfamethoxazole), is correlated with the success of 69 
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treatment and reduction in frequency of relapse, often lasting four to six months.6, 19, 20 The 70 

prolonged nature of the melioidosis treatment schedule can lead to acquired resistance, a 71 

significant event that has been linked to treatment failure and mortality in melioidosis patients 72 

from the Northern Territory.5 Prolonged and costly treatments are especially undesirable in 73 

many regions where melioidosis is endemic,1, 2, 8 and to overcome both intrinsic and acquired 74 

antibiotic resistance, more efficacious therapeutics for the treatment of melioidosis are 75 

required.1, 21  76 

Efforts to develop new treatments for melioidosis are hampered by the classification of 77 

B. pseudomallei as a risk group 3 microorganism (i.e. the potential to cause serious human 78 

disease) in most countries.22-25 This classification restricts its research in laboratories classified 79 

as biosafety level 3 (BSL 3 in United States of America26 or the equivalent physical 80 

containment (PC) 3 in Australia and New Zealand27). B. pseudomallei is also recognised as a 81 

tier 1 biothreat agent on the Centre for Disease Control and Prevention Bioterrorism Agent 82 

list,25 a classification that further restricts research efforts.28, 29 To address this restriction, 83 

mutant B. pseudomallei strains Bp82 and Bp190, were produced as laboratory models that are 84 

avirulent to mice and hamsters.30 However, naturally occurring Burkholderia species that are 85 

not implicated in human disease, have also been described in terms of their close relatedness 86 

to B. pseudomallei,31-33 and these species warrant further investigation as model organisms. 87 

 88 

Objectives 89 

With the aim of overcoming the limitations of containment and handling restrictions of B. 90 

pseudomallei, we set out to characterise the antibiotic susceptibility profiles of closely related 91 

but non-pathogenic Burkholderia species, and establish safer model organisms for melioidosis 92 

research that can be conducted in BSL 2 facilities. On the basis of genetic relatedness, B. 93 

thailandensis has previously been used as model for B. pseudomallei,34-36 but comparison of 94 
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its antibiotic susceptibility has not been extensively evaluated. Therefore, we included B. 95 

thailandensis along with representative species – B. humptydooensis, B. oklahomensis, B 96 

territorii and B. stagnalis– in our susceptibility profiling studies.  97 

 98 

Methods 99 

Burkholderia isolates 100 

B. pseudomallei and near-neighbour isolates were collected from environmental samples 101 

(Menzies School of Health Research) using previously developed methods.37-39 Burkholderia 102 

isolates used in this study include B. pseudomallei (MSHR10517, MSHR2154 and 103 

MSHR1364), B. humptydooensis (MSMB043), B. oklahomensis (MSMB0175), B. stagnalis 104 

(MSMB049), B. thailandensis (MSMB0608) and B. territorii (MSMB0110). 105 

 106 

Antibiotic panel 107 

Antibiotics were selected to represent the current standard therapeutics for treating melioidosis, 108 

ceftazidime, co-trimoxazole and meropenem;6 and antibiotics more generally used in a clinical 109 

setting for treating bacterial infections, such as doxycycline and amoxicillin. To allow a 110 

broader characterisation, additional antibiotics with varying levels of efficacy against B. 111 

pseudomallei 9, 40-46 were also included. A comprehensive overview of the therapeutic target, 112 

mode of action, and expected dose required to inhibit 90% or 100% of B. pseudomallei growth 113 

is shown for each of the antibiotics in Table S1. 114 

 115 

Antibiotic susceptibility profiles 116 

Antimicrobial susceptibility testing was performed using a plate-based broth microdilution 117 

method.47 Briefly, assays were performed at 30 °C in Mueller Hinton broth (MHB) with 118 

bacteria in mid log phase growth that were diluted to ~ 106 colony forming units/mL (OD600 = 119 
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0.001). Compounds were prepared in water or dimethyl sulfoxide (DMSO) and two-fold serial 120 

dilutions in MHB were added to the bacteria (final bacterial concentration ~ 5 ´ 105 CFU/mL, 121 

with a maximum of 0.64% (v/v) DMSO). The minimal inhibitory concentration (MIC) was 122 

determined to be the lowest concentration of compound that inhibited visible bacterial growth 123 

24 h after treatment. Resazurin (final concentration 0.001% (w/v)) was added to each well for 124 

an additional one hour to confirm MIC visualisation. Resazurin (blue) is an oxidation-reduction 125 

indicator of aerobic and anaerobic respiration and is converted to resorufin (pink) by viable 126 

cells. MIC was determined from the well with the lowest compound concentration that 127 

remained blue (no respiration).  128 

 129 

Medicines for Malaria Venture (MMV) Pathogen Box compound susceptibility profiles 130 

A Pathogen Box with 400 drug-like compounds was provided by the MMV.48 Compounds 131 

were supplied as 10 mM stock solutions in 100% DMSO, and were diluted in MHB according 132 

to the suggested procedure in the Pathogen Box supporting documentation. Initial antimicrobial 133 

susceptibility testing of the 400 compounds was performed at 20 µM, using the broth 134 

microdilution method as described above. Ceftazidime (20 µM) was added as a control to each 135 

plate as a positive control for 100% growth inhibition.6 Subsequently, compounds with 136 

observed activity at 20 µM were serially diluted to determine the MIC. Compound ID, 137 

molecular weight, molecular formula and structure of compounds with activity against B. 138 

humptydooensis and B. territorii at 20µM are provided in Figure S1. 139 

 140 

Results and Discussion 141 

Burkholderia near-neighbour isolates  142 

B. pseudomallei belongs to the genus Burkholderia, which comprises over 70 species with 143 

varying virulence and pathogenicity.49-51 These species are divided according to their close 144 
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relationship to either B. pseudomallei (the B. pseudomallei complex [Bpc]) or B. cepacia (the 145 

B. cepacia complex [Bpc]). In the current study, we have included B. pseudomallei and five 146 

representative near-neighbour Burkholderia species, B. thailandensis, B. humptydooensis, B. 147 

oklahomensis, B. stagnalis and B. territorii. The relationship between the near-neighbour 148 

species and pathogenic Burkholderia species is represented in Figure 1. B. thailandensis, B. 149 

humptydooensis and B. oklahomensis are most closely related to B. pseudomallei and fall 150 

within Bpc,31, 32, 52 whereas B. stagnalis and B. territorii are more closely related to B. cepacia, 151 

B. cenocepacia and B. multivorans) and fall within Bcc.33, 52 Genetic distance from B. 152 

pseudomallei is shown in Table S2 for near-neighbour isolates from a previous study.52 153 

 154 
Figure 1. Schematic representation of near-neighbour Burkholderia species and their 155 
relatedness to B. pseudomallei and other major disease-causing species. Relationships are 156 
derived from previous phylogenetic trees.31, 33, 52 Lines represent relationships between the 157 
species, but not genetic distance. Closed circles indicate Burkholderia species included in this 158 
study. The species highlighted in bold are implicated in human disease. 159 
 160 

Antibiotic susceptibility profiles for B. pseudomallei and near-neighbours  161 

The aim of this investigation was to determine whether the susceptibility of B. pseudomallei to 162 

a range of therapeutics used to treat melioidosis and generalised bacterial infections is 163 

recapitulated by near-neighbour species. We hypothesized that species with similar antibiotic 164 

susceptibility profiles to B. pseudomallei would have utility as less pathogenic models, to 165 
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facilitate initial screening of new therapeutic molecules without the restrictive physical 166 

containment requirements required for working with B. pseudomallei. 167 

Current melioidosis treatment involves a regimen of antibiotics, including ceftazidime 168 

or meropenem, with or without co-trimoxazole. Therefore, we compared the susceptibility of 169 

B. pseudomallei near-neighbour species and B. pseudomallei isolates to these three key 170 

antibiotics. B. pseudomallei isolates MSHR10517, MSHR2154 and MSHR1364 were inhibited 171 

by 1 – 3 mg/L of ceftazidime, 6 mg/L co-trimoxazole and 1 – 2 mg/L of meropenem (Table 1). 172 

These values were consistent with previously reported MICs for other B. pseudomallei isolates 173 

(see Table S1).9, 41, 44, 53 By comparing the susceptibility of B. pseudomallei isolates 174 

MSHR10517, MSHR2154 and MSHR1364 to the near-neighbour species, we found that the 175 

B. pseudomallei susceptibility profile was best reflected by B. humptydooensis, which was 176 

completely inhibited by 1 – 3 mg/L ceftazidime, 6 – 12 mg/L co-trimoxazole and 1 mg/L 177 

meropenem. B. thailandensis and B. territorii also had similar MIC values for ceftazidime and 178 

meropenem but were slightly more susceptible to co-trimoxazole (2 – 3 mg/L). In contrast, B. 179 

oklahomensis was two to four-fold more susceptible to ceftazidime and co-trimoxazole than 180 

the B. pseudomallei isolates. B. stagnalis was two-fold less susceptible to ceftazidime (MIC 5 181 

mg/L) and co-trimoxazole (MIC 6– 12 mg/L), with greater than ten-fold reduced susceptibility 182 

to meropenem (MIC of 14 – 38 mg/L). Together, these susceptibility data show that B. 183 

humptydooensis, B. thailandensis and B. territorii best represent the antibiotic susceptibility of 184 

B. pseudomallei isolates for first- and second-line melioidosis therapies.  185 

We also compared the activity of antibiotics that are commonly used to treat bacterial 186 

infections (see Table 1, general-use). Doxycycline showed potent activity toward B. 187 

pseudomallei isolates (MIC 1 mg/L) that was consistent with previous reports.9, 20 The near-188 

neighbour species B. humptydooensis, B. thailandensis, B. oklahomensis and B. territorii were 189 

even more susceptible to treatment with doxycycline, with MIC values of 0.01 – 1 mg/L. These 190 
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near-neighbour species were also more susceptible to treatment with trimethoprim (MIC 0.6 – 191 

9 mg/L) and chloramphenicol (MIC 3 – 10 mg/L), compared to B. pseudomallei (MIC 5 – 9 192 

mg/L and 21 mg/L respectively).  193 

The activities of rifampicin (MICs 7 – 13 mg/L) and tetracycline (0.4 – 7 mg/L) against 194 

B. humptydooensis, B. thailandensis and B. territorii agreed with their activity against B. 195 

pseudomallei, with less than two-fold difference in MIC values (see Table 1). Rifampicin had 196 

poor activity against B. pseudomallei (MIC 8 – 16 mg/L) that was consistent with previous 197 

reports,45 and in the current study it also showed poor potency against B. oklahomensis (MICs 198 

7 mg/L). Tetracycline was less comparable, with MIC against B. oklahomensis of up to 28 199 

mg/L. B. stagnalis was less susceptible than B. pseudomallei to both tetracycline (MICs > 200 

seven-fold higher) and rifampicin (MICs > two-fold higher). 201 

For nalidixic acid and kanamycin, complete inhibition of B. pseudomallei isolates was 202 

not observed following treatment with 16 mg/L or 37 mg/L antibiotic (the highest 203 

concentrations tested), but some activity against B. humptydooensis and B. territorii was 204 

observed at these doses. Consistent with previous reports, amoxicillin, ampicillin, 205 

clarithromycin gentamicin, puromycin, spectinomycin and streptomycin had no activity 206 

against the B. pseudomallei isolates,6, 9, 12, 44, 45 and these antibiotics also showed no activity 207 

against the near-neighbour species at the tested concentrations. We additionally tested 208 

antibiotics with limited or no previously reported susceptibilities to B. pseudomallei and 209 

showed that cefsulodin and paromomycin were not active against any of the Burkholderia 210 

species at the tested concentrations.  211 

From these comparative antibiotic susceptibility screens, we showed that B. 212 

pseudomallei near-neighbour species, B.humptydooensis, B. thailandensis, B. oklahomensis 213 

and B. territorii, have similar antibiotic susceptibility profiles to those of B. pseudomallei 214 

against key melioidosis therapeutics, as well as a number of other antibiotics used for treating 215 
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bacterial infections. Furthermore, the similarities in antibiotic susceptibility span across 216 

multiple modes of action, including inhibition of cell wall synthesis, nucleic acid synthesis, 217 

DNA replication, and protein synthesis. Therefore, we propose that these non-pathogenic 218 

Burkholderia species can be used as model species to screen and identify novel antibiotics, and 219 

to predict potency against B. pseudomallei.  220 
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Table 1: MICs of antibiotics against Burkholderia strains a 221 

      MIC (mg/L) b 

 Antibiotic c Mode of action d 
B. pseudomallei B. hu B. ok B.th B. st B. te 

MSHR 
1364 

MSHR 
2154 

MSHR 
10517 

MSMB  
043 

MSMB 
0175 

MSMB  
0608 

MSMB 
049 

MSMB 
0110 

Line 1 
Ceftazidime CWS 3 1 – 3 3 1 – 3 0.3 1 – 3 5 3 

Co-trimoxazole NAS 6 6 6 6 – 12 1 – 6 2 – 3 6 – 12 2 – 3 

Line 2 Meropenem CWS 1 1 2 1 0.4 – 2 2 14 – 28 2 

G
en

er
al

-u
se

 

Cefsulodin 

CWS 

- - - >35 >35 >35 >35 >35 

Amoxicillin ³23 ³23 ³23 ³23 ³23 ³23 ³23 ³23 

Ampicillin ³24 ³24 ³24 ³24 ³24 ³24 ³24 ³24 

Sulfamethoxazole 
NAS 

- - - 16 - ³16 8 - ³16 ³16 ³16 ³16 

Trimethoprim 9 5 – 9 9 5 – 9 1 – 9 1 2 – 5 0.6 – 1 

Rifampicin  13 13 13 13 7 13 26 – 53 13 

Nalidixic Acid DR ³16 ³16 ³16 8 – 16 >16 16 >16 8 

Doxycycline 

PS 
 

1 1 1 £ 0.3 – 1 0.3 – 1 1 8 – 16 0.01 – 1 

Tetracycline 2 2 2 – 4 2 – 7 1 – 28 2 – 7 14 - ³28 0.4 – 2 

Chloramphenicol 21 21 21 3 – 10 5 – 10 5 – 10 10 – 21 5 

Kanamycin ³37 ³37 ³37 19 – 37 ³37 ³37 ³37 37 - ³37 

Gentamicin ³37 ³37 ³37 ³37 ³37 ³37 ³37 ³37 

Puromycin ³35 ³35 ³35 ³35 ³35 ³35 ³35 ³35 

Spectinomycin ³32 ³32 ³32 ³32 ³32 ³32 ³32 ³32 

Clarithromycin - - - ³48 ³48 ³48 ³48 ³48 

Paromomycin - - - ³40 ³40 ³40 ³40 ³40 

Streptomycin - - - ³47 ³47 ³47 ³47 ³47 
a Near-neighbour species B. humptydooensis, B. hu; B. oklahomensis, B. ok; B. thailandensis, B. th; B. stagnalis, 222 
B. st; B territorii, B. te.  223 
b MICs were determined using broth microdilution of bacteria in growth phase. Tested antibiotic concentrations 224 
in µM were converted to mg/L. 225 
c Antibiotics: Line 1 and Line 2, current therapies for treating melioidosis; General-use, used for unknown 226 
bacterial infections. 227 
d Mode of action as described by DrugBank.54 Inhibition of: cell wall synthesis (CWS), nucleic acid synthesis 228 
(NAS), DNA replication (DR), protein synthesis (PS). 229 
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Susceptibility of B. humptydooensis and B. territorii to MMV compounds 230 

To further evaluate the suitability of the near-neighbour Burkholderia species as models for 231 

predicting the drug susceptibility of B. pseudomallei, we examined the susceptibility of B. 232 

humptydooensis and B. territorii to 400 diverse, drug-like molecules from the MMV Pathogen 233 

Box.48 This box includes compounds with activity against infectious diseases (including 234 

tuberculosis, malaria, and African sleeping sickness), that have recently been examined for 235 

activity against five B. pseudomallei isolates.55 236 

We initially screened the MMV compounds for activity against B. humptydooensis and 237 

B. territorii at 20 µM (~8 – 16 mg/L), and identified four active compounds in agreement with 238 

previously reported activity toward B. pseudomallei isolates;55 doxycycline, levofloxacin, 239 

rifampicin, MMV675968, and MMV688271 (see Figure S1 for characteristics of the 240 

compounds). An additional compound, MMV67968, showed novel activity toward the near-241 

neighbour species. 242 

Next, we determined the MICs toward B. humptydooensis and B. territorii for the 243 

compounds identified from the initial screen, and for three additional compounds from a 244 

previous B. pseudomallei susceptibility screen;55 auranofin, miltefosine and MMV688179 (see 245 

Table 2 and Table S1). The activities of doxycycline (MIC 0.5 – 1 mg/L), levofloxacin ( MIC 246 

1 – 6 mg/L), MMV688271 (MIC 4 – 8 mg/L) and ceftazidime (MIC 2 – 4mg/L) against the 247 

near-neighbour species were within two-fold of their reported MICs against B. pseudomallei 248 

(1 – 3 mg/L, 4 – 10 mg/L and 8 – 12 mg/L respectively).55 Notably, the MICs for rifampicin, 249 

doxycycline and ceftazidime determined from the MMV compound screen (Table 2) were in 250 

close agreement with MICs from the antibiotic susceptibility screen (Table 1). The MIC values 251 

for auranofin, miltefosine and MMV688179 were at or above the highest concentration tested. 252 

These high MICs are consistent with previous reports in B. pseudomallei55 (see Table 2). 253 
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MMV675968 was active against B. humptydooensis and B. territorii, with MIC 254 

between 3 – 12 mg/L, an activity range that is within two-fold of the ‘gold-standard’ 255 

melioidosis therapy ceftazidime. Therefore, this newly identified molecule is worthy of further 256 

investigation for activity against B. pseudomallei.  257 

Overall, comparison of the activity of the 400 tested MMV compounds against B. 258 

humptydooensis and B. territorii provided independent correlation for four of the seven 259 

compounds with previously identified activity against B. pseudomallei.55 Although almost all 260 

strains of B. pseudomallei tested have intrinsic resistance to gentamicin and streptomycin, 261 

there have been rare reports of susceptibility to these antibiotics in isolates from Thailand and 262 

Malaysia.42, 56 These examples might suggest differences in susceptibility profiles of B. 263 

pseudomallei isolates originating from different geographic regions; a question we have not 264 

directly answered in this study. However, we show that these near-neighbour isolates provide 265 

a strong prediction for susceptibility of Australian B. pseudomallei isolates, and can also 266 

predict the susceptibility of clinical isolates of Mexican, Thai and Australian origin to 400 267 

compounds.55  268 
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Table 2: MICs of MMV compounds against B. humptydooensis and B. territorii  269 

  MIC (mg/L) a MIC (mg/L) b 

Compound Mode of Action c B. humptydooensis 
MSMB 43 WGS 

B. territorii 
MSMB 110 WGS 

B.pseudomallei 

Ceftazidime d CWS 2 – 4 1 – 4 3 – 4 

Doxycycline PS 0.5 0.5 – 1 1 – 3 

Levofloxacin DR 1 – 3 1 – 6 4 – 10 

Rifampicin NAS 13 13 – 26 18 – 45 

MMV688271 unknown 4 – 8 4 – 8 6 – 12 

MMV675968 unknown 6 – 12 3 – 12 n.d. e 

Auranofin unknown >22 >22 150 

Miltefosine ET >13 3 - >13 >1600 

MMV688179 unknown 15 15 12.5 - >100 
 270 
a MIC values for B. humptydooensis and B. territorii calculated from serial dilutions of the MMV Pathogen Box 271 
compounds, starting at 20 µM. Values were converted to mg/L.  272 
b MIC values determined by Ross et al, 2018 using B. pseudomallei isolates K96243 576, NCTC13178, 273 
NCTC13179 and MX2013.55 274 
c Mode of action as described by DrugBank54 – inhibition of: cell wall synthesis (CWS), nucleic acid synthesis 275 
(NAS), DNA replication (DR), electron transport (ET), protein synthesis (PS). 276 
d Ceftazidime was not part of the MMV panel but was included as a positive control with activity toward 277 
Burkholderia species. 278 
e MIC toward B. pseudomallei was not determined. Inhibitory activity was not detected at 2 µM (0.72 mg/L).55  279 
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Conclusions  280 

In this study, we demonstrate similar susceptibility of non-pathogenic Burkholderia species B. 281 

humptydooensis, B. oklahomensis, B. thailandensis, B. territorii and pathogenic B. 282 

pseudomallei for an extensive panel of antibiotics and drug-like compounds. In particular, the 283 

newly characterised species B. humptydooensis and B. territorii, and previously described B. 284 

thailandensis, provided good correlation with B. pseudomallei susceptibility. Thus, these near-285 

neighbour species have potential for use in initial investigations and high throughput screening 286 

of molecules for melioidosis therapeutic development. 287 

The lower risk-group classification of the near-neighbour species allows expansion of 288 

melioidosis research into a wider landscape, where more laboratories have adequate facilities 289 

to perform the initial compound discovery. We are hopeful that inclusion of well characterised 290 

and non-pathogenic model organisms in melioidosis research will accelerate the development 291 

of new treatment options for this neglected tropical disease.  292 
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Table S1. Antibiotic characteristics and activity toward Burkholderia pseudomallei 
 

Antibiotic Drug class Target for 
inhibition 

Mode of action a MIC 90 
(mg/L) 

MIC 100  
(mg/L) 

Li
ne

 1
 

Ceftazidime Cephalosporin Cell wall synthesis Inhibits penicillin-binding 
proteins (PBPs) responsible for 

cell wall synthesis 

2 – 41, 2 1 – 4 3, 4 

Co-trimoxazole Mixed Nucleic acid 
synthesis 

Trimoxazole and 
sulfamethoxazole mode of action 

 0.125 – 4 4 

Li
ne

 2
 Meropenem Carbapenem Cell wall synthesis Binds PBP and inhibits bacterial 

cell wall synthesis 
1 – 4 3 0.5 – 4 3, 4 

G
en

er
al

-u
se

 

Cefsulodin Cephalosporin Cell wall synthesis Binds PBPs and inhibits 
peptidoglycan cross linking 

>128 2  

Amoxicillin Penicillin Cell wall synthesis Binds PBPs and inhibits 
peptidoglycan polymer chain 

cross linkage 

>128 2, 5  

Ampicillin Penicillin Cell wall synthesis Binds PBP and inhibits bacterial 
cell wall synthesis 

 

 12.5 – 25 6 

Sulfamethoxazole Sulfonamide Nucleic acid 
synthesis 

Interferes with folic acid 
synthesis 

320 5  

Trimethoprim DHFR inhibitor Nucleic acid 
synthesis 

Inhibits dihydrofolate reductase 64 5  

Nalidixic Acid Fluoroquinolone DNA replication Inhibits the A subunit of 
bacterial DNA gyrase 

32 2 >50 6 

Rifampicin Rifampicin DNA-dependent 
RNA synthesis 

Inhibits bacterial DNA-
dependent RNA polymerase 

16 – 32 2, 5 8 – 16 7 

Doxycycline Tetracycline Protein synthesis Binds to the bacterial 30S 
ribosomal subunit, blocking 

aminoacyl tRNA from binding 

1 – 4 2, 5 0.25 – 3 4, 7  

Tetracycline Tetracycline Protein synthesis Binds to the bacterial 30S 
ribosomal subunit, blocking 

aminoacyl tRNA from binding 

0.5–8 1, 5 1.6 – 3.1 6 

Gentamicin Aminoglycoside Protein synthesis Binds to 16S rRNA and protein 
S12 and interferes with mRNA 

reading 

64–128 2, 5 > 50 6 

Kanamycin Aminoglycoside Protein synthesis Binds to 16S rRNA and protein 
S12 and interferes with mRNA 

reading 

64 5  

Paromomycin Aminoglycoside Protein synthesis Binds to 16S ribosomal RNA 
causing defective polypeptide 

chain production 

 >50 6 

Spectinomycin Aminoglycoside Protein synthesis Binds to the 30S subunit of the 
bacterial ribosome. Interferes 

with initiation of protein 
synthesis and elongation 

 >64 8 

Streptomycin Aminoglycoside Protein synthesis Binds to 16S rRNA and protein 
S12 and interferes with the 

assembly of ignition complex 
between mRNA and the bacterial 

ribosome 

 >50 6 

Clarithromycin Macrolide Protein synthesis Binds to the 50S ribosomal 
subunit and inhibits RNA-

dependent protein synthesis 

 32 – 64 7 

Chloramphenicol Amphenicol Protein synthesis Inhibits peptidyl transferase 
activity of the bacterial ribosome 

16–32 2, 5 ~6 – 20 6 

a Mode of action as described by DrugBank. 9  
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Table S2. Comparison of genetic distance between Burkholderia pseudomallei and near-
neighbour species  

Burkholderia 
near-neighbours 

Changes/site between 
near-neighbour and 
B. pseudomallei a 

B. thailandensis ~ 0.032 
B. humptydooensis ~ 0.041 
B. oklahomensis ~ 0.054 
B. stagnalis ~ 0.094 
B. territorii ~ 0.115 

a branch distances (in cm) were determined from a maximum-likelihood phylogeny (Figure 1 from 
Sahl et al 2016 10) and converted to changes/site using the scale bar: 1cm of branch length = 0.01 
changes/site.  
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Figure S1. Compounds from the Medicines for Malaria Venture Pathogen Box11 with activity 
against B. humptydooensis and B. territorii at 20 µM (7.2 – 17.6 mg/L) 

Compound ID Compound 
Name 

Total 
molecular 

weight 

Molecular 
weight 
(parent 

molecule) 

Molecular 
formula Compound structure 

MMV688978 Auranofin 678.48 678.48 C20H34AuO9PS 

 

MMV000011 Doxycycline 480.90 444.44 C22H24N2O8 

 

MMV687798 Levofloxacin 
(-)-ofloaxcin 361.37 361.37 C18H20N3O4F 

 

MMV688990 
 Miltefosine 407.57 407.57 C21H46NO4P 

  

MMV688775 Rifampicin 822.94 822.94 C43H58N4O12 

 

MMV675968 N/A 359.81 359.81 C17H18N5O2Cl 

 

MMV688179 N/A 467.19 403.27 C18H16N6OCl2 

 

MMV688271 N/A 476.19 403.27 C18H16N6OCl2 

 

Ceftazidime Ceftazidime 546.6 546.6 C22H22N6O7S2 
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