

1 **Drug susceptibility profiling of Australian *Burkholderia* species as models for**
2 **developing melioidosis therapeutics**

3

4 **Anna S. Amiss,¹ Jessica R. Webb,² Mark Mayo,² Bart J. Currie,^{2,3} David J. Craik,¹**
5 **Sónia Troeira Henriques,^{1,4*} and Nicole Lawrence.^{1*}**

6

7 ¹ Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland,
8 4072, Australia

9 ² Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern
10 Territory, 0811, Australia

11 ³ Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin
12 Hospital, Darwin, Northern Territory, 0811, Australia

13 ⁴ School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland
14 University of Technology, Translational Research Institute, Brisbane, Queensland, 4102,
15 Australia

16

17

18 * Corresponding author:

19 Tel. +61 7 33462014 E-mail: n.lawrence@uq.edu.au

20 Tel. +61 7 34437342 E-mail: sonia.henriques@qut.edu.au

21

22 Short running title: Non-pathogenic model species for melioidosis research

23 **Synopsis**

24 **Background:** Melioidosis is a neglected tropical disease caused by the Gram-negative soil
25 bacterium *Burkholderia pseudomallei*. Current treatment regimens are prolonged and costly,
26 and acquired antimicrobial resistance has been reported for all currently used antibiotics.

27 **Objectives:** Efforts to develop new treatments for melioidosis are hampered by the risks
28 associated with handling pathogenic *B. pseudomallei*, which restricts research to facilities with
29 Biosafety Level (BSL) 3 containment. Closely related *Burkholderia* species that are less
30 pathogenic can be investigated under less stringent BSL 2 containment. We hypothesized that
31 near-neighbour *Burkholderia* species could be used as model organisms for developing
32 therapies that would also be effective against *B. pseudomallei*.

33 **Methods:** We used microbroth dilution assays to compare the susceptibility of three Australian
34 *B. pseudomallei* isolates and five near-neighbour *Burkholderia* species – *B. humptydooensis*,
35 *B. thailandensis*, *B. oklahomensis*, *B. territorii* and *B. stagnalis* – to antibiotics currently used
36 to treat melioidosis, and general-use antibacterial agents. We also established the susceptibility
37 profiles of *B. humptydooensis* and *B. territorii* to 400 compounds from the Medicines for
38 Malaria Venture Pathogen Box.

39 **Results:** From these comparisons, we observed a high degree of similarity in the susceptibility
40 profiles of *B. pseudomallei* and near-neighbour species *B. humptydooensis*, *B. thailandensis*,
41 *B. oklahomensis* and *B. territorii*.

42 **Conclusions:** Less pathogenic Australian *Burkholderia* species *B. humptydooensis*, *B.*
43 *thailandensis*, *B. oklahomensis* and *B. territorii* are excellent model organisms for developing
44 potential new therapies for melioidosis.

45 Introduction

46 *Burkholderia pseudomallei* is a Gram-negative bacterium that causes melioidosis,^{1, 2} a
47 neglected tropical disease with an estimated 165,000 cases and 89,000 deaths per year.¹
48 Mortality rates for infected individuals vary between 10% in Darwin (Northern Territory,
49 Australia),³ where state-of-the-art intensive care facilities are available; and over 40% in
50 endemic regions in southeast Asia, where health resources are more limited.⁴ *B. pseudomallei*
51 is intrinsically resistant to many antibiotics, which limits treatment options; but importantly,
52 environmental isolates and primary *B. pseudomallei* isolates (from melioidosis patients prior
53 to antibiotic exposure) are almost universally susceptible to the first-line drugs used for
54 melioidosis therapy, including ceftazidime, meropenem and cotrimoxazole.⁵⁻⁷

55 In instances where melioidosis is incorrectly diagnosed, initial treatment includes
56 conventional large spectrum antibiotic classes, such as aminoglycosides (e.g. streptomycin,
57 gentamicin and kanamycin), early generation β -lactam antibiotics (e.g. penicillin),
58 fluoroquinolones (e.g. ciprofloxacin) and macrolides (e.g. erythromycin). These generalised
59 treatments have little effect on *B. pseudomallei*, and therefore, result in a low rate of success
60 during periods of misdiagnosis.^{6, 8-10} The limited effectiveness of many therapeutics against *B.*
61 *pseudomallei* is due to intrinsic and developed resistance to many antibiotics, via a number of
62 different mechanisms including reduced permeation,¹¹ drug efflux,^{5, 12, 13} enzymatic drug
63 inactivation,^{14, 15} or mutations.¹⁶⁻¹⁸

64 The current therapeutic strategy for treating correctly diagnosed melioidosis patients
65 involves a two-phase schedule, comprising an acute intravenous phase followed by an oral
66 eradication phase.¹⁹ The standard first-line therapy in Australia for the acute phase is
67 ceftazidime for 10 – 14 days, while meropenem is used for severe infections or where treatment
68 with ceftazidime has failed.^{6, 19} The length of the oral eradication phase, which is most
69 commonly co-trimoxazole (trimethoprim-sulfamethoxazole), is correlated with the success of

70 treatment and reduction in frequency of relapse, often lasting four to six months.^{6, 19, 20} The
71 prolonged nature of the melioidosis treatment schedule can lead to acquired resistance, a
72 significant event that has been linked to treatment failure and mortality in melioidosis patients
73 from the Northern Territory.⁵ Prolonged and costly treatments are especially undesirable in
74 many regions where melioidosis is endemic,^{1, 2, 8} and to overcome both intrinsic and acquired
75 antibiotic resistance, more efficacious therapeutics for the treatment of melioidosis are
76 required.^{1, 21}

77 Efforts to develop new treatments for melioidosis are hampered by the classification of
78 *B. pseudomallei* as a risk group 3 microorganism (i.e. the potential to cause serious human
79 disease) in most countries.²²⁻²⁵ This classification restricts its research in laboratories classified
80 as biosafety level 3 (BSL 3 in United States of America²⁶ or the equivalent physical
81 containment (PC) 3 in Australia and New Zealand²⁷). *B. pseudomallei* is also recognised as a
82 tier 1 biothreat agent on the Centre for Disease Control and Prevention Bioterrorism Agent
83 list,²⁵ a classification that further restricts research efforts.^{28, 29} To address this restriction,
84 mutant *B. pseudomallei* strains Bp82 and Bp190, were produced as laboratory models that are
85 avirulent to mice and hamsters.³⁰ However, naturally occurring *Burkholderia* species that are
86 not implicated in human disease, have also been described in terms of their close relatedness
87 to *B. pseudomallei*,³¹⁻³³ and these species warrant further investigation as model organisms.

88

89 **Objectives**

90 With the aim of overcoming the limitations of containment and handling restrictions of *B.*
91 *pseudomallei*, we set out to characterise the antibiotic susceptibility profiles of closely related
92 but non-pathogenic *Burkholderia* species, and establish safer model organisms for melioidosis
93 research that can be conducted in BSL 2 facilities. On the basis of genetic relatedness, *B.*
94 *thailandensis* has previously been used as model for *B. pseudomallei*,³⁴⁻³⁶ but comparison of

95 its antibiotic susceptibility has not been extensively evaluated. Therefore, we included *B.*
96 *thailandensis* along with representative species – *B. humptydooensis*, *B. oklahomensis*, *B*
97 *territorii* and *B. stagnalis* – in our susceptibility profiling studies.

98

99 **Methods**

100 ***Burkholderia* isolates**

101 *B. pseudomallei* and near-neighbour isolates were collected from environmental samples
102 (Menzies School of Health Research) using previously developed methods.³⁷⁻³⁹ *Burkholderia*
103 isolates used in this study include *B. pseudomallei* (MSHR10517, MSHR2154 and
104 MSHR1364), *B. humptydooensis* (MSMB043), *B. oklahomensis* (MSMB0175), *B. stagnalis*
105 (MSMB049), *B. thailandensis* (MSMB0608) and *B. territorii* (MSMB0110).

106

107 **Antibiotic panel**

108 Antibiotics were selected to represent the current standard therapeutics for treating melioidosis,
109 ceftazidime, co-trimoxazole and meropenem;⁶ and antibiotics more generally used in a clinical
110 setting for treating bacterial infections, such as doxycycline and amoxicillin. To allow a
111 broader characterisation, additional antibiotics with varying levels of efficacy against *B.*
112 *pseudomallei*^{9, 40-46} were also included. A comprehensive overview of the therapeutic target,
113 mode of action, and expected dose required to inhibit 90% or 100% of *B. pseudomallei* growth
114 is shown for each of the antibiotics in Table S1.

115

116 **Antibiotic susceptibility profiles**

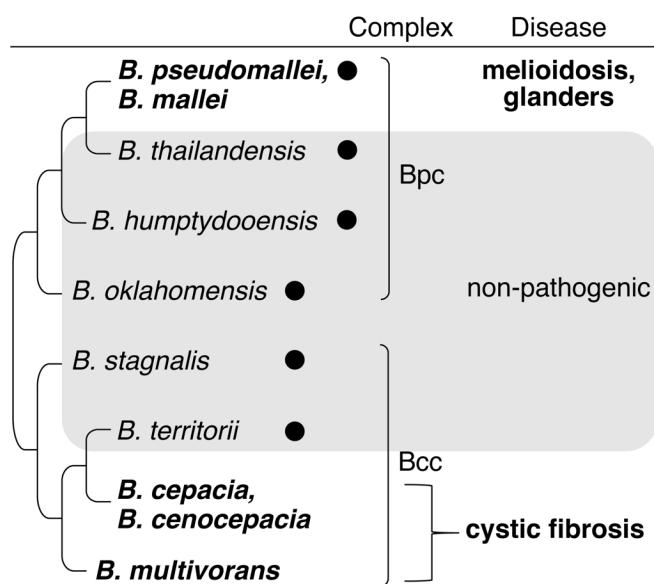
117 Antimicrobial susceptibility testing was performed using a plate-based broth microdilution
118 method.⁴⁷ Briefly, assays were performed at 30 °C in Mueller Hinton broth (MHB) with
119 bacteria in mid log phase growth that were diluted to ~10⁶ colony forming units/mL (OD₆₀₀ =

120 0.001). Compounds were prepared in water or dimethyl sulfoxide (DMSO) and two-fold serial
121 dilutions in MHB were added to the bacteria (final bacterial concentration $\sim 5 \times 10^5$ CFU/mL,
122 with a maximum of 0.64% (v/v) DMSO). The minimal inhibitory concentration (MIC) was
123 determined to be the lowest concentration of compound that inhibited visible bacterial growth
124 24 h after treatment. Resazurin (final concentration 0.001% (w/v)) was added to each well for
125 an additional one hour to confirm MIC visualisation. Resazurin (blue) is an oxidation-reduction
126 indicator of aerobic and anaerobic respiration and is converted to resorufin (pink) by viable
127 cells. MIC was determined from the well with the lowest compound concentration that
128 remained blue (no respiration).

129

130 **Medicines for Malaria Venture (MMV) Pathogen Box compound susceptibility profiles**

131 A Pathogen Box with 400 drug-like compounds was provided by the MMV.⁴⁸ Compounds
132 were supplied as 10 mM stock solutions in 100% DMSO, and were diluted in MHB according
133 to the suggested procedure in the Pathogen Box supporting documentation. Initial antimicrobial
134 susceptibility testing of the 400 compounds was performed at 20 μ M, using the broth
135 microdilution method as described above. Ceftazidime (20 μ M) was added as a control to each
136 plate as a positive control for 100% growth inhibition.⁶ Subsequently, compounds with
137 observed activity at 20 μ M were serially diluted to determine the MIC. Compound ID,
138 molecular weight, molecular formula and structure of compounds with activity against *B.*
139 *humptydooensis* and *B. terrtorii* at 20 μ M are provided in Figure S1.


140

141 **Results and Discussion**

142 ***Burkholderia* near-neighbour isolates**

143 *B. pseudomallei* belongs to the genus *Burkholderia*, which comprises over 70 species with
144 varying virulence and pathogenicity.⁴⁹⁻⁵¹ These species are divided according to their close

145 relationship to either *B. pseudomallei* (the *B. pseudomallei* complex [Bpc]) or *B. cepacia* (the
146 *B. cepacia* complex [Bcc]). In the current study, we have included *B. pseudomallei* and five
147 representative near-neighbour *Burkholderia* species, *B. thailandensis*, *B. humptydooensis*, *B.*
148 *oklahomensis*, *B. stagnalis* and *B. territorii*. The relationship between the near-neighbour
149 species and pathogenic *Burkholderia* species is represented in Figure 1. *B. thailandensis*, *B.*
150 *humptydooensis* and *B. oklahomensis* are most closely related to *B. pseudomallei* and fall
151 within Bpc,^{31, 32, 52} whereas *B. stagnalis* and *B. territorii* are more closely related to *B. cepacia*,
152 *B. cenocepacia* and *B. multivorans*) and fall within Bcc.^{33, 52} Genetic distance from *B.*
153 *pseudomallei* is shown in Table S2 for near-neighbour isolates from a previous study.⁵²

154
155 **Figure 1. Schematic representation of near-neighbour *Burkholderia* species and their**
156 **relatedness to *B. pseudomallei* and other major disease-causing species.** Relationships are
157 derived from previous phylogenetic trees.^{31, 33, 52} Lines represent relationships between the
158 species, but not genetic distance. Closed circles indicate *Burkholderia* species included in this
159 study. The species highlighted in bold are implicated in human disease.

160

161 **Antibiotic susceptibility profiles for *B. pseudomallei* and near-neighbours**

162 The aim of this investigation was to determine whether the susceptibility of *B. pseudomallei* to
163 a range of therapeutics used to treat melioidosis and generalised bacterial infections is
164 recapitulated by near-neighbour species. We hypothesized that species with similar antibiotic
165 susceptibility profiles to *B. pseudomallei* would have utility as less pathogenic models, to

166 facilitate initial screening of new therapeutic molecules without the restrictive physical
167 containment requirements required for working with *B. pseudomallei*.

168 Current melioidosis treatment involves a regimen of antibiotics, including ceftazidime
169 or meropenem, with or without co-trimoxazole. Therefore, we compared the susceptibility of
170 *B. pseudomallei* near-neighbour species and *B. pseudomallei* isolates to these three key
171 antibiotics. *B. pseudomallei* isolates MSHR10517, MSHR2154 and MSHR1364 were inhibited
172 by 1 – 3 mg/L of ceftazidime, 6 mg/L co-trimoxazole and 1 – 2 mg/L of meropenem (Table 1).
173 These values were consistent with previously reported MICs for other *B. pseudomallei* isolates
174 (see Table S1).^{9, 41, 44, 53} By comparing the susceptibility of *B. pseudomallei* isolates
175 MSHR10517, MSHR2154 and MSHR1364 to the near-neighbour species, we found that the
176 *B. pseudomallei* susceptibility profile was best reflected by *B. humptydooensis*, which was
177 completely inhibited by 1 – 3 mg/L ceftazidime, 6 – 12 mg/L co-trimoxazole and 1 mg/L
178 meropenem. *B. thailandensis* and *B. territorii* also had similar MIC values for ceftazidime and
179 meropenem but were slightly more susceptible to co-trimoxazole (2 – 3 mg/L). In contrast, *B.*
180 *oklahomensis* was two to four-fold more susceptible to ceftazidime and co-trimoxazole than
181 the *B. pseudomallei* isolates. *B. stagnalis* was two-fold less susceptible to ceftazidime (MIC 5
182 mg/L) and co-trimoxazole (MIC 6–12 mg/L), with greater than ten-fold reduced susceptibility
183 to meropenem (MIC of 14 – 38 mg/L). Together, these susceptibility data show that *B.*
184 *humptydooensis*, *B. thailandensis* and *B. territorii* best represent the antibiotic susceptibility of
185 *B. pseudomallei* isolates for first- and second-line melioidosis therapies.

186 We also compared the activity of antibiotics that are commonly used to treat bacterial
187 infections (see Table 1, general-use). Doxycycline showed potent activity toward *B.*
188 *pseudomallei* isolates (MIC 1 mg/L) that was consistent with previous reports.^{9, 20} The near-
189 neighbour species *B. humptydooensis*, *B. thailandensis*, *B. oklahomensis* and *B. territorii* were
190 even more susceptible to treatment with doxycycline, with MIC values of 0.01 – 1 mg/L. These

191 near-neighbour species were also more susceptible to treatment with trimethoprim (MIC 0.6 –
192 9 mg/L) and chloramphenicol (MIC 3 – 10 mg/L), compared to *B. pseudomallei* (MIC 5 – 9
193 mg/L and 21 mg/L respectively).

194 The activities of rifampicin (MICs 7 – 13 mg/L) and tetracycline (0.4 – 7 mg/L) against
195 *B. humptydooensis*, *B. thailandensis* and *B. territorii* agreed with their activity against *B.*
196 *pseudomallei*, with less than two-fold difference in MIC values (see Table 1). Rifampicin had
197 poor activity against *B. pseudomallei* (MIC 8 – 16 mg/L) that was consistent with previous
198 reports,⁴⁵ and in the current study it also showed poor potency against *B. oklahomensis* (MICs
199 7 mg/L). Tetracycline was less comparable, with MIC against *B. oklahomensis* of up to 28
200 mg/L. *B. stagnalis* was less susceptible than *B. pseudomallei* to both tetracycline (MICs >
201 seven-fold higher) and rifampicin (MICs > two-fold higher).

202 For nalidixic acid and kanamycin, complete inhibition of *B. pseudomallei* isolates was
203 not observed following treatment with 16 mg/L or 37 mg/L antibiotic (the highest
204 concentrations tested), but some activity against *B. humptydooensis* and *B. territorii* was
205 observed at these doses. Consistent with previous reports, amoxicillin, ampicillin,
206 clarithromycin, gentamicin, puromycin, spectinomycin and streptomycin had no activity
207 against the *B. pseudomallei* isolates,^{6, 9, 12, 44, 45} and these antibiotics also showed no activity
208 against the near-neighbour species at the tested concentrations. We additionally tested
209 antibiotics with limited or no previously reported susceptibilities to *B. pseudomallei* and
210 showed that cefsulodin and paromomycin were not active against any of the *Burkholderia*
211 species at the tested concentrations.

212 From these comparative antibiotic susceptibility screens, we showed that *B.*
213 *pseudomallei* near-neighbour species, *B. humptydooensis*, *B. thailandensis*, *B. oklahomensis*
214 and *B. territorii*, have similar antibiotic susceptibility profiles to those of *B. pseudomallei*
215 against key melioidosis therapeutics, as well as a number of other antibiotics used for treating

216 bacterial infections. Furthermore, the similarities in antibiotic susceptibility span across
217 multiple modes of action, including inhibition of cell wall synthesis, nucleic acid synthesis,
218 DNA replication, and protein synthesis. Therefore, we propose that these non-pathogenic
219 *Burkholderia* species can be used as model species to screen and identify novel antibiotics, and
220 to predict potency against *B. pseudomallei*.

221 **Table 1: MICs of antibiotics against *Burkholderia* strains ^a**

		MIC (mg/L) ^b									
		Antibiotic ^c	Mode of action ^d	<i>B. pseudomallei</i>			<i>B. hu</i>	<i>B. ok</i>	<i>B. th</i>	<i>B. st</i>	<i>B. te</i>
				MSHR 1364	MSHR 2154	MSHR 10517	MSMB 043	MSMB 0175	MSMB 0608	MSMB 049	MSMB 0110
Line 1	Ceftazidime	CWS		3	1 – 3	3	1 – 3	0.3	1 – 3	5	3
	Co-trimoxazole	NAS		6	6	6	6 – 12	1 – 6	2 – 3	6 – 12	2 – 3
Line 2	Meropenem	CWS		1	1	2	1	0.4 – 2	2	14 – 28	2
	Cefsulodin			-	-	-	>35	>35	>35	>35	>35
	Amoxicillin	CWS		≥23	≥23	≥23	≥23	≥23	≥23	≥23	≥23
	Ampicillin			≥24	≥24	≥24	≥24	≥24	≥24	≥24	≥24
	Sulfamethoxazole	NAS		-	-	-	16 – ≥16	8 – ≥16	≥16	≥16	≥16
	Trimethoprim			9	5 – 9	9	5 – 9	1 – 9	1	2 – 5	0.6 – 1
	Rifampicin			13	13	13	13	7	13	26 – 53	13
General-use	Nalidixic Acid	DR		≥16	≥16	≥16	8 – 16	>16	16	>16	8
	Doxycycline			1	1	1	≤ 0.3 – 1	0.3 – 1	1	8 – 16	0.01 – 1
	Tetracycline			2	2	2 – 4	2 – 7	1 – 28	2 – 7	14 – ≥28	0.4 – 2
	Chloramphenicol			21	21	21	3 – 10	5 – 10	5 – 10	10 – 21	5
	Kanamycin			≥37	≥37	≥37	19 – 37	≥37	≥37	≥37	37 – ≥37
	Gentamicin	PS		≥37	≥37	≥37	≥37	≥37	≥37	≥37	≥37
	Puromycin			≥35	≥35	≥35	≥35	≥35	≥35	≥35	≥35
	Spectinomycin			≥32	≥32	≥32	≥32	≥32	≥32	≥32	≥32
	Clarithromycin			-	-	-	≥48	≥48	≥48	≥48	≥48
	Paromomycin			-	-	-	≥40	≥40	≥40	≥40	≥40
	Streptomycin			-	-	-	≥47	≥47	≥47	≥47	≥47

222 ^a Near-neighbour species *B. humptydooensis*, *B. hu*; *B. oklahomensis*, *B. ok*; *B. thailandensis*, *B. th*; *B. stagnalis*,
223 *B. st*; *B. territorii*, *B. te*.

224 ^b MICs were determined using broth microdilution of bacteria in growth phase. Tested antibiotic concentrations
225 in μM were converted to mg/L.

226 ^c Antibiotics: Line 1 and Line 2, current therapies for treating melioidosis; General-use, used for unknown
227 bacterial infections.

228 ^d Mode of action as described by DrugBank.⁵⁴ Inhibition of: cell wall synthesis (CWS), nucleic acid synthesis
229 (NAS), DNA replication (DR), protein synthesis (PS).

230 **Susceptibility of *B. humptydooensis* and *B. territorii* to MMV compounds**

231 To further evaluate the suitability of the near-neighbour *Burkholderia* species as models for
232 predicting the drug susceptibility of *B. pseudomallei*, we examined the susceptibility of *B.*
233 *humptydooensis* and *B. territorii* to 400 diverse, drug-like molecules from the MMV Pathogen
234 Box.⁴⁸ This box includes compounds with activity against infectious diseases (including
235 tuberculosis, malaria, and African sleeping sickness), that have recently been examined for
236 activity against five *B. pseudomallei* isolates.⁵⁵

237 We initially screened the MMV compounds for activity against *B. humptydooensis* and
238 *B. territorii* at 20 µM (~8 – 16 mg/L), and identified four active compounds in agreement with
239 previously reported activity toward *B. pseudomallei* isolates;⁵⁵ doxycycline, levofloxacin,
240 rifampicin, MMV675968, and MMV688271 (see Figure S1 for characteristics of the
241 compounds). An additional compound, MMV67968, showed novel activity toward the near-
242 neighbour species.

243 Next, we determined the MICs toward *B. humptydooensis* and *B. territorii* for the
244 compounds identified from the initial screen, and for three additional compounds from a
245 previous *B. pseudomallei* susceptibility screen;⁵⁵ auranofin, miltefosine and MMV688179 (see
246 Table 2 and Table S1). The activities of doxycycline (MIC 0.5 – 1 mg/L), levofloxacin (MIC
247 1 – 6 mg/L), MMV688271 (MIC 4 – 8 mg/L) and ceftazidime (MIC 2 – 4mg/L) against the
248 near-neighbour species were within two-fold of their reported MICs against *B. pseudomallei*
249 (1 – 3 mg/L, 4 – 10 mg/L and 8 – 12 mg/L respectively).⁵⁵ Notably, the MICs for rifampicin,
250 doxycycline and ceftazidime determined from the MMV compound screen (Table 2) were in
251 close agreement with MICs from the antibiotic susceptibility screen (Table 1). The MIC values
252 for auranofin, miltefosine and MMV688179 were at or above the highest concentration tested.
253 These high MICs are consistent with previous reports in *B. pseudomallei*⁵⁵ (see Table 2).

254 MMV675968 was active against *B. humptydooensis* and *B. territorii*, with MIC
255 between 3 – 12 mg/L, an activity range that is within two-fold of the ‘gold-standard’
256 melioidosis therapy ceftazidime. Therefore, this newly identified molecule is worthy of further
257 investigation for activity against *B. pseudomallei*.

258 Overall, comparison of the activity of the 400 tested MMV compounds against *B.*
259 *humptydooensis* and *B. territorii* provided independent correlation for four of the seven
260 compounds with previously identified activity against *B. pseudomallei*.⁵⁵ Although almost all
261 strains of *B. pseudomallei* tested have intrinsic resistance to gentamicin and streptomycin,
262 there have been rare reports of susceptibility to these antibiotics in isolates from Thailand and
263 Malaysia.^{42, 56} These examples might suggest differences in susceptibility profiles of *B.*
264 *pseudomallei* isolates originating from different geographic regions; a question we have not
265 directly answered in this study. However, we show that these near-neighbour isolates provide
266 a strong prediction for susceptibility of Australian *B. pseudomallei* isolates, and can also
267 predict the susceptibility of clinical isolates of Mexican, Thai and Australian origin to 400
268 compounds.⁵⁵

269 **Table 2: MICs of MMV compounds against *B. humptydooensis* and *B. territorii***

Compound	Mode of Action ^c	MIC (mg/L) ^a		MIC (mg/L) ^b <i>B.pseudomallei</i>
		<i>B. humptydooensis</i> MSMB 43 WGS	<i>B. territorii</i> MSMB 110 WGS	
Ceftazidime ^d	CWS	2 – 4	1 – 4	3 – 4
Doxycycline	PS	0.5	0.5 – 1	1 – 3
Levofloxacin	DR	1 – 3	1 – 6	4 – 10
Rifampicin	NAS	13	13 – 26	18 – 45
MMV688271	unknown	4 – 8	4 – 8	6 – 12
MMV675968	unknown	6 – 12	3 – 12	n.d. ^e
Auranofin	unknown	>22	>22	150
Miltefosine	ET	>13	3 - >13	>1600
MMV688179	unknown	15	15	12.5 - >100

270

271 ^a MIC values for *B. humptydooensis* and *B. territorii* calculated from serial dilutions of the MMV Pathogen Box
272 compounds, starting at 20 µM. Values were converted to mg/L.

273 ^b MIC values determined by Ross et al, 2018 using *B. pseudomallei* isolates K96243 576, NCTC13178,
274 NCTC13179 and MX2013.⁵⁵

275 ^c Mode of action as described by DrugBank⁵⁴ – inhibition of: cell wall synthesis (CWS), nucleic acid synthesis
276 (NAS), DNA replication (DR), electron transport (ET), protein synthesis (PS).

277 ^d Ceftazidime was not part of the MMV panel but was included as a positive control with activity toward
278 *Burkholderia* species.

279 ^e MIC toward *B. pseudomallei* was not determined. Inhibitory activity was not detected at 2 µM (0.72 mg/L).⁵⁵

280 **Conclusions**

281 In this study, we demonstrate similar susceptibility of non-pathogenic *Burkholderia* species *B.*
282 *humptydooensis*, *B. oklahomensis*, *B. thailandensis*, *B. territorii* and pathogenic *B.*
283 *pseudomallei* for an extensive panel of antibiotics and drug-like compounds. In particular, the
284 newly characterised species *B. humptydooensis and B. territorii*, and previously described *B.*
285 *thailandensis*, provided good correlation with *B. pseudomallei* susceptibility. Thus, these near-
286 neighbour species have potential for use in initial investigations and high throughput screening
287 of molecules for melioidosis therapeutic development.

288 The lower risk-group classification of the near-neighbour species allows expansion of
289 melioidosis research into a wider landscape, where more laboratories have adequate facilities
290 to perform the initial compound discovery. We are hopeful that inclusion of well characterised
291 and non-pathogenic model organisms in melioidosis research will accelerate the development
292 of new treatment options for this neglected tropical disease.

293

294 **Acknowledgments**

295 We would like to thank Dr Alysha Elliot at the Institute for Molecular Bioscience, University
296 of Queensland for her critical review of this work, Medicines for Malaria Venture for supplying
297 the Pathogen Box compounds, and Vanessa Rigas for her laboratory support at Menzies School
298 of Health Research.

299

300 **Funding**

301 This work is supported by funding from the Australian Government (A.S.A. Research Training
302 Program Scholarship); the Australian National Health and Medical Research Council (J.R.W.,
303 M.M, and B.J.C. grant numbers 1046812, 1098337, 1131932, and The HOT NORTH Initiative,
304 D.J.C, S.T.H. and N.L. grant numbers 1084965); and the Australian Research Council

305 (Laureate Fellowship to D.J.C. (FL150100146) and Future Fellowship to S.T.H.
306 (FT150100398)).

307

308 **Transparency declaration**

309 None to declare.

310

311 **Author contributions**

312 A.S.A., B.J.C., S.T.H., and N.L. designed the study;
313 A.S.A. and J.R.W. performed experiments with support from M.M., S.T.H., and N.L.;
314 B.J.C., D.J.C., and S.T.H. provided resources and acquired funding;
315 A.S.A., J.R.W. S.T.H., and N.L. prepared the original draft, which was reviewed and edited by
316 all authors.

317 **References**

318 **1** Limmathurotsakul D, Golding N, Dance DA et al. Predicted global distribution of
319 *Burkholderia pseudomallei* and burden of melioidosis. *Nat Microbiol* 2016; **1**: 15008.

320 **2** Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. *N Engl J Med* 2012; **367**: 1035-44.

321 **3** Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis:
322 540 cases from the 20 year Darwin prospective study. *PLoS Negl Trop Dis* 2010; **4**: e900.

323 **4** Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N et al. Increasing
324 incidence of human melioidosis in Northeast Thailand. *Am J Trop Med Hyg* 2010; **82**: 1113-
325 7.

326 **5** Sarovich DS, Webb JR, Pitman MC et al. Raising the stakes: loss of efflux pump
327 regulation decreases meropenem susceptibility in *Burkholderia pseudomallei*. *Clin Infect Dis*
328 2018; **67**: 243-50.

329 **6** Lipsitz R, Garges S, Aurigemma R et al. Workshop on treatment of and postexposure
330 prophylaxis for *Burkholderia pseudomallei* and *B. mallei* Infection, 2010. *Emerg Infect Dis*
331 2012; **18**: e2.

332 **7** Jenney AW, Lum G, Fisher DA et al. Antibiotic susceptibility of *Burkholderia*
333 *pseudomallei* from tropical northern Australia and implications for therapy of melioidosis. *Int*
334 *J Antimicrob Agents* 2001; **17**: 109-13.

335 **8** Dance D. Treatment and prophylaxis of melioidosis. *Int J Antimicrob Agents* 2014; **43**:
336 310-8.

337 **9** Thibault FM, Hernandez E, Vidal DR et al. Antibiotic susceptibility of 65 isolates of
338 *Burkholderia pseudomallei* and *Burkholderia mallei* to 35 antimicrobial agents. *J Antimicrob*
339 *Chemother* 2004; **54**: 1134-8.

340 **10** Leelarasamee A, Bovornkitti S. Melioidosis: review and update. *Rev Infect Dis* 1989; **11**:
341 413-25.

342 **11** Aunkham A, Schulte A, Winterhalter M et al. Porin involvement in cephalosporin and
343 carbapenem resistance of *Burkholderia pseudomallei*. *PLoS One* 2014; **9**: e95918.

344 **12** Moore RA, DeShazer D, Reckseidler S et al. Efflux-mediated aminoglycoside and
345 macrolide resistance in *Burkholderia pseudomallei*. *Antimicrob Agents Chemother* 1999; **43**:
346 465-70.

347 **13** Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in *Pseudomonas*
348 *aeruginosa* and related bacteria: unanswered questions. *Genet Mol Res* 2003; **2**: 48-62.

349 **14** Godfrey AJ, Wong S, Dance DAB et al. *Pseudomonas pseudomallei* resistance to beta-
350 lactam antibiotics due to alterations in the chromosomally encoded beta-lactamase.
351 *Antimicrob Agents Ch* 1991; **35**: 1635-40.

352 **15** Livermore DM, Chau PY, Wong AIW et al. Beta-lactamase of *Pseudomonas*-
353 *Pseudomallei* and its contribution to antibiotic-resistance. *J Antimicrob Chemoth* 1987; **20**:
354 313-21.

355 **16** Viktorov DV, Zakharova IB, Podshivalova MV et al. High-level resistance to
356 fluoroquinolones and cephalosporins in *Burkholderia pseudomallei* and closely related
357 species. *Trans R Soc Trop Med Hyg* 2008; **102 Suppl 1**: S103-10.

358 **17** Tribuddharat C, Moore RA, Baker P et al. *Burkholderia pseudomallei* class A beta-
359 lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid
360 inhibition. *Antimicrob Agents Ch* 2003; **47**: 2082-7.

361 **18** Sarovich DS, Price EP, Von Schulze AT et al. Characterization of ceftazidime resistance
362 mechanisms in clinical isolates of *Burkholderia pseudomallei* from Australia. *PLoS One*,
363 2012; e30789.

364 **19** Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management.
365 *Clin Microbiol Rev* 2005; **18**: 383-416.

366 **20** Chaowagul W, Chierakul W, Simpson AJ et al. Open-label randomized trial of oral
367 trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol compared with
368 trimethoprim-sulfamethoxazole and doxycycline for maintenance therapy of melioidosis.
369 *Antimicrob Agents Chemother* 2005; **49**: 4020-5.

370 **21** Kingsley PV, Arunkumar G, Tipre M et al. Pitfalls and optimal approaches to diagnose
371 melioidosis. *Asian Pac J Trop Med* 2016; **9**: 515-24.

372 **22** Health and Safety Executive. *The Approved List of biological agents*. London, England:
373 Crown copyright, 2013.

374 **23** The Australia Group. *The Australia Group Common Control List Handbook, Volume II: Biological Weapons-Related Common Control Lists*: United States Government, 2014.

376 **24** American Biological Safety Association. *Risk Group Database*.
377 <https://my.absa.org/Riskgroups>.

378 **25** Centers for Disease Control and Prevention. *Select Agents and Toxins List*.
379 <https://www.selectagents.gov/selectagentsandtoxinslist.html>.

380 **26** World Health Organization. *Laboratory biosafety manual. - 3rd ed.* Geneva, Switzerland:
381 World Health Organization, 2004.

382 **27** Joint Technical Committee CH-026 SiL. Safety in laboratorites. Part 3: Microbiological
383 safetey and containment. Sydney, Australia: SAI Global Limited, 2010; 44 - 9.

384 **28** Hoffmaster AR, AuCoin D, Baccam P et al. Melioidosis diagnostic workshop, 2013.
385 *Emerg Infect Dis* 2015; **21**.

386 **29** Mishra D, Shamshavali K, R. Sanathan S et al. Challenges in the diagnosis and treatment
387 of melioidosis: a review. *EJPMR* 2017; **4**: 226-32.

388 30 Propst KL, Mima T, Choi KH et al. A *Burkholderia pseudomallei* *deltapurM* mutant is
389 avirulent in immunocompetent and immunodeficient animals: candidate strain for exclusion
390 from select-agent lists. *Infect Immun* 2010; **78**: 3136-43.

391 31 Ginther JL, Mayo M, Warrington SD et al. Identification of *Burkholderia pseudomallei*
392 near-neighbor species in the Northern Territory of Australia. *Plos Neglect Trop D* 2015; **9**.

393 32 Tuanyok A, Mayo M, Scholz H et al. *Burkholderia humptydooensis* sp. nov., a new
394 species related to *Burkholderia thailandensis* and the fifth member of the *Burkholderia*
395 *pseudomallei* complex. *Appl Env Microbiol* 2017; **83**: e02802-16.

396 33 De Smet B, Mayo M, Peeters C et al. *Burkholderia stagnalis* sp nov and *Burkholderia*
397 *territorii* sp nov., two novel *Burkholderia cepacia* complex species from environmental and
398 human sources. *Int J Syst Evol Micr* 2015; **65**: 2265-71.

399 34 West TE, Frevert CW, Liggitt HD et al. Inhalation of *Burkholderia thailandensis* results
400 in lethal necrotizing pneumonia in mice: a surrogate model for pneumonic melioidosis. *Trans*
401 *R Soc Trop Med Hyg* 2008; **102 Suppl 1**: S119-26.

402 35 Kovacs-Simon A, Hemsley CM, Scott AE et al. *Burkholderia thailandensis* strain E555 is
403 a surrogate for the investigation of *Burkholderia pseudomallei* replication and survival in
404 macrophages. *BMC Microbiol* 2019; **19**: 97.

405 36 Haraga A, West TE, Brittnacher MJ et al. *Burkholderia thailandensis* as a model system
406 for the study of the virulence-associated type III secretion system of *Burkholderia*
407 *pseudomallei*. *Infect Immun* 2008; **76**: 5402-11.

408 37 Limmathurotsakul D, Dance DA, Wuthiekanun V et al. Systematic review and consensus
409 guidelines for environmental sampling of *Burkholderia pseudomallei*. *PLoS Negl Trop Dis*
410 2013; **7**: e2105.

411 38 Mayo M, Kaesti M, Harrington G et al. *Burkholderia pseudomallei* in unchlorinated
412 domestic bore water, Tropical Northern Australia. *Emerg Infect Dis* 2011; **17**: 1283-5.

413 39 Currie BJ, Price EP, Mayo M et al. Use of whole-genome sequencing to link
414 *Burkholderia pseudomallei* from air sampling to mediastinal melioidosis, Australia. *Emerg*
415 *Infect Dis* 2015; **21**: 2052-4.

416 40 Dutta S, Haq S, Hasan MR et al. Antimicrobial susceptibility pattern of clinical isolates of
417 *Burkholderia pseudomallei* in Bangladesh. *BMC Res Notes* 2017; **10**: 299.

418 41 Inglis TJ, Rodrigues F, Rigby P et al. Comparison of the susceptibilities of *Burkholderia*
419 *pseudomallei* to meropenem and ceftazidime by conventional and intracellular methods.
420 *Antimicrob Agents Chemother* 2004; **48**: 2999-3005.

421 42 Podin Y, Sarovich DS, Price EP et al. *Burkholderia pseudomallei* isolates from Sarawak,
422 Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides.
423 *Antimicrob Agents Chemother* 2014; **58**: 162-6.

424 43 Fisher MW, Hillegas AB, Nazeeri PL. Susceptibility in vitro and in vivo of *Pseudomonas*
425 *pseudomallei* to rifampin and tetracyclines. *Appl Microbiol* 1971; **22**: 13-6.

426 **44** Dance DA, Wuthiekanun V, Chaowagul W et al. The antimicrobial susceptibility of
427 *Pseudomonas pseudomallei*. Emergence of resistance in vitro and during treatment. *J*
428 *Antimicrob Chemother* 1989; **24**: 295-309.

429 **45** Vorachit M, Chongtrakool P, Arkomsean S et al. Antimicrobial resistance in
430 *Burkholderia pseudomallei*. *Acta Trop* 2000; **74**: 139-44.

431 **46** Scarff JM, Waidyarachchi SL, Meyer CJ et al. Aminomethyl spectinomycins: a novel
432 antibacterial chemotype for biothreat pathogens. *J Antibiot (Tokyo)* 2019; **72**: 693-701.

433 **47** Cockerill F, Wikler M, Alder J et al. Methods for dilution antimicrobial susceptibility
434 tests for bacteria that grow aerobically: approved standard. *Clin Lab Stand Inst* 2012; **32**:
435 M07-A9.

436 **48** Medicines for Malaria Venture. *Pathogen Box supporting information*.
437 <https://www.mmv.org/mmv-open/pathogen-box/pathogen-box-supporting-information>.

438 **49** David J, Bell RE, Clark GC. Mechanisms of disease: host-pathogen interactions between
439 *Burkholderia* species and lung epithelial cells. *Front Cell Infect Microbiol* 2015; **5**: 80.

440 **50** Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the
441 genus *Burkholderia*: proposal for division of this genus into the emended genus *Burkholderia*
442 containing pathogenic organisms and a new genus *Paraburkholderia* gen. nov. harboring
443 environmental species. *Front Genet* 2014; **5**: 429.

444 **51** Paganin P, Tabacchioni S, Chiarini L. Pathogenicity and biotechnological applications of
445 the genus *Burkholderia*. *Cent Eur J Biol* 2011; **6**: 997-1005.

446 **52** Sahl JW, Vazquez AJ, Hall CM et al. The effects of signal erosion and core genome
447 reduction on the identification of diagnostic markers. *MBio* 2016; **7**.

448 **53** Nhung PH, Van VH, Anh NQ et al. Antimicrobial susceptibility of *Burkholderia*
449 *pseudomallei* isolates in Northern Vietnam. *J Glob Antimicrob Resist* 2019; **18**: 34-6.

450 **54** Canadian Institutes of Health Research, Alberta Innovates - Health Solutions, The
451 Metabolomics Innovation Centre. *Drug Bank*. <https://www.drugbank.ca/>.

452 **55** Ross BN, Myers JN, Muruato LA et al. Evaluating new compounds to treat *Burkholderia*
453 *pseudomallei* infections. *Front Cell Infect Microbiol* 2018; **8**: 210.

454 **56** Trunck LA, Propst KL, Wuthiekanun V et al. Molecular basis of rare aminoglycoside
455 susceptibility and pathogenesis of *Burkholderia pseudomallei* clinical isolates from Thailand.
456 *PLoS Negl Trop Dis* 2009; **3**: e519.

457

458

SUPPLEMENTARY DATA

Drug susceptibility profiling of Australian *Burkholderia* species as models for developing melioidosis therapeutics

Anna S. Amiss,¹ Jessica R. Webb,² Mark Mayo,² Bart J. Currie,^{2,3} David J. Craik,¹ Sónia Troeira Henriques,^{1,4*} and Nicole Lawrence.^{1*}

¹ Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia

² Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, 0811, Australia

³ Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, 0811, Australia

⁴ School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, 4102, Australia

* Corresponding author:

Tel. +61 7 33462014 E-mail: n.lawrence@uq.edu.au

Tel. +61 7 34437342 E-mail: sonia.henriques@qut.edu.au

Table S1. Antibiotic characteristics and activity toward *Burkholderia pseudomallei*

Antibiotic	Drug class	Target for inhibition	Mode of action ^a	MIC 90 (mg/L)	MIC 100 (mg/L)
Ceftazidime	Cephalosporin	Cell wall synthesis	Inhibits penicillin-binding proteins (PBPs) responsible for cell wall synthesis	2 – 4 ^{1,2}	1 – 4 ^{3,4}
	Mixed	Nucleic acid synthesis	Trimoxazole and sulfamethoxazole mode of action		0.125 – 4 ⁴
Meropenem	Carbapenem	Cell wall synthesis	Binds PBP and inhibits bacterial cell wall synthesis	1 – 4 ³	0.5 – 4 ^{3,4}
	Cephalosporin	Cell wall synthesis	Binds PBPs and inhibits peptidoglycan cross linking	>128 ²	
Amoxicillin	Penicillin	Cell wall synthesis	Binds PBPs and inhibits peptidoglycan polymer chain cross linkage	>128 ^{2,5}	
	Ampicillin	Penicillin	Binds PBP and inhibits bacterial cell wall synthesis		12.5 – 25 ⁶
Sulfamethoxazole	Sulfonamide	Nucleic acid synthesis	Interferes with folic acid synthesis	320 ⁵	
Trimethoprim	DHFR inhibitor	Nucleic acid synthesis	Inhibits dihydrofolate reductase	64 ⁵	
Nalidixic Acid	Fluoroquinolone	DNA replication	Inhibits the A subunit of bacterial DNA gyrase	32 ²	>50 ⁶
Rifampicin	Rifampicin	DNA-dependent RNA synthesis	Inhibits bacterial DNA-dependent RNA polymerase	16 – 32 ^{2,5}	8 – 16 ⁷
Doxycycline	Tetracycline	Protein synthesis	Binds to the bacterial 30S ribosomal subunit, blocking aminoacyl tRNA from binding	1 – 4 ^{2,5}	0.25 – 3 ^{4,7}
Tetracycline	Tetracycline	Protein synthesis	Binds to the bacterial 30S ribosomal subunit, blocking aminoacyl tRNA from binding	0.5–8 ^{1,5}	1.6 – 3.1 ⁶
Gentamicin	Aminoglycoside	Protein synthesis	Binds to 16S rRNA and protein S12 and interferes with mRNA reading	64–128 ^{2,5}	> 50 ⁶
Kanamycin	Aminoglycoside	Protein synthesis	Binds to 16S rRNA and protein S12 and interferes with mRNA reading	64 ⁵	
Paromomycin	Aminoglycoside	Protein synthesis	Binds to 16S ribosomal RNA causing defective polypeptide chain production		>50 ⁶
Spectinomycin	Aminoglycoside	Protein synthesis	Binds to the 30S subunit of the bacterial ribosome. Interferes with initiation of protein synthesis and elongation		>64 ⁸
Streptomycin	Aminoglycoside	Protein synthesis	Binds to 16S rRNA and protein S12 and interferes with the assembly of initiation complex between mRNA and the bacterial ribosome		>50 ⁶
Clarithromycin	Macrolide	Protein synthesis	Binds to the 50S ribosomal subunit and inhibits RNA-dependent protein synthesis		32 – 64 ⁷
Chloramphenicol	Amphenicol	Protein synthesis	Inhibits peptidyl transferase activity of the bacterial ribosome	16–32 ^{2,5}	~6 – 20 ⁶

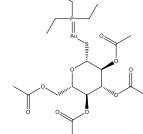
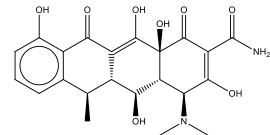
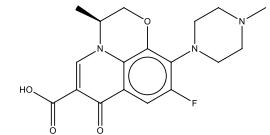
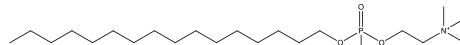
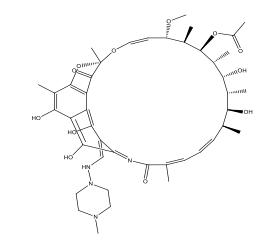
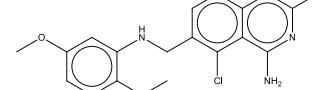
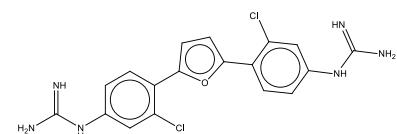
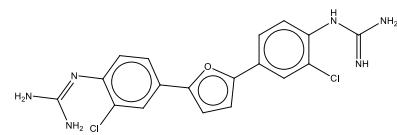
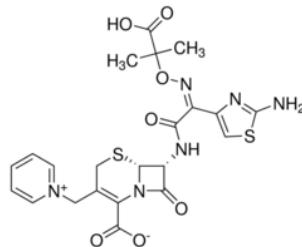









^a Mode of action as described by DrugBank. ⁹

Table S2. Comparison of genetic distance between *Burkholderia pseudomallei* and near-neighbour species

<i>Burkholderia</i> near-neighbours	Changes/site between near-neighbour and <i>B. pseudomallei</i> ^a
<i>B. thailandensis</i>	~ 0.032
<i>B. humptydooensis</i>	~ 0.041
<i>B. oklahomensis</i>	~ 0.054
<i>B. stagnalis</i>	~ 0.094
<i>B. territorii</i>	~ 0.115

^a branch distances (in cm) were determined from a maximum-likelihood phylogeny (Figure 1 from Sahl et al 2016 ¹⁰) and converted to changes/site using the scale bar: 1cm of branch length = 0.01 changes/site.

Figure S1. Compounds from the Medicines for Malaria Venture Pathogen Box¹¹ with activity against *B. humptydooensis* and *B. terrortii* at 20 μ M (7.2 – 17.6 mg/L)

Compound ID	Compound Name	Total molecular weight	Molecular weight (parent molecule)	Molecular formula	Compound structure
MMV688978	Auranofin	678.48	678.48	C ₂₀ H ₃₄ AuO ₆ PS	
MMV000011	Doxycycline	480.90	444.44	C ₂₂ H ₂₄ N ₂ O ₈	
MMV687798	Levofloxacin (-)-ofloxacin	361.37	361.37	C ₁₈ H ₂₀ N ₃ O ₄ F	
MMV688990	Miltefosine	407.57	407.57	C ₂₁ H ₄₆ NO ₄ P	
MMV688775	Rifampicin	822.94	822.94	C ₄₃ H ₅₈ N ₄ O ₁₂	
MMV675968	N/A	359.81	359.81	C ₁₇ H ₁₈ N ₅ O ₂ Cl	
MMV688179	N/A	467.19	403.27	C ₁₈ H ₁₆ N ₆ O ₂ C ₁₂	
MMV688271	N/A	476.19	403.27	C ₁₈ H ₁₆ N ₆ O ₂ C ₁₂	
Ceftazidime	Ceftazidime	546.6	546.6	C ₂₂ H ₂₂ N ₆ O ₇ S ₂	

References

- 1** Dutta S, Haq S, Hasan MR et al. Antimicrobial susceptibility pattern of clinical isolates of *Burkholderia pseudomallei* in Bangladesh. *BMC Res Notes* 2017; **10**: 299.
- 2** Thibault FM, Hernandez E, Vidal DR et al. Antibiotic susceptibility of 65 isolates of *Burkholderia pseudomallei* and *Burkholderia mallei* to 35 antimicrobial agents. *J Antimicrob Chemother* 2004; **54**: 1134-8.
- 3** Inglis TJ, Rodrigues F, Rigby P et al. Comparison of the susceptibilities of *Burkholderia pseudomallei* to meropenem and ceftazidime by conventional and intracellular methods. *Antimicrob Agents Chemother* 2004; **48**: 2999-3005.
- 4** Podin Y, Sarovich DS, Price EP et al. *Burkholderia pseudomallei* isolates from Sarawak, Malaysian Borneo, are predominantly susceptible to aminoglycosides and macrolides. *Antimicrob Agents Chemother* 2014; **58**: 162-6.
- 5** Dance DA, Wuthiekanun V, Chaowagul W et al. The antimicrobial susceptibility of *Pseudomonas pseudomallei*. Emergence of resistance in vitro and during treatment. *J Antimicrob Chemother* 1989; **24**: 295-309.
- 6** Fisher MW, Hillegas AB, Nazeeri PL. Susceptibility in vitro and in vivo of *Pseudomonas pseudomallei* to rifampin and tetracyclines. *Appl Microbiol* 1971; **22**: 13-6.
- 7** Vorachit M, Chongtrakool P, Arkomsean S et al. Antimicrobial resistance in *Burkholderia pseudomallei*. *Acta Trop* 2000; **74**: 139-44.
- 8** Scarff JM, Waidyaratnchi SL, Meyer CJ et al. Aminomethyl spectinomycins: a novel antibacterial chemotype for biothreat pathogens. *J Antibiot (Tokyo)* 2019; **72**: 693-701.
- 9** Canadian Institutes of Health Research, Alberta Innovates - Health Solutions, The Metabolomics Innovation Centre. *Drug Bank*. <https://www.drugbank.ca/>.
- 10** Sahl JW, Vazquez AJ, Hall CM et al. The effects of signal erosion and core genome reduction on the identification of diagnostic markers. *MBio* 2016; **7**.
- 11** Medicines for Malaria Venture. *Pathogen Box supporting information*. <https://www.mmv.org/mmv-open/pathogen-box/pathogen-box-supporting-information>.