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Abstract

The aging brain is characterized by neural dedifferentiation — an apparent decrease in the
functional selectivity of category-selective cortical regions. Age-related reductions in neural
differentiation have been proposed to play a causal role in cognitive aging. Recent findings
suggest, however, that age-related dedifferentiation is not equally evident for all stimulus
categories and, additionally, that the relationship between neural differentiation and cognitive
performance is not moderated by age. In light of these findings, in the present experiment
younger and older human adults (males and females) underwent fMRI as they studied words
paired with images of scenes or faces prior to a subsequent memory task. Neural selectivity was
measured in two scene-selective (parahippocampal place area and retrosplenial cortex) and two
face-selective (fusiform and occipital face areas) regions of interest using both a univariate
differentiation index and multivoxel pattern similarity analysis. Both methods provided highly
convergent results which revealed evidence of age-related reductions in neural dedifferentiation
in scene-selective but not face-selective cortical regions. Additionally, neural differentiation in
the parahippocampal place area demonstrated a positive, age-invariant relationship with
subsequent source memory performance (recall of the image category paired with each
recognized test word). These findings extend prior findings suggesting that age-related neural
dedifferentiation is not a ubiquitous phenomenon, and that the specificity of neural responses to

scenes is predictive subsequent memory performance independently of age.
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Significance Statement

Increasing age is associated with reduced neural specificity in cortical regions that are
selectively responsive to a given perceptual stimulus category (age-related neural
dedifferentiation), a phenomenon which has been proposed to contribute to cognitive aging.
Recent findings reveal that age-related neural dedifferentiation is not present for all types of
visual stimulus categories, and the factors which determine when the phenomenon arises remain
unclear. Here, we demonstrate that scene- but not face-selective cortical regions exhibit age-
related neural dedifferentiation during an attentionally-demanding task. Additionally, we report
that higher neural selectivity in the scene-selective ‘parahippocampal place area’ is associated
with better memory performance after controlling for variance associated with age group, adding

to evidence that neural differentiation impacts cognition across the adult lifespan.
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1. Introduction

Increasing age has been reported to be associated with reduced specificity and
distinctiveness of neural representations, a phenomenon known as age-related neural
dedifferentiation (for review, see Koen & Rugg, 2019; Koen et al., 2019, 2020). Computational
models of cognitive aging suggest that neural dedifferentiation plays a role in age-related
cognitive decline (Li et al., 2001; Li & Rieckmann, 2014). Specifically, the phenonemon has
been proposed to arise from age-related reductions in neuromodulation, compromising the
fidelity of neural representations (see also Abdulrahman et al, 2017).

In an early fMRI study of age-related neural dedifferentiation, Park et al. (2004), it was
reported that healthy older adults demonstrated lower neural selectivity for preferred stimuli in
voxels selective for four different perceptual categories (houses, chairs, pseudowords and faces).
Although subsequent studies have reported convergent findings, the data suggest that age-related
dedifferentiation is not ubiquitous. For example, whereas reduced neural selectivity is frequently
reported in scene-selective (Carp et al. 2011; Voss et al., 2008; Zheng et al., 2018; Koen et al.,
2019) and face-selective cortical regions (Park et al., 2004; Voss et al., 2008; Park et al., 2012),
null findings for both of these classes of stimuli have also been reported (for scenes: Berron et
al., 2018; for faces: Payer, et al., 2016). The evidence is also divergent for object and word
stimuli. Although Park et al. (2004) reported age-related dedifferentiation for objects and
orthographic stimuli, subsequent studies have found null age effects for both classes of stimuli
(for objects: Chee et al., 2006; Zheng et al., 2018; Koen et al., 2019; for words: Voss et al.,
2008). Additionally, Wang et al. (2016) reported null age effects on the accuracy of a multi-
voxel classifier trained to discriminate neural activity elicited by words and pictures (see

Abdulrahman et al., 2017, for similar null findings).
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Metrics of neural differentiation have been reported to predict both memory performance
for the experimental stimuli (e.g. Yassa et al., 2011; Berron et al., 2018; Bowman et al., 2019;
Koen et al., 2019; Sommer et al., 2019; for related findings, see Du et al., 2016) as well as
measures of cognitive performance derived from standardized tests (‘fluid’ processing in Park et
al., 2010; “fluency’ in Koen et al., 2019). These findings are consistent with the possibility that
age-related cognitive decline is driven by age differences in neural selectivity (dedifferentiation).
Recent findings, coupled with a review of the relevant (though sparse) literature, suggest
however that the relationship between neural differentiation and cognitive performance is age-
invariant (Koen et al., 2019; Koen and Rugg, 2019). Although an age-invariant relationship
between cognition and neural differentiation does not rule out a role for diminishing neural
selectivity in mediating age-related cognitive decline, it does suggest that the contribution of
neural selectivity to cognitive performance is stable across the lifespan.

In the present study, participants underwent fMRI while studying word-face and word-
scene stimulus pairs. Memory was later assessed in two steps: recognition memory of the words,
followed by recall of the associated image. Neural differentiation was operationalized both by a
univariate differentiation index (Voss et al., 2008; Koen et al., 2019) and multi-voxel pattern
similarity (Zheng et al., 2018; Koen et al., 2019; Sommer et al., 2019). Differentiation metrics
were obtained from two face-selective (Fusiform face area, FFA; Occipital Face Area, OFA) and
two scene-selective (Parahippocampal place area, PPA; Retrosplenial cortex, RSC) regions of
interest (ROIs). Motivated by the recently reported finding of null age effects on neural
selectivity for object stimuli (Koen et al., 2019), the current study aimed to examine whether the
null effects of age extend to active processing of faces. Additionally, we aimed to replicate and

extend the prior findings of age-related neural dedifferentiation for scene stimuli, and the
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relationships of neural differentiation with subsequent memory performance and psychometric

measures of cognitive ability.

2. Materials and Methods

2.1 Ethics Statement

The experimental procedures described below were approved by The Institutional Review
Boards of the University of Texas Southwestern Medical Center and the University of Texas at

Dallas. All participants provided informed consent prior to taking part in the experiment.

2.2 Participants

Twenty-seven younger and 33 older adult volunteers were recruited from local
communities surrounding The University of Texas at Dallas and the greater Dallas metropolitan
area, and were compensated 30$/h. All volunteers were right-handed, had normal or corrected-
to-normal vision, and were fluent English speakers before the age of five. Participants were
excluded if they self-reported a history of cardiovascular or neurological disease, diabetes,
substance abuse, use of medication affecting the central nervous system, or showed evidence of
cognitive impairment based on their performance on a neuropsychological test battery (see
below).

Three younger and three older adult participants were excluded from subsequent analyses
for the following reasons: voluntary withdrawal from the study (N = 2), behavioral performance
which resulted in not having enough trials ( < 10) in a critical memory bin (N = 2), technical
malfunction of the equipment (N = 1), and an incidental MRI finding (N = 1). Additionally, six

older participants were excluded due to chance source memory performance, according to our
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pre-determined cutoff score (measure of source recollection, pSR <.1). The final sample
therefore consisted of 24 young (age range: 18 — 28 years, 15 female) and 24 older adult (age
range: 65 — 75 years, 14 female) participants. Demographic data and neuropsychological test
performance are reported in Table 1.

Several of the participants in the present study had previously participated in one or more
studies reported by our laboratory. Specifically, 4 older adults participated in the event related
potential study reported by Koen et al. (2018), 1 older adult participated in a prior fMRI study
reported by Koen et al. (2019), and 4 older adults took part in an fMRI experiment first reported

by de Chastelaine et al. (2015).

2.3 Neuropsychological Testing

All participants completed our standard neuropsychological test battery consisting of the
Mini-Mental State Examination (MMSE), The California Verbal Learning Test-1I (CVLT; Delis
et al., 2000), Wechsler Logical Memory Tests 1 and 2 (Wechsler, 2009), The Trail Making tests
A and B (Reitan and Wolfson, 1985), the Symbol Digit Modalities test (SDMT; Smith, 1982),
the F-A-S subtest of the Neurosensory Center Comprehensive Evaluation for Aphasia (Spreen
and Benton, 1977), the Wechsler Adult Intelligence Scale—Revised subtests of forward and
backward digit span (Wechsler, 1981), Category fluency test (Benton, 1968), Raven’s
Progressive Matrices (List 1, Raven et al., 2000) and the Wechsler Test of Adult Reading
(WTAR; Wechsler, 1981). Potential participants were excluded prior to the fMRI session if they
scored < 27 on the MMSE, >1.5 SD below age norms on any standardized memory test, >1.5 SD
below age norms on two or more standardized non-memory tests, or if their estimated full-scale

1Q was < 100.
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The neuropsychological test scores were reduced to four components based on the
outcome of a principal components analysis applied to a prior large dataset from our laboratory.
The dataset comprised scores from younger, middle aged and older adults (total N=154) (de
Chastelaine et al. 2016). Four principal components with eigenvalues greater than 1, accounting
for 64.1% of the variance, were retained and subjected to the Varimax rotation (Kaiser, 1958).
The rotated components (RC) correspond roughly to processing speed (RC1), memory (RC2),
crystallized intelligence (RC3), and fluency (RC4). The neuropsychological tests included in the
analysis, their corresponding rotated factor weights, and the proportions of variance accounted
for by the rotated components are presented in Table 2.

Table 1. Demographic data and results of the neuropsychological test battery (mean, SD) for
younger and older adults.

Younger Adults Older Adults p-value
N 24 24
Age 22.42 (3.24) 70.00 (3.46)
Years of Education 15.46 (2.65) 16.71 (2.44) NS
MMSE 29.25 (0.90) 29.33 (0.70) NS
CVLT Short Delay — Free 13.75 (2.00) 11.88 (2.86) 0.012
CVLT Short Delay — Cued 13.83 (2.32) 13.08 (2.15) NS
CVLT Long Delay — Free 14.13 (2.11) 12.79 (2.62) NS
CVLT Long Delay — Cued 14.38 (1.93) 13.46 (2.13) NS
CVLT recognition — Hits 15.71 (0.46) 15.25 (1.07) NS
CVLT recognition — False alarms 0.33 (0.70) 1.67 (1.61) 0.001
Logical Memory I 33.00 (4.76) 28.00 (4.11) <0.001
Logical memory Il 32.00 (4.80) 25.83 (5.49) <0.001
SDMT 62.33 (11.27) 49.29 (7.91) <0.001
Trails A (s) 20.20 (5.26) 25.11 (6.46) 0.006
Trails B (s) 44.12 (10.18) 62.48 (16.77) <0.001
Digit Span Total 19.71 (4.14) 18.79 (3.49) NS
Category fluency 23.71 (4.91) 22.46 (5.35) NS
F-4-S 49.17 (12.85) 46.29 (12.75) NS
WTAR 42.42 (3.46) 44.54 (4.06) NS
Raven’s 11.04 (0.86) 9.50 (1.89) 0.001
Speed Factor (RC1) -1.47 (2.01) 1.56 (1.68) <0.001
Memory Factor (RC2) 1.53 (1.94) -1.62 (2.42) <0.001
Crystallized intelligence Factor (RC3) 0.30 (1.42) -0.39 (1.79) NS
Fluency Factor (RC4) 0.20 (1.18) -0.10 (1.45) NS

Digit Span total corresponds to the sum of forward and backward digit span.

Speed factor bears a negative number with better performance on tasks of processing speed.

NS = not significant
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Table 2: Factor Loadings from the PCA, Varimax rotated, based on dataset previously reported
by de Chastelaine et al. (2016).

Speed Memory Crystallized Fluency
(RC)) (RC2) Intelligence (RCY)
(RC3)

CVLT composite -.19 .84 .08 -.15
CVLT recognition — Hits -.20 42 23 -.64
CVLT recognition — False alarms 21 -.69 .26 -.17
Logical memory composite 10 .67 18 .02
Trails A (s) 91 -.09 -.05 -.14
Trails B (s) .85 -.09 -.28 .08
SDMT -.59 40 .08 30
Digit Span -.16 .01 .80 -.08
Category fluency -.34 23 .14 .63
F-A4-S -.12 .06 46 57
WTAR -.12 12 .79 21
Raven’s -.33 48 .10 .05
Eigenvalue 3.65 1.70 1.28 1.06
Variance explained (before rotation) .20 .14 A1 .09
Variance explained (after rotation) .19 .19 15 A1

2.4. Experimental Materials and Procedure
2.4.1. Experimental Procedure and Materials
Experimental stimuli were presented using Cogent 2000 software

(www.vislab.ucl.ac.uk/cogent_2000.php) implemented in Matlab 2012b (www.mathworks.com).

The stimuli were projected onto a translucent screen attached at the rear of the MRI bore and
were viewed through a mirror mounted on the scanner head coil. Participants completed two
study-test cycles inside the scanner. For each cycle, study and test phases were each split into
two scanning sessions, with a 30s rest period midway through each session. The critical
experimental stimuli were distributed across four study and four test sub-lists, with a single sub-
list per scanning session. Therefore, participants’ memory for the first two study sub-lists was
tested in two memory test sessions before continuing to the second cycle. The critical stimuli
comprised 288 concrete nouns, 96 colored images of male and female faces (face stimuli

obtained from Minear & Park (2004) database), and 96 colored images of urban and rural scenes.
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All images of faces and scenes were scaled at 256 x 256 pixels. An additional 68 words and 40
images were used as fillers at the beginning of each scan session and immediately after each
break or as practice stimuli. The critical stimuli were interspersed with 96 null trials (white
fixation cross) in both the study and test lists (24 trials per sub-list). Stimuli were selected
randomly without replacement to create twenty-four different stimulus sets for yoked younger
and older adult pairs. Study and test trials were pseudorandomized such that participants were
not presented with more than three consecutive trials belonging to the same image class, or more

than two consecutive null trials.

2.4.2. Study Phase

Participants completed two scanned study-test cycles. Each cycle included two study
blocks. The blocks each contained 24 null trials and 48 critical words, half of which were paired
with an image of a face and a half paired with a scene image. The word was presented in the
upper half of the screen with the image beneath it and a white fixation cross positioned between
the two items (see Figure 1). Words were presented in a white font 30pt uppercase Helvetica
over a black background. A study trial began with a red fixation cross for a duration of 500ms,
followed by the presentation of the word-image pair for 2000ms. This was followed a white
fixation cross for a further 2000ms. When a word was paired with a face, the instructions were to
imagine the person depicted by the image interacting with the object denoted by the word. For
word-scene trials, the task was to imagine a scenario in which the object denoted by the word is
interacting with elements of the scene. To ensure adherence to task instructions, participants
were asked to rate the vividness of each imagined scenario on a three-point scale: ‘Not vivid,

‘Somewhat vivid’, to ‘Very vivid’. Responses were recorded with right-hand index, middle and

10
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ring fingers using a scanner-compatible button box. Only trials on which ratings were made
between 450-4500ms post-stimulus onset were included in the analyses described below. Trials
attracting multiple responses were excluded from behavioral analyses and included as events of

no interest in the fMRI analyses.

2.4.3. Test Phase

The test phase was also conducted within the fMRI scanner (the fMRI data will be
reported in a separate communication). While undergoing scanning, participants’ memory for the
studied items was tested across two test lists (two sub-lists per study-test cycle). Each sub-list
comprised 48 studied words, 24 new words, and 24 null trials. Each test trial began with a 500ms
duration red fixation cross, followed by the test word, which was presented for 2000ms, and a
white fixation cross for 2000ms. Participants were required to indicate whether they remembered
studying the test words by making an ‘Old’ or a ‘New’ judgment. Instructions were to respond
‘Old’ only if they were confident the word had been studied. For test items endorsed ‘Old’,
participants were prompted to make a source memory judgement, during which they signaled
whether the word had been studied along with a face or a scene. An additional ‘Don’t Know’
response option was available to discourage guessing. The source memory prompt was presented
immediately after the ‘Old’/’New’ memory response had been made. Test items receiving a
‘New’ judgement were followed by a 2000ms duration white fixation cross. Test responses were
made with the index, middle and ring fingers of the right hand on a scanner-compatible button
box. The buttons were counterbalanced across participants such that the ‘Old’/’New’ judgment
were made with the index and middle finger, while the source judgements were counterbalanced

across the index, middle, and ring fingers with the constraint that the ‘Don’t know’ response was

11
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never assigned to the middle finger. Similarly to the study phase, trials associated with responses
made outside of a 500ms— 4500ms post-stimulus window were not considered in the analyses

and were included as events of no interest.

(€0 (0)13

NO

COYOTE

xKFs

S00ms 2000ms 2000ms S00ms 2000ems 2000ms
Time to Respond Time to Respond

* the illustration of the face stimulus is modified to comply with bioRxiv policy

Figure 1: Overview of the encoding task and subsequent memory test. At encoding, participants
were asked to “Imagine the person interacting with the object denoted by the word.” (face trials)
or to “Imagine the object denoted by the word interacting with the scene.” (scene trials).
2.5. Data Acquisition and Analysis
2.5.1 Experimental Design and Statistical Analysis

The main independent variables in the analyses described below include age group
(younger vs older adults), image category of the study trials (faces vs scenes), and the two face-
selective and two scene-selective regions-of-interest (ROIs): Fusiform Face Area (FFA) and
Occipital Face Area (OFA) as face-selective ROls; Parahippocampal Place Area (PPA) and
Retrosplenial cortex (RSC) as scene-selective ROIs.

Statistical analyses were conducted using R Software (R Core Team, 2019) and all tests
were considered significant at p < 0.05. Analyses of variance were performed using the afex
package (Singmann et al., 2016) and the degrees of freedom were corrected for nonsphericity

using the Greenhouse and Geisser (1959) procedure. All #-tests were performed as Welch’s
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unequal variance tests using the t-test function in base R. Effect sizes are reported as partial-n?
for the analysis of variance (ANOVA) results and the package effsize (Torchiano, 2019) was
used for Cohen’s d in pairwise comparisons (Cohen, 1988). Linear regression models were
employed using the Im function in base R, and partial correlations were conducted using the
function pcor.test in the ppcor package (Kim, 2015). Principal components analysis (Hotelling,
1933; Abdi and Williams, 2008) on the neuropsychological test scores was implemented with the

psych package (Revelle, 2017).

2.5.2. Behavioral Data Analysis

Study and test trials were binned according to their subsequent memory status. We
focused on item recognition performance as reflected in the initial ‘Old’ / ‘New’ judgement, and
source memory performance as indexed by the subsequent ‘Scene’/ ‘Face’ / ‘Don’t Know’
judgement. Trials that received no response or multiple responses were excluded. Item Memory
performance was computed as the difference between the overall hit rate and the false alarm rate:

Item Hit False Alarms
old Trials New Trials

Item pR =

The hit rate was calculated as the proportion of trials which were correctly endorsed as ‘Old’
relative to the total number of old trials, regardless of their subsequent source memory
judgement. The false alarm rate was calculated as the proportion of new trials incorrectly
endorsed as ‘Old’ relative to all new trials. The overall item recognition accuracy was submitted

to a 2 (Age group) x 2 (Image class) mixed factorial ANOVA.

13


https://doi.org/10.1101/2020.01.21.914432
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914432; this version posted January 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Additionally, source memory accuracy was computed using a modified single high-
threshold model (Snodgrass and Corwin, 1988) according to the following formula (see Gottlieb
et al., 2010; Mattson et al. 2014):

pSource Hit — 0.5 * (1 — pSource Don't Know)

SR =
p 1—0.5* (1 —pSource Don't know)

where ‘pSource Hit’ refers to the proportion of correctly recognized test items endorsed with a
correct source memory judgement at test and ‘pSource Don’t Know’ refers to items that were
correctly recognized but received a ‘Don’t Know’ source memory response. Given the design of
this experiment, our source memory metric necessarily encompasses both face and scene trials.
Therefore, we collapsed source memory performance across image type and compared
performance between the two age groups with an independent samples t-test.

Other behavioral measures included reaction time (RT) and vividness ratings for the
encoding trials. RT was calculated as the median time to make a vividness rating. Both RTs and
the vividness ratings were computed separately for trials corresponding to each image class and
binned according to whether or not they were associated with a correct source judgment at test.
The vividness ratings and RTs were submitted to separate 2 (Age group) x 2 (Image class) x 2

(Subsequent memory) mixed factorial ANOVAs.

2.5.3. MRI Data Acquisition and Preprocessing

Functional and structural MRI data were acquired at 3T using a Philips Achieva MRI
scanner (Philips Medical Systems, Andover, MA) equipped with a 32 channel receiver head coil.
The functional scans were acquired with a T2*-weighted, blood-oxygen level-dependent

echoplanar imaging (EPI) sequence (sensitivity encoding [SENSE] factor = 2, flip angle = 70°,
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80 x 78 matrix, field of view [FOV] = 24 cm, repetition time [TR] = 2000 ms, and echo time
[TE] = 30 ms). EPI volumes comprised 34 slices (1mm interslice gap) at a voxel size of 3x3x3
mm, acquired in an ascending order and parallel to the anterior-posterior commissure line.
Structural images were obtained with a T1-weighted MPRAGE sequence (FOV = 240 x 240,
Ix1x1 mm isotropic voxels, sagittal acquisition).

MRI data were preprocessed and analyzed using a combination of Statistical Parametric
Mapping (SPM12, Wellcome Department of Cognitive Neurology, London, UK) and custom
Matlab scripts. The functional images were realigned to the mean EPI image and slice-time
corrected using sinc interpolation to the middle slice. The images were then subjected to
reorientation and spatial normalization with respect to a sample-specific template following
previously published procedures (de Chastelaine et al. 2011, 2016). Functional images were
smoothed with an 8 mm full-width half maximum Gaussian kernel prior to region-of-interest
(ROIJ) selection. Estimation of differentiation indices and PSA were conducted on unsmoothed

data.

2.5.4. MRI Data Analysis

The analyses reported here focus on the data from the study sessions (analyses of the test
data will be reported in a separate paper). The ROIs were derived from univariate fMRI analyses
across the four study sessions, which were performed in two stages. In the first stage, separate
GLMs were constructed for each participant by sorting the study trials into two categories
depending on the trial type: scene trials and face trials. Trials belonging to each of these
categories were modeled with a 2s duration boxcar function onsetting concurrently with the

onset of the study word-image pair, convolved with a canonical hemodynamic response function
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(HRF). Filler trials, null trials, and trials which received multiple or no responses were modeled
as covariates of no interest. Additional covariates of no interest included the 30s duration rest
periods midway through each study session and the six regressors representing motion-related
variance (three representing rigid-body translation and three for rigid-body rotation along the
three axes). Trials with translational displacement greater than Imm or with rotational
displacement greater than 1° in any direction were modeled as covariates of no interest and
hence removed from the analysis. In the second stage, the parameter estimates of the two events
of interest were carried over to a second-level random effects 2 x 2 factorial ANOVA with age
(younger, older) treated as the between-subjects factor, and trial type (scene, face) as the within-
subjects factor.

For the purposes of the differentiation index analyses and the PSA, the unsmoothed data
from each of the four total study sessions were concatenated using the spm_fmri_concatenate
function and subjected to a ‘least-squares-all’ analysis (Rissman et al., 2004; Mumford et al.,
2014) to estimate the BOLD response for each trial. Each event was modeled with a 2s duration
boxcar function and convolved with a canonical HRF. The covariates of no interest included the

6 motion regressors described above and the four session specific means.

2.5.5. Region-of-Interest Selection

Two face-selective (FFA, OFA) and two scene-selective (PPA, RSC) ROIs were
empirically defined via a second-level GLM that contrasted scenes and faces, (thresholded at p <
.01 (uncorrected)) across all participants without regard to the factor of age group. The contrasts
were inclusively masked with the ‘Neuromorphometrics’ atlas provided in SPM12. The face >

scene contrast was masked with the atlas’s fusiform gyrus and parahippocampal gyrus to derive

16


https://doi.org/10.1101/2020.01.21.914432
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914432; this version posted January 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the FFA mask, and the OFA was defined by inclusively masking the contrasts with inferior
occipital and occipital fusiform gyri. The scene > face contrast was masked with the fusiform
and parahippocampal gyri to identify the PPA. As Neuromorphometrics does not provide a mask
for the RSC, we searched the Neurosynth database using the term “retrosplenial” (search in
August 2019, search results FDR-corrected at p <.00001; Yarkoni et al., 2011) and used the

outcome to create the RSC mask. All ROIs were collapsed across the two hemispheres.

Figure 2: Bilateral scene- and face-selective ROIs derived using a second-level GLM
contrasting faces and scenes, inclusively masked with Neuromorphometrics in SPM (PPA, FFA,
OFA) or with Neurosynth (RSC).

Table 3: The voxel size and peak MNI coordinates for each ROI

Voxel Size Peak MNI Coordinates
X Y y/
R. Occipital Face Area 98 45 -79 -16
L. Occipital Face Area 24 -45 -85 -10
R. Fusiform Face Area 34 45 -43 -28
L. Fusiform Face Area 10 -42 -49 -25
R. Parahippocampal Place Area 219 30 -40 -19
L. Parahippocampal Place Area 249 -27 -46 -16
R. Retrosplenial Cortex 168 18 -58 14
L. Retrosplenial Cortex 211 -15 -61 11
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2.5.6. Differentiation Index

We computed a differentiation index for each ROI as a measure of the selectivity of
neural responses at the regional level (Voss et al., 2008; Koen et al., 2019). The differentiation
index for a given ROI was computed as the difference between the mean BOLD response for
trials of a preferred stimulus class and the mean BOLD response for trials of the non-preferred

class, divided by pooled standard deviation:

Upref — MHnonpref

Dif ferentiation Index =

2 2
Upref + Onon pref

Therefore, a higher differentiation index indicates greater selectivity for a given ROI (note that
because of the scaling function, the differentiation index is insensitive to individual or group
differences in the gain of the hemodynamic response function mediating between neural activity
and the fMRI BOLD response). We computed a differentiation index for each of the four ROIs
for each participant. The resulting indices were subjected to a 2 (Age group) x 4 (ROI) mixed
factorial ANOVA (see results). We conducted an additional ANOVA of the differentiation
indices computed only from the trials that went on to receive a source correct memory response.
The goal of this additional analysis was to ascertain whether any age differences arising from the
original analysis were a reflection of the differential mixing of trial types as a function of age
group (on average, young participants had a higher proportion of source correct study trials than
did older adults).

Neural dedifferentiation may manifest as a reduced neuronal response to a preferred
stimulus category (i.e. neural attenuation), as an elevated response to a non-preferred category
(i.e. neural broadening), or as the combination of both phenomena (Park et al., 2012; Koen &
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Rugg, 2019). The differentiation index is insensitive to this distinction. Thus, we also examined
the f-parameters, averaged across all voxels within each ROI, reflecting responses to scene and
face trials in ROIs where significant age differences in neural differentiation were identified. The
[-parameters were subjected to a 2 (Age group) x 2 (ROI) x 2 (Image class) mixed-factorial
ANOVA.

Finally, to examine whether neural differentiation predicted memory performance, for
each ROI we constructed regression models that employed differentiation index and age-group
as predictor variables, and, in parallel models, either source or item memory performance as the
dependent variable. Initial versions of the models also included the interaction between
differentiation index and age group as an additional predictor variable. In no case did the
interaction term account for a significant fraction of the variance in performance (p > .05).

Results are reported below for the reduced models that excluded the interaction term.

2.5.7. Multivoxel Pattern Similarity Analysis

Multivoxel pattern similarity analysis (PSA) was conducted in a similar fashion to Koen
et al. (2019) to complement the univariate analyses described above. The similarity measures
were derived from single-trial, voxel-wise f-parameters (see Methods 2.5.4 above). For each
participant and ROI, we first computed a within-category similarity metric. This was achieved by
computing the correlations across voxels between each study trial and all other study trials
belonging to the same image category, subjecting the resulting correlations to a Fisher’s z
transformation, and averaging them. The between-category similarity was calculated in an
analogous fashion except that the correlations were estimated across rather than within image

category. The between- and within-similarity was always computed across trials of different
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scanning sessions to avoid potential bias arising from carry-over effects (Mumford et al. 2014).
The similarity index was then computed as the difference between the within- and between-
category similarity metrics. This index can be used as a metric of neural differentiation as it
reflects the extent to which different perceptual categories evoke consistent patterns of neural
responses within a given region of interest. As in the case of the differentiation index described
above, this correlation-based metric is insensitive to individual differences in hemodynamic gain.
The similarity indices were subjected to a 2 (Age group) x 4 (ROI) mixed factorial-
ANOVA. As with the analyses of the differentiation indices, we also computed pattern similarity
separately for trials that went on to receive a source correct memory response. Additionally,
similarity indices were employed in regression analyses aimed at predicting behavioral
performance. These analyses were exactly analogous to those conducted on the differentiation

indices.

3. Results

Demographic data and the outcomes of the neuropsychological test battery are presented
in Table 1. The groups were well-matched for years of education and MMSE but showed a
typical pattern of age-related differences in cognitive performance. Thus, relative to the older
group, younger adults had better performance on a subset of declarative memory tests, including
the CVLT short free recall test and the logical memory subtests of the WMS. The younger adults
also made significantly fewer recognition false alarms on the CVLT recognition memory test,
and out-performed the older group on the speeded tests (Trails A, Trails B, and Symbol Digit

Modalities) and Raven’s progressive matrices.
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The rotated factor loadings (see Methods) were applied to each participant’s
neuropsychological test scores, and the resulting factor scores for the four rotated components
are presented at the bottom of Table 2. Consistent with the individual neuropsychological tests,
there were age differences in the Speed and the Memory constructs. There were no age

differences in the Crystallized Intelligence or Fluency factors.

3.2. Behavioral Results
3.2.1. Study Performance

Mean study reaction times (RTs) and vividness ratings are reported in Table 4, separated
by image category and age group. A 2 (Age group) x 2 (Image category) x 2 (Memory: source
correct vs. source incorrect/don’t know and item misses) mixed factorial ANOVA on the RT
data revealed a significant main effect of category, reflecting faster responses in face trials (F(1.46)
=5.350, p = .025, partial-n*> = 0.101), but the remaining main effects and all interactions were
not significant (ps > 0.1). A 2 (Age group) x 2 (Image category) x 2 (Memory) ANOVA on the
mean vividness ratings revealed a significant main effect of memory (trials rated as more vivid
were associated with better source memory performance), (F(1.46) = 53.436, p < 0.001, partial-n?
=0.537). There was no effect of age (F1.46) = 3.120, p = 0.084, partial-n* = 0.064), category

(Fa146) = 0.656, p = 0.409, partial-n* = 0.015), and no interaction effects (ps > 0.18).

Table 4. Mean (SD) Study phase performance in younger and older adult groups.

Young Adults Older Adults
Faces Scenes Faces Scenes

Vividness Ratings

Source Correct Memory 2.42 (.32) 2.44 (.32) 2.24 (.39) 2.18 (.43)
Incorrect Memory 2.23 (.42) 2.13 (.51) 2.06 (.46) 2.01 (.49)
Reaction Time (ms)

Source Correct Memory 2369 (678) 2398 (628) 2130 (570) 2266 (524)
Incorrect Memory 2351 (658) 2350 (633) 2285 (605) 2327 (579)
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3.2.2. Memory Performance

Memory performance on the experimental task is summarized in Table 5. A 2 (Age
group) x 2 (Image category) mixed factorial ANOVA on item recognition identified a significant
main effect of image category (F1.46) = 5.443, p = 0.024, partial-n> = 0.106), and a main effect of
age group (F(1.46) = 10.112, p = 0.003, partial-n> = 0.180). There was no significant interaction
between the two factors (F(1.46) = 0.766, p = 0.386, partial-n> = 0.016). The main effect of image
class reflected higher item memory performance for words paired with faces relative to scenes.
Additionally, overall item recognition performance was significantly greater for younger than
older adults. An independent samples t-test on source memory performance (pSR) revealed a

significant difference in favor of the younger group (tus.12)= 3.440, p = 0.001, d = 1.01).

Table 5. Mean (SD) Item and Source memory performance for younger and older adult groups.

Young Adults Older Adults

Faces Scenes Faces Scenes
Item Hit Rate 0.82 (0.15) 0.81 (0.15) 0.70 (0.17) 0.66 (0.14)
False Alarm Rate 0.13 (0.10) 0.13 (0.10)
Proportion Source Correct 0.83 (0.14) 0.79 (0.16) 0.75 (0.13) 0.68 (0.13)
Proportion Source Don’t Know 0.12 (0.13) 0.15(0.13) 0.12 (0.12) 0.14 (0.13)
Item Memory 0.69 (0.18) 0.67 (0.17) 0.56 (0.14) 0.52 (0.13)
Source Memory (pSR) 0.68 (0.18) 0.51 (0.16)

Item memory computed as the difference between hit and false alarm rates
Source memory computed using the single high-threshold model described in Behavioral Data Analysis

3.3.1. fMRI Differentiation Index

The differentiation indices were subjected to a 2 (age group) x 4 (ROI) mixed factorial
ANOVA. The ANOVA revealed a main effect of ROI (F.11,96.87) = 29.498, p < 0.001, partial-n?
=0.391), a main effect of age group (F(1,46) = 7.389, p = 0.009, partial-n* = 0.138), and a
significant age-by-ROI interaction (F(2.11,96.87) = 9.025 p < 0.001, partial-n* = 0.164). Two

follow-up ANOV As were performed separately for the face-selective and scene-selective ROIs.
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The 2 (age group) x 2 (scene-selective ROIs) ANOVA resulted in a significant main effect of
ROI (F(1,46)= 115.71, p < 0.001, partial-n* = 0.715), a significant main effect of age group (Fq,
46) = 24.006, p < 0.001, partial-n> = 0.343), and a near-significant age-by-ROI interaction (F(1, 46)
=3.869, p = 0.055, partial-n* = 0.078). As is illustrated in Figure 3.A, the main effect of age
group is driven by reduced neural differentiation in the older age group in both ROIs: PPA
(ts.50)=4.693, p <0.001, d = 1.355), and RSC (t@4s.95) = 3.763, p <0.001, d = 1.086). An
analogous 2 (age group) x 2 (face-selective ROIs) ANOVA resulted in only a weak trend toward
an age-by-ROI interaction (F(1,46) = 3.679, p = 0.061, partial-n* = 0.074), and no main effect for
ROI (F(1,46 = 0.637, p = 0.429, partial-n* = 0.014), or age group (F(1, 46 = 0.265, p = 0.609,
partial-n* = 0.006). Unsurprisingly, therefore, there were null effects of age on neural
differentiation in both FFA (t4s.s1) = 0.401, p = 0.690), and OFA (t42.92) =-1.381, p = 0.175).
Each of the differentiation indices illustrated in Figure 3.A differed significantly from zero in
both age groups (ps < 0.002). Together, these results indicate that age group moderated neural
differentiation within the scene-selective but not the face-selective ROIs.

In a follow-up analysis, the differentiation index was computed separately for stimulus
pairs according to whether they went on to receive a correct or any from incorrect response
during a subsequent memory task. A 2 (age group) x 4 (ROI) x 2 (memory Status) mixed
factorial ANOVA revealed a main effect of ROI (F(2.09,96.21) = 23.511, p <. 001, partial-n* =
.338), a main effect of age group (F1, 46) = 6.737, p = .013, partial-n* = . 128), a significant age-
by-ROI interaction (F(2,09) = 6.250, p = .002, partial-n* = .119), and a three-way interaction
between age, ROI and memory status (F(1.81,83.16) = 4.483, p = .017, partial-n> = .089). However,
the analysis did not identify a main effect of memory (F(1,46)= 1.714, p = .197, partial-n* = .036),

nor a memory-by-age or memory-by-ROI interaction (F(1,46) = 2.567, p = .116, partial-n* = .052,
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and F(1.81,83.16) = .605, p = . 532, partial-n? = .013, respectively). Pairwise follow-up tests failed to
identify significant differences between differentiation indices computed separately for the two
classes of subsequent memory judgment in any of the ROIs in either age group (ps > 0.178).

We went on the examine the differentiation indices only for trials that were later
associated with a source-correct memory response to ensure that the age-differences reported
above were not driven by the differential mixing of source correct and source incorrect trials
(given the age differences in source memory, see Methods 2.5.6). The ANOVA identified a
significant main effect of ROI (F(1.89, 86.74) = 22.40, p < 0.001, partial-n* = 0.327), a main effect of
age group (F(1,46) = 4.89, p = 0.032, partial-n* = 0.096), and an Age-by-ROI interaction (F(1.so,
86.74) = 11.103, p < 0.001, partial-n? = 0.194). Similarly to the analyses of study trials collapsed
across memory performance, we followed up the significant ROI by age group interaction with
subsidiary 2 (age group) x 2 (face-selective ROIs) and 2 (age group) x 2 (scene-selective ROIs)
ANOVA:s. In the scene-selective regions, we identified a significant main effect of age-group
(F1,46) = 22.921, p < .001, partial-n? = .333), a main effect of ROI (F(1, 46) = 133.684, p < 0.001,
partial-n> = 0.744), but only a trend towards an age-by-ROI interaction (F(,46) =3.938, p = 0.053,
partial-n? = 0.079). As evident in Figure 3.B, the effects of age on neural differentiation within
the scene-selective regions were characterized by reduced differentiation indices in both PPA
(ts.98)=5.281, p <0.001, d = 1.524), and RSC (t44.79) = 3.359, p = 0.002, d = 0.970). The
analogous analysis in the face-selective regions revealed a significant age-by-ROI interaction
(F1,46) = 4.172, p = 0.047, partial-n* = 0.083), but the ANOVA did not reveal main effects of age
or ROI (F1,46)=2.013, p = 0.163, partial-n> = 0.042 and F(, 46) = 0.640, p = 0.428, partial-n* =
0.014, respectively). Subsequent pairwise comparisons demonstrated significantly greater

differentiation in older relative to younger adults in the OFA (t@3.92) = -2.204, p =0.032,d =
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0.636), but no age differences in the FFA (t44.94) =-0.258, p =10.797, d = 0.075). As in the prior
analyses, each of the differentiation indices illustrated in Figure 3.B was significantly different
from zero in both age groups (ps < 0.019). Overall, restricting analyses to only those encoding
trials receiving a subsequent source correct response led to convergent results in scene-selective

ROIs, whereby older adults demonstrated lower neural selectivity relative to younger adults.

-y
(=]
1

2
o
1
o
o
1

°
8
i

@ Younger @ Older

Differentiation Index
o

o
on
1

S
T
@

Differentiation Index (Source Correct Trials)
! | o
Lo
1

-
=]

Figure 3: (A) Univariate differentiation indices computed collapsing across all trials regardless
of subsequent memory performance. (B) Differentiation indices computed for only those trials
that went on to receive a source-correct response at subsequent retrieval.

To further examine age-related dedifferentiation effects in scene-selective regions, we
examined whether reduced neural selectivity in older adults resulted from a reduction in BOLD
signal for the preferred image category (neural attenuation) or an increase in BOLD signal to the
non-preferred category (neural broadening). A 2 (Age group) x 2 (ROI) x 2 (Image class) mixed
factorial ANOVA on the extracted B-parameters revealed a significant main effect of ROI (F, 46)
=125.677, p < 0.001, partial-n* = 0.732), and a main effect of stimulus category (F(1, 46) =
223.252, p < 0.001, partial-n* = 0.829), but a null effect of age group (F(1,46) = 0.591, p = 0.445,
partial-n? = 0.013), and a null age group-by-ROI interaction (F(1,46) = 0.032, p = 0.859, partial-n>
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=0.001). However, the ANOVA revealed a 2-way interaction between stimulus category and age
group (F(1, 46) = 25.859, p < 0.001, partial-n* = 0.360), and ROI (F(1, 46) = 65.59, p < 0.001,
partial-n? = 0.588). The 3-way interaction was not significant (F1,46) = 1.553, p = 0.219, partial-
n*> = 0.033). As is evident from Figure 4, there was an attenuated BOLD response to scenes in
older participants across both scene ROISs (t@44.94) = -2.894, p = 0.005, d =-0.591), accompanied
by an elevated response to face stimuli (t44.94) = 2.659, p = 0.009, d = 0.543). Thus, age-related
neural dedifferentiation in the scene-selective ROIs was driven by a combination of attenuated

BOLD response to scenes and increased responses to faces.
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Figure 4. Across-trial mean -parameters for face and scene trials in the scene-selective ROIs.

3.3.2. Pattern Similarity Analysis

Multivoxel PSA (Kriegeskorte et al., 2008) was employed as a complement to the analysis of the
differentiation index described above. We computed a within — between similarity metric in each
ROI as an index of selectivity to the ROI’s preferred relative to the non-preferred stimulus class

(see Methods). Analogous to the analyses of the differentiation index, the initial 2 (age group) x
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4 (ROI) mixed factorial ANOVA was employed on the within — between similarity indices
computed across all trials regardless of subsequent memory status. This revealed significant
main effects of ROI (F2.3s, 108.24) = 11.924, p < 0.001, partial-n* = 0.206), and age group (F(1, 46) =
12.855, p < 0.001, partial-n* = 0.218), along with a significant two-way interaction (F(2.3s, 108.24) =
4.981, p = 0.006, partial-n* = 0.098). A subsequent 2 (age group) x 2 (ROI) mixed ANOVA
focusing on just the scene-selective ROIs yielded a significant main effect of ROI (F(1, 46) =
71.02, p < 0.001, partial-n> = 0.607), a main effect of age (F1,46) = 20.273, p < 0.001, partial-n*> =
0.306), and a significant age-by-ROI interaction (F(1,46) = 19.077, p < 0.001, partial-n* = 0.293).
An analogous 2 (age group) x 2 (ROI) ANOVA on the data from the face-selective ROIs failed
to identify a significant age x ROI interaction (F(1,46) = 0.191, p = 0.174, partial-n* = 0.040), nor
did it reveal significant main effects of ROI (F(1, 46 = 0.575, p = 0.452, partial-n* = 0.012), or age
group (F(1,46 = 3.091, p = 0.085, partial-n* = 0.063). Follow-up pairwise comparisons examining
age differences in each of the four ROIs revealed significantly lower similarity metrics for scenes
in both the PPA (tu4o.50)=5.191, p <0.001, d = 1.498), and RSC (t37.66) = 2.290, p = 0.027,d =
0.660). We did not however detect any age differences in similarity indices for faces within face-
selective ROIs: FFA (t33.06) = 1.939, p = 0.061, d = 0.560), OFA (t@4s.46) = 0.626, p=0.534,d =
0.181) (Figure 5.A). The similarity indices differed significantly from zero in all ROIs in both
age groups (ps < 0.001). These results indicate that, when computed across all encoding trials,
within — between pattern similarity was moderated by age in the scene- but not the face-selective
ROls.

As with the analyses of the differentiation index, the within — between similarity indices
were also computed separately for trials binned into two categories depending on whether or not

the trial received a source-correct memory response at retrieval. A 2 (age group) x 4 (ROI) x 2
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(memory status) mixed factorial ANOVA resulted in a main effect of age group (F(1,46) = 12.894,
p <.001, partial-n* = .219), a main effect of ROI (F(2.34, 10747y = 10.873, p < .001, partial-n?> =
.191), an age-by-ROI interaction (F(2.34, 107.47) = 4.480, p = .010, partial-n* = .089), and a three-
way interaction between age, ROI and memory status (F(2.39, 109.99) = 3.542, p = .025, partial-n* =
.071). The analysis did not identify a main effect of memory (F(,46) = 3.074, p = .098, partial-n>
=.063), nor any two-way interactions between memory and Age group or ROI (ps > 0.20).
Subsequent pairwise comparisons demonstrated that the within-between similarity indices
computed separately for the two classes of memory judgment were not significantly different
from each other in either ROI in either age group (ps > 0.142).

For the reasons described above (Methods 2.5.6), we repeated the foregoing analyses
using only those trials that went on to give rise to a correct source memory judgment, allowing
an assessment of whether age-differences in pattern similarity were driven by age-differences in
the number of successful memory trials contributing to the similarity metrics. A 2 (age group) x
4 (ROI) mixed ANOVA revealed significant main effects of age (F(1,46) = 12.071, p = 0.001,
partial-n? = 0.208), and ROI (F(2.34, 107.43) = 10.550, p < 0.001, partial-n*> = 0.187), along with
significant age by ROI interaction (F(2.34, 107.43) = 5.325, p = 0.004, partial-n> = 0.104). A follow-
up ANOVA on the data for the scene-selective ROIs revealed significant main effects of age
group (F1,46) = 20.830, p < 0.001, partial-n* = 0.312), and ROI (F(1, 46) = 58.860, p < 0.001,
partial-n* = 0.561), as well as an age-by-ROI interaction (F(1, 46 = 16.221, p < 0.001, partial-n* =
0.261). ANOVA of the face-selective ROIs failed to identify any significant effects: age (F(1.46) =
1.647, p = 0.206, partial-n* = 0.035); ROI (F(1.46) = 0.320, p = 0.574, partial-n* = 0.007); age x
ROI interaction (F1, 46 = 0.558, p = 0.459, partial-n* = 0.012). As Figure 5.B illustrates, the

similarity indices demonstrated age-related reductions in both the PPA and RSC (tu1.62) = 5.543,
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p <0.001, d =1.600, and t37.12) = 2.328, p = 0.025, d = 0.672, respectively), while age effects
were absent in the two face-selective ROIs (t33.53) = 1.23, p = 0.226, d = 0.356 and t@4s.54) =
0.575, p=0.568, d = 0.166 in the FFA and OFA respectively). Similarity indices were however
significantly different from zero in all ROIs and age groups (ps < 0.001). Thus, as with the
differentiation index, when pattern similarity analysis was restricted to encoding trials associated
with a correct subsequent source memory judgment robust age effects were evident in scene- but

not face-selective ROIs.
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Figure 5: (A) Within — Between similarity indices computed collapsing across memory
performance. (B) Within — Between similarity indices computed for only those trials that went
on to receive a source-correct response at subsequent retrieval.
3.4. Relationship between neural differentiation and subsequent memory performance

In light of prior findings (Koen et al., 2019), and as described in the methods, we ran a
series of multiple regression analyses in which age group and the differentiation indices from
each ROI were employed as predictors of subsequent source and item memory performance. As

described in Methods, the initial multiple regression models included the ROI x Age interaction

terms, however, in no case was the interaction significant (p > 0.05). Therefore, Table 6 presents
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the partial correlations between neural differentiation and performance after controlling for age
group. As is evident from the table, the partial correlations between differentiation indices and
source memory performance achieved significance only in the PPA (as would be predicted from
the findings of Koen et al., 2019). This was the true both when computing the differentiation
index collapsing across memory performance and when selecting only the source-correct trials.
Moreover, these relationships between differentiation in the PPA and source memory
performance remained significant after controlling for both age and item memory performance
(collapsed across all trials: rpartiat = 0.334, p = 0.023; source-correct trials: rpartial = 0.314, p =
0.033). The partial relationships controlling for age group are illustrated in Figure 6. Analogous
analyses were conducted for the pattern similarity indices: no significant relationships between

similarity indices and memory performance were identified (p > 0.092).

Table 6: Partial correlations (p-values) between item memory and source memory performance
and differentiation index when controlling for age group. The differentiation indices were
computed either across all encoding trials (first two columns) or only for those encoding trials
that were associated with a source-correct memory response (second two columns).

Collapsed across all trials Source-correct trials
Item Memory Source Memory Item Memory Source Memory
FFA -0.14 (0.33) -0.12 (0.43) -0.08 (0.58) -0.01 (0.94)
OFA 0.07 (0.64) 0.08 (0.57) 0.15(0.32) 0.08 (0.57)
PPA 0.14 (0.34) 0.34 (0.02) 0.18 (0.22) 0.35(0.02)
RSC 0.10 (0.52) 0.15(0.30) 0.04 (0.80) 0.10 (0.50)

30


https://doi.org/10.1101/2020.01.21.914432
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914432; this version posted January 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

04
Ao B T partial = 0.347, p = 0.017
@
@
0.2 e @
) _
S »
3 ©
3 3
£ 8 0.0+
g 2
=]
E £
2 2
8 § 02
2 3
] 3
- 044
@
T T T T ' . . .
06 02 0.2 06 6 0 s i
PPA Differentiation (residuals) PPA Differentiation Source Correct - (residuals)

© Younger ® Older

Figure 6: Scatterplots illustrating the partial correlations (controlling for age group) between
PPA differentiation indices with source memory performance. Plot A illustrates the relationship
between source memory and differentiation index collapsed across all encoding trials. Plot B
illustrates the same relationship but restricted only to the trials that went on to receive a source
correct memory response.
3.5. Relationship between neural differentiation and neuropsychological test performance
Given prior findings of a positive, age-invariant, relationship between the PPA
differentiation index and the fluency component derived from the neuropsychological test battery
(see Introduction), we examined whether a similar relationship was evident in the present study.
When collapsed across all trials regardless of subsequent memory, the partial correlation
(controlling for age) between the differentiation index and fluency factor scores was not
significant in the PPA, tpartial = -0.009, p = 0.951 (nor in the RSC, rpartial = 0.112, p = 0.454). The
relationship was also absent when the differentiation index was derived from source correct trials
only, PPA: rpartial = 0.105, p = 0.482, RSC: rpartia = 0.170, p = 0.255.

Additional exploratory analyses were performed to examine the relationship between the

other three cognitive constructs derived from the neuropsychological test battery (see Table 1)
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and the 4 ROIs. These analyses revealed an age-invariant relationship (controlling for age
group) between the FFA differentiation index and the memory factor, rpartial = -0.430, p = 0.003,
(p = 0.036 after Holmes-Bonferroni correction for multiple comparisons). The negative
relationship between the FFA differentiation index and the memory factor remained significant
when restricting the analysis to source correct trials, rpartial = -0.478, p < 0.001 (p = 0.003 after
correction). We did not identify any significant relationships between pattern similarity metrics

and neuropsychological test performance (p > 0.05).

4. Discussion

The current study employed a combination of univariate and multi-voxel analyses to
examine age effects on category-level neural selectivity (or neural differentiation) during the
encoding of images of faces and scenes prior to a subsequent memory test. Neural selectivity was
examined in two scene- and two face-selective ROIs. The univariate and pattern similarity
measures yielded convergent results indicating that scene-, but not face-selective, regions
demonstrated reduced category-level selectivity with older age — that is, age-related neural
dedifferentiation. The findings add to the already large literature describing age-related neural
dedifferentiation effects (for review, see Koen and Rugg, 2019; Koen et al., 2019, 2020) and,
importantly, also add to evidence suggesting that while the phenomenon is highly robust for
scene stimuli, it is more elusive for other stimulus classes: faces in the present case, and objects
in Koen et al. (2019). Additionally, analogous to the findings of Koen et al. (2019), the
univariate metric of neural differentiation for scenes in the PPA demonstrated a positive, age-

invariant, relationship with source memory performance.
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Turning first to the behavioral findings, we observed no age differences either in study
RT or in the vividness ratings assigned to the study items. Therefore, the age differences we
identified in neural differentiation are unlikely to reflect the confounding effects of either of
these variables. At test, younger adults outperformed their older counterparts in respect of both
item and source memory performance, findings consistent with an extensive prior literature (for
reviews, see Old & Naveh-Benjamin, 2008; Koen & Yonelinas, 2014). Given these age
differences in memory performance, we examined neural differentiation indices derived not only
from all experimental items (as in prior studies) but also from only those study trials attracting
correct source judgments. The results of the two analyses revealed that the findings of age-
related neural dedifferentiation in the scene-selective ROIs were not confounded by differential
neural activity associated with successful vs. unsuccessful memory encoding.

Age-related reductions in neural specificity have been linked to cognitive declines
associated with healthy aging (Koen & Rugg, 2019). This putative link is motivated by the
notion that age-related weakening of dopaminergic neuromodulation results in reduced neural
signal-to-noise and hence reduced specificity of neural representations (Li et al., 2001; Li &
Rieckmann, 2014; see also Abdulrahman et al., 2017). The proposal that age-related neural
dedifferentiation plays a role in cognitive decline receives further support from findings that
dedifferentiation is associated with lower memory performance (Yassa et al., 2011; Berron et al.,
2018; Bowman et al., 2019; Koen et al., 2019) and lower fluid processing ability (Park et al.,
2010; Koen et al., 2019). However, although increasing age is undoubtedly associated with
reduced neural selectivity, the existing evidence suggests that the relationship between neural
differentiation and cognitive performance is not moderated by age, that is, it is age-invariant

(Koen & Rugg, 2019). The present findings of an age-invariant relationship between scene
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differentiation in the PPA and subsequent source memory performance add to this evidence.
These findings serve as a conceptual replication of those reported by Koen et al., (2019),
although in that experiment, PPA differentiation was related more strongly to item than to source
memory performance. This disparity likely reflects the different experimental procedures:
whereas the category exemplars in the present study served as the contextual features targeted in
the source memory test, in Koen et al. (2019) the exemplars were the test items themselves.

As noted in the Introduction, evidence for age-related neural dedifferentiation in the
visual domain appears to be most consistent for scenes and faces. Thus, the present findings for
scenes in the PPA and RSC are fully consistent with prior findings, whereas the null effects we
report for faces in FFA and OFA run counter to several prior results (Park et al., 2004; Voss et
al., 2008; Park et al., 2012; but see Payer et al. 2006). There are several factors that, either jointly
or in combination, might account for these disparate findings. One factor concerns the
presentation format of the stimuli. Whereas the faces in the present study were rendered in color,
as best we can determine, prior studies reporting age-related differentiation for faces all
employed gray-scale images. A second factor concerns the processing demands placed on the
participants: whereas most prior studies reporting age effects on face specificity employed
passive viewing conditions (Park et al., 2004; Voss et al., 2008; Park et al., 2010; but see Goh et
al., 2010, and Burianova et al., 2013), here we employed a task that required active engagement
with the experimental stimuli (as did Payer et al., 2006). If older adults have a greater tendency
to “zone out” during passive viewing, the resulting reduction in attention to the experimental
stimuli may manifest as reduced neural selectivity (see Koen et al., 2019, for a similar account of

inconsistent findings for objects). Additionally, whereas prior studies reporting age-related
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differentiation typically employed blocked experimental designs, here we employed an event-
related design in which different category exemplars were presented in an unpredictable order.

While some combination of the above-mentioned factors might account for the absence
of age-related neural dedifferentiation for faces in the present study, they offer no insight into
why dedifferentiation effects for scenes are so robust. Relevant to this question, a recent
“lifetime experience hypothesis” (Koen & Rugg, 2019) posits that neural differentiation might be
moderated by prior experience that accrues over the lifespan. The hypothesis proposes that
accumulating lifetime experience facilitates the assimilation of novel category exemplars into
perceptual schemas (Gilboa and Marlatte, 2017). If scene processing becomes increasingly
schema-dependent with age, age-related neural dedifferentiation in scene ROIs might reflect
more efficient assimilation of scene information into relevant schema(s). As was noted by Koen
et al. (2019), this proposal receives support from their finding that age-related neural
dedifferentiation in the PPA took the form of an age-related reduction in neural responses to
scenes (neural attenuation), as here. By contrast, schemas for some other stimulus categories,
such as canonical objects, high frequency words, and, possibly, faces, develop more rapidly and
are largely fully formed by adolescence or early adulthood (Germine et al., 2011). By this view,
therefore, the present findings of null age effects for face differentiation reflect the fact that
young and older adults possess equally well-formed face schemas.

The mixed evidence for age differences in neural selectivity for different perceptual
categories might also be explained by age differences in the perceptual processing of complex
visual stimuli. For instance, age differences in neural differentiation may be more pronounced
when viewing stimuli that comprise combinations of multiple, unpredictable features, such as

scenes rather than faces. Notably, it has been reported that PPA activity is strongly modulated by

35


https://doi.org/10.1101/2020.01.21.914432
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.21.914432; this version posted January 23, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

scene complexity (Chai et al., 2010), whereby increasing complexity is associated with greater
activity in the region (see Aminoff et al., 2013, for review). If, as has been suggested (e.g. Boutet
et al., 2019; Meng et al., 2019), older adults are less able to differentiate visual detail, then age
differences in neural selectivity in the PPA might be anticipated. In contrast, the null effects of
age in neural selectivity for exemplars of canonical objects, words, or human faces, might reflect
their relatively low visual complexity, along with, perhaps, higher schema congruency (see
above).

For reasons that are presently unclear, we failed to replicate the finding (Koen et al.,
2019) of a relationship between PPA differentiation and scores on a psychometric fluency factor.
We did, however, identify a robust age-invariant negative relationship between the FFA
differentiation index and the memory factor derived from the neuropsychological test scores.
This finding should be treated with caution since it was unpredicted and, to our knowledge, is
without precedent. On its face, however, it suggests that relatively greater neural selectivity does
not invariably confer a cognitive benefit.

We note a number of limitations of the present study. First, measuring neural selectivity
at the category level might not provide a sensitive enough measure to detect age differences in
the fidelity of face (or object) representations, and it is possible that item-level measures would
yield different findings (cf. Goh et al., 2010; St Laurent et al., 2014; Sommer et al., 2019; Trelle
et al., 2019). Second, like prior studies of neural dedifferentiation, the present study employed a
cross-sectional design. Hence, the reported age differences cannot unambiguously be attributed
to the effects of aging (e.g. Rugg, 2016). Finally, it is unclear to what extent the present (and
previous) findings reflect age differences the variability or the shape — as opposed to the gain

(see Methods) - of stimulus-elicited hemodynamic responses (D'Esposito et al., 2003).
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In conclusion, although increasing age is associated with reduced neural differentiation
between different visual categories, the present study adds to the evidence that this is easier to
demonstrate for visual scenes than for other visual categories. The findings also add to the
evidence that neural differentiation can predict individual differences in cognitive performance
throughout the lifespan. Whereas the functional significance of age-related neural
dedifferentiation largely remains unclear, individual differences in neural differentiation appear

to be determined by both age-dependent and age-invariant factors.
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