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Abstract

BlastFrost is a highly efficient method for querying 100,000s of genome

assemblies. It builds on Bifrost, a recently developed dynamic data structure

for compacted and colored de Bruijn graphs from bacterial genomes. Blast-

Frost queries a Bifrost data structure for sequences of interest, and extracts

local subgraphs, thereby enabling the efficient identification of the pres-

ence or absence of individual genes or single nucleotide sequence variants.

Here we describe the algorithms and implementation of BlastFrost. We also

present two exemplar practical applications. In the first, we determined the

presence of the individual genes within the SPI-2 Salmonella pathogenicity

island within a collection of 926 representative genomes in minutes. In the

second application, we determined the existence of known single nucleotide
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polymorphisms associated with fluoroquinolone resistance in the genes gyrA,

gyrB and parE among 190, 209 Salmonella genomes. BlastFrost is available

for download at https://github.com/nluhmann/BlastFrost.

1 Introduction

Recent advances in DNA sequencing technologies have reduced sequencing costs

and time, and whole-genome sequencing of bacterial pathogens is being routinely

perfomed by public health organizations. The resulting sequence reads and genome

assemblies are deposited in the public domain [3, 25, 30], enabling comparative

analysis for 100,000s of genomes [17, 31] from individual bacterial genera to in-

vestigate their evolutionary history, and their assignment to ongoing or historical

epidemiological outbreaks.

New sequencing data are now routinely uploaded to public databases such as

the Sequence Read Archive (SRA [16]), which has resulted in ready access to ex-

tensive collections of sequencing data for many bacterial genera. Other databases,

including PubMLST [15] and EnteroBase [30], even provide curated collections of

genomic assemblies bundled with their metadata for specific bacterial pathogens,

as well as dedicated tools for population genomic analyses.

The analysis of genomic sequences by phylogenetic approaches can yield in-

sights into evolutionary distances for 1000s of genomes but large comparative

studies based on sequencing data are limited by computing resources and speed

of calculations [31]. Even the seemingly simple task of identifying all bacterial

strains within a collection that contain a specific antimicrobial resistance gene or

other genes of interest is a computational challenge for the large data sets that

are currently available. The most popular methods for sequence comparison are

BLAST [5] and its successors. However, these alignment-based methods do not
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scale well. As a result, in some recent software the alignment step is replaced by

a k-mer approach, in which sets of short sub-sequences of fixed length k are com-

pared between a query and a sequence database, as recently reviewed by Marchet

et al. [20]. Without the prerequisite for an explicit reference genome, k-mers can

identify diverse genetic modifications such as SNPs (single nucleotide polymor-

phisms), insertions or deletions from short read sequences.

One recent k-mer-based method, BIGSI, employs a data structure storing a

Bloom filter [6] of k-mers for each genome in a database, and can subsequently

index and search very large databases of bacterial and viral sequences [7]. BIGSI

queries are very efficient, but the 2016 European Nucleotide Archive (ENA) is so

large that creating a BIGSI index took months. Furthermore, BIGSI was designed

for dealing with genetically diverse collections of data, and other methods and dif-

ferent data structures might be more efficient for creating a query index of sequence

data from closely related genomes. One potential approach for faster construction

of indices would be to index sets of k-mers in a de Bruijn graph [24], where shared

k-mers are automatically collapsed. Collapsing k-mers that are shared between

closely related genomes would decrease both the storage space for the index and

the search space for subsequent queries. Recent implementations of such an ap-

proach include Mantis [23], Rainbowfish [4] and VARI-Merge [22]. They build joint

de Bruijn graphs for multiple genomes, coloring nodes by their source genomes

(colored de Bruijn graphs [13]), and can traverse shared paths in the graph which

represent conserved regions as well as diverging paths which represent variable

regions. However, the implementations of these methods do not scale well enough

to be able to handle a modern, large sequence collection [12]. For example, VARI-

Merge was benchmarked on a data set of 16,000 Salmonella genomes [22], but

EnteroBase already contains ∼ 250, 000 genomes.

The recent development of Bifrost [12] introduced a memory efficient, dynamic
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data structure for indexing either colored or non-colored compacted de Bruijn

graphs. It presents a broad range of functions that support querying both se-

quences and colors, annotating individual vertices and editing Bifrost graphs while

preserving their compaction. The implementation of Bifrost facilitates to rapidly

build joint graphs scaling to 100,000s of genomes, and permits almost instanta-

neous updating of graphs with additional data. However, Bifrost does not imple-

ment querying on its own. Here we introduce BlastFrost, a method for similarity

searches in Bifrost graphs by rapid k-mer matching implemented in C++. Blast-

Frost can use the underlying Bifrost graph structure to extract subgraphs defined

by a query, and thereby efficiently extract sequence variants of the query from a

data base of 100,000s of bacterial genomes, as illustrated here by case studies on

the identification of genomic islands and of individual mutations in antimicrobial

resistance genes.

2 Results

Bifrost indexes bacterial genomes in a time and memory efficient implementation

of a compacted and colored de Bruijn graph. The nodes in an uncompacted graph

represent a set of overlapping sequences of k-mers within the input genomes. Edges

in the graph are implicit, and represent overlaps of length k − 1 between neigh-

bouring nodes. Maximal paths of multiple sequential, non-branching nodes are

compacted into single nodes (unitigs) by collapsing the overlaps. Each node is as-

signed a set of colors representing all input genomes containing the corresponding

k-mers of the unitig.

BlastFrost relies on the particular form of compacted and colored de Bruijn

graphs implemented in Bifrost [12], which are henceforth designated as Bifrost

graphs. As depicted in Figure 1 top, we implemented a k-mer search function in
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BlastFrost which can identify the presence or absence of a query sequence in any of

the genomes in a Bifrost graph. The results of that search can be used for subgraph

extraction (Fig. 1 bottom) of query matches in order to identify all variants of the

query sequence in the Bifrost graph. The following paragraphs provide an overview

of the method. Algorithmic details can be found in Supplemental Material.

2.1 BlastFrost query search

BlastFrost takes as input, and loads into memory, a pre-computed Bifrost graph

for a certain k consisting of a graph file in GFA format plus an index of the colors

of each k-mer in each unitig. We henceforth refer to the graph genomes as colors.

The input parameters to BlastFrost also include a link to a FASTA file containing

one or more query sequences.

For each query, BlastFrost calculates a set of overlapping k-mers whose size

corresponds to the value of k that was used to build the Bifrost graph. That set is

used to identify the presence or absence of sequences corresponding to that query

in all colors. BlastFrost searches for each k-mer via functions that are integrated

in the Bifrost API. Each query results in a binary sequence for each color of 1s and

0s representing k-mer hits and misses. Note that the k-mer based search in the

graph explicitly assumes that any two overlapping k-mers of the same color are

also contiguous in the underlying genome. Since Bifrost graphs are compacted,

BlastFrost additionally speeds up comparisons for the compacted nodes in the

graph (unitigs), by assuming that the color set of the unitig is the same as the

individual color sets of each k-mer in that unitig.

A single nucleotide substitution between a query and a color will result in k

k-mers that are missed for that query, resulting in a stretch of k 0’s in the binary

hit sequence for that query. Deletions are also characterized by runs of 0’s that

are potentially smaller than k, while insertions and multiple substitutions can lead
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to longer runs of 0’s in the hit sequence. In order to evaluate the significance of

k-mer hits between a query and a specific color, we adopt the BLAST approach

for computing an E-value based on an estimated alignment score, derived from the

lengths of 0 runs in the k-mer hits. To increase the sensitivity of the k-mer based

query, BlastFrost allows additional querying of all k-mers related to a query k-mer

by a Hamming distance smaller or equal to an input parameter d. We refer to

this set of additional k-mers as k-mer neighbourhoods (Fig. 1). In the following

evaluation, we present the necessity for this increased sensitivity, as well as some

of the resulting trade-offs.

2.2 BlastFrost subgraph extraction

Presence or absence results from a Bifrost graph are not immediately informative

on genomic location of the query hits, the numbers of copies in each genome,

or on syntenic relationships. We note that for any specific query, each binary

sequence of k-mer hits represents a potentially incomplete path of nodes for each

color in the graph interrupted by nucleotide changes that were not included in

the shared k-mers between the query and the genome. BlastFrost can account for

these potential gaps by extending the k-mer hit results, and produce a subgraph

for each successful k-mer query. Starting from the first unitig in the original k-mer

hit list for a specific color, BlastFrost greedily completes a path by traversing non-

branching paths of the same color within the graph. The subgraph is then used

to reconstruct the corresponding sub-sequence of each color from the path in the

Bifrost graph.

To avoid completing the same paths multiple times, BlastFrost clusters colors

sharing k-mer hits in order to simultaneously complete all their paths, and also

removes colors from those clusters that are absent in intervening unitigs. For each

path and its accompanying colors, BlastFrost output the genome sequence in addi-
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tion to the above mentioned binary sequence. These data allow ready identification

of variant positions between the query and the extracted path sequences.

2.3 Evaluation and benchmarks

Precision and sensitivity of identifying all query variants in a pan-

genome. We evaluated the abilities of BlastFrost for detecting sequence variants

within a Bifrost graph by querying all 21, 065 orthologs in the whole genome MLST

(wgMLST) scheme in EnteroBase [2, 30] which were derived from a pan-genome

from 537 representative genomes of the genus Salmonella. Bifrost required less

than 24 minutes and less than 5GB of memory to create a graph of 926 repre-

sentative Salmonella strains from EnteroBase [2]. The graph requires 2.3GB of

disk space, and it contains more than 33 million unitigs. We queried the Bifrost

graph with BlastFrost for one representative allele from EnteroBase for each of the

21, 065 loci in the wgMLST scheme, and extracted all allelic variants in the cor-

responding subgraphs. For each locus, a allelic variant was scored as successfully

recovered if at least 95% of the allelic sequence stored in EnteroBase was present

within the BlastFrost output.

Figure 2 depicts the sensitivity and precision of this evaluation by sequence

length for pairs of queried and recovered alleles according to their average sequence

identity. BlastFrost identified all genomic alleles which were at least 95% identical

on average to the query (100% sensitivity). For more diverse alleles, the sensitivity

dropped to > 0.89 for sequences that were less than 400bp long. The number

of false hits was very low (precision > 0.9) for alleles longer than 400bp, but

somewhat more common for shorter sequences. It is not clear that these false

hits are really false, because EnteroBase filters repetitive DNA and overlapping or

duplicated alleles from its allelic calls whereas those sequences are still present in

the genomes, and can be found by BlastFrost. In summary, BlastFrost correctly
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identified all sequence variants down to 90% sequence identity with a query length

of > 400bp, and almost all such variants down to 200bp in length.

Speed and RAM benchmarking. Time and memory requirements were com-

pared against two widely used, recently developed software tools. Firstly, Blast-

Frost was compared to BIGSI [7] on a data set of 736 representative Yersinia pestis

draft genomes, all of which are very closely related genetically. Bifrost indexing

was much faster than that of BIGSI (Supplemental Material). Figure 3 shows

query time and maximum RAM usage of BlastFrost and BIGSI as a function of

the size (200-1600) of subsets of core genes from the EnteroBase core genome

MLST (cgMLST) scheme for Yersinia [30]. The BlastFrost search was an inexact

search for a k-mer neighbourhood of 1 (parameter d = 1). The exact search func-

tion in BIGSI was tested as well as its inexact search function which reports query

hits containing at least 70% of the query sequence k-mers (parameter t = 70). The

BlastFrost query yielded the same hits as the inexact BIGSI search, but was as

fast as the exact BIGSI search (Fig. 3A), and used much less RAM except when

> 1200 queries were performed.

For the speed and RAM needed for subgraph extraction, we compared Blast-

Frost to minimap2 [18], which is the currently most efficient mapping tool for

both short reads as well as chromosome-scale alignments. The average speed of

the two methods was tested for extracting 100 genes at a time from the wgMLST

Salmonella scheme described above from subsets of the 926 representative Salmonella

genomes. Figure 3C shows much higher speed for BlastFrost than minimap2. The

time needed by BlastFrost to extract a subgraph is dependent on the number of

hits for that query (Fig. 3D), but it still achieves a slightly sub-linear growth in

time requirement because several genomes can share a common sequence for the

same query variant within a bacterial genus.
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2.4 Applications

We took advantage of the large genomics databases available in EnteroBase to

demonstrate the ability of BlastFrost to find the presence of genomic elements

and to identify nucleotide variants of individual genes. For genomic elements, we

searched the representative genomes of Salmonella for known genes in the SPI-2

Salmonella pathogenicity island. For nucleotide variants, we screened the entire

EnteroBase Salmonella database for specific substitutions in three genes that are

associated with fluoroquinolone resistance in Salmonella.

Genomic islands. Genomic islands consist of DNA stretches in the accessory

genome that can be acquired by bacteria through horizontal gene transfer, or

which are lost due to gene deletion [8, 27]. Pathogenicity islands are a distinct

class of genomic islands, which can range in size from 10 − 200kb, and encode

genes which can contribute to the virulence of the bacteria [11]. SPI-2 is such an

island which seems to have been acquired by Salmonella after the divergence of

S. bongori and S. enterica from their common ancestor. Subsequently S. enterica

split into multiple so-called sub-species [2].

We obtained gene sequences from the Virulence Factors database [19] for the 44

genes on SPI-2in S. enterica serovar Typhimurium strain LT2, and queried each of

these against the same Bifrost graph of the 926 representative Salmonella genomes

described above. Figure 4 shows the distribution of these 44 genes according to

an exact search (BlastFrost parameter d = 0, dark green) and an inexact search

(BlastFrost parameter d = 2, light green). The inexact search consistently iden-

tified most of the SPI-2 genes in all of the Salmonella subspecies, but they were

absent, as expected [11], in Salmonella bongori. However, some genes were absent

or their sequences were too divergent to be detected from most of the genomes

from individual subspecies. This figure also emphasises the importance of inexact
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querying because although most SPI-2 genes in subspecies I, II and VI can be

identified by an exact search, the inexact search greatly increased the number of

SPI-2 genes identifiedin the other subspecies.

This analysis took 111 seconds to load the Bifrost graph of 926 Salmonella

genomes into memory, and a further 540 seconds to search for all SPI-2 genes with

the inexact BlastFrost search, for a total of under 11 minutes.

Nucleotide variants. The subgraph extraction functionality of BlastFrost can

also extract known variants of genes involved in antimicrobial resistance or other

phenotypes. We initially created a Bifrost graph of 160, 000 Salmonella draft as-

semblies downloaded from EnteroBase, which took 4 days and 15h computation

time and 147GB of memory. During the course of these investigations, we up-

dated this graph in several iterations, resulting in a final graph containing 190, 209

genomes. A Bifrost graph update with 100 additional genomes takes about 2.5h,

including the time to load the graph back into memory. The disk size of the graph

containing 190, 209 genomes is 158.5GB and it contains 32, 692, 889 unitigs. We

then queried this graph for a single representative gene sequence from each of the

genes gyrA, gyrB and parE. These genes were chose because individual nucleotide

variants in the quinolone resistance-determining regions (QRDR) can cause re-

duced susceptibility to fluoroquinolones [26]. The queries resulted in one subgraph

per gene, whose sequences were aligned, and scanned for the known nucleotide

variants.

Our results show that 20, 490 genomes from multiple serovars contained these

QRDR nucleotide variants, as illustrated by a Neighbour-Joining tree estimated

from cgMLST distances between the genomes colored by serovar (Fig. 5A). The

serovars of genomes containing QRDR mutations included common causes of hu-

man disease, such as Enteritidis, Typhi and Typhimurium, as well as multiple other
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serovars that are common in domesticated animals but can cause food-borne gas-

troenteritis in humans (Fig. 5B). Most of the genomes identified in these BlastFrost

queries contain a single nucleotide variant in gyrA (89.7%) (Fig. 5D). Variants in

gyrB (1.8%) and parE (0.26%) were also found but they were less common, and

were normally present together with gyrA mutations in the same genomes (Fig.

5C).

EnteroBase also contains numerous genomes which do not contain these QRDR

mutations. The relative proportions of genomes with and without those QRDR

mutations from the most frequent serovars are illustrated in Figure 6. Serovars

Paratyphi A or Typhi show the largest proportion of strains with resistance mu-

tations. Interestingly, almost all fluoriquinolone-resistants strains of serovar Ken-

tucky belong to only one of the multiple genetic clusters that are associated with

this polyphyletic serovar [1, 2].

These analyses took 25 minutes to load the Bifrost graph into memory, and

3.5 hours to extract all subgraphs using 8 threads. BlastFrost used a maximum of

160GB RAM for these analyses.

3 Discussion and Conclusions

BlastFrost implements a highly efficient algorithm for querying de Bruijn graphs.

It complements the very computationally efficient Bifrost, which calculates com-

pacted and colored graphs that support scaling such analyses to 100,000s of closely

related bacterial genomes. Practical applications of these two methods are also

greatly facilitated by the existence of structured sequence databases of closely

related bacteria such as EnteroBase. Furthermore, visualisation of the genetic

relationships among the query hits is also facilitated by the genotyping based on

legacy or core genome MLST, which is also provided by EnteroBase [30]. The com-
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bination of Bifrost, BlastFrost and EnteroBase has the potential to rapidly reveal

numerous features of genomic diversity that were previously not readily possible.

MLST schemes, even whole genome MLST, are inherently limited, because

they are based on a fixed selection of genes that were present in an initial, rep-

resentative set of genomes. However, many bacterial genera are associated with

open pan-genomes [21], whose content continues to increase with each additional

genome that is sequenced [29]. These novel sequences will not be included in MLST

schemes. Therefore, it is important to emphasise that BlastFrost and Bifrost are

not dependent on MLST or on genomic annotations, but can handle any collection

of closely related genomic assemblies. BlastFrost can summarise diversity within

large regions such as genomic islands. It can identify variants of any sequence of

interest, which can be rapidly analysed to find single nucleotide polymorphisms.

We compared the speed and memory requirements of BlastFrost and Bifrost

for large genomic data sets with the state of the art tools BIGSI and minimap2.

BIGSI can handle genomic analyses between diverse bacterial genomes, whereas

BlastFrost is less suitable for indexing and querying diverse sequence collections

such as RefSeq or SRA. However, for closely related genomes, such as those within

a single bacterial genus, BlastFrost is considerably faster than BIGSI, and requires

less memory for up to 1400 sequence queries. Similarly, BlastFrost is much faster

than minimap2 for closely related genomes, and also requires less memory. These

computational efficiencies did not sacrifice accuracy. BlastFrost has good precision

and sensitivity for sequences that are at least 90% identical and over 400bp in

length.

The identification of genomic islands or individual nucleotides associated with

antimicrobial resistance genes is enabled by BlastFrost because of the explicit

graph data structure in Bifrost which supports graph traversal and extraction

of sequences that extend beyond the k-mers that were used for querying. As
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a result, given a Bifrost graph, genomic islands or nucleotide variants can be

identified among 100,000s of genomes in a matter of minutes. The Bifrost API

freely supports annotation of nodes in the graph, including annotating unitigs with

additional data. In future extensions, BlastFrost should be able to extract local

synteny from graphs whose unitigs are annotated with genome coordinates and/or

gene annotations. Such information could also be used to reconstruct genomic

rearrangements.

BlastFrost is not a general replacement for calling SNPs because its precision

suffers with increasing genetic diversity and reduced sequence length. However, it

might have the potential for incorporation into approaches to detection of antimi-

crobial resistance in combinations of databases of AMR genes such as CARD [14]

and AMRfinder [10] and genomic sequence collections such as EnteroBase.
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Rappuoli. The microbial pan-genome. Current opinion in genetics & devel-

opment, 15(6):589–594, 2005.

[22] Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building Large

Updatable Colored de Bruijn Graphs via Merging. bioRxiv, page 229641,

2019.

16

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.21.914168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.21.914168
http://creativecommons.org/licenses/by/4.0/


[23] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman,

Rob Johnson, and Rob Patro. Mantis: A fast, small, and exact large-scale

sequence-search index. Cell systems, 7(2):201–207, 2018.

[24] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian path

approach to DNA fragment assembly. Proceedings of the national academy of

sciences, 98(17):9748–9753, 2001.

[25] Efrain M Ribot, Molly Freeman, Kelley B Hise, and Peter Gerner-Smidt.

PulseNet: Entering the Age of Next-Generation Sequencing. Foodborne

pathogens and disease, 2019.

[26] Yajun Song, Philippe Roumagnac, François-Xavier Weill, John Wain, Chris-

tiane Dolecek, Camila J Mazzoni, Kathryn E Holt, and Mark Achtman. A

multiplex single nucleotide polymorphism typing assay for detecting muta-

tions that result in decreased fluoroquinolone susceptibility in Salmonella en-

terica serovars Typhi and Paratyphi A. Journal of antimicrobial chemother-

apy, 65(8):1631–1641, 2010.
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Figure 1: BlastFrost algorithms. BlastFrost is a command line program with in-
puts of pre-computed Bifrost files that specify the graph and colors plus a FASTA
file of query sequences. It conducts a search of a k-mer neighbourhood for the pa-
rameters k (k-mer length) and d (Hamming distance), and estimates an alignment
score and p-value for each query sequence. The presence or absence of hits are
automatically produced as a tab-delimited file containing the query ID, color ID,
and binary presence/absence data. When started with the input parameter −e,
BlastFrost uses these data to extract subgraphs, and adds their path sequences as
output.
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Figure 2: Sensitivity and precision of extracted subgraph sequences of 21, 065
wgMLST loci in the Salmonella database in EnteroBase using their reference alleles
as queries against a Bifrost graph of 926 representative Salmonella strains [2].
Queries were scored as correct when at least 95% of the sequence length of the
reference was retrieved and EnteroBase had scored the genome as containing an
allele of that locus. Query hits that were retrieved from genomes which were scored
as missing that locus by EnteroBase were scored as false positives. In contrast,
loci reported as present in that genome by EnteroBase which did not result in
a BlastFrost hit were scored as false negatives. A). Distribution of numbers of
wgMLST loci by sequence length. B) Sensitivity. C) Precision.
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Figure 3: Speed and memory of BlastFrost for cgMLST genes in comparison to
BIGSI (A,B) and minmap2 (C) and as a function of numbers of hits (D). (A,
B) Speed and memory with 736 genomes of Yersinia pestis [30] as a function of
numbers of queries for BlastFrost with k-mer neighbourhood d = 1 in comparison
to both exact and inexact BIGSI queries. C) Speed with subsets of 926 Salmonella
genomes [2] as a function of numbers of draft genomes for BlastFrost with k-mer
neighbourhood d = 1 in comparison to minimap2. (D) Correlation between time
required by BlastFrost to extract a subgraph by number of hits for a 100 gene
query.
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Figure 4: BlastFrost presence/absence analysis for 44 genes of the Salmonella SPI-
2 pathogenicity island among 926 representative Salmonella genomes [2]. Dark
green indicates hits identified by an exact (d = 0) or inexact (d = 2) search while
light green indicates hits identified only by the inexact search. White indicates no
hits. Each concentric circle shows the results for the gene indicated in the figure
legend at the top right. The circle consists of arcs, with one segment for each
genome from Salmonella bongori and the subspecies of Salmonella enterica that
are indicated outside the circles. Graphical representation was with Anvi’o [9].
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Figure 5: 20, 490 Salmonella genomes containing QRDR variants of genes gyrA,
gyrB and parE that are associated with fluoroquinolone resistance [26]. (A)
Neighbor-Joining tree based on cgMLST distances (visualized in GrapeTree [31]),
colored according to the Salmonella serovar in EnteroBase [30] according to
SISTR1 [28]. (B) Distribution of mutated genes by serovar for the ten most fre-
quent serovars in part A. (C+D) Percentage of individual nucleotide mutations,
and their combinations by frequent (C) and rare (D) mutations.
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Figure 6: Proportion of Salmonella genomes containing QRDR mutation (black)
among all genomes in top 25 HC900 clusters (colored) in EnteroBase [30]. En-
teroBase uses hierarchical single-linkage clustering based on cgMLST distances to
derive clusters at different cut-off levels. A cut-off of 900 has been identified to cor-
relate well with serovar predictions, hence clusters are labelled by their majority
serovar (EnteroBase conversion table: https://enterobase.readthedocs.io/en/

latest/HierCC_lookup.html). The Neighbour-Joining tree of all genomes in these
clusters is based on 7-gene MLST distances, and visualized in GrapeTree [31]. For
each cluster, the legend indicates the number of genomes with and without the
QRDR mutation, and its percentage.
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