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ABSTRACT

Tumours are composed of genotypically and phenotypically distinct cancer cell populations (clones),
which are subject to a process of Darwinian evolution in response to changes in their local micro-
environment, such as drug treatment. In a cancer patient, this process of continuous adaptation
can be studied through next-generation sequencing of multiple tumour samples combined with ap-
propriate bioinformatics and statistical methodologies. One family of statistical methods for clonal
deconvolution seeks to identify groups of mutations and estimate the prevalence of each group in
the tumour, while taking into account its purity and copy number profile. These methods have been
used in the analysis of cross-sectional data, as well as for longitudinal data by discarding inform-
ation on the timing of sample collection. Two key questions are how (in the case of longitudinal
data) can we incorporate such information in our analyses and if there is any benefit in doing so.
Regarding the first question, we incorporated information on the temporal spacing of longitudinally
collected samples into standard non-parametric approaches for clonal deconvolution by modelling
the time dependence of the prevalence of each clone as a Gaussian process. This permitted recon-
struction of the temporal profile of the abundance of each clone continuously from several sparsely
collected samples and without any strong prior assumptions on the functional form of this profile.
Regarding the second question, we tested various model configurations on a range of whole genome,
whole exome and targeted sequencing data from patients with chronic lymphocytic leukaemia, on
liquid biopsy data from a patient with melanoma and on synthetic data. We demonstrate that
incorporating temporal information in our analysis improves model performance, as long as data of
sufficient volume and complexity are available for estimating free model parameters. We expect that
our approach will be useful in cases where collecting a relatively long sequence of tumour samples
is feasible, as in the case of liquid cancers (e.g. leukaemia) and liquid biopsies. The statistical
methodology presented in this paper is freely available at igithub.com/dvav/clonosGP.
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INTRODUCTION

It is well known that cancer cells undergo a process of Darwinian evolution in response to
selective pressures in their local micro-environment, for example as a result of therapeutic
intervention|1} 2]. This induces cell propagation and diversification during tumour growth,
which result in a heterogeneous population of phylogenetically related, but genotypically and
phenotypically distinct cancer cell populations, known as clones. Tumour heterogeneity is
clinically important because it complicates the molecular profiling of tumours and enables
the fittest cancer cells to escape treatment leading to relapse. Monitoring this process of con-
tinuous adaptation requires a detailed characterisation (through the use of next-generation
sequencing, bioinformatics and statistical analysis) of the somatic aberrations harboured by
the tumour at various time points over the course of the disease.

A major challenge in solving the problem of clonal deconvolution using bulk sequencing
data is the fact that tumour heterogeneity is not directly observed, but rather inferred
through the analysis of samples, each of which is a mixture of normal and cancer cells from
various clones. Despite (or because of) this, clonal deconvolution has been the subject of
much statistical innovation (see [3-6] for a review). Current statistical methodologies seek
to identify the number of clones in a tumour, their somatic mutation content, prevalence
and phylogenetic relations and they can be used for the analysis of cross-sectional data
(obtained, for example, through multiple biopsies from the same patient) or longitudinal
data after discarding any information on the timing of tissue sample collection|7-22].

In this paper, we pose the following two questions: a) how can we incorporate temporal
spacing information in the analysis of sequentially collected samples (typically over several
months or years) and b) is there any benefit in doing so? We begin with a standard Bayesian
non-parametric model for clustering somatic mutations with similar observed frequencies,
while simultaneously correcting for sample purity and local copy number variation. We
extend this model by treating the cluster prevalences as functions of time, which follow a

Gaussian process prior. The advantage of this approach is that we do not need to impose
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a particular functional form on the time dependence of cluster abundances, but only some
general properties (e.g. smoothness, amplitude and time scale), which are estimated from
the data. In return, we obtain a continuous reconstruction of the time course of each cluster
during the course of the disease from a small number of sequentially collected samples.
We test various model configurations on whole genome (WGS), whole exome (WES) and
targeted sequencing (TGS) data from patients with chronic lymphocytic leukaemia (CLL;
[23, 24]), on data from the liquid biopsy of a patient with melanoma|25| and on synthetic
data, and we demonstrate that incorporating temporal information in our analysis can boost

the performance of clonal deconvolution.

METHODS
We present a series of models of increasing complexity starting with the statistical model for

a single tumour sample.

Model for a single tumour sample

We assume that a tumour has been sequenced at N bi-allelic genomic loci harbouring somatic
mutations. For each locus i, we can calculate the observed variant allele fraction (VAF) as
the ratio r;/(r; +77'), where r; and r/*/ are the number of reads harbouring the alternative
and reference alleles, respectively. The expected value 6; of the VAF for mutation 7 is a
function f of the cancer cell fraction (CCF), i.e. the fraction ¢; of cancer cells that harbour
the mutation, 0, = f (qu) The population of cancer cells is partitioned in a finite, but
unknown, number of clones, each harbouring a unique set of mutations. This implies that
different mutations share the same CCF value, i.e. the mutation-specific fractions {éz}f\;l
are not all distinct. We model this structure with a Dirichlet Process prior on ¢; with

concentration parameter o and a uniform base distribution Gy = ¢(0, 1)|26, 27|. Using the

stick-breaking representation of the Dirichlet Process, gz~5Z is modelled as an infinite mixture,
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as shown below:

Gi~ > Wil (¢1) bk~ Go  up~B(1,0q)
k=1

1
1+«

k—1
Wy = Uy wy, = Uy H(l—ul) ~U0,1)

=1
where dy, (+) is the Dirac delta function centred at ¢, and B(-, -) indicates a beta distribution.
The uniform prior on the mean of the beta function (1 + a)~! implies that the prior on the
concentration parameter is a ~ (1 + )72, which is similar to the standard exponential
distribution, but with thicker tail. In practice, we truncate the above infinite sum at a value
K larger than the maximum possible number of clones expected in the data (here taken

equal to 20).

Joint model for clonally-related tumor samples
The above model can be extended to multiple clonally-related samples by allowing the CCF

variables to vary between samples|9, 28|. For M samples (and truncation K'), we have:

K

M
{01l ~ Y wi [ [ 00, (0i)  dn ~U(0,1)

k=1 j=1

where the rest of the model remains the same as for the one-sample case. Effectively, we
incorporate multiple samples in the model by allowing the cluster centres ¢, to vary across
samples. As a prelude to the next section, we note that the transformed variable ¢;;, =
log ¢ — log(1 — ¢;i) follows a standard logistic distribution, ¢;; ~ Logistic(0,1). Below,
instead of the logistic distribution, we use a parametrised multivariate normal distribution,

as explained in more detail in the next section.

Single-output Gaussian Process model for longitudinal tumour samples
The above model does not take into account the temporal spacing of the M samples, in case
these have been collected longitudinally. If such information is indeed available, it can be

included in the model by treating the transformed CCF variables as functions of time, 1 (t).

4
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On these functions, we impose a Gaussian Process prior|26], 29, 30]:
Ui(t) ~ GP (0, k(t, 1))

where the kernel function k(t,t') encodes the covariance of 1 (t) at times ¢ and ¢'. This
non-parametric approach permits modelling the time-dependency of the transformed CCF
variables without any strong prior assumptions on the functional form of this dependency.
The above implies that if M samples have been collected at times ¢; = 0,...,%;,...,ty = 1,

then the variables 1, = ¢y (¢;) follow a multivariate Normal distribution:

{17y ~ Nar(0ar, Ky)

where 0;; is the M-dimensional zero vector. The elements of the covariance matrix K, =
{k(tj,t;)}; encode the covariance between the values of ¢ (t) at all possible pairs of
sampling times ¢; and ¢;.

We consider kernels of the form «(t,t') = h%g,(t,t'), where h is an amplitude parameter,
while the function g, (¢,t"), which is parametrised by an inverse squared time scale parameter
7, takes any of the following forms: a) exponential: g, (t,¢') = e"V7I=¥l b) Mat32: g.(t,t') =
(1 + V37|t — ¢])e V311 ¢) Mat52: go(t,¢) = (1 4+ V57|t — /| + 22 e VEi=t] ang
d) exponentiated quadratic: g, (¢,t') = e~"(=t)*/2 These four kernels are members of the

Matern family of covariance functions ordered in terms of increasing smoothness|29|. Finally,

we impose gamma priors on the amplitude and time scale parameters, h*> ~ G(1,1) and

T~ G(1,1).

Multi-output Gaussian Process model for longitudinal tumour samples
In the above model, the cluster-specific scalar-valued functions 1y (¢) share the same Gaussian
Process prior, but they are otherwise independent. We can directly model possible correla-

tions between different clusters (i.e. different values of k) by assuming that the vector-valued
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function of time, ¥ (t) = {1y (t)},, follows a Gaussian Process prior:

Y(t) ~ GP (0x, Ak (t, )

where Ag (1) is a matrix-valued kernel encoding the K x K covariance matrix between
vectors (t) and ¥ (t'). Given M longitudinally observed samples, the above implies that
the matrix of CCF values Wy «x = {¢;i};1 follows a multivariate Normal distribution of

dimensionality M K:

VGC(‘I’MxK) ~ NMK(VGC(OMXK)y AMKXMK)

where the operator vec(-) vectorises its matrix argument by stacking its columns on top of
each other, 0,/ is a matrix of zeros and A/« pi 18 @ positive semi-definite block matrix
encoding the covariance between 5 and ;.

Assuming that the above kernel is separable|31], we can write the factorisation Ag (¢,t') =
g-(t,t") X, where g.(t,t') is the same as in the previous section. X is a positive semi-
definite matrix factorised as X = DCD, where D = diag(hy,...,hx) and C o< |C|"! is
a correlation matrix following the LKJ prior[32] with concentration parameter n. A value
of n = 1 implies a uniform prior over correlation matrices, while n = 2 (the value we adopt
here) concentrates more probability mass around the identity matrix. This structure for ¥
implies both cluster-specific amplitudes h?, as well as correlations between clusters. Altern-
atively, we can assume that Xy = diag(h?,..., h%), which implies that different clusters
have different values of the amplitude parameters h?, but are otherwise uncorrelated.

Finally, we examine the case where Ak« pi 1S @ block-diagonal matrix, with each of the
K matrices along its main diagonal induced by the kernel (¢,t') = hig,, (t,t'), where both
amplitude k7 and time scale 7, parameters are cluster-specific, but the clusters are otherwise

uncorrelated.

Relation between VAF and CCF
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In this section, we give more details about the form of the function 6;; = f (qgij), which
encodes the relationship between VAF and CCF of mutation ¢ in sample j. Each sample is
viewed as a mixture of three cell populations|9]: a) a normal population of CJN non-cancer
cells, b) a reference population of Cg cancer cells, which do not harbour mutation i and c)
a variant population of CZ-‘]/- cancer cells, which harbour mutation i. The total number of
cancer cells in the sample is CJT = C’g + C’Z-‘J/- . The reference and variant populations may
each be further subdivided into sub-populations, where a different number of chromosomes
covers locus 7 in each sub-population. The total number of chromosomes in the normal,

reference and variant populations overlapping locus ¢ in sample j are, respectively, equal to

N o dinlo; R(IR VoV
205" (assuming diploid normal cells), D;:C;5 and Dy;Cy,

where D;? and Dj; are the average
numbers of chromosomes per cell covering locus ¢ in sample j in each of the two cancer cell
populations. Similarly, the total number of chromosomes harbouring mutation ¢ in sample

7 is equal to d};-CZ-‘; ,

where d}; is the average number of chromosomes per cell harbouring
mutation 7 in sample j in the variant cancer cell population (also known as multiplicity).

We write:

V YV
b = Ser T Ddéféﬁ DV OV
J 1) 1) 17—
_ d}ip;di;
2(1 = pj) + Dfip;(1 — i) + D?gﬂji)@j

= f(oi)

where p; = C]/(CN + C7) is the purity of the tumour and bij = Cy/(CE+CY). At

this stage, two simplifying assumptions are often made: a) there are no subclonal copy

\4

number events, which implies that d;;, D}; and Dg are integers, and b) the reference and

variant cancer cell populations have the same copy number profile at locus ¢ in sample 7, i.e.
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Dg = DZ‘; = D;;. Under these assumptions, the above expression simplifies to:

Vv
9. — dijP; i
’ 2(1 = pj) + Dijp;

Ciquij

where (;; is the value of 6,; if mutation ¢ in sample j is clonal (i.e. gz;ij = 1). The quantities p;
and D;; can be independently estimated (e.g. using software such as ASCAT|33|, ABSOLUTE[34],
TITAN|35] and others) and they are considered fixed. One way to approximate the multiplicity
dl‘-g is as follows: first, we calculate u;; = d,}ggz;ij = Qijpj_l(Q(l —p;)+D;jp;). Then, we estimate
Vo : .
d;; using the following rule:
[wis] iy > 1
vV _
1 U5 < 1
where [u;;] is the closest integer to u,;;. For a justification of this estimation procedure, see

14]-

Observation models
We complete the above models by introducing expressions for the distribution of the read
counts r;; harbouring mutation ¢ in sample j. Since high-throughput sequencing data often

exhibit over-dispersion, we consider a beta-binomial model:

1

rij ~ BetaBin <Rz‘j7 vif (i), v;(1 — f(gz%))) ~U(0,1)

Uj
where R;; is the sum of reads harbouring the alternative and reference alleles at locus 7 in

sample j and 1/v; is a sample-specific dispersion parameter. In the absence of over-dispersion

(i.e. when v; = 0o ), the above reduces to the binomial model, r;; ~ Bin <Rij, f(gz%))

Inference
The above models were implemented using the Python-based probabilistic programming

language PyMC3 v3.8|36| and inference was conducted using Automatic Differentiation Vari-
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ational Inference (ADVT; 37]), instead of developing bespoke estimation algorithms, which is
a rather laborious process particularly when multiple candidate models are considered [38-
40|. Variational inference (VI; [41], 42]) is a computationally efficient approach for Bayesian
inference, which aims to approximate the posterior density p(z|y) of latent variables z given
data y using a surrogate probability density qg(z) parametrised by a vector of variational
parameters 6. In our case, the data y are the locus- and sample-specific read counts 7;; and
R;;, the local copy numbers D;;, the sample-specific purities p; and the sample collection
times ¢;, while the latent variables z are the cancer cell fractions ¢,i, the cluster weights wy,
the amplitudes h7, the time-scales 74 and the sample-specific dispersions v;. VI approximates
p(z]y) by maximising the lower bound of the marginal likelihood (or evidence) p(y), which

is known as the evidence lower bound (ELBO), with respect to the variational parameters

0.
energy
entropy - ~\ -~
—
ply) = W@ - (- [ @iy 2)aa)
h ELBO .

Maximising the ELBO is equivalent to jointly maximising the entropy term (which leads to
a more spread out variational distribution q and prevents overfitting) and minimising the
average energy term (i.e. the discrepancy between q and p). Furthermore, the maximised

ELBO, being a lower bound of the evidence p(y), can be used for model comparison (see

below).

Performance metrics

We fit the above models against actual or simulated tumour samples (see Results). In the case
of actual data, the ground truth (i.e. the actual clonal structure of each tumour sample) is
unknown. In this case, we compare the performance of different models using the maximised
ELBO (with a higher value indicating a better model). In the case of simulated data,
the ground truth is known a prior: and different models are compared using the Adjusted
Rand Index (ARI), as implemented in the Python package scikit-learn v0.22[43]. ARI

takes values between -1 and 1, with a value close to 1 or -1 indicating close agreement or
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disagreement to the ground truth, respectively, while a value close to 0 indicates random
assignment of mutations to clusters. ARI is symmetric and for this reason we also use it for

estimating the concordance between any two clustering models.

Model nomenclature

In the Results section, the various models described above are referred to as follows. The
model that assumes a uniform (i.e flat) prior over the CCF variables ¢;; is the Flat model.
The model that assumes a single-output Gaussian Process prior over the transformed CCF
variables 1, is the GP0 model. The models assuming a multi-output Gaussian Process prior
on 1 are labelled GP1 (when X is diagonal), GP2 (when X is full rank) and GP3 (when
A is block-diagonal with cluster-specific h? and 7 parameters), respectively. Each
of the models GPO to GP3 admits exponential (Exp), Mat32, Mat52 or exponentiated
quadratic (ExpQ) kernels and are labelled accordingly, e.g. GP0-Exp, GP0-ExpQ, etc.
In total, we examined 17 models. If the number of parameters in the Flat model is n,, the
number of parameters in the GP0, GP1, GP2 and GP3 models is n, + 2, n, + K + 1,

n,+ K+ 1+ K(K —1)/2 and n, + 2K, respectively.

RESULTS

We conducted a series of computational experiments on WES and WGS data from patients
with CLL|23, |24], on TGS data from the liquid biopsy of a patient with melanoma|25| and
on simulated data. The aim of these experiments was to demonstrate the application of the

above models on longitudinal data and to assess their relative performance.

The case of patient CLL003

First, we demonstrate the application of model GP0-Mat32 on WGS data from patient
CLLO003 reported in [23] (Fig[l} the other models on the same dataset are shown in Fig[2)).
Details on sequencing and bioinformatics analysis for obtaining this data are given in the
original paper. Briefly, peripheral blood was collected at five specific time points during dis-

ease progression, treatment and relapse together with a matched buccal swab (for germinal
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DNA). All samples underwent whole genome sequencing (WGS) followed by bioinformat-
ics analysis, which identified 28 somatic mutations. Fitting the model to this data was
performed by maximising the ELBO (see Methods), which can be used for assessing con-
vergence of the estimation algorithm (typically achieved in less than 3K iterations; Fig).
Following a non-parametric approach for clustering mutations using a Dirichlet Process prior
on the cancer cell fractions (see Methods) means that the number of clusters is not selected
a priori, but rather estimated along with other model parameters (Fig[lB). We identified
three major mutation clusters: one with median weight ~35% (i.e. any mutation has ap-
proximately 35% probability of belonging to this cluster) and two slightly smaller clusters
with median ~30%. In Figll|C, we illustrate the evolution of each cluster in time. Sample (a)
was collected before commencing treatment with chlorambucil; sample (b) before treatment
with fludarabine, cyclophosphamide and rituximab (FCR); sample (c) immediately after 6
cycles of FCR; sample (d) before treatment with ofatumumab; and sample (e) after treat-
ment with ofatumumab, spanning in total a period of 35 months. Initial treatment with
chlorambucil did not alter significantly the prevalence of the three mutation clusters, with
median CCF>75% for clusters 1 and 3 and median CCF<10% for cluster 2. The second
treatment regime (FCR) induced a dramatic reduction in the prevalence of cluster 3, but
only a minor reduction of cluster 1. Concomitantly, the prevalence of cluster 2 increased
substantially. By the end of the 35-months period, cluster 1 had recovered and, along with
cluster 2, it reached CCF values of ~100%, while cluster 3 collapsed. Our algorithm soft-
clusters mutations, i.e. for each mutation, it calculates the probability of membership to each
cluster. From these, a hard clustering can be obtained by assigning each mutation to the
cluster with the highest median membership probability. Figl[ID illustrates the hard cluster
assignment for each mutation in the CLLO03 dataset. It is interesting to observe that, by
considering multiple time-separated samples, our method manages to deconvolve mutation
clusters with similar VAF values, which would otherwise be hard to distinguish (e.g. observe

the mixing of clusters 1 and 3 at timepoints (a) and (b) or clusters 1 and 2 at timepoints

11
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(d) and (e)). Finally, we can visually confirm the goodness of fit of the model to the data
by overlaying the posterior predictive distribution (red lines in Fig[l[E) on the histograms of

observed VAF values for each sample.

Benchmarks on CLL data with 4 or 5 samples

Next, we applied the remaining models on the data from patient CLL003, as well as all
models on data from patients CL006 and CLLO77 reported in [23] (Figs[2] and [3). WGS
and bioinformatics analysis was conducted as for patient CLLO03 (see original paper for
details). For patient CLL006, sample (a) was collected before treatment with fludarabine and
cyclophosphamide; sample (b) before treatment with rituximab; sample (c) before treatment
with ofatumumab; sample (d) immediately after treatment with ofatumumab; and sample (e)
at 12 months after treatment with ofatumumab spanning a period of 50 months. Similarly,
for patient CLLO77, sample (a) was collected before treatment with chlorambucil; sample
(b) before treatment with fludarabine and cyclophosphamide; sample (¢) immediately after
4 cycles of such treatment; sample (d) before treatment with ofatumumab; and sample (e)
9 months after ofatumumab spanning 57 months in total. In addition, we examined WES
data from Patient 2 reported in [24]. Three peripheral blood mononulcear cell samples (P2.1,
P2.2, P2.4) and one lymph node sample (P2.5) were collected over a period of 79 months, as
well as a buccal mucosa sample for germinal DNA. Sample P2.1 was collected at diagnosis,
sample P2.2 before treatment with FCR, sample P2.4 before treatment with TRU-016 and
bendamustine and sample P2.4 before salvage chemotherapy and treatment with bortezomib
(for details of sequencing and bioinformatics analysis, see original paper).

There were 18, 21 and 32 somatic mutations in patients CLL006, CLLO77 and Patient 2,
respectively (as well as 28 somatic mutations in patient CLL003, as previously mentioned;
Fig.i—Di). A preliminary comparison indicates that, for patients CLL003 to CLLO77,
model GP0-Mat32 (Figs. 3Aii-Cii) identified the same number of mutation clusters as
the simpler Flat model (Figiii—Ciii), i.e. three clusters with similar temporal dynamics.

In order to assess the clustering concordance between the two models (i.e. whether they

12
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assign the same mutations to the same clusters), we calculated the values of ARI, which
were equal to 0.54, 0.79 and 0.58, respectively. This indicates that the two models are
not perfectly concordant in any of these three datasets (despite both identifying the same
number of clusters) presumably due to the partial overlap between different mutation groups,
as illustrated in Fig[2Ai-Ci. One striking difference between the Flat and GP-based models
is that while the former estimates the latent state of the tumour only at the timepoints
of sample collection (this is indicated by the dashed connecting lines in Figiii—Ciii), the
latter provides an estimate of the complete history of this latent state, i.e. both at and
between these fixed timepoints. This is a major difference in favour of the use of GP-based
models. In the case of Patient 2, the Flat and GP0-Mat32 models identify three and five
clusters, respectively (ARI=0.63; Figi—iii). For comparison, in the original paper, the
authors identified seven clusters using PyClone[9).

In order to further assess the relative performance of different models (and without know-
ledge of the true clonal state of each tumour), we used the ELBO as performance metric
(see Methods). The ELBO provides a lower bound on the marginal likelihood of the data
(i.e. the evidence) and, at the same time, it includes an internal mechanism that prevents
overfitting. Thus, it is often used in practise for model comparison and selection, with higher
ELBO values indicating a better model. As illustrated in Fig[3]A, all GP0O models, all but
one GP1 models and all but two GP3 models outperform the Flat model on the CLL003
data. The GP2 model, which has by far the largest number of parameters, was the worst
performer and it is omitted from the figure. There is a clear trend of decreasing performance
with increasing number of parameters among the GP-based models, which is not surprising
given that the lower the number of timepoints, the lower the capacity of the data to support
overly complex models (as, for example, in the case of GP2 models). In the case of CLL006
(Fig3B), the same trend is observed, although the difference of the GP-based models from
the Flat model is less pronounced. In the case of CLL077 (Fig[3C), models GP0-Mat32

and GPO-ExpQ perform better than the Flat model (although this difference is not partic-
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ularly pronounced because of the high variance of the ELBO), but the remaining GP-based
models perform either clearly worse or comparably to the Flat model. In the case of Patient
2 (Fig3D), the GPO models are again the best performers, unlike GP1 and GP3 models,
which are clearly worse than the Flat model. In summary, there is always a member of
the relatively parsimonious (in terms of the number of model parameters) GPO family of

models that performs better than the Flat model in the above benchmarks.

Benchmarks on CLL and melanoma data with 10 or 13 samples

Subsequently, we tested our models on longitudinal genomic data involving a higher number
of timepoints. The first dataset comes from Patient 1 in [24]. A total of 13 peripheral
blood mononuclear cell samples (P1.1 to P1.13) were collected over the course of 6.5 years
and underwent targeted sequencing (TGS). Samples were collected before or after treatment
commenced. In particular, sample P1.1 was collected before the patient received a stem
cell transplant and the same holds for sample P1.8. Germinal DNA was obtained from a
buccal mucosa sample and bioinformatics analysis identified 46 somatic mutations over all 13
samples (Fig; see original paper for details). Model GP0-Mat32 identified nine mutation
clusters (Fig[B), while the Flat model identified five (FiglC). In comparison, in the original
paper, the authors estimated four clusters using PyClone[9]. Overall, models GP0, GP1
and GP2 perform better than the Flat model, unless an exponentiated quadratic kernel
(ExpQ) is used (Fig). We speculate that this is because ExpQ encodes perfectly smooth
dynamics, which presumably cannot model sufficiently well the non-smooth bottleneck points
P1.2 and P1.8 which precede stem cell transplantation. Model GP3-Exp is also performing
better than the Flat model.

The second multi-sample dataset comes from the liquid biopsy of a patient with meta-
static melanoma|25|. Peripheral blood samples were collected at 10 different time points
during pre-treatment, post-treatment and relapse over the course of 13 months. Germinal
DNA was obtained from normal peripheral blood leucocytes. Targeted sequencing was con-

ducted on extracted cell-free DNA followed by bioinformatics analysis, which revealed 63
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somatic mutations. Visual inspection of the data indicates the absence of a definitive cluster
structure (Fig[fJA) and, for this reason, this is an interesting dataset to use for model eval-
uation. Both the Flat and GPO-Exp models identified five mutation clusters with little
concordance between them (ARI=0.27) due to the extended overlap between different muta-
tions bundles (Fig.,C). The median performance of model GPO-Exp is nominally higher
than the Flat model, although it is doubtful whether the difference is substantial due to the
high variance of the ELBO (Fig[5D). The remaining GP-based models perform worse than
either Flat or GPO-Exp.

Computational experiments on simulated data

Overall, models GPO (particularly GPO-Exp) perform at least as well as the Flat model
in all the above datasets. More complex models (i.e. models with a larger number of para-
meters), such as GP1, GP2 and GP3, require a higher number of longitudinally collected
samples for improved performance (Fig. However, this is not a sufficient condition, since
data of low complexity (i.e. with trivial or non-obvious cluster structure and dynamics) can
negatively affect the performance of the GP-based models (Fig..

We wanted to test whether these trends (i.e. the reduction in the performance of the
GP-based models in relation to the Flat model as data size and complexity decreases) can
be replicated using synthetic genomic data. For a given number of samples M, mutations
N and mutation clusters K, data were simulated as follows (see source code on github for
details): a) for each sample j, we randomly choose a purity value p; between 80% and 90%
and a random collection time ¢; (with the first sample collected at time 0 and the last at
time 1); b) for each cluster k, we sample a set of values {¢;;},x from a Gaussian process
prior with squared amplitude h? and inverse squared time scale 7; we calculate each ¢, as
a sigmoid function of ¢;;; ¢) for each mutation i, we randomly sample a cluster membership
indicator z; between 1 and K; d) finally, for each mutation i in each sample j, we sample
the total number of reads R;; from the empirical distribution of total reads in the data and

then the number of mutated reads r;; from a Binomial distribution: r;; ~ Bin(R;;, %pjgbjzi).
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We generated data with M = {3,6,12}, N = {25,50,100} and K = {2,4,8}. For h? and T,
we used the values {1, 10,20} and {1, 10,100}, respectively, which cover the range of values
estimated from the actual data in the previous sections. For each of the 243 combinations of
these parameters, we generated 3 replicates, which leads to a total of 729 datasets. Each such
dataset was processed using the Flat, GP0-Exp and GP0-Mat32 models (which were top
performers on the actual data) and their performance was assessed against the true cluster
structure of the dataset.

We may observe that when few samples are available (M = 3), the Flat model performs
comparably to GPO-Exp and GP0-Mat32 at all values of N and K (Fig@. For medium
(M = 6) and, particularly, large (M = 12) datasets, the Flat model starts falling behind
the other two models, when the number of clusters in the data is relatively high (K = 4
or 8). These results indicate that in the presence of non-trivial cluster dynamics, the Flat
model is comparable to GPO-Exp and GP0-Mat32, but only when the number of samples

or data complexity (here, the number of clusters) is low.

DISCUSSION

Tumour heterogeneity in the form of distinct cancer cell populations or clones is the
outcome of a process of continuous adaptation of the component cells to their local mi-
croenvironment. The outcome of any therapeutic intervention depends on this latent cellu-
lar diversity and, for this reason, statistical methodologies that help deconvolve the clonal
structure of tumours are valuable tools at the disposal of clinicians and bioinformaticians.

In this paper, we proposed a statistical methodology for clonal deconvolution based on
longitudinal data, which explicitly takes into account the temporal spacing of sample collec-
tion. Our approach combines two Bayesian non-parametric statistical frameworks, namely
Dirichlet Process Mixture Models (for clustering in the absence of prior knowledge on the
number of clusters supported by the data) and Gaussian Process Latent Variable Models (for
modelling the time-dependence of clone prevalence without any explicit assumptions on the

form of this dependence). Using a combination of experimental data from patients with CLL
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or melanoma, as well as synthetic data simulated using experimental data as template, we
demonstrate that there are advantages in this approach, as long as data of sufficient volume
and complexity are available. When this is not the case, our methodology still manages
to reconstruct the time dependence of mutation clusters continuously in time (i.e. at and
between sampling timepoints) from a small number of sequentially collected samples.

CLL is an ideal experimental model for the study of cancer evolution, because it develops
over many years and because the collection of a long sequence of blood samples from the
same patient for genomic analysis is easy, at least when compared to solid tumours. Thus,
we expect that our methodology will find applications in the study of CLL and other liquid
cancers. It can also be used as a general purpose clustering tool for identifiying populations
of mutations based on sequencing of circulating tumour DNA obtained through a liquid
biopsy.

As with other approaches for clustering mutations based on bulk sequencing data, a
phylogeny is not derived directly, but it can be calculated retrospectively using the output of
our method as input to bespoke software[44/-46|. Furthemore, single-cell sequencing promises
to alleviate the confounding of clones inherent in methods based on bulk sequencing by
permitting direct observation of the genotypes of the cells that compose each clone. However,
it is in turn plaqued by its own technical limitations, namely high levels of noise, error rates
and missing values|[47H56].

In conclusion, we propose that taking into account information on the temporal spacing
of longitudinal tumour samples can impove clonal deconvolution and we show how this can

be achieved in the context of non-parametric Bayesian statistics.
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Figure 1: Application of model GP0-Mat32 on data from patient CLL003|23|. A) Para-
meter estimation was achieved via maximisation of the evidence lower bound. Convergence
was attained in less than 3K iterations. B) The number of clusters in the data was automat-
ically estimated through the use of a Dirichlet Process prior. In this example, three major
clusters were identified. C) The time profile of the three major clusters at each time point
during disease treatment and progression. The median and 95% credible intervals are shown.
Sample collection took place over the course of 35 motnhs. D) Observed VAF values for each
somatic mutation and their cluster assignment. E) The fitted model (red lines) against the
data in each sample.
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Figure 2: Overview of CLL data and fitted models Flat and GP0-Mat32. Unlike GPO-
Mat32, the Flat model estimates the cancer cell fraction of each cluster only at (but not
between) the points of sample collection (dashed lines). Although both models identified the
same number of cluster in datasets CLL003 to CLL077, the clusterings were not completely
concordant (see main text for details).
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Figure 3: Comparison of all models using the data in the previous figure and the evidence
lower bound for assessing performance. Members of the GPO group of models perform better
than or comparably to the Flat model in all cases. Models GP2 had the worst performance
of all (as well as the largest number of parameters) and they were omitted from the figure.
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Figure 4: Assessing model performance on CLL data from Patient 1|24]. A) Observed VAF
values for each somatic mutation over 6.5 years and their cluster assignments (colors are the
same as in B). B) Mutation clusters identified by model GP0-Mat32. C) Mutation clusters
identified by the Flat model. D) Comparative performance of various models. Notice that
simpler models (GPO) often perform equivalently to or better than more complex ones

(GP1, GP2, GP3).

27


https://doi.org/10.1101/2020.01.20.913236
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.913236; this version posted January 21, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A
o 0204
o
=1
[}
& 0.15-9
=
<
L 0101
S
-
=
8 0.051
IS
>
0.00+
B
1.00
c
2 0751
‘5 .
©
=
@ 050+
o
o
3
c  0.2549
IS
o
0.00
C
1.00 .
N -
g v \\ e »
S 0.754 o N P i -7 o
5} RN _ - -—-—. -7
© L\\\\ 1Y - -7
& ATSSUSS PENN PR, e
= 1 DR - ~ -z - So - - /’/n
4 .7 N - e=-—m—m—— " - -
3 0-50 ,"\ \s\l\‘"_‘_'{—:—_-—:"____"__‘\ 1 _-- _,.—-=\\ . ||7
= s ~o o~ z - N - .- N s B
3 ! S~ - ~ -2 -~ - - N . |‘
=~ > - = z _-- ~ ,
© 1,7 e sl "
's ‘\: _______________________ T ' s=<dn
0.004 — ¥
- N [ < wn © ~ e (o )=]
[oNe) o o o o o o o«
o o o o a o o oo
sample
D
2 2360
g -
o
o) L d----_--!l----Lr-ee:-d- -t -eee-—_n—_—_————_
572370' {
2
2 53801
(0]
Q
5
& 23901
>
(0]
~2400+
& g 8 % g & 8 % g g 8 8 g
o w bt T =3 u 54 T x W 8 st 5
s ¢ : & & F £ & e = = 0
& e ° 2 & g g 2 G o @ g
o ) o 9] o o o o o

Figure 5: Assessing model performance using data from a liquid biopsy on a subject with
melanoma|25]. A) Observed VAF values for each somatic mutation over 13 months of treat-
ment and their cluster assignments (colors are the same as in B). B) Mutation clusters
identified by model GP0O-Exp (due to extensive overlap, credible intervals are omitted for
clarity). C) Mutation clusters identified by the Flat model. D) Comparative performance
of various models. Model GPO-Exp performs comparably to Flat.
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Figure 6: Benchmarks on synthetic data. When the number of samples is small (M = 3) or
data complexity (i.e. the number of clusters) is low (K = 2), the Flat model performs com-
parably to the two GPO0 models. In all other cases, it is outperformed by them. Parameters
used in data simulation were informed by the experimental data (see main text for details).
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