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Abstract 

Single-cell RNA-seq allows researchers to identify cell populations based on unsupervised 

clustering of the transcriptome. However, subpopulations can have only subtle transcriptomic 

differences and the high dimensionality of the data makes their identification challenging. We 

introduce ILoReg (https://github.com/elolab/iloreg), an R package implementing a new cell 

population identification method that achieves high differentiation resolution through a 

probabilistic feature extraction step that is applied before clustering and visualization.  

Main 

 

Single-cell RNA-seq (scRNA-seq) enables identification of known and novel cell populations by 

unsupervised clustering of transcriptomic profiles of individual cells. However, the high number of 

genes presents a major challenge for the analysis of scRNA-seq data by increasing the similarity 

of distances between the cells, a phenomenon known as the ‘curse of dimensionality’1. To reduce 

its effect, scRNA-seq pipelines typically apply a feature selection step that selects a set of highly 

variable genes prior to unsupervised clustering2. However, this approach can eliminate genes that 

are important for the identification of the underlying cell populations of a sample or add unwanted 

variation if irrelevant features are chosen. Moreover, the number of remaining genes is typically 

still in the thousands and detecting cell populations with subtle differences remains challenging.  

 

To address this issue, we have developed a cell population identification method (ILoReg) that 

takes an alternative approach to dimensionality reduction by means of feature extraction. At the 

core of ILoReg lies a new clustering algorithm, iterative clustering projection (ICP), which 

transforms a gene expression matrix into a probability matrix containing probabilities of each cell 

belonging to k clusters. These continuous cluster probabilities provide a more practical 

representation of the clustering than discrete cluster labels, as they can be handled like extracted 

features, and they are then utilized in the consensus clustering approach that combines multiple 

randomly subsampled ICP solutions into a consensus solution. The consensus approach acts as 
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a noise-reducing step prior to hierarchical clustering and visualization by nonlinear dimensionality 

reduction, such as t-distributed stochastic neighbor embedding (t-SNE)3 or uniform manifold 

approximation and projection (UMAP)4. We have implemented this method as a user-friendly R 

package, ILoReg (https://github.com/elolab/iloreg), and demonstrate that it can greatly aid the 

identification of cell populations with subtle transcriptomic differences by increasing the cell 

population identification resolution of both clustering and visualization. 

 

ICP is a clustering algorithm (Fig. 1a, Supplementary Fig. 1 and Methods) that iteratively seeks 

a clustering of size k that maximizes the clustering similarity between the clustering and its 

projection by logistic regression, measured by the adjusted Rand Index (ARI). A particularly 

distinctive feature of ICP is the integration of feature selection with clustering by L1-regularized 

logistic regression, which at each step of the iteration automatically selects and weights genes by 

their relevance in predicting the current clustering. Since ICP generates different clusterings with 

different random seeds (Supplementary Fig. 2), ILoReg finally applies a consensus approach 

(Fig. 1b and Methods) to obtain a more accurate and robust solution, which is not constrained to 

the initial number of clusters k (Supplementary Fig. 3). ICP is run L times and the resulting cluster 

probability matrices are merged into a joint probability matrix, which is transformed into a lower 

dimension by principal component analysis (PCA). The PCA-transformed data matrix is clustered 

hierarchically using the Ward's method and visualized using a nonlinear dimensionality reduction 

method, such as t-SNE or UMAP. To estimate the optimal number of clusters, ILoReg uses the 

silhouette method5.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912675doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?YBNzaT
https://www.zotero.org/google-docs/?UHxwax
https://gitlab.utu.fi/pajosm/iloreg
https://www.zotero.org/google-docs/?lTCxFl
https://doi.org/10.1101/2020.01.20.912675
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Figure 1 | Overview of ILoReg. (a) Schematic of the iterative clustering projection (ICP) clustering algorithm. (b) Schematic of the 

ILoReg consensus approach for cell population identification. 

 

We benchmarked ILoReg against four other clustering methods6–9, Seurat, SC3, CIDR and 

RaceID3, each functioning on a largely different principle (Supplementary Table 1), using eleven 

gold (Pollen) or silver (Baron and van Galen data) standard datasets from three publicly available 

studies10–12 (Methods and Supplementary Table 2). Although all the algorithms were able to find 

a number of clusters that was close to what the authors of the original studies reported 

(Supplementary Fig. 4), comparison by ARI between the inferred and original clusterings 

revealed considerable inaccuracies (Fig. 2a). ILoReg performed generally well regardless of the 

sample size, whereas CIDR and RaceID3 performed worse on average. In contrast to the other 

methods, SC3 tended to overestimate for larger datasets (e.g. Baron) and it was more accurate 

with smaller datasets (e.g. Pollen). Seurat performed consistently across the datasets, but for 

most datasets worse than ILoReg. In two of the datasets from the van Galen study (BM5-34p and 

BM5-34p38n), none of the methods were able to achieve even moderate accuracy for them. 

These datasets were sorted by flow cytometry and had highly unbalanced cluster labels in the 

original study, whereas in our comparison the inferred clusterings were more uniformly distributed, 

explaining the discrepancy. 
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Figure 2 | Benchmarking and identification of cell populations with subtle transcriptomic differences. (a) Benchmarking of ILoReg 

against four other scRNA-seq clustering methods: Seurat, SC3, CIDR and RaceID3. To compare the methods, the adjusted Rand 

index (ARI) was calculated in eleven datasets between the inferred clustering of each method and the reference clustering from 

the original study. The estimated numbers of clusters with each method were used; the estimates are provided in Supplementary 

Figure 4. The datasets with the “BM” prefix are from the van Galen study. (b) Comparison of t-distributed stochastic neighbor 

embedding (t-SNE) plots generated by ILoReg and Seurat for the Baron1 dataset, highlighting the expression levels of MALAT1 

that differentiates injured from healthy beta cells. The cells were colored by the reference labels from the original study. (c) 

Comparison of t-SNE plots generated by ILoReg and Seurat for the pbmc3k dataset, highlighting the expression levels of four 

genes (CD3D, CD8B, CCR7, S100B) that differentiate naive CD8+ T cells. All the analyses were carried out using the default 

parameter values of Seurat and ILoReg (k = 15, C = 0.3, d = 0.3, r = 5, p = 50, L = 200). 

 

To demonstrate the ability of ILoReg to identify cell populations with subtle differences, we 

investigated in more detail clusters found from two datasets: a human pancreas dataset (Baron1) 

and a human peripheral blood mononuclear cell (PBMC) dataset (pbmc3k).  From the Baron1 

dataset, ILoReg identified a subpopulation of beta cells (Fig. 2b) with MALAT1 downregulated, 

(Wilcoxon rank-sum test, adjusted P < 0.01, log2 FC~ -1.5). MALAT1 is a gene that inhibits 

apoptosis and has been found to be negatively correlated with post-isolation islet cell death13. In 

line with this, functional analysis (Methods) of the differentially expressed genes between the two 

beta cell populations revealed a process that has been previously linked to beta cell destruction, 

i.e. endoplasmic reticulum stress (Supplementary File 1), further indicating the cluster indeed 

comprises injured beta cells14. The beta cells in the t-SNE representation of Seurat, however, are 

clustered more densely. Although an outer part of the whole beta cell cluster seems to contain 
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MALAT1-  beta cells, there is no clear separation between the MALAT1- and MALAT1+ cell 

populations.  

 

In the pbmc3k dataset, a comparison between the five benchmarked methods (Supplementary 

Fig. 5) showed that the two-dimensional visualizations of all the four other methods (Seurat, SC3, 

CIDR and RaceID3) were similar, containing three main clusters: (1) T cells and NK cells; 2) 

dendritic cells and monocytes; 3) B cells. On the contrary, multiple distinct subpopulations are 

clearly visible within each main cell type in the t-SNE representation of ILoReg. Interestingly, 

unlike the other methods, ILoReg identified a cluster that expressed CD3D, CD8B, CCR7 and 

S100B genes (Fig. 2c), corresponding to naive CD8+ T cells15. Overall, based on the expression 

of CD8B the separation of CD8- and CD8+ T cells by ILoReg was distinctly more precise. A more 

comprehensive analysis (Supplementary Results 1) revealed further cell populations that are in 

agreement with past studies, such as CD56+ and CD56++ NK cells16, naive and memory B cells 

with lambda or kappa light chain17–19, as well as rare platelets, which typically constitute less than 

1% of PBMCs20.  

 

The choice of the parameter values in ILoReg can have a considerable effect on the identifiable 

cell populations and they can be used to fine-tune the clustering to identify different cell 

populations. The effect is greater the higher the transcriptomic similarity between the populations 

is. The default parameter values were chosen so that biologically meaningful subpopulations with 

subtle expression differences are identified. We studied the effect of each of the parameters in 

detail and provide guidelines on how to select appropriate parameter values (Methods).  

 

The most computationally intensive part of ILoReg is running ICP L times (default L = 200). To 

accelerate it, the R package supports computing the ICP runs in parallel. Using the default 

parameter values and 12 threads, the run times for ~3,000 cells and ~20,000 cells were ~1 hr and 

~10 hr, respectively (Methods and Supplementary Fig. 6). It should be noted, however, that 

although the run time of a single workflow was relatively long, the workflow is generally simple 

and the number of consensus clusters K is very fast to change (~1 s with ~3,000 cells). By 

contrast, with SC3 the user must repeat the clustering for each number of clusters k separately, 

thus roughly multiplying the run time by the number of different k values. Similarly, with Seurat 

the user must repeat the graph-based clustering with different resolution values without knowing 

how many clusters a resolution value gives. Another considerable benefit of ILoReg is its ability 

to find subpopulations without the need of further sub-clustering, therefore considerably 

simplifying the analysis workflow and saving further time. 

 

To conclude, we have developed a new cell population identification method, ILoReg, which 

enables high-resolution identification of cell subpopulations from scRNA-seq data by a consensus 

clustering approach. Remarkably, using the cluster probabilities in feature extraction increased 

the resolution of nonlinear dimensionality reduction methods, such as t-SNE or UMAP, compared 

to current state-of-the-art methods that preprocess data by selecting a set of highly variable 

genes. In particular, our results demonstrate that ILoReg can greatly aid the identification of cell 

populations with subtle transcriptomic differences. 
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Methods 

Iterative clustering projection. As a basis of ILoReg, we first introduce a new clustering 

algorithm, iterative clustering projection (ICP), that utilizes random down- and oversampling, 

supervised learning and clustering comparison to iteratively cluster the data (Fig. 1a and 

Supplementary Fig. 1). Specifically, the objective of ICP is to seek a clustering 𝐶 = {𝐶1, . . . , 𝐶𝑘} 

with k clusters that maximizes the adjusted Rand index (ARI) between 𝐶 and its projection 𝐶′ by 

logistic regression: 

𝑎𝑟𝑔 𝑚𝑎𝑥
𝐶

𝐴𝑅𝐼(𝐶, 𝐶′) 

In the following, we describe the four steps of the algorithm. 

 

1. Initialization. Given a normalized gene expression matrix, 𝑋 = [𝑥1, … , 𝑥𝑁]𝑇, where N is the 

number of cells and 𝑥𝑖 is the transcriptional profile of the ith cell across M genes that are 

expressed in at least one of the N cells, the algorithm first splits the cells randomly into k clusters 

𝐶𝑡 = {𝐶1,𝑡 , . . . , 𝐶𝑘,𝑡}using a uniform probability distribution, where 𝑡 = 1. 

2. Creating balanced training data. To form a balanced training dataset 𝑋𝑡 and training labels 𝑌𝑡 =

{𝑌1,𝑡 , . . . , 𝑌𝑘,𝑡} with an equal number of cells n in each cluster of 𝑌𝑡, down- and oversampling of 𝐶𝑡 

and 𝑋are carried out. If a cluster contains more than n cells, then its cells are randomly 

downsampled by selecting n cells from the cluster without replacement. If a cluster has fewer than 

n cells, then its cells are oversampled with replacement. Because scRNA-seq datasets come at 

very different sample sizes, n is determined by 𝑛 = ⌈𝑁𝑑/𝑘⌉, where 𝑑 ∈ (0,1) and ⌈⌉denotes the 

ceiling function. 

 

3. Classifier training and projection. An L1-regularized logistic regression classifier is trained on 

the training data 𝑋𝑡 and labels 𝑌𝑡using the LIBLINEAR library21. 𝑋 is projected onto itself with the 

classifier, i.e. the cluster of each of the N cells is predicted with 𝑋 as input data, which yields the 

projected clustering𝐶′𝑡 = {𝐶′1,𝑡 , . . . , 𝐶′𝑘,𝑡} and the probability matrix 𝑃𝑡 = [𝑝1,𝑡 , … , 𝑝𝑁,𝑡]
𝑇
, where 𝑝𝑖,𝑡is 

a real vector containing the probabilities of the ith cell belonging to the k clusters.  

The objective function of L1-regularized logistic regression is 

𝑚𝑖𝑛 𝑤   ‖𝑤‖1 + 𝐶 ∑ 𝑙𝑜𝑔 (1 + 𝑒−𝑦𝑖𝑤𝑇𝑥𝑖)

𝑛

𝑖=1

 

where w is the model weight vector, n the number of training samples in the kth cluster, 𝑦𝑖 =

{−1,1} and ‖‖1 the 1-norm. The constant C > 0 determines the trade-off between regularization 

and correct classification, a lower value selecting fewer genes. To perform multiclass 

classification, the LIBLINEAR library uses the one-vs-rest scheme, in which k binary classifiers 

are trained using the samples belonging to one of the k clusters as positive samples and all other 

samples from the k - 1 clusters as negatives.  

4. Clustering comparison. The similarity between clusterings 𝐶𝑡 and 𝐶′𝑡 is measured by ARI22 : 
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𝐴𝑅𝐼 =
∑ (𝑛𝑖𝑗

2
)𝑖𝑗 − [∑ (𝑎𝑖

2
)𝑖 ∑ (𝑏𝑗

2
)𝑗 ]/(n

2
)

1
2 [∑ (𝑎𝑖

2
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2
)𝑗 ] − [∑ (𝑎𝑖

2
)𝑖 ∑ (𝑏𝑗

2
)𝑗 ]/(n

2
)
 

Here 𝑛 is the total number of cells, 𝑛𝑖𝑗 is the number of overlapping cells in clusters i and j from 

𝐶𝑡 and 𝐶′𝑡 respectively, 𝑎𝑖 and 𝑏𝑗are the total number of cells in clusters i and j from𝐶𝑡 and 𝐶′𝑡 

respectively. If ARI increases from its previous value (initialized to 0 with t = 1), then 𝐶𝑡+1is set to 

𝐶′𝑡 and steps 2, 3 and 4 are repeated for 𝐶𝑡+1in the next epoch. If ARI does not increase, the 

steps 2, 3 and 4 are repeated for 𝐶𝑡 until the maximum number of reiterations r is reached. At the 

start of every new epoch, the number of reiterations is set to 0. After the last reiteration, 𝑃𝑡 and 

𝐶′𝑡 are returned as output, where t is the last epoch. 

To understand how the parameters of ICP (d, C, k and r) affect the identification of cell populations 

and constrain their values, we investigated adjusting their values with the pbmc3k dataset and 

studied how that affected cell populations found by ILoReg (Supplementary Fig. 7-10).  

 

The parameter d enables controlling the diversity of the consensus solution. While a higher d 

increased the projection accuracy (Supplementary Fig. 11a), it also reduced the average 

similarity of different ICP runs (Supplementary Fig. 11b), which in turn induced less variation 

into the consensus solution (Supplementary Fig. 11c). This is consistent with the t-SNE 

visualizations generated using different values of d (Supplementary Fig. 7), containing fewer 

visible subpopulations of T cells for higher d values. Additionally, since with d = 0.1 and C = 0.1 

the number of clusters k started to randomly decrease during the iteration due to the clustering 

becoming unbalanced, using d smaller than 0.2 is not recommended.  

 

The parameter C controls the stringency of the feature selection through L1-regularization, a lower 

value selecting fewer genes into the logistic regression model. With a lower C ICP achieved a 

higher projection accuracy at the final epoch of ICP (Supplementary Fig. 11a).  From C = 0.3 to 

C = 1.0 the t-SNE plots had similar shapes for the populations that expressed the three T cell 

marker genes (CD8B, CCR7, TNFRSF4), but at C = 0.1 the result differed significantly more 

(Supplementary Fig. 8). 

 

The number of initial clusters k determines the dimensionality of the cluster probability matrix, and 

intuitively a higher k increased the cell population diversity of the result (Supplementary Fig. 9). 

With k = 5 and k = 10 CD4+ T cells were distinctly grouped into sharp clusters based on the 

expression of CCR7. Although this kind of extreme differentiation resolution may be useful, many 

real cell types underlying the tissue may not be separable by on-off expression of a single gene. 

For example, both naive and memory T cells have been shown to express CCR7, but its 

expression level is, on average, higher in naive T cells23. Therefore, using k = 15 provided an 

embedding that was more consistent with past studies. 

 

The maximum number of reiterations r enables controlling the projection accuracy of ICP without 

the need to adjust the values of k, d, and C. Based on the overall high similarity of the t-SNE 

representations that were acquired using different values of r (Supplementary Fig. 10), r should 

be of least concern when tuning the parameters. 
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Consensus clustering method. A consensus method (Fig. 1b) is used to obtain a more accurate 

and robust clustering of the cells than the clusterings obtained by the individual ICP runs 

(Supplementary Fig. 3), which is also not constrained to the number of initial clusters k. The ICP 

algorithm is run 𝐿 times with different random seeds and their probability matrices are merged to 

create the joint probability matrix, 𝑃 = [𝑃1, … , 𝑃𝐿]. The dimensionality of the data is reduced with 

principal component analysis (PCA) by performing eigendecomposition of the cross-product of 

the centered 𝑃using the RSpectra R package. Finally, the 𝑁 × 𝑝dimensional consensus matrix is 

clustered efficiently (𝑂(𝑁𝑝)) using hierarchical clustering with the Ward’s method from the 

fastcluster R package24. The tree dendrogram from the hierarchical clustering is cut into K clusters 

with the dendextend R package25. The optimal number of clusters can be determined 

automatically by the silhouette method from the cluster R package. 

Since there were only minor differences between the t-SNE representations computed with p = 

50 and p = 100 (Supplementary Fig. 12), and a common strategy among methods that apply 

PCA is to select rather too many components than too few (e.g. the Rtsne R package), we decided 

to use 50 as the default value of p. The ILoReg R package also provides a function for drawing 

an elbow plot to help the user in selecting the number of principal components. Additionally, we 

investigated the impact of the parameters L and k, suggesting (Supplementary Fig. 3) that 

regardless of which of the different values of k and L were used, the consensus method was able 

to find a clustering that was accurate when measured by ARI. The consensus clustering stabilized 

when L was between 10 and 50, being also in agreement with the t-SNE plots computed with 

different values of L (Supplementary Fig. 13). However, this is likely to be dataset-specific and 

therefore to be safe, we set the default value to 200. 

Visualization. ILoReg supports visualization using two popular nonlinear dimensionality 

reduction methods: t-distributed stochastic neighbor embedding (t-SNE) from the Rtsne R 

package and uniform manifold approximation and projection (UMAP) from the umap R package. 

The p-dimensional PCA-transformed matrix is used as input in both of the methods. 

Benchmarking. To benchmark ILoReg against other scRNA-seq clustering methods, we 

considered four state-of-the-art methods: Seurat6, SC37, CIDR8 and RaceID39. Details of the 

methods are listed in Supplementary Table 1. We carried out the benchmarking assuming that 

the true number of clusters is unknown, and therefore, used the default parameter values with 

each method. With RaceID3 we used the initial clustering by k-medoids without the subsequent 

outlier detection step that adds further clusters. Seurat is the only method without automated 

estimation of k, and we therefore used the number of clusters provided by the default resolution 

value 0.8. To measure clustering accuracy, we used ARI between the ground truth and inferred 

clusterings. Additionally, we compared the estimated and ground truth values of  k.  

For benchmarking we selected three public scRNA-seq datasets, in which each cell has been 

categorised by the authors of the original publication.  The benchmarking datasets that we used 

are listed in Supplementary Table 2. The Baron and Galen datasets are silver standard datasets, 

i.e. their clusters were identified by the authors based on gene markers, with several replicates. 

The Pollen dataset is a gold standard dataset with information on which cell line each cell 
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originated from. Before clustering we removed spike-ins from the Pollen dataset. The 

normalization of each dataset was performed using the same method that was given in the original 

study. 

 

Preprocessing of the pbmc3k dataset. The raw FASTQ reads of the pbmc3k dataset were 

downloaded from the public database of the 10X Genomics company 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets) and the preprocessing 

was performed using Cell Ranger v2.2.0 and the GRCh38.p12 human reference genome. The 

unique molecular identifier (UMI) counts were normalized using the LogNormalize method from 

the Seurat R package. 

 

Functional analysis of the Baron1 dataset. To identify enriched biological pathways among the 

differentially expressed genes between the healthy and injured beta cell populations from the 

Baron1 dataset, we used the Metascape web tool27. 

 

Run time and memory usage. The run time and maximal resident set size (RSS) of the five 

benchmarked methods were measured using two PBMC datasets: pbmc3k (~ 3k cells) and a 

subset of the fresh_68k_pbmc_donor_a dataset (20k cells) on a cluster node with CentOS Linux 

7 operating system, 12-core 2.66 GHz Intel Xeon X5650 processor and 96 GB 1066 MHz DDR3 

of RAM (Supplementary Fig. 6). The workflow steps that were included in this comparison were 

dimensionality reduction, clustering and estimating the optimal number of clusters. In contrast to 

the other methods, changing the number of clusters k with SC3 can be time-consuming due to 

the computational bottleneck step involving k-means clustering. Since in practice the user needs 

to run the consensus clustering with a range of different k values, we adjusted the SC3 workflow 

to use k values ranging from 2 to 50. 12 threads were used with the methods that support parallel 

computing (SC3 and ILoReg).  

Differential expression analysis. The ILoReg R package provides user-friendly functions that 

enable identification of gene markers for clusters and visualization of gene expression across 

cells and between clusters (Supplementary Fig. 5). The current implementation of ILoReg 

supports two functions for gene marker identification. The first function, FindAllGeneMarkers, 

allows simultaneous identification of gene markers for all K clusters. Differential expression 

analysis is performed using the one-vs-rest scheme, in which cells from each cluster are 

compared against the rest of the cells. To accelerate the analysis, the user can apply filters to 

remove genes that are less likely to be good marker genes or downsample cells. The differential 

expression analysis uses the Wilcoxon rank-sum test to calculate a p-value representing the 

statistical significance of a gene. The p-value adjustment for multiple comparisons is carried out 

using the Bonferroni method. A second function, FindGeneMarkers, enables comparison between 

any two arbitrary sets of clusters. 

 

Datasets. The Galen dataset was downloaded from the NCBI’s GEO database (GSE116256). 

The PBMC and pan T cell datasets were downloaded from the public database of the 10X 

Genomics company (https://support.10xgenomics.com/single-cell-gene-expression/datasets). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2020. ; https://doi.org/10.1101/2020.01.20.912675doi: bioRxiv preprint 

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://doi.org/10.1101/2020.01.20.912675
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

Baron and Pollen datasets were downloaded from the public database of the Hemberg lab 

(https://hemberg-lab.github.io/scRNA.seq.datasets/). 

 

Software availability. ILoReg is available as an R package at https://github.com/elolab/iloreg. 

The version of ILoReg used for generating the results in this manuscript can be downloaded from 

GitHub using the reference ID “85196be6”. 

All analyses in this study were performed using R (version 3.6.0) and the following versions of the 

R packages were used: 

● SC3 (version 1.12.0) 

● Seurat (version 3.0.0) 

● CIDR (version 0.1.5) 

● RaceID (version 0.1.3) 

● Rtsne (version 0.15) 

● umap (version 0.2.0.0) 

● cluster (version 2.0.8) 

● RSpectra (version 0.14-0) 

● aricode (version 0.1.1) 

● DescTools (version 0.99.28) 

● LiblineaR (version 2.10-8) 

● dendextend (version 1.10.0) 

● cowplot (version 0.9.4) 

● ggplot2 (version 3.1.1) 

● SparseM (version 1.77) 

● doParallel (version 1.0.14) 

● foreach (version 1.4.4) 

● pheatmap (version 1.0.12) 
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