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Abstract

Single-cell RNA-seq allows researchers to identify cell populations based on unsupervised
clustering of the transcriptome. However, subpopulations can have only subtle transcriptomic
differences and the high dimensionality of the data makes their identification challenging. We
introduce ILoReg (https://github.com/elolabl/iloreq), an R package implementing a new cell
population identification method that achieves high differentiation resolution through a
probabilistic feature extraction step that is applied before clustering and visualization.

Main

Single-cell RNA-seq (scRNA-seq) enables identification of known and novel cell populations by
unsupervised clustering of transcriptomic profiles of individual cells. However, the high number of
genes presents a major challenge for the analysis of scRNA-seq data by increasing the similarity
of distances between the cells, a phenomenon known as the ‘curse of dimensionality’®. To reduce
its effect, ScRNA-seq pipelines typically apply a feature selection step that selects a set of highly
variable genes prior to unsupervised clustering?. However, this approach can eliminate genes that
are important for the identification of the underlying cell populations of a sample or add unwanted
variation if irrelevant features are chosen. Moreover, the number of remaining genes is typically
still in the thousands and detecting cell populations with subtle differences remains challenging.

To address this issue, we have developed a cell population identification method (ILoReg) that
takes an alternative approach to dimensionality reduction by means of feature extraction. At the
core of ILoReg lies a new clustering algorithm, iterative clustering projection (ICP), which
transforms a gene expression matrix into a probability matrix containing probabilities of each cell
belonging to k clusters. These continuous cluster probabilities provide a more practical
representation of the clustering than discrete cluster labels, as they can be handled like extracted
features, and they are then utilized in the consensus clustering approach that combines multiple
randomly subsampled ICP solutions into a consensus solution. The consensus approach acts as
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a noise-reducing step prior to hierarchical clustering and visualization by nonlinear dimensionality
reduction, such as t-distributed stochastic neighbor embedding (t-SNE)* or uniform manifold
approximation and projection (UMAP)*. We have implemented this method as a user-friendly R
package, ILoReg (https://github.com/elolabl/iloreg), and demonstrate that it can greatly aid the
identification of cell populations with subtle transcriptomic differences by increasing the cell
population identification resolution of both clustering and visualization.

ICP is a clustering algorithm (Fig. 1a, Supplementary Fig. 1 and Methods) that iteratively seeks
a clustering of size k that maximizes the clustering similarity between the clustering and its
projection by logistic regression, measured by the adjusted Rand Index (ARI). A particularly
distinctive feature of ICP is the integration of feature selection with clustering by L1-regularized
logistic regression, which at each step of the iteration automatically selects and weights genes by
their relevance in predicting the current clustering. Since ICP generates different clusterings with
different random seeds (Supplementary Fig. 2), ILoReg finally applies a consensus approach
(Fig. 1b and Methods) to obtain a more accurate and robust solution, which is not constrained to
the initial number of clusters k (Supplementary Fig. 3). ICP is run L times and the resulting cluster
probability matrices are merged into a joint probability matrix, which is transformed into a lower
dimension by principal component analysis (PCA). The PCA-transformed data matrix is clustered
hierarchically using the Ward's method and visualized using a nonlinear dimensionality reduction
method, such as t-SNE or UMAP. To estimate the optimal number of clusters, ILoReg uses the
silhouette method®.
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Figure 1 | Overview of ILoReg. (a) Schematic of the iterative clustering projection (ICP) clustering algorithm. (b) Schematic of the
ILoReg consensus approach for cell population identification.

We benchmarked ILoReg against four other clustering methods®®, Seurat, SC3, CIDR and
RacelD3, each functioning on a largely different principle (Supplementary Table 1), using eleven
gold (Pollen) or silver (Baron and van Galen data) standard datasets from three publicly available
studies!®*? (Methods and Supplementary Table 2). Although all the algorithms were able to find
a number of clusters that was close to what the authors of the original studies reported
(Supplementary Fig. 4), comparison by ARI between the inferred and original clusterings
revealed considerable inaccuracies (Fig. 2a). ILoReg performed generally well regardless of the
sample size, whereas CIDR and RacelD3 performed worse on average. In contrast to the other
methods, SC3 tended to overestimate for larger datasets (e.g. Baron) and it was more accurate
with smaller datasets (e.g. Pollen). Seurat performed consistently across the datasets, but for
most datasets worse than ILoReg. In two of the datasets from the van Galen study (BM5-34p and
BM5-34p38n), none of the methods were able to achieve even moderate accuracy for them.
These datasets were sorted by flow cytometry and had highly unbalanced cluster labels in the
original study, whereas in our comparison the inferred clusterings were more uniformly distributed,
explaining the discrepancy.
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Figure 2 | Benchmarking and identification of cell populations with subtle transcriptomic differences. (a) Benchmarking of ILoReg
against four other scRNA-seq clustering methods: Seurat, SC3, CIDR and RacelD3. To compare the methods, the adjusted Rand
index (ARI) was calculated in eleven datasets between the inferred clustering of each method and the reference clustering from
the original study. The estimated numbers of clusters with each method were used; the estimates are provided in Supplementary
Figure 4. The datasets with the “BM” prefix are from the van Galen study. (b) Comparison of t-distributed stochastic neighbor
embedding (t-SNE) plots generated by ILoReg and Seurat for the Baron1 dataset, highlighting the expression levels of MALAT1
that differentiates injured from healthy beta cells. The cells were colored by the reference labels from the original study. (c)
Comparison of t-SNE plots generated by ILoReg and Seurat for the pbmc3k dataset, highlighting the expression levels of four
genes (CD3D, CD8B, CCR7, S100B) that differentiate naive CD8+ T cells. All the analyses were carried out using the default
parameter values of Seurat and ILoReg (k=15,C=0.3,d=0.3,r=5, p =50, L = 200).

To demonstrate the ability of ILoReg to identify cell populations with subtle differences, we
investigated in more detail clusters found from two datasets: a human pancreas dataset (Baronl)
and a human peripheral blood mononuclear cell (PBMC) dataset (pbmc3k). From the Baronl
dataset, ILoReg identified a subpopulation of beta cells (Fig. 2b) with MALAT1 downregulated,
(Wilcoxon rank-sum test, adjusted P < 0.01, log2 FC~ -1.5). MALATL1 is a gene that inhibits
apoptosis and has been found to be negatively correlated with post-isolation islet cell death*2. In
line with this, functional analysis (Methods) of the differentially expressed genes between the two
beta cell populations revealed a process that has been previously linked to beta cell destruction,
i.e. endoplasmic reticulum stress (Supplementary File 1), further indicating the cluster indeed
comprises injured beta cells*. The beta cells in the t-SNE representation of Seurat, however, are
clustered more densely. Although an outer part of the whole beta cell cluster seems to contain
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MALAT1- beta cells, there is no clear separation between the MALAT1- and MALAT1+ cell
populations.

In the pbmc3k dataset, a comparison between the five benchmarked methods (Supplementary
Fig. 5) showed that the two-dimensional visualizations of all the four other methods (Seurat, SC3,
CIDR and RacelD3) were similar, containing three main clusters: (1) T cells and NK cells; 2)
dendritic cells and monocytes; 3) B cells. On the contrary, multiple distinct subpopulations are
clearly visible within each main cell type in the t-SNE representation of ILoReg. Interestingly,
unlike the other methods, ILoReg identified a cluster that expressed CD3D, CD8B, CCR7 and
S100B genes (Fig. 2c), corresponding to naive CD8+ T cells®®. Overall, based on the expression
of CD8B the separation of CD8- and CD8+ T cells by ILoReg was distinctly more precise. A more
comprehensive analysis (Supplementary Results 1) revealed further cell populations that are in
agreement with past studies, such as CD56+ and CD56++ NK cells'®, naive and memory B cells
with lambda or kappa light chain'’-1°, as well as rare platelets, which typically constitute less than
1% of PBMCs?.

The choice of the parameter values in ILoReg can have a considerable effect on the identifiable
cell populations and they can be used to fine-tune the clustering to identify different cell
populations. The effect is greater the higher the transcriptomic similarity between the populations
is. The default parameter values were chosen so that biologically meaningful subpopulations with
subtle expression differences are identified. We studied the effect of each of the parameters in
detail and provide guidelines on how to select appropriate parameter values (Methods).

The most computationally intensive part of ILoReg is running ICP L times (default L = 200). To
accelerate it, the R package supports computing the ICP runs in parallel. Using the default
parameter values and 12 threads, the run times for ~3,000 cells and ~20,000 cells were ~1 hr and
~10 hr, respectively (Methods and Supplementary Fig. 6). It should be noted, however, that
although the run time of a single workflow was relatively long, the workflow is generally simple
and the number of consensus clusters K is very fast to change (~1 s with ~3,000 cells). By
contrast, with SC3 the user must repeat the clustering for each number of clusters k separately,
thus roughly multiplying the run time by the number of different k values. Similarly, with Seurat
the user must repeat the graph-based clustering with different resolution values without knowing
how many clusters a resolution value gives. Another considerable benefit of ILoReg is its ability
to find subpopulations without the need of further sub-clustering, therefore considerably
simplifying the analysis workflow and saving further time.

To conclude, we have developed a new cell population identification method, ILoReg, which
enables high-resolution identification of cell subpopulations from scRNA-seq data by a consensus
clustering approach. Remarkably, using the cluster probabilities in feature extraction increased
the resolution of nonlinear dimensionality reduction methods, such as t-SNE or UMAP, compared
to current state-of-the-art methods that preprocess data by selecting a set of highly variable
genes. In particular, our results demonstrate that ILoReg can greatly aid the identification of cell
populations with subtle transcriptomic differences.
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Methods

Iterative clustering projection. As a basis of ILoReg, we first introduce a new clustering
algorithm, iterative clustering projection (ICP), that utilizes random down- and oversampling,
supervised learning and clustering comparison to iteratively cluster the data (Fig. la and
Supplementary Fig. 1). Specifically, the objective of ICP is to seek a clustering C = {C, ..., C,}
with k clusters that maximizes the adjusted Rand index (ARI) between C and its projection C' by
logistic regression:

arg mCaxARI(C, ch

In the following, we describe the four steps of the algorithm.

1. Initialization. Given a normalized gene expression matrix, X = [x, ..., xy]7, where N is the
number of cells and x; is the transcriptional profile of the ith cell across M genes that are
expressed in at least one of the N cells, the algorithm first splits the cells randomly into k clusters
Ce = {Cyt, ..., Cx r3using a uniform probability distribution, where t = 1.

2. Creating balanced training data. To form a balanced training dataset X, and training labels Y; =
{Yit,..., Yt} with an equal number of cells n in each cluster of Y;, down- and oversampling of C,
and Xare carried out. If a cluster contains more than n cells, then its cells are randomly
downsampled by selecting n cells from the cluster without replacement. If a cluster has fewer than
n cells, then its cells are oversampled with replacement. Because scRNA-seq datasets come at
very different sample sizes, n is determined by n = [Nd/k], where d € (0,1) and []denotes the
ceiling function.

3. Classifier training and projection. An L1-regularized logistic regression classifier is trained on
the training data X, and labels Y,using the LIBLINEAR library?. X is projected onto itself with the
classifier, i.e. the cluster of each of the N cells is predicted with X as input data, which yields the

projected clusteringC’; = {C'14, ..., C'x. .} and the probability matrix P, = [p ...,pN,t]T, where p; ;is
a real vector containing the probabilities of the ith cell belonging to the k clusters.

The obijective function of L1-regularized logistic regression is

n
min,, ||w|;+ Cz log(1+ e‘yl'WT"l’)

=1

where w is the model weight vector, n the number of training samples in the kth cluster, y; =
{—1,1} and ||||; the 1-norm. The constant C > 0 determines the trade-off between regularization
and correct classification, a lower value selecting fewer genes. To perform multiclass
classification, the LIBLINEAR library uses the one-vs-rest scheme, in which k binary classifiers
are trained using the samples belonging to one of the k clusters as positive samples and all other
samples from the k - 1 clusters as negatives.

4. Clustering comparison. The similarity between clusterings C; and C’; is measured by ARI?? :
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2 () = () 2,01/ ()

ARI = 1 _ . ) P
5 [Ei(%‘) + Zj( 2’)] - [Ei(?) Zj( 2])]/(2)

Here n is the total number of cells, n;; is the number of overlapping cells in clusters i and j from
C; and C'; respectively, a; and b;are the total number of cells in clusters i and j fromC, and C’,
respectively. If ARl increases from its previous value (initialized to 0 with t = 1), then C;,is set to
C'; and steps 2, 3 and 4 are repeated for C;,,in the next epoch. If ARI does not increase, the
steps 2, 3 and 4 are repeated for C; until the maximum number of reiterations r is reached. At the
start of every new epoch, the number of reiterations is set to 0. After the last reiteration, P, and
C'; are returned as output, where t is the last epoch.

To understand how the parameters of ICP (d, C, k and r) affect the identification of cell populations
and constrain their values, we investigated adjusting their values with the pbmc3k dataset and
studied how that affected cell populations found by ILoReg (Supplementary Fig. 7-10).

The parameter d enables controlling the diversity of the consensus solution. While a higher d
increased the projection accuracy (Supplementary Fig. 11a), it also reduced the average
similarity of different ICP runs (Supplementary Fig. 11b), which in turn induced less variation
into the consensus solution (Supplementary Fig. 11c). This is consistent with the t-SNE
visualizations generated using different values of d (Supplementary Fig. 7), containing fewer
visible subpopulations of T cells for higher d values. Additionally, since with d = 0.1 and C = 0.1
the number of clusters k started to randomly decrease during the iteration due to the clustering
becoming unbalanced, using d smaller than 0.2 is not recommended.

The parameter C controls the stringency of the feature selection through L1-regularization, a lower
value selecting fewer genes into the logistic regression model. With a lower C ICP achieved a
higher projection accuracy at the final epoch of ICP (Supplementary Fig. 11a). From C =0.3to
C = 1.0 the t-SNE plots had similar shapes for the populations that expressed the three T cell
marker genes (CD8B, CCR7, TNFRSF4), but at C = 0.1 the result differed significantly more
(Supplementary Fig. 8).

The number of initial clusters k determines the dimensionality of the cluster probability matrix, and
intuitively a higher k increased the cell population diversity of the result (Supplementary Fig. 9).
With k =5 and k = 10 CD4+ T cells were distinctly grouped into sharp clusters based on the
expression of CCR7. Although this kind of extreme differentiation resolution may be useful, many
real cell types underlying the tissue may not be separable by on-off expression of a single gene.
For example, both naive and memory T cells have been shown to express CCR7, but its
expression level is, on average, higher in naive T cells®. Therefore, using k = 15 provided an
embedding that was more consistent with past studies.

The maximum number of reiterations r enables controlling the projection accuracy of ICP without
the need to adjust the values of k, d, and C. Based on the overall high similarity of the t-SNE
representations that were acquired using different values of r (Supplementary Fig. 10), r should
be of least concern when tuning the parameters.
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Consensus clustering method. A consensus method (Fig. 1b) is used to obtain a more accurate
and robust clustering of the cells than the clusterings obtained by the individual ICP runs
(Supplementary Fig. 3), which is also not constrained to the number of initial clusters k. The ICP
algorithm is run L times with different random seeds and their probability matrices are merged to
create the joint probability matrix, P = [Py, ..., P,]. The dimensionality of the data is reduced with
principal component analysis (PCA) by performing eigendecomposition of the cross-product of
the centered Pusing the RSpectra R package. Finally, the N x pdimensional consensus matrix is
clustered efficiently (O(Np)) using hierarchical clustering with the Ward’s method from the
fastcluster R package?*. The tree dendrogram from the hierarchical clustering is cut into K clusters
with the dendextend R package?®. The optimal number of clusters can be determined
automatically by the silhouette method from the cluster R package.

Since there were only minor differences between the t-SNE representations computed with p =
50 and p = 100 (Supplementary Fig. 12), and a common strategy among methods that apply
PCA is to select rather too many components than too few (e.g. the Rtsne R package), we decided
to use 50 as the default value of p. The ILoReg R package also provides a function for drawing
an elbow plot to help the user in selecting the number of principal components. Additionally, we
investigated the impact of the parameters L and k, suggesting (Supplementary Fig. 3) that
regardless of which of the different values of k and L were used, the consensus method was able
to find a clustering that was accurate when measured by ARI. The consensus clustering stabilized
when L was between 10 and 50, being also in agreement with the t-SNE plots computed with
different values of L (Supplementary Fig. 13). However, this is likely to be dataset-specific and
therefore to be safe, we set the default value to 200.

Visualization. ILoReg supports visualization using two popular nonlinear dimensionality
reduction methods: t-distributed stochastic neighbor embedding (t-SNE) from the Rtsne R
package and uniform manifold approximation and projection (UMAP) from the umap R package.
The p-dimensional PCA-transformed matrix is used as input in both of the methods.

Benchmarking. To benchmark ILoReg against other scRNA-seq clustering methods, we
considered four state-of-the-art methods: Seurat®, SC3’, CIDR® and RacelD3°. Details of the
methods are listed in Supplementary Table 1. We carried out the benchmarking assuming that
the true number of clusters is unknown, and therefore, used the default parameter values with
each method. With RacelD3 we used the initial clustering by k-medoids without the subsequent
outlier detection step that adds further clusters. Seurat is the only method without automated
estimation of k, and we therefore used the number of clusters provided by the default resolution
value 0.8. To measure clustering accuracy, we used ARI between the ground truth and inferred
clusterings. Additionally, we compared the estimated and ground truth values of k.

For benchmarking we selected three public sScRNA-seq datasets, in which each cell has been
categorised by the authors of the original publication. The benchmarking datasets that we used
are listed in Supplementary Table 2. The Baron and Galen datasets are silver standard datasets,
i.e. their clusters were identified by the authors based on gene markers, with several replicates.
The Pollen dataset is a gold standard dataset with information on which cell line each cell
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originated from. Before clustering we removed spike-ins from the Pollen dataset. The
normalization of each dataset was performed using the same method that was given in the original
study.

Preprocessing of the pbmc3k dataset. The raw FASTQ reads of the pbmc3k dataset were
downloaded from the public database of the 10X Genomics company
(https://support.10xgenomics.com/single-cell-gene-expression/datasets) and the preprocessing
was performed using Cell Ranger v2.2.0 and the GRCh38.p12 human reference genome. The
unique molecular identifier (UMI) counts were normalized using the LogNormalize method from
the Seurat R package.

Functional analysis of the Baronl dataset. To identify enriched biological pathways among the
differentially expressed genes between the healthy and injured beta cell populations from the
Baron1 dataset, we used the Metascape web tool?’.

Run time and memory usage. The run time and maximal resident set size (RSS) of the five
benchmarked methods were measured using two PBMC datasets: pbmc3k (~ 3k cells) and a
subset of the fresh_68k_pbmc_donor_a dataset (20k cells) on a cluster node with CentOS Linux
7 operating system, 12-core 2.66 GHz Intel Xeon X5650 processor and 96 GB 1066 MHz DDR3
of RAM (Supplementary Fig. 6). The workflow steps that were included in this comparison were
dimensionality reduction, clustering and estimating the optimal number of clusters. In contrast to
the other methods, changing the number of clusters k with SC3 can be time-consuming due to
the computational bottleneck step involving k-means clustering. Since in practice the user needs
to run the consensus clustering with a range of different k values, we adjusted the SC3 workflow
to use k values ranging from 2 to 50. 12 threads were used with the methods that support parallel
computing (SC3 and ILoReg).

Differential expression analysis. The ILoReg R package provides user-friendly functions that
enable identification of gene markers for clusters and visualization of gene expression across
cells and between clusters (Supplementary Fig. 5). The current implementation of ILoReg
supports two functions for gene marker identification. The first function, FindAllGeneMarkers,
allows simultaneous identification of gene markers for all K clusters. Differential expression
analysis is performed using the one-vs-rest scheme, in which cells from each cluster are
compared against the rest of the cells. To accelerate the analysis, the user can apply filters to
remove genes that are less likely to be good marker genes or downsample cells. The differential
expression analysis uses the Wilcoxon rank-sum test to calculate a p-value representing the
statistical significance of a gene. The p-value adjustment for multiple comparisons is carried out
using the Bonferroni method. A second function, FindGeneMarkers, enables comparison between
any two arbitrary sets of clusters.

Datasets. The Galen dataset was downloaded from the NCBI's GEO database (GSE116256).
The PBMC and pan T cell datasets were downloaded from the public database of the 10X
Genomics company (https://support.10xgenomics.com/single-cell-gene-expression/datasets).
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Baron and Pollen datasets were downloaded from the public database of the Hemberg lab
(https://hemberg-lab.qgithub.io/scRNA.seg.datasets/).

Software availability. ILoReg is available as an R package at https://github.com/elolabl/iloreq.

The version of ILoReg used for generating the results in this manuscript can be downloaded from
GitHub using the reference ID “85196be6”.

All'analyses in this study were performed using R (version 3.6.0) and the following versions of the
R packages were used:

SC3 (version 1.12.0)
Seurat (version 3.0.0)

CIDR (version 0.1.5)
RacelD (version 0.1.3)
Rtsne (version 0.15)

umap (version 0.2.0.0)
cluster (version 2.0.8)
RSpectra (version 0.14-0)
aricode (version 0.1.1)
DescTools (version 0.99.28)
LiblineaR (version 2.10-8)
dendextend (version 1.10.0)
cowplot (version 0.9.4)
ggplot2 (version 3.1.1)
SparseM (version 1.77)
doParallel (version 1.0.14)
foreach (version 1.4.4)
pheatmap (version 1.0.12)
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