

1 **CRISPR/Cas with ribonucleoprotein complexes and transiently selected telomere vectors**
2 **allows highly efficient marker-free and multiple genome editing in *Botrytis cinerea***

3
4 **Thomas Leisen¹, Fabian Bietz¹, Janina Werner¹, Alex Wegner², Ulrich Schaffrath², David Scheuring¹,**
5 **Felix Willmund¹, Andreas Mosbach³, Gabriel Scalliet³, Matthias Hahn^{1*}**

6
7 ¹University of Kaiserslautern, Department of Biology, Kaiserslautern, Germany
8 ²RWTH Aachen University, Department of Plant Physiology, 52056 Aachen, Germany
9 ³Syngenta Crop Protection AG, Stein, Switzerland

10
11 *Corresponding author
12 E-mail: hahn@biologie.uni-kl.de
13
14

15 **Keywords:** *Botrytis cinerea*; necrotrophy; *Magnaporthe oryzae*; ribonucleoprotein complex;
16 CRISPR/Cas9; sgRNA; cotransformation; marker-free editing; botrydial; botcinic acid; Nep1; Nep2;
17 phytotoxin; superoxide dismutase; Sod1; virulence; fungicide resistance; succinate dehydrogenase
18 inhibitor; SdhB; boscalid; fluopyram; pydiflumetofen; telomere vector

19

20 **Abstract**

21 CRISPR/Cas has become the state-of-the-art technology for genetic manipulation in diverse
22 organisms, enabling targeted genetic changes to be performed with unprecedented
23 efficiency. Here we report on the first establishment of robust CRISPR/Cas editing in the
24 important necrotrophic plant pathogen *Botrytis cinerea* based on the introduction of
25 optimized Cas9-sgRNA ribonucleoprotein complexes (RNPs) into protoplasts. Editing yields
26 were further improved by development of a novel strategy that combines RNP delivery with
27 transiently stable telomeres containing vectors, which allowed temporary selection and
28 convenient screening of marker-free editing. We demonstrate that this approach provides
29 vastly superior editing rates compared to existing CRISPR/Cas-based methods in filamentous
30 fungi, including the model plant pathogen *Magnaporthe oryzae*. The high performance of
31 telomere vector-mediated coediting was demonstrated by random mutagenesis of codon 272
32 of the *sdhB* gene, a major determinant of resistance to succinate dehydrogenase inhibitor
33 (SDHI) fungicides by in bulk replacement of the codon 272 with codons encoding all 20 amino
34 acids. All exchanges were found at similar frequencies in the absence of selection but SDHI
35 selection allowed the identification of novel amino acid substitutions which conferred
36 differential resistance levels towards different SDHI fungicides. The increased efficiency and
37 easy handling of RNP-based cotransformation is expected to greatly facilitate molecular
38 research in *B. cinerea* and other fungi.

39

40 Introduction

41 *Botrytis cinerea* is a plant pathogenic ascomycete which infects more than a thousand species,
42 triggering gray mold disease which is responsible for over a billion dollars of losses in fruits, vegetables
43 and flowers every year [1]. Due to its worldwide occurrence, great economic importance and non-
44 specific necrotrophic lifestyle, it has been ranked as the second most important plant pathogenic
45 fungus [2]. Control of gray mold often requires repeated treatments with fungicides, in particular
46 under high humidity conditions, but rapid adaption and resistance development of *B. cinerea* has
47 dramatically reduced their efficiency worldwide in many cultures, for example in strawberry fields [3].
48 After germination of a conidium on the plant surface, the fungus penetrates and invades the host,
49 rapidly killing plant cells by releasing a complex mixture of cell wall degrading enzymes, phytotoxic
50 metabolites and proteins, and by tissue acidification [4, 5]. How host cell death is induced is not fully
51 understood, but the invading hyphae seem to trigger the hypersensitive response, a plant-specific type
52 of apoptosis linked to strong defence reactions [6, 7]. Furthermore, *B. cinerea* releases small RNAs
53 (sRNAs) that can suppress the expression of defence-related genes in its host plants [8]. As a
54 countermeasure, plants also release sRNAs aimed to suppress fungal virulence [9]. To facilitate access
55 to genes or non-coding RNA loci that are important for pathogenesis, a gapless genome sequence of
56 *B. cinerea* has been published recently [10]. Considerable efforts have been made to generate tools
57 for the genetic manipulation of *B. cinerea*. *Agrobacterium*-mediated and protoplast-based
58 transformation have been developed [11–13], and several vectors are available which facilitate the
59 generation of mutants and strains expressing fluorescently tagged proteins for cytological studies[14].
60 Nevertheless, the generation of mutants remains time-consuming, partly because of the multinuclear
61 nature of *B. cinerea*, which requires several rounds of sub-cultivation to achieve homokaryosis.
62 Furthermore, the generation of multiple knock-out mutants is hampered by the lack of marker
63 recycling systems for serial gene replacements, as described in some filamentous fungi [15].
64 The application of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated
65 RNA-guided Cas9 endonuclease activity has revolutionized genome editing and greatly facilitated the

66 genetic manipulation in a wide range of species [16]. CRISPR/Cas is based on the introduction of double
67 stranded breaks by the Cas9 endonuclease in the genome of an organism. Cas9 targeting occurs by
68 complementary sequences of a single guide RNA (sgRNA), which directs the endonuclease to a genomic
69 target sequence via a 20 bp homology region [17–19]. The sequence requirement, for Cas9 from
70 *Streptococcus pyogenes*, is the presence of the so-called protospacer adjacent motif (PAM), a triplet
71 NGG located immediately 3' of the target[20]. The breaks are then repaired by non-homologous DNA
72 end joining (NHEJ) or, if a repair template (RT) DNA homologous to sequences flanking the break is
73 provided, by homologous recombination (HR), which allows the generation of specific edits in the
74 genome.

75 CRISPR/Cas has been successfully applied in various fungal species using different strategies to deliver
76 Cas9 and the sgRNA [21]. In most cases, codon optimized versions of Cas9 encoding genes were
77 introduced by stable chromosomal integration or transiently via plasmids. To achieve robust
78 expression and efficient nuclear targeting of Cas9, strong fungal promoters, codon-optimized genes
79 and suitable nuclear localization signals fused to the protein are beneficial. Delivery of sgRNA can be
80 achieved either via plasmids or by *in vitro* synthesized sgRNA. More recently, transformation with
81 Cas9-sgRNA ribonucleoprotein (RNP) complexes has been successfully applied in selected fungi [22–
82 24].

83 In this study, we show that CRISPR/Cas-based genome editing is highly efficient in *B. cinerea* when
84 Cas9-sgRNA RNPs are introduced into protoplasts. By using *Bos1* as a selectable marker for gene
85 knockouts, high frequencies of edits via NHEJ and HR were achieved. With RT containing only 60 bp
86 homology flanks, >90% targeting efficiency was observed. Taking advantage of a transiently selectable
87 telomere vector and high cotransformation rates of CRISPR/Cas constructs, a highly efficient marker-
88 free editing strategy was developed, yielding up to thousands of edited transformants per
89 transformation. The power of this approach, which was verified also for *Magnaporthe oryzae*, was
90 demonstrated by random *in vivo* mutagenesis of a resistance-associated codon in a fungicide target
91 gene, and application which was not possible before in filamentous fungi.

92 **Results**

93 **Establishment and characterization of CRISPR/Cas editing in *B. cinerea***

94 To achieve strong expression and robust nuclear localization of Cas9, we tested Cas9 constructs with
95 different nuclear localization signals (NLS) using *B. cinerea* transformants expressing a GFP-tagged
96 synthetic Cas9 gene adapted to the low GC content of *B. cinerea* [25]. *B. cinerea* transformants
97 expressing Cas9-GFP with a single C-terminal SV40 T antigen NLS, or with two N- and C-terminal SV40
98 NLS, both resulted in fluorescence distributed between cytoplasm and nuclei (Fig. 1A-B). In contrast,
99 four tandem copies of SV40 NLS (SV40^{x4}) and a duplicated NLS of the nuclear StuA protein (Stu^{x2})
100 effectively directed Cas9 into nuclei (Fig. 1C-D).

101 We next tested which strategy was best suited for Cas9 delivery into *B. cinerea* protoplasts. For
102 stable expression, a construct constitutively expressing Cas9-SV40^{x4} was first integrated into the *niaD*
103 region of the genome. For transient expression, Cas9-GFP-Stu^{x2} cloned into a telomere vector (see
104 below) was transformed into wild type *B. cinerea* [26]. Expression of Cas9 was confirmed by
105 immunoblot analysis (S1 Fig). Alternatively, purified Cas9-Stu^{x2} protein assembled with a sgRNA to a
106 ribonucleoprotein complex (RNP) were used for transformation of wild type *B. cinerea*. CRISPR/Cas
107 activity was evaluated by quantification of error-prone repair via NHEJ, using the *Bos1* gene as a target.
108 *Bos1* encodes a histidine kinase that regulates high osmolarity adaptation via the mitogen activated
109 protein kinase Sak1 [27], which allows for robust positive selection of *Bos1* null mutants which have
110 been shown to be resistant against the fungicides iprodione (Ipr) and fludioxonil (Fld) [28, 29]. With
111 transiently expressed Cas9-GFP-Stu^{x2} and with Cas9-Stu^{x2} RNPs, high numbers of transformants were
112 obtained, whereas stably expressed Cas9-SV40^{x4} yielded significantly less colonies (Fig. 1E). All
113 transformants tested were both Ipr^R and Fld^R, and failed to produce sporulating aerial hyphae.
114 Compared to the wild type (WT), growth of the transformants was more strongly inhibited on media
115 with high osmolarity, and their virulence was strongly reduced when inoculated on tomato leaves (S2
116 Fig). These phenotypes are consistent with those reported for *Bos1* k.o. mutants [28], and confirmed
117 that *Bos1* was inactivated in the transformants. Due to high, reproducible transformation rates

118 obtained, RNP-mediated transformation was used in all subsequent experiments. When recombinant
119 Cas9 protein variants carrying different NLS were compared for their efficiency in RNP-mediated
120 transformation, Stu^{x2} NLS was found to confer the highest *in vivo* editing activities (Fig. 1F).

121 To further characterize CRISPR/Cas-NHEJ editing, Cas9-Stu^{x2}-NLS RNPs with different sgRNAs
122 targeting *Bos1* between codons 344 and 372 were introduced into *B. cinerea* protoplasts. resulted in
123 variable rates of NHEJ-induced mutations (Fig. 2 and S3 Fig). Variable editing frequencies were
124 obtained, which correlated only weakly with *in silico* predictions and with *in vitro* cleavage assays (S3
125 Fig). RNP-induced *Bos1* mutations in Ipr^R transformants were characterized. Most of them showed
126 insertions or deletions of only one or a few nucleotides at the cleavage sites, typical for error-prone
127 NHEJ repair of CRISPR/Cas-induced DNA breaks. With three sgRNAs, a '+T' insertion was predominant,
128 while another sgRNA (Bos1-T7) yielded mostly three types of 9 bp deletions (Fig. 2). Insertions >1bp
129 where found in only 19% of the transformants analyzed. Among 14 insertions of 15-164 bp, three
130 contained *Bos1* DNA derived from sequences close to the sgRNA target sites, and one contained
131 mitochondrial DNA (S4 Fig). The majority of insertions were derived from the scaffold used for sgRNA
132 synthesis, which had apparently resisted the DNase treatment. Several more complex insertions were
133 observed that involved amplification of neighboring *Bos1* sequences (S4 Fig). Taken together, our
134 results show that with selected sgRNAs, error-prone NHEJ-mediated repair in *B. cinerea* results in
135 remarkably uniform mutation patterns.

136

137 **Targeted CRISPR/Cas-mediated editing**

138 To generate targeted *B. cinerea* insertion mutants, and to compare NHEJ- and HR-editing frequencies,
139 a fenhexamid resistance cassette (Fen^R) [30] flanked by 1 kb *Bos1* sequences was delivered as a repair
140 template (RT) in addition to the RNP targeting *Bos1* into protoplasts. Transformants were selected for
141 Fen^R or Ipr^R. Regardless whether the RT was provided as circular plasmid or as PCR product,
142 transformation rates were lower with selection for Fen^R than for Ipr^R. Almost all Fen^R transformants
143 were also Ipr^R, indicating highly efficient HR-mediated integration of the Fen^R cassette into *Bos1*. In

144 contrast, only 22-39% of *Ipr*^R transformants were *Fen*^R, indicating a 2.5 to 5-fold higher frequency of
145 NHEJ compared to HR in this experiment (S5 Fig).

146 Conventional gene targeting in filamentous fungi requires resistance cassettes with \geq 0.5-1 kb
147 flanking homology regions. A major advantage of HR using CRISPR/Cas is that dsDNA repair can also
148 be achieved using short RT homology flanks [23, 31–33]. To test this for *B. cinerea*, *Fen*^R cassettes with
149 *Bos1* homology flanks adjacent to the PAM sequence, ranging from 0 to 60 bp, were generated as RT.
150 When delivered as Cas9-RNPs, the numbers of *Fen*^R transformants increased with increasing flank
151 sizes, reaching highest values with 60 bp flanks (Fig. 3A and 3B). All *Fen*^R transformants tested were
152 *Ipr*^R, indicating correct targeting of *Bos1*. Remarkably, even 66% of the transformants obtained with a
153 *Fen*^R cassette lacking homology flanks were also *Ipr*^R. Sequencing confirmed that the cassette had
154 integrated via NHEJ into the cleavage site in *Bos1*. When the *Fen*^R cassettes were delivered without
155 RNP, only few *Fen*^R transformants were obtained, and none of them were *Ipr*^R, indicating integrations
156 outside *Bos1* (Fig. 3B). When the 60 bp flanks of the RT were separated by 1 kb each from the PAM site
157 to generate a *Bos1* deletion instead of an insertion, similar transformation efficiencies were obtained
158 (Fig. 3C and 3D). Thus, CRISPR/Cas allows the use of short homology flanks in a flexible way for highly
159 efficient gene targeting.

160 To exploit the efficiency of CRISPR/Cas, co-targeting of two genes encoding key enzymes for
161 biosynthesis of the phytotoxins botrydial (*bot2*) and botcinic acid (*boa6*) was tested. The role of these
162 toxins for *B. cinerea* is not yet completely clear. Whereas single *bot2* and *boa6* knockout mutants did
163 not reveal a decreased pathogenicity, double mutants were found to be impaired in growth and
164 virulence [34]. Cas9-RNPs and RTs with 60 bp flanks targeting *bot2* (using a *Fen*^R cassette) and *boa6*
165 (using a cyprodinil (*Cyp*^R) cassette) were generated. In two transformations, 39 and 47 *Fen*^R colonies,
166 and 16 and 14 *Cyp*^R colonies, respectively, were obtained (S6A Fig). Of 70 *Fen*^R transformants tested,
167 49 were *Cyp*^R, indicating successful coediting. PCR-based DNA analysis of 20 *Fen*^R *Cyp*^R transformants
168 revealed 15 transformants as *boa6* k.o., four as *bot2* k.o., and three as *boa6bot2* double k.o., two of
169 which could be purified to homokaryosis (S6B Fig). Thus, double knock-outs can be obtained with Cas-

170 RNPs with high frequency. Phenotypical characterization of the double mutants revealed no significant
171 differences to the WT in their vegetative growth and infection (S6C and S6D Fig). This indicated that
172 the phytotoxins botrydial and botcinic acid are not important for *B. cinerea* to infect tomato leaves.

173

174 **Resistance marker shuttling, a simple strategy for marker-free editing**

175 To generate precise and multiple changes in the genome, marker-free editing is required. Two marker-
176 free mutagenesis strategies were developed, both exploiting the high efficiency of cotransformation,
177 namely that two or more DNA constructs are taken up by fungal cells with much higher frequencies
178 than expected from single transformation rates. The first strategy, called resistance marker shuttling,
179 is based on the integration of an RT into a non-essential genomic locus in exchange for an existing
180 resistance cassette with identical promoter and terminator sequences which serve as homology flanks.

181 To test for marker exchange, a *B. cinerea* strain carrying a nourseothricin (Nat^R) cassette in the *xyn11A*
182 locus [35] was transformed with Cas9-RNP and a Fen R RT which shared the promoter (*PtrpC*) and the
183 terminator (*TniaD*) sequences with the targeted *nat1* gene as homology flanks (Fig. 4A).

184 Transformations resulted in several hundred Fen R colonies, and the majority of them had lost Nat^R as
185 expected for a marker exchange. When *Bos1*-RNP was cotransformed, similar numbers of Fen R
186 transformants were obtained, and 56-74% of them were also Ipr R , demonstrating a high rate of NHEJ
187 coediting. No marker exchange was observed when the Fen R RT was transformed without Cas9-RNP
188 as negative control (Fig. 4B). To test the stability of both resistance markers in the Fen R Ipr R double
189 transformants, each ten of them were transferred three times to ME agar plates containing only Fen
190 or Ipr. All transformants treated this way retained the non-selected resistance, indicating that
191 coediting had occurred in the same nuclei of the transformed protoplasts. The resulting transformants
192 could be used for another round of marker shuttling, now targeting the Fen R resistance cassette.

193 **Use of transiently selected telomere vectors for completely marker-free coediting**

194 Previous studies have shown that plasmids containing a pair of telomeres (pTEL) can be efficiently
195 transformed into filamentous fungi and replicate there autonomously as centromere-free
196 minichromosomes, but are rapidly lost in the absence of selective pressure [26]. Based on these
197 properties, a pTEL-mediated strategy for marker-free CRISPR/Cas coediting was developed, involving
198 the following steps (Fig. 5A and 5B): i) cotransformation of pTEL and Cas9-RNP (with or without RT)
199 into *B. cinerea*; ii) selection for pTEL-encoded resistance; iii) identification of transformants with
200 desired coediting events; iv) purification of the transformants by transfers on selective media until
201 homokaryosis is confirmed; v) elimination of pTEL by transfers on nonselective media. This strategy
202 was tested first with pTEL-Fen and Cas9-RNP targeting *Bos1* to generate k.o. mutants via NHEJ.
203 Compared to high transformation rates obtained with pTEL-Fen alone, only few Fen^R colonies were
204 obtained with 0.5-2 µg pTEL-Fen added together with Cas9-RNP to the protoplasts. The suppression of
205 pTEL-Fen transformation by Cas9-RNP was largely overcome by increasing the amount of pTEL-Fen in
206 the transformation mixture up to 10 µg (Fig. 5C). When Fen^R transformants were transferred to lpr
207 containing medium, 25-53% (average 40.0 ± 11.2%) of them were lpr^R, which demonstrated a high rate
208 of coediting. After two transfers on nonselective medium, 22 of 26 lpr^R transformants were Fen^S,
209 confirming the expected loss of pTEL-Fen. Few lpr^R transformants remained Fen^R after further
210 passages, indicating integration of pTEL-Fen into the genome. In the next cotransformation experiment
211 with pTEL-Fen, *sod1* encoding the major copper/zinc superoxide dismutase was targeted to generate
212 a *sod1-GFP* knock-in fusion (Fig. 5D to 5G). Sod1 has been shown to be involved in oxidative stress
213 tolerance and virulence of *B. cinerea* [36]. Several thousand Fen^R transformants were obtained in single
214 experiments (Fig 5D). Microscopic evaluation revealed GFP fluorescence in 65.3% of the transformants
215 resulting from coediting. Fluorescence was observed in the cytoplasm and in strongly fluorescent
216 punctate structures tentatively identified as peroxisomes (Fig. 5E). For SOD1 of rat, an orthologue of
217 the fungal Sod1, a localization similar to *B. cinerea* was found in the cytoplasm and in peroxisomes,
218 due to its binding to peroxisomal protein CCS [37]. The functionality of the Sod1-GFP fusion protein

219 was confirmed by staining for SOD activity after native gel electrophoresis of protein extracts (Fig. 5F)
220 and by immunoblotting using GFP antibodies (Fig. 5G). Furthermore, pTEL-mediated coediting was
221 shown to be useful for marker-free mutagenesis of *nep1* and *nep2*, two genes encoding necrosis and
222 ethylene-inducing proteins [38]. With single targeting, >1,000 Fen^R transformants were obtained, and
223 17-23% of these contained *nep1* or *nep2* deletions, respectively, as confirmed by PCR. Co-targeting of
224 *nep1* and *nep2* resulted in 230 transformants. Of these, 12.9% contained a *nep1* deletion and 10% a
225 *nep2* deletion (S7 Fig), but no double transformants were detected.

226
227 **Telomere vector-mediated marker-free coediting also works efficiently in *Magnaporthe oryzae***
228 The rice blast fungus *M. oryzae* is of great economic importance and considered as the prime model
229 pathogenic fungus [2]. It is a hemibiotroph and well-known for its ability to develop enormous turgor
230 pressure in appressoria facilitating penetration of host cells [39]. Recently, protoplast transformation
231 with CRISPR/Cas using RNP has been successfully applied for this fungus [23]. Marker-free editing was
232 also demonstrated, however, rates of non-selected coediting events ranged only from 0.5 to 1.2%.
233 Aiming to improve this rate, we first confirmed the efficacy of CRISPR/Cas with Cas9-RNP. *M. oryzae*
234 strain Guy11 or Guy11ku80 (a NHEJ deficient mutant) protoplasts were transformed with Cas9-SV40^{x4}
235 complexed with sgRNA *MoALB1* and a Hyg^R RT with 50 bp homology flanks. *MoALB1* encodes a
236 polyketide synthase required for melanin biosynthesis and *alb1* mutants are easily selectable due to
237 whitish mycelium. Depending on the amount of RT DNA and strain used, 67 to 91% of Hyg^R
238 transformants had white mycelium, indicating successful inactivation of *MoALB1* (S8 Fig).

239 Next, we tested the suitability of the pTEL-based marker-free approach for *M. oryzae*. After
240 establishing selection for Fen^R, using 30 ppm fenhexamid, pTEL-Fen was transformed yielding up to
241 1,000 transformants per µg DNA (S1 Table). Subsequently, pTEL-Fen was cotransformed together with
242 Cas9-sgRNA RNP targeting *MoALB1*. Among Fen^R transformants, 36-49% displayed white colonies in
243 Guy11, indicating a high rate of co-editing (Fig. 6). By contrast, the rate of cotransformation in
244 Guy11ku80 was much lower. Sequencing of *MoALB1* in three of the white Fen^R colonies of Guy11

245 revealed the presence of single base pair deletions at the cleaving site, leading to frameshifts. After
246 two passages on non-selective medium, 12 out of 15 albino mutants were Fen^S, as predicted from the
247 instability of pTEL-Fen. To show that coediting with insertion of a RT into a specific locus is possible as
248 well, pTEL-Fen, Cas9-RNP targeting the *MoPIT* gene MGG_01557 and a Hyg^R cassette with 50 bp flanks
249 were cotransformed into *M. oryzae* protoplasts (S9 Fig). While 23 out of 72 Fen^R transformants were
250 Hyg^R, *MoPIT* knockouts were detected in five of these, representing a coediting rate via HR of 7%.
251 However, no coediting was observed in *M. oryzae* Guy11ku80.

252

253 **Randomized amino acid editing of a fungicide resistance codon and *in vivo* selection**

254 Succinate dehydrogenase inhibitor (SDHI) fungicides have emerged as the fastest increasing class of
255 fungicides for the control of plant diseases in recent years [40]. Target site mutations leading to
256 resistance against SDHI have been described in *B. cinerea* and other fungi. Most of them are located
257 in *sdhB* encoding the B-subunit of the succinate dehydrogenase enzyme (complex II), an essential
258 component of mitochondrial respiration. In *B. cinerea* populations from SDHI-treated fields, *sdhB*
259 mutations leading to H272R, H272Y, H272L, and H272V amino acid exchanges have been found [41].
260 While all of them confer resistance to boscalid (Bos), only H272L and H272V mutations also confer
261 resistance to another SDHI, fluopyram (Flu) [40, 42]. To analyze the effects of all possible exchanges in
262 codon 272 for SdhB function and resistance against SDHIs, pTEL-mediated coediting was performed to
263 target *sdhB* with a RT mixture encoding all 20 amino acids in codon 272 (Fig. 7A). Several thousand
264 colonies were obtained per transformation. Estimations based on PCR analysis of single transformants
265 revealed coediting frequencies between 12.5 and 41% (S2 Table). The distribution of codons in position
266 272 was determined from pooled conidia of \geq 6,000 Fen^R transformants per assay by bulked DNA
267 isolation, followed by deep sequencing. Aliquots of pooled transformant conidia were cultivated for
268 three days in liquid medium containing discriminatory concentrations of Bos, Flu, or the new SDHI
269 fungicide pydiflumetofen (Pyd) [43], to select transformants with SDHI resistance. DNA of these
270 cultures was isolated and sequenced as above. Among the edited transformants grown on SH+Fen

271 plates, all 20 codons were represented at similar frequencies (Fig. 7B). Because in this procedure edited
272 cells may still carry a WT copy of *sdhB* (heterokaryons), we cannot conclude yet that they all
273 maintained full enzyme function. However, our results demonstrate that all H272 amino acids variants
274 yield functional SdhB proteins that are not intrinsically toxic since they all similarly maintained growth
275 and sporulation. Cultivation of the Fen^R transformants in SDHI-containing media followed by
276 quantification of the alleles enabled an unbiased assessment of amino acid exchanges conferring
277 resistance. Most conspicuous resistance mutations were H272K/V/L/R/Y for Bos, H272N/L/V/I for Flu,
278 and H272V/L for the new SDHI Pyd (Fig. 7C-7E). Transformants with 17 different exchanges in codon
279 272 were isolated, purified to homokaryosis, and tested for sensitivity to the three SDHI (Fig. 7F).
280 Overall, the EC₅₀ values correlated well with their prevalence in the SDHI selected populations
281 described above (Fig. 7c-d). Remarkably, 12 amino acids conferred high levels of resistance to boscalid
282 (EC₅₀ values >2mg l⁻¹) (Fig. 7C). In contrast, only four amino acids conferred similarly high resistance
283 levels to Flu, but five amino acids caused up to 30-fold hypersensitivity compared to WT (Fig. 7D). Pyd
284 was about ten times more active than Bos and Flu against *B. cinerea* WT, and four amino acids
285 conferred EC₅₀ values >0.2mg l⁻¹ (Fig. 7F). Only the three aliphatic amino acids leucine, valine and
286 isoleucine provided high or intermediate resistance to all three SDHI. Remarkably, highest resistance
287 levels were observed with isoleucine, which has never been found in resistant field isolates. Growth
288 on selective agar media illustrated the high proportion of Bos^R mutants, and the lower number of
289 mutants resistant to Flu and Pyd (Fig. 7G). Growth on rich medium and on a nutrient-limited medium
290 with different carbon sources did not reveal significant differences between the 17 edited strains (S10
291 Fig), indicating no major effects of the amino acids on the fitness of the mutants during vegetative
292 growth.

293 **Discussion**

294 Within a short time, CRISPR/Cas genome editing has been used for the genetic manipulation of a wide
295 range of organisms, offering new perspectives in functional genomics. In fungi, advanced CRISPR/Cas
296 systems have been mainly established for *Aspergillus* spp. [31, 44, 45] and *Ustilago maydis* [21, 46].
297 They take advantage of autonomously replicating circular plasmids, namely the *Aspergillus*-derived
298 AMA1 plasmid and pMS7 in *U. maydis*, for the delivery of Cas9 and sgRNA. AMA1 has also been used
299 in other fungi, including the plant pathogens *Alternaria alternata* [47] and *Fusarium fujikuroi* [48].
300 However, this plasmid displays only low transformation rates in *B. cinerea* (S. Fillinger, personal
301 communication). Alternatively, a non-integrating vector with human telomeres [26, 49] has been
302 developed in this study as a tool for coediting in *B. cinerea* and *M. oryzae*.

303 This is the first report of powerful use of CRISPR/Cas in *B. cinerea*. A crucial step was the generation
304 of a fully functional, nuclear targeted Cas9. SV40 NLS has been used frequently [21], but efficient
305 nuclear targeting of Cas9-GFP-NLS has been confirmed only in some fungi [24, 50] or optimal activity
306 experimentally verified [48]. In *B. cinerea*, efficient Cas9 nuclear targeting was achieved with C-
307 terminal tandem arrays of either SV40 (4x) and *stuA* (2x) NLS sequences. In most fungi, CRISPR/Cas
308 activity was detected in pilot studies by targeting genes for the biosynthesis of melanin [23, 44].
309 Following the strategy reported for *Fusarium graminearum* [51], *Bos1* was established as an effective
310 selectable marker for NHEJ- and HR-mediated mutagenesis (Fig. 1 and 3). Introduction of Cas9-sgRNA
311 RNPs with or without a donor template yielded hundreds to thousands of edited *B. cinerea*
312 transformants. So far, similar approaches have been rather rarely used for CRISPR/Cas genome editing
313 in fungi [22–24]. An advantage of the use of RNP over endogenous Cas9 and sgRNA expression is the
314 reduced probability of potential off-target mutagenic activities of Cas9, because of its limited stability
315 in cells [52]. Furthermore, sgRNAs synthesis is performed quickly and does not require any cloning
316 steps.

317 A total of 153 NHEJ repair events in the *Bos1* gene were analyzed, which is the largest number
318 reported for filamentous fungi. Most changes were 1-2 bp indels, and for three sgRNAs inducing a T↓N

319 cleavage by Cas9, a (+T) insertion was the dominating mutation. Although all these mutations were
320 biased by the selection for loss of *Bos1* function (*lpr*^R), these data are in line with systematic studies of
321 CRISPR/Cas-NHEJ mutations in human cells and yeast [53, 54] which often resulted in +1 bp insertions
322 at the Cas9-RNP cleavage site. This rather reproducible NHEJ repair in *B. cinerea* could be exploited to
323 introduce predictable frameshift mutations even without RT. Furthermore, we demonstrate that RTs
324 with 60 bp homology flanks worked efficiently in *B. cinerea*, yielding >90% targeted integrations
325 (Fig. 3). Such short flanks can be attached to a resistance cassette of choice using long PCR primers,
326 avoiding time-consuming cloning or amplification steps which were previously required to generate
327 the long homology flanks for conventional targeted integration.

328 In *B. cinerea*, cotransformation occurred with rates of up to >60%, both for different combinations
329 of CRISPR/Cas-induced integrations (HR/HR or HR/NHEJ) and for telomere vector uptake and
330 CRISPR/Cas events (HR or NHEJ). Cotransformation rates were found to increase with higher DNA
331 concentrations, consistent with early reports for fungi [55]. Two novel strategies have been established
332 for marker-free coediting. Resistance marker shuttling at a non-essential locus in combination with
333 non-selected CRISPR/Cas events allows repeated genomic edits. High frequencies (65.3%) of marker
334 replacement were observed in the transformants, and this approach is also applicable for other
335 organisms. A prerequisite for successful coediting in multinuclear fungi such as *B. cinerea* is the
336 generation of homokaryons, which requires integration of different DNA fragments into the same
337 nuclei. In most transformants analyzed this was found to be the case, similar to previous reports for
338 *Neurospora crassa* [56].

339 The most powerful approach for marker-free editing is cotransformation of pTEL vector and CRISPR
340 constructs. Its effectiveness depends on i) high transformation efficiency of pTEL which provides the
341 selection, ii) high rates of cotransformation/coediting of pTEL and CRISPR components, iii) highly
342 efficient HR, and iv) elimination of pTEL after identification of the desired editing event(s), yielding
343 edited strains without any other genomic alterations. With this approach, we reproducibly obtained
344 hundreds to thousands of transformants, and up to >50% of them were marker-free edits. Similar

345 results were obtained for NHEJ- and HR-induced edits, as shown for NHEJ-mediated mutagenesis of
346 *Bos1*, RT-mediated knock-in attachment of a GFP tag to *sod1*, and deletion of *nep1* or *nep2*.
347 Importantly, we could show that the pTEL strategy is also applicable for coediting approaches in other
348 filamentous fungi. pTEL-Fen transformed *M. oryzae* with equal efficiency as *B. cinerea*, and coediting
349 frequencies were 36-49% for NHEJ, and 7% for RT-mediated HR. These values clearly exceed coediting
350 rates previously reported with integrative selected markers [23]. The lower rate of coediting in *M.*
351 *oryzae* with HR is probably due to the intrinsically lower efficiency of HR compared to *B. cinerea*. This
352 could be partially compensated by using RT with longer homology flanks. We therefore expect that
353 cotransformation with pTEL vectors will significantly facilitate the establishment of RNP-based
354 CRISPR/Cas coediting in many fungi, and maybe also in non-fungal microbes such as oomycetes.

355 The power of pTEL-mediated marker-free editing was exploited by performing an unbiased directed
356 mutagenesis of codon 272 of *sdhB* encoding the succinate dehydrogenase B subunit, the gene in which
357 most mutations conferring resistance against SDHI fungicides have been observed in *B. cinerea* field
358 isolates [39]. Among sporulating transformants, edited strains with all amino acid substitutions were
359 generated with similar frequencies, compared to only four changes detected in field isolates. Drastic
360 differences were observed for the effects of each amino acid on the sensitivity or resistance to the
361 three SDHI tested, which underlines the importance of the conserved histidine 272 for SDHI binding
362 [57]. The majority of substitutions caused high levels of resistance to Bos, whereas fewer substitutions
363 conferred similar resistance levels to Flu and Pyd. Our results are consistent with the observation that
364 Bos^R resistant *B. cinerea* field isolates with H272R and H272Y substitutions were sensitive or even
365 hypersensitive to Flu and still controllable by this SDHI [41]. Previously, phenotypic characterization of
366 field isolates and of isogenic H272R, H272Y and H272L strains generated by conventional mutagenesis
367 with simultaneous introduction of a resistance cassette at the *sdhB* target locus indicated that these
368 substitutions caused fitness defects, such as aberrant growth and differentiation and reduced
369 competitiveness [58–60]. Although our analysis of the edited strains did not include enzyme activity
370 assays, their equal distribution upon primary selection and normal growth behavior on different media

371 does not support this conclusion. Indeed, this might reflect the great advantage of precise marker-free
372 genome editing in avoiding any modification of neighboring genes or their regulatory sequences by co-
373 introduction of a nearby resistance cassette. Another benefit of our approach is that it allows the
374 analysis of several independent mutants that have been obtained without selection of the target locus.
375 This might obviate the need for tedious complementation experiments to verify the connection
376 between mutations and phenotypes. We further show how selection post-mutagenesis can enable the
377 rapid scanning of mutations conferring resistance to various SDHI fungicides. Since a vast set of target
378 mutations and fungicides can be tested, this new capability is of major relevance for accelerated
379 fungicide design. Interestingly, several substitutions conferring high resistance levels, such as H272I,
380 H272C and H272T have not yet been detected in field populations and suggest that a bias prevented
381 their appearance and propagation in nature. Fungicide resistance mutations are often caused by single
382 nucleotide exchanges, for example the major mutations against most systemic fungicides in *B. cinerea*
383 [3, 61], including the exchanges H272R/Y/L in *SdhB* [62]. An obvious explanation for their unequal
384 occurrence is their differential effects on fungal fitness, therefore mutations resulting in minimal
385 fitness costs are most likely to occur [63]. Our data, showing similar SDHI resistance and fitness levels
386 caused by hitherto unknown substitutions seem to indicate that fungicide resistance development in
387 field populations is also limited by the number and probability of mutations required to change one
388 codon to another [64].

389 The high yield of telomere vector-mediated coediting in combination with RNP-CRISPR/Cas opens
390 the door to advanced genome editing applications with *B. cinerea* and other fungi, such as large-scale
391 mutagenesis and gene tagging projects. Approaches similar to mutagenesis of *sdhB* codon 272 are now
392 possible for *in vivo* selection and structure-function analysis of proteins, such as those involved in
393 fungicide resistance, host invasion or any other functions of interest.

394 Materials and Methods

395 **Fungi.** *Botrytis cinerea* B05.10 was used as WT strain in this study. For demonstration of CRISPR/Cas-
396 assisted marker replacement, a *B. cinerea* B05.10 derivative, containing a Nat^R cassette (*PtrpC-nat-*
397 *TniaD*) integrated in *xyn11A* [35] was used. Cultivation of *B. cinerea* and infection tests were performed
398 as described [5]. Guy11 was used as *Magnaporthe oryzae* WT strain. A NHEJ-deficient *M. oryzae*
399 mutant, Guy11ku80, was kindly provided by A. Foster.

400 **DNA constructs for transformations.** All oligonucleotides used are listed in Supplementary Table 3.
401 Sequences of plasmids marked with * are provided in Supplementary file 1. Derivates of the telomere
402 vector pFAC1 [26] were constructed as following: pFAC1 was digested with BgIII/NheI, and the vector
403 fragment ligated with a synthetic linker made by annealing of oligonucleotides pFAC1-del1/pFAC1-
404 del2, resulting in pFB2N*, carrying a hygromycin resistance cassette. For telomere vector-mediated
405 coediting, a truncated version of pFB2N carrying a fenzhexamid resistance marker was generated, called
406 pTEL-Fen*. A codon optimized version of the *Streptococcus pyogenes cas9* gene for expression in *B.*
407 *cinerea*, under the control of *oliC* promoter from *A. nidulans*, was synthesized by Genewiz (South
408 Plainfield, NJ, USA). To generate a stable Cas9 expressing *B. cinerea* strain, a nourseothricin resistance
409 cassette consisting of *A. nidulans trpC* promoter (*Ptrpc*), *nat* gene and *B. cinerea gluc* terminator (*Tgluc*)
410 [14] was integrated next to the *cas9* gene, and homology flanks for targeted integration of the
411 construct into *niaD* encoding nitrate reductase were added. For efficient nuclear localization of Cas9,
412 a synthetic sequence encoding four copies of the SV40 T antigen NLS (SV40^{x4}) was C-terminally
413 attached to the *cas9* coding sequence, resulting in pUC-BcCas-SV40x4_nat_niaD*. To test different NLS
414 arrangements for their efficiency to target Cas9 into nuclei of *B. cinerea*, Cas9 was fused to GFP codon-
415 optimized for *B. cinerea* (from pNAH-OGG [14]) and the following NLS sequences C-terminally
416 attached: Single copy SV40, SV40^{x4}, Stu^{x2} (a tandem duplicated NLS of Bcin04g00280 encoding a
417 homologue of the *A. nidulans* nuclear protein StuA [47]), and SV40^{x2} (each one N- and C-terminal SV40).
418 For transient expression of Cas9-GFP, pFB2N was first truncated by digestion with BpI/SphI, followed
419 by ligation with the annealed oligonucleotides FB108/ FB109, resulting in pFB2N_BpI_Mrel. This
420 plasmid was digested with BpI/Mrel and ligated with fragments containing Cas9-GFP-NLS, resulting in
421 pTEL-BcCas9GFP-NLS-SV40x4* and pTEL-BcCas9GFP-NLS-Stux2*.
422 To generate a RT with 1 kb *Bos1* homology flanks and a fenzhexamid resistance cassette, pBS-KS(-) was
423 digested with EcoRV and combined by Gibson assembly with two adjacent 1 kb *Bos1* homology flanks,
424 using primers TL29 pBS_ol_bos 3.REV/ TL30 pBS_ol_bos 3.FOR and TL31 pBS_ol_bos 1.FOR/ TL32
425 pBS_ol_bos 1.REV, and a fenzhexamid resistance cassette amplified from pNDF-OCT [30] with primers
426 TL33 Fen_ol_bos 2.FOR/TL34 Fen_ol_bos 2.REV. From the resulting plasmid (pBS_Bos1_KO_Fen), *Bos1*
427 RT with short homology flanks were amplified with the following primers: TL37_Fen_fw/ TL38_Fen_rev

428 (0 bp); TL65_Bos1_Fen30_fw/ TL66_Bos1_Fen30_rev (30 bp), TL67_Bos1_Fen40_fw/
429 TL68_Bos1_Fen40_rev (40 bp); TL69_Bos1_Fen60_fw/ TL70_Bos1_Fen60_rev (60 bp). A RT with 60 bp
430 *Bos1* homology flanks at 1 kb distance from the cleavage site was amplified from pTel-Fen using
431 primers TL113 60bp Bos1 PD FW/ TL114 60bp Bos1 PD RV. For generation of *boa6* k.o. mutants, a
432 newly designed cyprodinil resistance cassette was used (Leisen et al., unpublished).

433 **Expression of Cas9 protein with *B. cinerea* optimized NLS.** SV40^{x4} and Stu^{x2} NLS were fused to the 3'-
434 terminus of *Streptococcus pyogenes* Cas9 (*E. coli* codon optimized) and cloned into pET24a. The
435 resulting plasmids, pET24a_Cas9-SV40x4-NLS-His* and pET24a_Cas9-Stux2-NLS-His* were used to
436 express these Cas9 derivatives in *E. coli* BL21(DE3) at 20°C in autoinduction medium. Cells were
437 harvested and ca. 10 g of cell paste resuspended in 50 ml extraction buffer (20 mM HEPES, 25 mM
438 imidazole, 500 mM NaCl, 0.5 mM TCEP, pH 8) by stirring for 40 min. Cells were lysed using a Cell
439 Disruptor (Constant Systems Limited, Daventry, UK) at 20,000 psi, and the lysate clarified by
440 centrifugation at 20,000 rpm in a fixed-angle rotor for 30 min, 4°C. The lysate was applied to a 5 ml
441 HisTrap FF column equilibrated in extraction buffer. Bound protein was eluted with 3.5 column
442 volumes of elution buffer (20 mM HEPES, 500 mM imidazole, 500 mM NaCl, pH8, 0.5 mM TCEP). The
443 eluate was loaded onto a GE 26/60 S200 SEC column equilibrated in 20 mM HEPES, pH8, 0.5 mM TCEP.
444 Fractions containing the target protein were pooled and 20 % (v/v) glycerol was added. The solution
445 was concentrated using a 10 kDa Vivaspin column. Aliquots were frozen in liquid nitrogen and stored
446 at -80°C until use. Functionality of *in vitro* assembled Cas9-sgRNA complexes was tested by *in vitro*
447 cleavage of target DNA as described [65].

448 **Synthesis of sgRNA and RNP formation.** Selection of appropriate sgRNAs was carried out with the help
449 of the sgRNA design tool of the Broad Institute (<https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design>). Oligonucleotides for synthesis of sgRNAs are listed in Supplementary Table 3. DNA
450 template preparation was performed by annealing 10 µmol each of constant sgRNA oligonucleotide
451 (TL147_gRNA rev) and protospacer specific oligonucleotide in 10 µl in a thermocycler (95°C for 5 min,
452 from 95°C to 85°C at 2°C sec⁻¹, from 85°C to 25°C at 0.1°C⁻¹), followed by fill-in with T4 DNA polymerase
453 (New England Biolabs, Beverly, MA, USA), by adding to the annealing mix 2.5 µl 10 mM dNTPs, 2µl 10x
454 NEB buffer 2.1 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 100 µg ml⁻¹ BSA, pH 7.9), 5 µl water and
455 0.5 µl enzyme, and incubation for 20 min at 12°C and column purification. Subsequently, sgRNA
456 synthesis was performed using the HiScribe™ T7 High Yield RNA Synthesis Kit (NEB), and purified using
457 the RNA Clean & Concentrator-25 kit (Zymo Research, Orange, CA, USA). Cas9-NLS, containing N- and
458 C-terminal SV40 NLS, was purchased from NEB. For RNP formation, 6 µg Cas9 was incubated in
459 cleavage buffer (20mM HEPES, pH 7.5, 100 mM KCl, 5% glycerol, 1 mM dithiothreitol, 0.5 mM EDTA,
460 pH 8.0, 2 mM MgCl₂) with 2 µg sgRNA for 30 min at 37°C.

462 **Transformation of *B. cinerea*.** Transformation was performed based on a published protocol[5] as
463 following: 10^8 conidia harvested from sporulating malt extract (ME: 10 g/l malt extract, 4 g/l glucose,
464 4 g/l yeast extract, pH 5.5) agar plates were added to 100 ml ME medium and shaken at 180 rpm for
465 ca. 18 h (20-22°C) in a 250 ml flask. The germlings was transferred into 50 ml conical tubes and
466 centrifuged (8 min, 1,000 g) in a swing-out rotor. The combined pellets (fresh weight should be >3 g)
467 were resuspended and washed two times with 40 ml KCl buffer (0.6 M KCl, 100 mM sodium phosphate
468 pH 5.8; centrifugation for 5 min, 1,000 g), and the germlings resuspended in 20 ml KCl buffer containing
469 1% Glucanex (Sigma Aldrich, St Louis, MO, USA; L1412) and 0.1 % Yatalase (Takara, T017), and
470 incubated on a 3D rotary shaker at 60 rpm for 60-90 min at 28°C until ca. 10^8 protoplasts had been
471 formed. Protoplasts were filtered through a sterile nylon mesh (30 µm pore size) into a 50 ml conical
472 tube containing 10 ml ice-cold TMS buffer (1 M sorbitol, 10 mM MOPS, pH 6.3). After addition of
473 another 30-40 ml ice-cold TMS buffer, the suspension was centrifuged (5 min, 1500 g, 4°C), and the
474 protoplast pellet resuspended in 1-2 ml TMSC buffer (TMS + 50 mM CaCl₂, 0°C, dependent on the
475 desired protoplast concentration. To 0.5×10^6 to 2×10^7 protoplasts in 100 µl TMSC, the Cas9/sgRNA
476 ribonucleoprotein (RNP) complex (6 µg Cas9, 2 µg sgRNA; pre-complexed for 30 min at 37°C) and up
477 to 10 µg donor template DNA were added in 60 µl Tris-CaCl₂ buffer (10 mM Tris-HCl, 1 mM EDTA, 40
478 mM CaCl₂, pH 6.3). After 5 min incubation on ice, 160 µl of PEG solution (0.6 g ml⁻¹ PEG 3350, 1 M
479 sorbitol, 10 mM MOPS, pH 6.3; pre-heated to 60°C, mixed, and allowed to cool down to 30-40°C) was
480 added, mixed gently, and incubated for 20 min at room temperature. 680 µl of TMSC buffer was added,
481 the sample was centrifuged (5 min, 1,500 g in a swing-out rotor), the supernatant removed, and
482 protoplasts suspended in 200 µl TMSC. Protoplasts were transferred into 50 ml liquid (42°C) SH agar
483 (0.6 M sucrose, 5 mM Tris-HCl pH 6.5, 1 mM (NH₄)₂PO₄, 9 g l⁻¹ bacto agar, Difco) and poured into two
484 Petri dishes. For transformation with pTEL-Fen, up to 10 µg plasmid DNA was used. For selection of
485 transformants, 30 mg l⁻¹ nourseothricin (Nat), 1 mg l⁻¹ fenhexamid (Fen), 4 mg l⁻¹ iprodione (Ipr), or
486 mg l⁻¹ fludioxonil (Fld) were added. Positive colonies were transferred onto ME agar plates or onto
487 plates containing the same concentrations of selective agents. Transformants were subcultured on
488 selective media and purified by three to five rounds of single spore isolation. Genomic DNA was
489 isolated as described previously [66].

490 **Transformation of *M. oryzae*.** Three-day old cultures of *M. oryzae* Guy11 or the Guy11ku80 deletion
491 mutant, grown in 150 ml liquid complete media at 25°C and 100 rpm, were used for generation of
492 protoplasts. The mycelia were filtered and digested with Glucanex as described above [67]. Protoplasts
493 purification was done according to the protocol for *B. cinerea*. After washing with TMS buffer,
494 protoplasts were suspended in TMSC buffer and adjusted to 1.5×10^8 protoplasts per ml. For
495 transformation, 120 µl aliquots of a protoplast suspension were mixed with the RT DNA and pre-
496 incubated RNPs (Cas9-SV40^{×4}) dissolved in 60 µl Tris-CaCl₂ buffer. Then 180 µl 60% PEG 3350 were

497 added, and the protoplast suspension was poured into CM agar containing 1.2 M sucrose for osmotic
498 stabilization. After 24 h an upper layer containing 500 mg l⁻¹ hygromycin (Hyg) or 30 mg l⁻¹ Fen was
499 poured over the agar containing the protoplasts. After 7-10 days, mutants were transferred to
500 selection plates for further selection. RT (containing *gpd3* promotor, *hph* and *tubB* terminator) with
501 50 bp of homology flanks was amplified using primers MH-Alb F&R for targeting *MoAlb1*, and MH-Pit
502 F&R for targeting *MoPIT*. For sgRNA synthesis, primers sgRNA_Alb1 and sgRNA_Pit were used.
503 Transformants were verified using primers SeqPit F/R, SeqAlb F/R and MoPit FL F/R.

504 **Generation and *in vivo* selection of *sdhB* codon 272 edited strains.** To be used as mixed RT for
505 randomized editing, twenty 500 bp *sdhB* fragments differing in codon 272 (listed in Supplementary
506 Table 4) were synthesized by Twist Bioscience (San Francisco, U.S.A.) and pool-amplified with primers
507 TL148_ SDHB_RT_F/ TL149_ SDHB_RT_R. Illumina deep sequencing was performed to verify equal
508 representation of each fragment ($\pm 7.5\%$). For PCR-based identification of edited transformants, silent
509 mutations were introduced into the 500 bp fragments which converted an Xhol to an XbaI site (codons
510 278/279), and allowed differentiation between WT and edited sequences (Fig. 7a). To isolate the DNA
511 of *sdhB* codon 272-edited transformants for sequencing, sporulation was induced on the primary
512 transformation plates. For this, three days after transformation, the SH+Fen agar containing
513 embedded transformants was overlaid with 0.1 volumes of 5x concentrated ME medium. After
514 another 5-7 days, transformant conidia were harvested from densely sporulating plates. To improve
515 the recovery of transformants, the agar discs were inverted, placed onto fresh ME (1 mg l⁻¹ Fen) agar
516 plates, and incubated again for 5-7 days until sporulation. Conidia harvested from one transformation
517 were combined and used for DNA isolation. For sequence analysis of bulked transformants selected
518 for resistance to SDHI, 4x10⁵ conidia of Fen^R transformants were inoculated in standard Petri dishes
519 with 18 ml YBA medium (1% yeast extract, 20 g l⁻¹ sodium acetate[68]) containing boscalid (0.25 mg l⁻¹
520; BASF, Ludwigshafen, Germany), fluopyram (0.3 mg l⁻¹; Bayer Crop Science, Monheim, Germany), or
521 pydiflumetofen (0.015 mg l⁻¹; Syngenta Crop Protection, Stein, Switzerland) in concentrations
522 inhibitory for *B. cinerea* WT strain B05.10. After 72 h incubation at 20°C, conidia and germlings were
523 harvested and used for DNA isolation [66] and sequencing (see below).

524 To isolate *sdhB* edited strains with defined codon 272 replacements, individual Fen^R transformants
525 were purified by several transfers on ME+Fen (1 mg l⁻¹), YBA+Bos (1 mg l⁻¹), or YBA+Flu (2.5 mg l⁻¹) agar
526 media. Total DNA of these isolates was amplified using primers TL151_SDHB_OS_F/
527 TL152_SDHB_OS_R, and the 741 bp products digested with either XbaI or Xhol to test whether they
528 were edited or WT. Edited isolates were sequenced using primer TL148_ SDHB_RT_F or TL149_
529 SDHB_RT_R.

530 **Sequencing.** For deep sequencing of edited transformants, bulked *B. cinerea* DNA was first amplified
531 in 20 μ l total volume, with 2 μ l DNA, 10 pM of primers sdhb_F1/ sdhb_R1, 1x MyTaqTM buffer, and 1
532 Unit MyTaqTM (Bioline; Meridian Bioscience Inc., London, UK) by incubation for 2 min at 96°C, followed
533 by 20 cycles of 15sec 96°C, 30sec 60°C, 90sec 70°C. Nested PCR was performed in 20 μ l total volume,
534 using 2 μ l of the first round PCR, under the same conditions as above, but with 15 cycles only. PCR
535 products were purified with AmpureXP beads (Thermo Fisher Scientific, Bremen, Germany). About 100
536 ng of each purified PCR product was used to construct Illumina libraries using the Ovation Rapid DR
537 Multiplex System 1-96 (NuGen Technologies, San Carlos, CA, USA). Illumina libraries were pooled and
538 size selected by preparative gel electrophoresis. Sequencing (3 million reads per sample) was
539 performed by LGC Genomics (Berlin, Germany) on an Illumina NextSeq 550 instrument with v2
540 chemistry in 2x150 bp read mode. Libraries were demultiplexed using Illumina's bcl2fastq 2.17.1.14
541 software. Sequencing adapter sequences were removed from the 3' end of reads with cutadapt
542 (<https://cutadapt.readthedocs.io/en/stable/>) discarding reads shorter than 20 bp. All read pairs were
543 filtered for valid primer combinations and reverse-complemented so that R1 corresponds to the
544 forward primer and R2 to the reverse primer. Actual primer sequences were removed for downstream
545 processing. Reads were quality-filtered by LGC proprietary software, removing all reads with an
546 average Phred score below 30, and all reads containing more than 1 undetermined base
547 (N). Subsequently, all read pairs were overlap-combined using BBMerge 34.48 from the BBMap
548 package (<https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmerge-guide/>). Mutated
549 positions were identified by a custom shell script, filtering for sequences containing the motifs
550 immediately before and after these mutated triplet (TTTGTACAGATGT and ACTATTCTCAACTG,
551 respectively). The sequence content between these motifs were extracted and counts for the detected
552 sequences summarized for each sequencing library.

553 **Fungicide susceptibility test.** Isolates with defined edits in codon 272 were tested for radial growth on
554 YSS agar with 50 mM each of either glucose, malate, acetate or succinate [59], and for their sensitivities
555 to SDHIs. Susceptibility to Bos (BASF), Flu (Bayer Crop Science), and Pyd (Syngenta) was assessed in the
556 WT and in edited strains on the basis of inhibition of germination. Assays with a range of fungicide
557 concentrations (0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10 mg l⁻¹) were carried out at 20°C. After
558 incubation for 30 h in Greiner Bio-one polystyrene microtiter plates, the fraction of conidia containing
559 germ tubes with lengths exceeding half of the conidial diameters was determined for each
560 strain/fungicide pair, and an EC₅₀ value (effective fungicide concentration required to inhibit
561 germination by 50%) was calculated with the Graphpad Prism 5.01 software, using a normalized
562 response with variable slope fitted to log fungicide concentrations.

563 **Microscopy.** Confocal images were acquired using either a Leica SP5 (DM6000 CS), TCS acousto-optical
564 beam splitter confocal laser scanning microscope, equipped with a Leica HCX PL APO CS 63 × 1.20.
565 water-immersion objective or a Zeiss LSM880, AxioObserver SP7 confocal laser-scanning microscope,
566 equipped with a Zeiss C-Apochromat 40x/1.2 W AutoCorr M27 water-immersion objective.
567 Fluorescence signals of GFP (Leica: excitation/emission 488 nm/500-550 nm, Zeiss:
568 excitation/emission 488 nm/500-571 nm), were processed using Leica software LAS AF 3.1, Zeiss
569 software ZEN 2.3 or Fiji software.

570 **Protein analysis.** For in-gel detection of superoxide dismutase activity, *B. cinerea* conidia were
571 germinated in ME medium overnight, washed with extraction buffer (100 mM potassium phosphate
572 buffer (pH 7.8) 0.1 mM (EDTA) 1 % (w/v) polyvinyl-pyrrolidone (PVP) 0.5% (v/v) Triton X 100) the
573 mycelium ground with mortar and pestle in liquid nitrogen. Fifteen µg of cleared extract was separated
574 in an polyacrylamide gel and stained for SOD activity as described [69]. For detection of Cas9 Sod1-GFP
575 fusion proteins, *B. cinerea* protein extracts prepared as described above were separated in an SDS
576 polyacrylamide gel and subjected to an immunoblot on nitrocellulose, using monoclonal antibodies
577 against Cas9 (Clontech, Palo Alto, CA, USA) or GFP (Sigma), followed by chemiluminescent detection.

578 **Statistics and reproducibility.** Statistical analyses were carried out with the GraphPad Prism software.
579 The detailed analysis method is depicted in the individual figure legends. All experiments were carried
580 out at least three times. For growth and infection assays, three technical replicates per sample were
581 performed. Box limits of box plots represent 25th percentile and 75th percentile, horizontal line
582 represents median. Whiskers display minimum to maximum values. Bar charts represent mean values
583 with standard deviations.

584

585 **Acknowledgements**

586 We are grateful to Sabine Fillinger (INRA, Paris, France) for providing telomere plasmid pFB2N, and to
587 Pinkuan Zhu (Shanghai Normal University, China) for help with pTEL constructions. We thank Patrick
588 Pattar for excellent technical support, and Nora Fischbach for help with characterization of edited
589 strains. Andrew Foster is kindly acknowledged for providing Guy11ku80. This work was supported by
590 BioComp initiative of Rhineland-Palatinate. Alex Wegner was supported by a PhD grant of RWTH
591 Aachen University.

592 References

- 593 1. Elad, Y, Pertot, I, Prado AMC & Stewart, A. Plant hosts of *Botrytis* spp. In: Elad Y, Vivier M, Fillinger
594 S (ed.), *Botrytis*, the good, the bad and the ugly. 413–486 (2016).
- 595 2. Dean, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13,
596 414–430 (2012).
- 597 3. Hahn, M. The rising threat of fungicide resistance in plant pathogenic fungi: *Botrytis* as a case
598 study. J. Chem. Biol. 7, 133–141 (2014).
- 599 4. van Kan, J. A. L. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sc.
600 11, 247–253 (2006).
- 601 5. Müller, N. et al. Investigations on VELVET regulatory mutants confirm the role of host tissue
602 acidification and secretion of proteins in the pathogenesis of *Botrytis cinerea*. New Phytol. 219,
603 1062–1074 (2018).
- 604 6. Govrin, E. M. & Levine, A. The hypersensitive response facilitates plant infection by the
605 necrotrophic pathogen *Botrytis cinerea*. Current Biol. 10, 751–757 (2000).
- 606 7. Veloso, J. & van Kan, J. A. L. Many shades of grey in *Botrytis*-host plant interactions. Trends Plant
607 Sc. 23, 613–622 (2018).
- 608 8. Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference
609 pathways. Science 342, 118–123 (2013).
- 610 9. Cai, Q., He, B., Kogel, K.-H. & Jin, H. Cross-kingdom RNA trafficking and environmental RNAi-
611 nature's blueprint for modern crop protection strategies. Curr. Opin. Microbiol. 46, 58–64
612 (2018).
- 613 10. van Kan, J. A. L. et al. A gapless genome sequence of the fungus *Botrytis cinerea*. Mol. Plant
614 Pathol. 18, 75–89 (2017).
- 615 11. Hamada, W., Reignault, P., Bompeix, G. & Boccaro, M. Transformation of *Botrytis cinerea* with
616 the hygromycin B resistance gene, hph. Curr. Genet. 26, 251–255 (1994).
- 617 12. Giesbert, S. et al. Identification of pathogenesis-associated genes by T-DNA-mediated insertional
618 mutagenesis in *Botrytis cinerea*: a type 2A phosphoprotein phosphatase and an SPT3
619 transcription factor have significant impact on virulence. Mol. Plant-Microbe Interact. 25, 481–
620 495 (2012).
- 621 13. Espino, J., González, M., González, C. & Brito, N. Efficiency of different strategies for gene
622 silencing in *Botrytis cinerea*. Appl. Microbiol. Biotechnol. 98, 9413–9424 (2014).
- 623 14. Schumacher, J. Tools for *Botrytis cinerea*: New expression vectors make the gray mold fungus
624 more accessible to cell biology approaches. Fungal Genet. Biol. 49, 483–497 (2012).
- 625 15. Hartmann, T. et al. Validation of a self-excising marker in the human pathogen *Aspergillus*
626 *fumigatus* by employing the beta-rec/six site-specific recombination system. Appl. Environ.
627 Microbiol. 76, 6313–6317 (2010).
- 628 16. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing
629 nature's toolbox for genome engineering. Cell 164, 29–44 (2016).
- 630 17. Le Cong et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823
631 (2013).

632 18. Mali, P. et al. RNA-guided human genome engineering via Cas9. *Science* 339, 823–826 (2013).

633 19. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
634 immunity. *Science* 337, 816–821 (2012).

635 20. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the
636 CRISPR RNA-guided endonuclease Cas9. *Nature* 507, 62–67 (2014).

637 21. Schuster, M. & Kahmann, R. CRISPR-Cas9 genome editing approaches in filamentous fungi and
638 oomycetes. *Fungal Genet. Biol.* 130, 43–53 (2019).

639 22. Al Abdallah, Q., Ge, W. & Fortwendel, J. R. A simple and universal system for gene manipulation
640 in *Aspergillus fumigatus*: in vitro-assembled Cas9-guide RNA ribonucleoproteins coupled with
641 micro-homology repair templates. *mSphere* 2: e00446-17. (2017).

642 23. Foster, A. J. et al. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in
643 the rice blast fungus. *Sci. Rep.* 8, 14355 (2018).

644 24. Wang, Q., Cobine, P. A. & Coleman, J. J. Efficient genome editing in *Fusarium oxysporum* based
645 on CRISPR/Cas9 ribonucleoprotein complexes. *Fungal Genet. Biol.* 117, 21–29 (2018).

646 25. Leroch, M. et al. Living colors in the gray mold pathogen *Botrytis cinerea*: codon-optimized genes
647 encoding green fluorescent protein and mCherry, which exhibit bright fluorescence. *Appl. Environ. Microbiol.* 77, 2887–2897 (2011).

649 26. Barreau, C., Iskandar, M., Turcq, B. & Javerzat, J. P. Use of a linear plasmid containing telomeres
650 as an efficient vector for direct cloning in the filamentous fungus *Podospora anserina*. *Fungal Genet. Biol.* 25, 22–30 (1998).

652 27. Liu, W., Leroux, P. & Fillinger, S. The HOG1-like MAP kinase Sak1 of *Botrytis cinerea* is negatively
653 regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and
654 phenylpyrrole-resistance. *Fungal Genet. Biol.* 45, 1062–1074 (2008).

655 28. Viaud, M. et al. A class III histidine kinase acts as a novel virulence factor in *Botrytis cinerea*. *Mol. Plant-Microbe Interact.* 19, 1042–1050 (2006).

657 29. Fillinger, S., Ajouz, S., Nicot, P. C., Leroux, P. & Bardin, M. Functional and structural comparison
658 of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of
659 *Botrytis cinerea*. *PLoS One* 7, e42520 (2012).

660 30. Cohrs, K. C., Burbank, J. & Schumacher, J. A new transformant selection system for the gray mold
661 fungus *Botrytis cinerea* based on the expression of fenhexamid-insensitive ERG27 variants.
662 *Fungal Genet. Biol.* 100, 42–51 (2017).

663 31. Nødvig, C. S. et al. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
664 *Fungal Genet. Biol.* 115, 78–89 (2018).

665 32. Pohl, C., Kiel, J. A. K. W., Driessens, A. J. M., Bovenberg, R. A. L. & Nygård, Y. CRISPR/Cas9 based
666 genome editing of *Penicillium chrysogenum*. *ACS Synth. Biol.* 5, 754–764 (2016).

667 33. Zhang, C., Meng, X., Wei, X. & Lu, L. Highly efficient CRISPR mutagenesis by microhomology-
668 mediated end joining in *Aspergillus fumigatus*. *Fungal Genet. Biol.* 86, 47–57 (2016).

669 34. Dalmais, B. et al. The *Botrytis cinerea* phytotoxin botanic acid requires two polyketide synthases
670 for production and has a redundant role in virulence with botrydial. *Mol. Plant Pathol.* 12, 564–
671 579 (2011).

672 35. Noda, J., Brito, N. & González, C. The *Botrytis cinerea* xylanase Xyn11A contributes to virulence
673 with its necrotizing activity, not with its catalytic activity. *BMC Plant Biol.* 10, 38 (2010).

674 36. Rolke, Y. et al. Functional analysis of H(2)O(2)-generating systems in *Botrytis cinerea*: the major
675 Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a
676 glucose oxidase (BCGOD1) is dispensable. *Mol. Plant Pathol.* 5, 17–27 (2004).

677 37. Islinger, M., Li, K. W., Seitz, J., Völkl, A. & Lüers, G. H. Hitchhiking of Cu/Zn superoxide dismutase
678 to peroxisomes-evidence for a natural piggyback import mechanism in mammals. *Traffic* 10,
679 1711–1721 (2009).

680 38. Cuesta Arenas, Y. et al. Functional analysis and mode of action of phytotoxic Nep1-like proteins
681 of *Botrytis cinerea*. *Physiol. Mol. Plant Pathol.* 177, 376–386 (2010).

682 39. Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by
683 *Magnaporthe oryzae*. *Nat. Rev. Microbiol.* 7, 185–195 (2009).

684 40. Sierotzki, H. & Scalliet, G. A review of current knowledge of resistance aspects for the next-
685 generation succinate dehydrogenase inhibitor fungicides. *Phytopathology* 103, 880–887 (2013).

686 41. Veloukas, T., Markoglou, A. N. & Karaoglanidis, G. S. Differential effect of *sdhB* gene mutations
687 on the sensitivity to SDHI fungicides in *Botrytis cinerea*. *Plant Dis.* 97, 118–122 (2013).

688 42. Angelini, R. M., Masiello, M., Rotolo, C., Pollastro, S. & Faretra, F. Molecular characterisation and
689 detection of resistance to succinate dehydrogenase inhibitor fungicides in *Botryotinia fuckeliana*
690 (*Botrytis cinerea*). *Pest Manag. Sci.* 70, 1884–1893 (2014).

691 43. Muñoz, M., Faust, J. E. & Schnabel, G. Characterization of *Botrytis cinerea* from commercial cut
692 flower roses. *Plant Dis.* 103, 1577–1583 (2019).

693 44. Nødvig, C. S., Nielsen, J. B., Kogle, M. E. & Mortensen, U. H. A CRISPR-Cas9 system for genetic
694 engineering of filamentous fungi. *PLoS One* 10, e0133085 (2015).

695 45. Katayama, T. et al. Forced recycling of an AMA1-based genome-editing plasmid allows for
696 efficient multiple gene deletion/integration in the industrial filamentous fungus *Aspergillus*
697 *oryzae*. *Appl. Environ. Microbiol.* 85, pii: e01896-18 (2019).

698 46. Schuster, M., Schweizer, G., Reissmann, S. & Kahmann, R. Genome editing in *Ustilago maydis*
699 using the CRISPR-Cas system. *Fungal Genet. Biol.* 89, 3–9 (2016).

700 47. Wenderoth, M., Pinecker, C., Voß, B. & Fischer, R. Establishment of CRISPR/Cas9 in *Alternaria*
701 *alternata*. *Fungal Genet. Biol.* 101, 55–60 (2017).

702 48. Shi, T.-Q. et al. CRISPR/Cas9-based genome editing in the filamentous fungus *Fusarium fujikuroi*
703 and its application in strain engineering for gibberellic acid production. *ACS Synth. Biol.* 8, 445–
704 454 (2019).

705 49. Fillinger, S. et al. Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic
706 fungus *Botrytis cinerea*. *Antimicrob. Agents Chemother.* 52, 3933–3940 (2008).

707 50. Liu, R., Chen, L., Jiang, Y., Zhou, Z. & Zou, G. Efficient genome editing in filamentous fungus
708 *Trichoderma reesei* using the CRISPR/Cas9 system. *Cell Discov.* 1, 15007 (2015).

709 51. Gardiner, D. M. & Kazan, K. Selection is required for efficient Cas9-mediated genome editing in
710 *Fusarium graminearum*. *Fungal Biol.* 122, 131–137 (2018).

711 52. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based
712 genome editing *in vitro* and *in vivo*. *Nature Biotechnol.* 33, 73–80 (2015).

713 53. Allen, F. et al. Predicting the mutations generated by repair of Cas9-induced double-strand
714 breaks. *Nature Biotechnol.* 37, 64–72 (2019).

715 54. Lemos, B. R. et al. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and
716 strand-specific insertion/deletion profiles. *Proc. Natl. Acad. Sci. USA* 115, E2040-E2047 (2018).

717 55. Wernars, K. et al. Cotransformation of *Aspergillus nidulans*: a tool for replacing fungal genes.
718 *Mol. Gen. Genet.* 209, 71–77 (1987).

719 56. Austin, B. & Tyler, B. M. Strategies for high-efficiency cotransformation of *Neurospora crassa*.
720 *Exp. Mycol.* 14, 9–17 (1990).

721 57. Scalliet, G. Mutagenesis and functional studies with succinate dehydrogenase inhibitors in the
722 wheat pathogen *Mycosphaerella graminicola*. *PLoS One* 7(4), e35429 (2012).

723 58. Veloukas, T., Kalogeropoulou, P., Markoglou, A. N. & Karaoglanidis, G. S. Fitness and competitive
724 ability of *Botrytis cinerea* field isolates with dual resistance to SDHI and QoI fungicides,
725 associated with several *sdhB* and the *cytb* G143A mutations. *Phytopathology* 104, 347–356
726 (2014).

727 59. Lalèvre, A. et al. Site-directed mutagenesis of the P225, N230 and H272 residues of succinate
728 dehydrogenase subunit B from *Botrytis cinerea* highlights different roles in enzyme activity and
729 inhibitor binding. *Environ. Microbiol.* 16, 2253–2266 (2013).

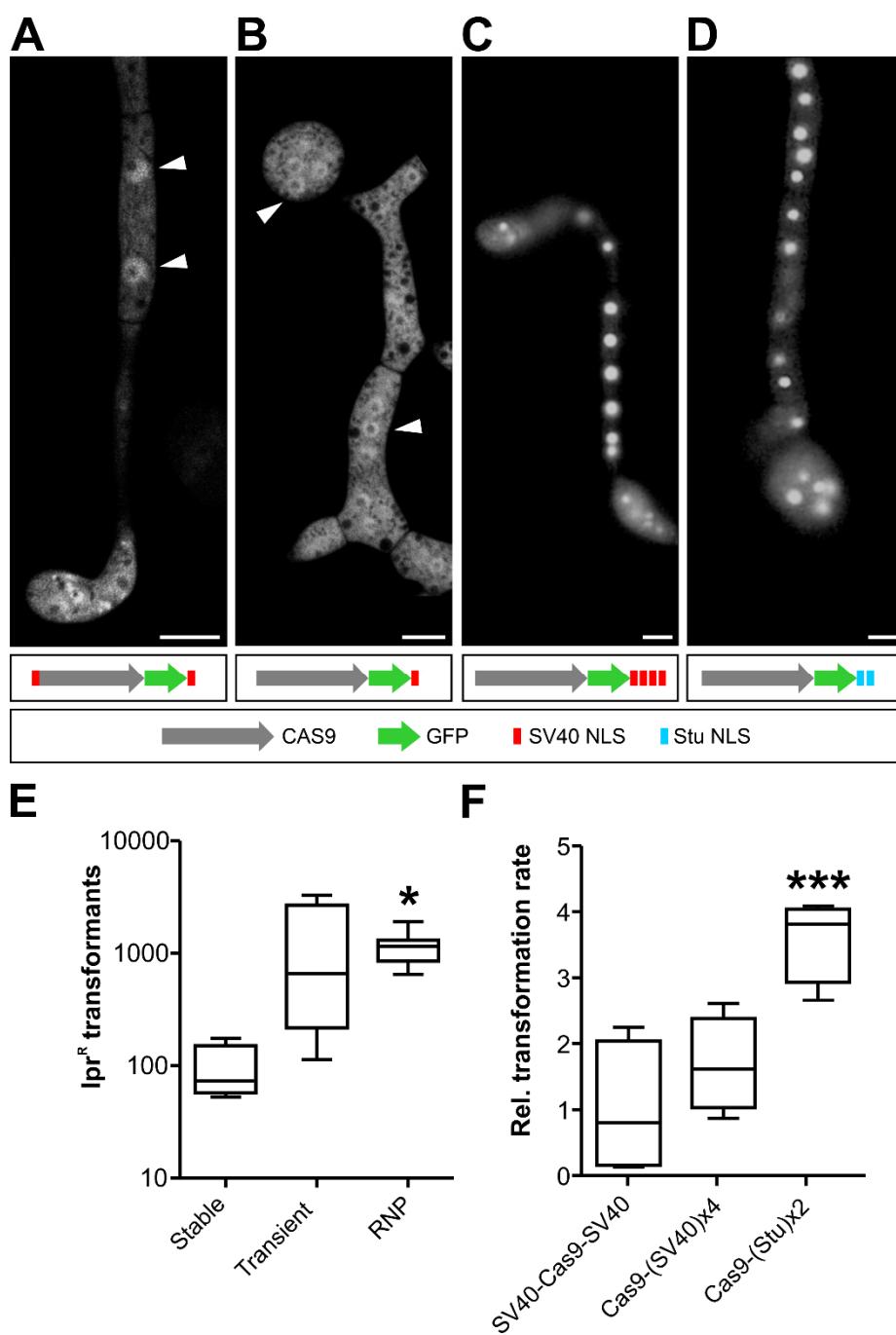
730 60. Lalèvre, A., Fillinger, S. & Walker, A.-S. Fitness measurement reveals contrasting costs in
731 homologous recombinant mutants of *Botrytis cinerea* resistant to succinate dehydrogenase
732 inhibitors. *Fungal Genet. Biol.* 67, 24–36 (2014).

733 61. Mosbach, A. et al. Anilinopyrimidine resistance in *Botrytis cinerea* is linked to mitochondrial
734 function. *Front. Microbiol.* 8, 2361 (2017).

735 62. Amiri, A., Heath, S. M. & Peres, N. A. Resistance to fluopyram, fluxapyroxad, and penthiopyrad
736 in *Botrytis cinerea* from strawberry. *Plant Dis.* 98, 532–539 (2014).

737 63. Brent, K. J., Hollomon, D.W. Fungicide resistance: the assessment of risk (FRAC Monograph No.
738 2, Brussels, 1998). ISBN: 90-72398-07-6.

739 64. Abdullah, T., Faiza, M., Pant, P., Rayyan Akhtar, M. & Pant, P. An analysis of single nucleotide
740 substitution in genetic codons - probabilities and outcomes. *Bioinformation* 12, 98–104 (2016).

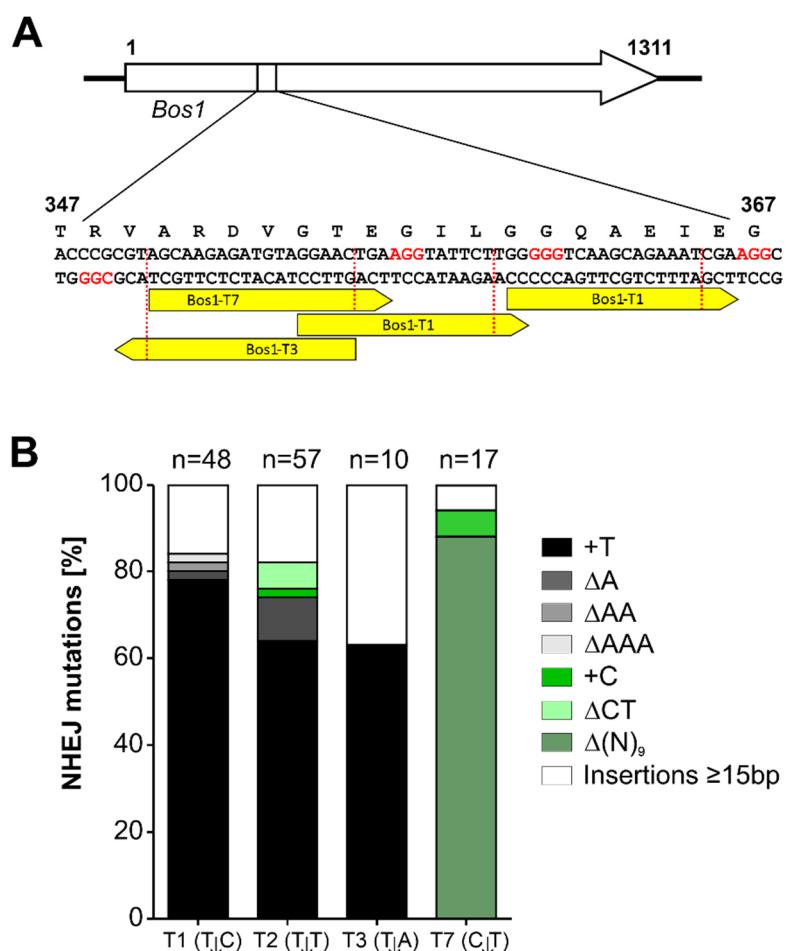

741 65. Anders, C. & Jinek, M. *In vitro* enzymology of Cas9. *Meth. Enzymol.* 546, 1–20 (2014).

742 66. Leroch, M. et al. Gray mold populations in German strawberry fields are resistant to multiple
743 fungicides and dominated by a novel clade closely related to *Botrytis cinerea*. *Appl. Environ.*
744 *Microbiol.* 79, 159–167 (2013).

745 67. Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterization of MPG1, a gene
746 involved in pathogenicity from the rice blast fungus *Magnaporthe grisea*. *Plant Cell* 5, 1575–
747 1590 (1993).

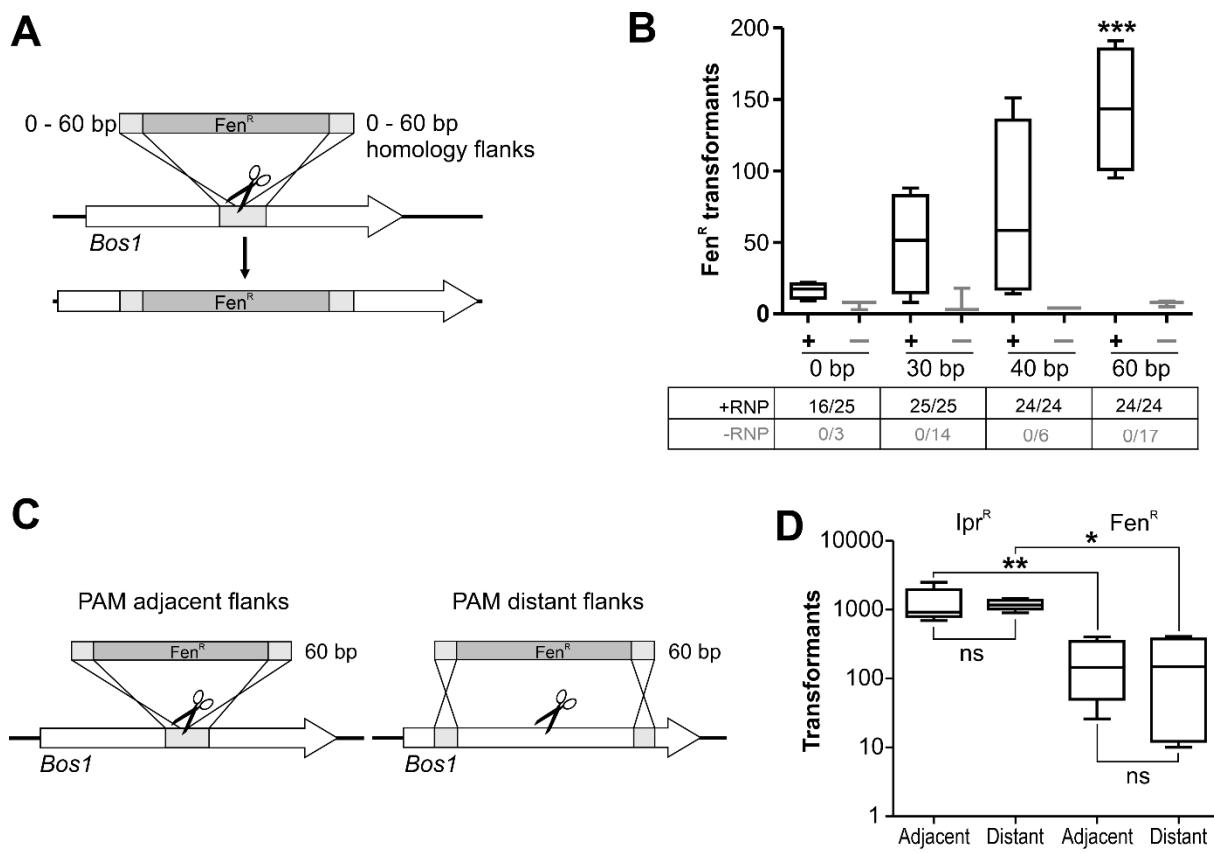
748 68. Stammier, G. & Speakman, J. Microtiter method to test the sensitivity of *Botrytis cinerea* to
749 boscalid. *J. Phytopathol.* 154, 508–510 (2006).

750 69. Lee, D.H. & Lee, C.B. Chilling stress-induced changes of antioxidant enzymes in the leaves of
751 cucumber: in gel enzyme activity assays. *Plant Sci.* 159, 75–85 (2000).

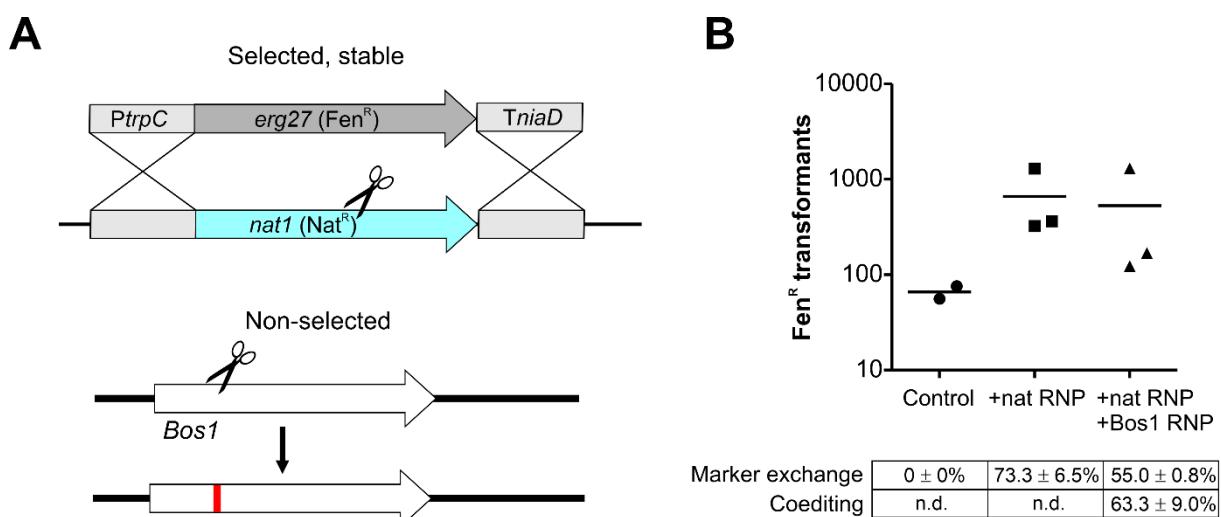


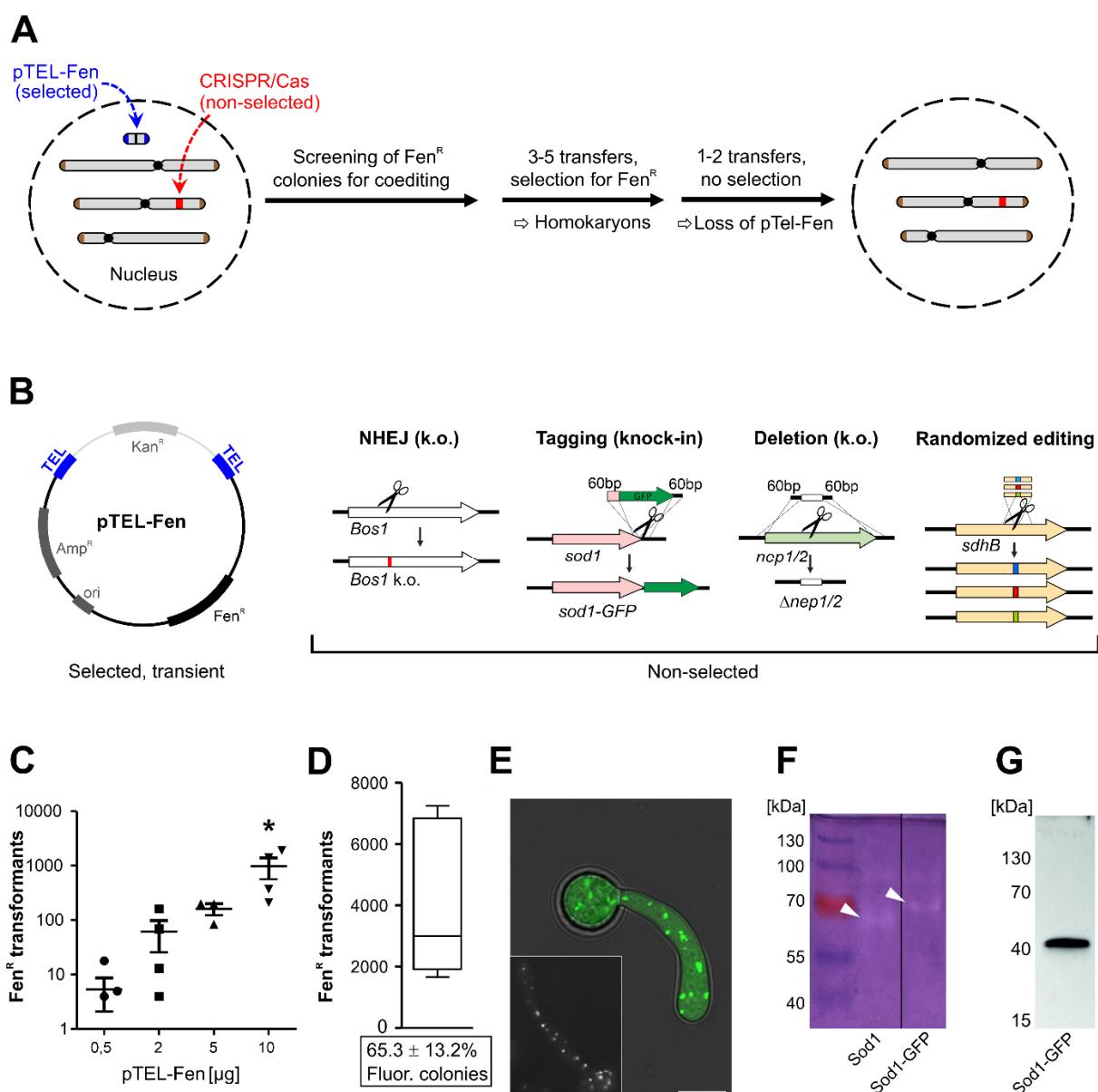
752

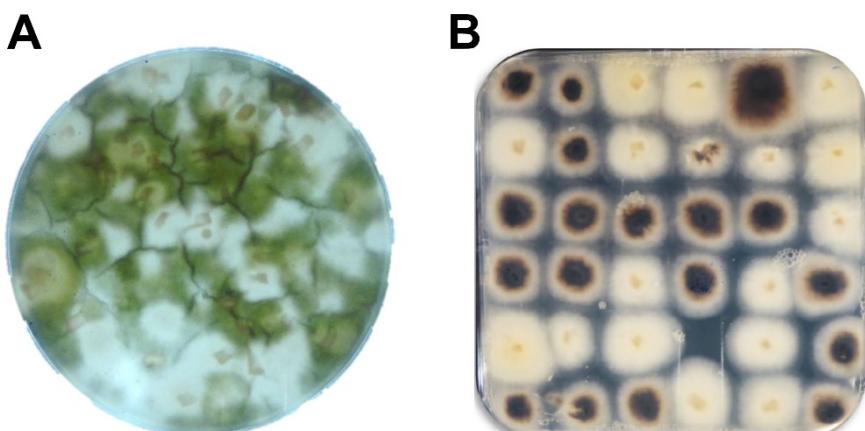
753


754 **Fig. 1. Optimization of Cas9 nuclear targeting and delivery into *B. cinerea* protoplasts.**

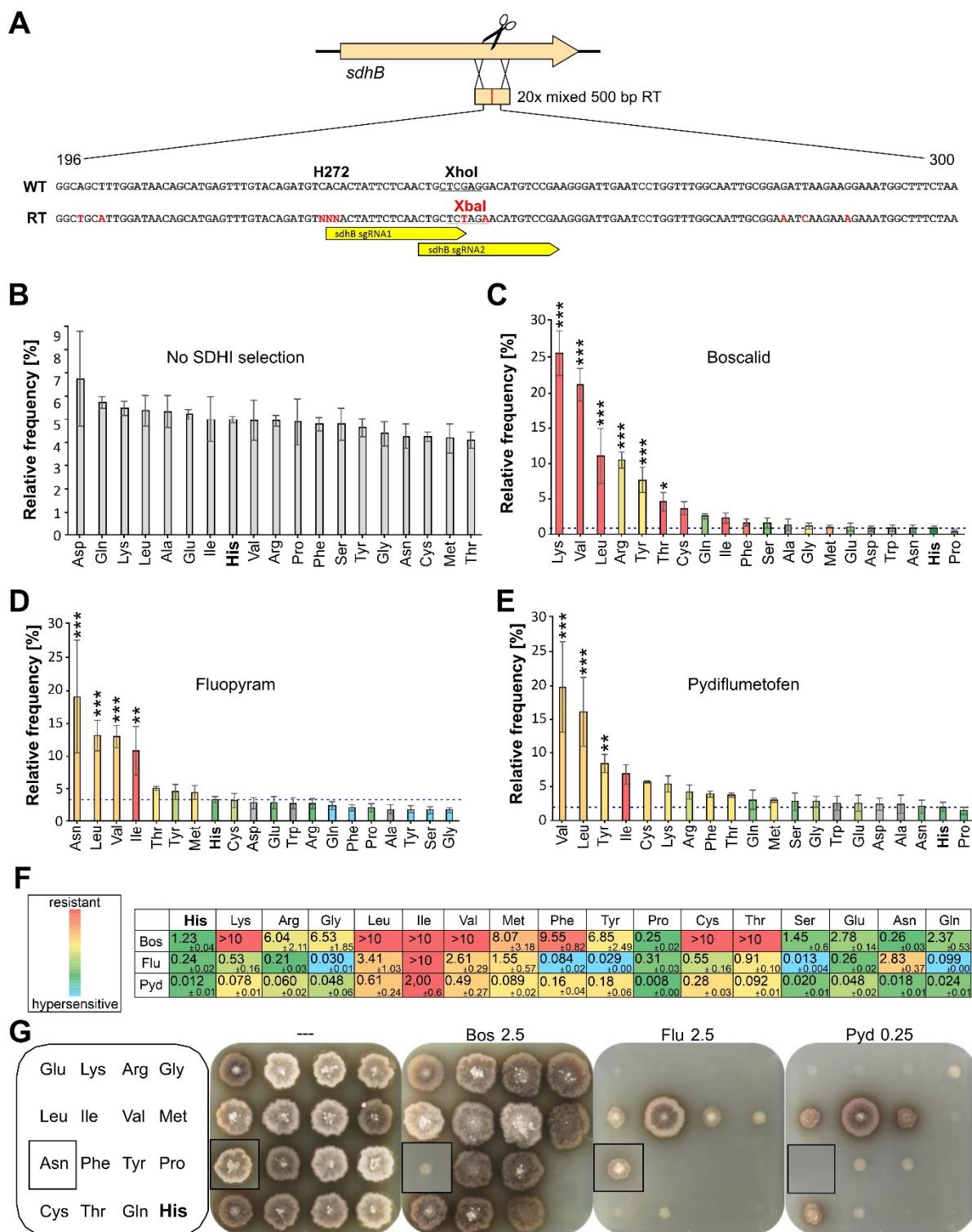
755 (A-D) Subcellular localization of genetically delivered Cas9-GFP constructs fused to different NLS. Fluorescence
 756 microscopy images of 18 h old germlings on glass slides. Arrowheads depict nuclei. Only in c and d, fluorescence
 757 is concentrated in the nuclei. Scale bars: 5 μ m. (E) Transformation rates (NHEJ-mediated, Ipr^R *Bos1* k.o.
 758 transformants) obtained in *B. cinerea* with different Cas9 delivery strategies. Cas9 was expressed from a
 759 chromosomally integrated gene (Cas9-SV40^{x4}-NLS; stable), transiently from a gene on a telomere vector (Cas9-
 760 GFP-SV40^{x4}-NLS; transient) or added as a protein (Cas9-Stu^{x2}-NLS; RNP) together with *Bos1*-T2 sgRNA to *B.*
 761 *cinerea* protoplasts. The *p* values by one-way ANOVA followed by Tukey's multiple comparisons post hoc test
 762 are indicated. **p* \leq 0.05; stable (n=4), transient (n=4), RNP (n=11). (F) Comparison of different NLS arrangements
 763 on genome editing efficiency of Cas9-sgRNA RNPs targeting *Bos1*. Values are relative to transformation rate with
 764 SV40-Cas9-SV40. In (E) and (F), no Ipr^R colonies were obtained without Cas9. The *p* values by one-way ANOVA
 765 followed by Dunnett's multiple comparisons post hoc test are indicated. ****p* value \leq 0.001; n=4.


766
767


768 **Fig 2. NHEJ-mediated mutations induced in *Bos1* by RNP mediated genome editing.**
769 (A) Positions of the sgRNAs targeting *Bos1*. (B) Distribution of mutations detected in iprodione resistant
770 transforms. Note that sgRNAs introducing T↓N cleavage sites resulted in a majority of '+T' insertions.

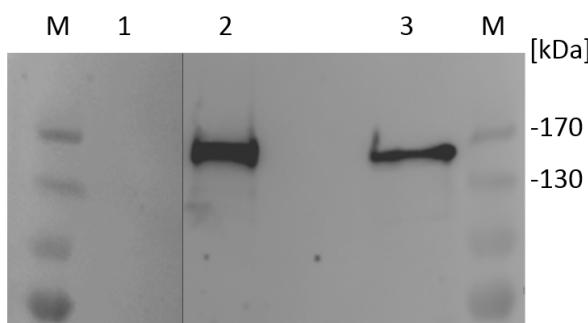


771
772


773 **Fig. 3. Efficiency of CRISPR/Cas editing of *Bos1* using repair templates with short homology flanks.**
774 (A) Experimental scheme. (B) Results of transformations with RNP (black lines) and without RNP (gray lines) for
775 RT with flank sizes of 0 to 60 bp. (+RNP: n=4; RNP: n=3). The numbers below show fractions of Fen^R transformants
776 being Ipr^R, indicating targeting efficiencies. The p values by one-way ANOVA followed by Dunnett's multiple
777 comparisons (control: 0 bp) post hoc test are indicated. ***p ≤ 0.001. (C) Scheme of *Bos1* targeting with different
778 placement of 60 bp homology flanks of RT, resulting in insertion (left) or 2 kb deletion (right). (E) Results of
779 transformations with RNP and two types of RT as shown in (C). n=5 (Ipr^R); n=4 (Fen^R). The p values by one-way
780 ANOVA followed by Tukey's multiple comparisons post hoc test are indicated. *p ≤ 0.05; ** p ≤ 0.01.

803
804
805
806 **Fig. 6. Efficient pTEL-mediated coediting via NHEJ in *Magnaporthe oryzae*.**
807 Protoplasts were cotransformed with pTEL-Fen and Cas9-ALB1-sgRNA RNP. (A) Primary selection plate containing
808 fenhexamid. (B) Isolated transformants (transformation C, cf. S1 Table). Note white-colored mycelia of edited
809 transformants.

810
811
812 **Fig. 7. Effects of *B. cinerea* *sdhB* codon 272 amino acid randomization by multiple editing.**


813 (A) Schematic strategy, showing sequences of WT and repair template (RT) surrounding codon 272. Changed
814 bases and the new restriction site in the RT are marked in red. NNN: Each of 20 codons in the RT mixture. (B-E)
815 Frequency distribution of encoded amino acids in codon 272 of edited *B. cinerea* transformants, determined by
816 deep sequencing of conidia obtained from primary Fen^R transformants without SDHI fungicide selection (B), or
817 from cultures of transformed conidia incubated in YBA medium containing 0.25 mg l⁻¹ Bos (C), 0.5 mg l⁻¹ Flu (D),
818 or 0.15 mg l⁻¹ Pyd. (E) Fungicide sensitivity levels conferred by each amino acid, as determined for the
819 corresponding mutant are indicated by colors (in (C-F)), except for the bars of amino acids for which no mutants
820 were obtained which are shaded in gray. The *p* values by one-way ANOVA followed by Dunnett's multiple

821 comparisons (control: His) post hoc test are indicated. $*p \leq 0.05$, $**p \leq 0.01$, $***p \leq 0.001$ (n=3). (F) SDHI
822 sensitivity (EC₅₀ values in mg l⁻¹) of individual mutants containing different amino acids in *sdhB* codon 272. (G)
823 Growth of individual codon 272 edited mutants on YBA agar containing different SDHI as indicated, after 5 days.
824 The inserts show colonies of an Asn mutant which were integrated into the pictures of plates with the other
825 mutants.

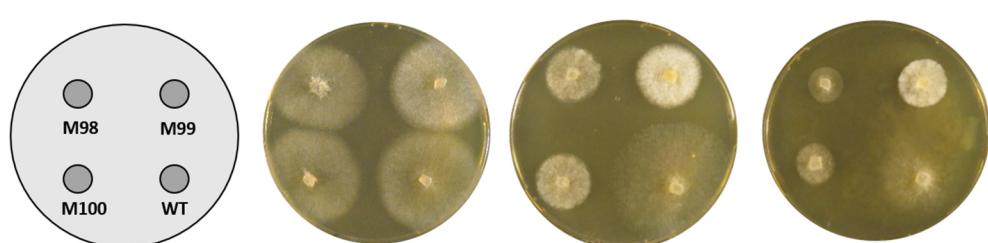
826

Supplementary Figures and Tables

827

S1 Fig. Detection of Cas9 expression in *B. cinerea*.

830 Total *B. cinerea* protein extracts (15 µg per lane) were loaded, separated by polyacrylamide gel
831 electrophoresis, and Cas9 detected with a monoclonal Cas9 antibody. M: Marker; 1: B05.10 (WT); 2:
832 B05.10-Cas9-SV40^{x4}; 3 B05.10 (pTEL-Cas9-Stu^{x2}).


833

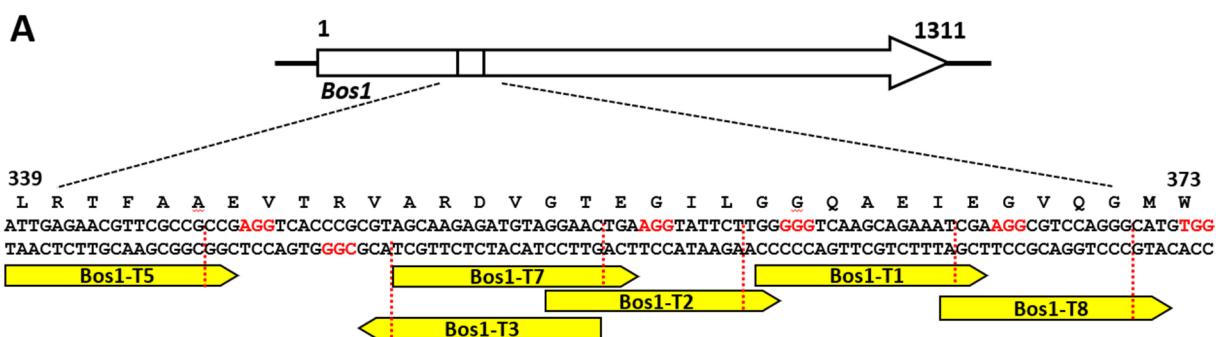
834

835

836

A

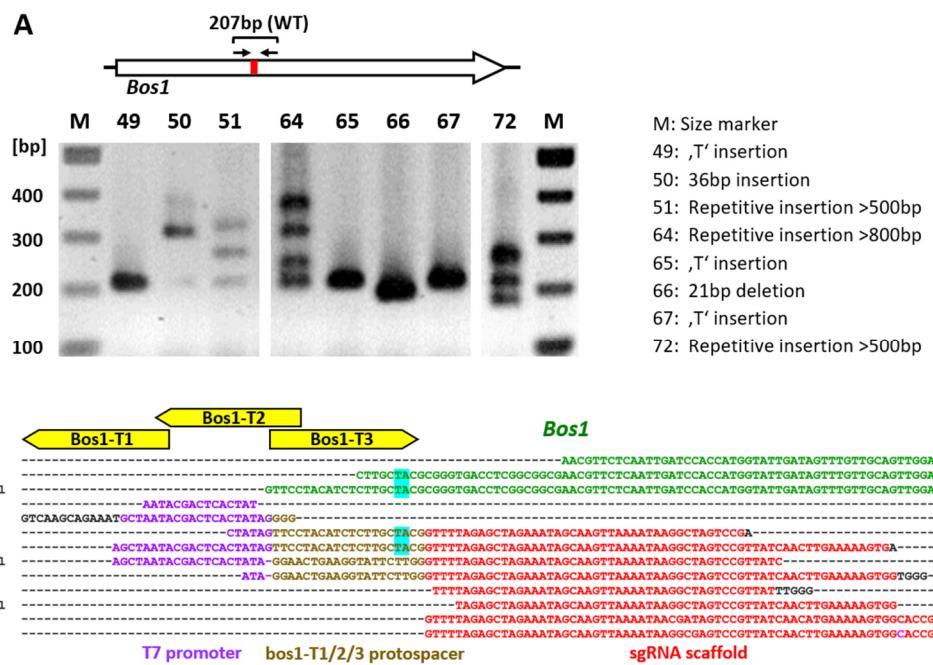
B


C

837

S2 Fig. Sensitivity to osmotic and salt stress and virulence of *B. cinerea* WT and CRISPR/Cas-induced *Bos1* mutants.

840 (A) Pictures of three *Ipr^R* *Bos1* mutants (M98, M99, M100, all having the same '+T' insertion) and WT
841 growth for 48 h on ME medium without (---) and with 0.5 M NaCl or sorbitol. (B) Effects of salt and
842 osmotic stress treatments on radial growth, compared to growth on pure ME medium (n=3). The *p*
843 values by one-way ANOVA followed by Dunnett's multiple comparisons (control: WT) post hoc test are
844 indicated. ***p* ≤ 0.01; ****p* ≤ 0.001. (C) Infection on tomato leaf by WT and mutant M99 (72 h).

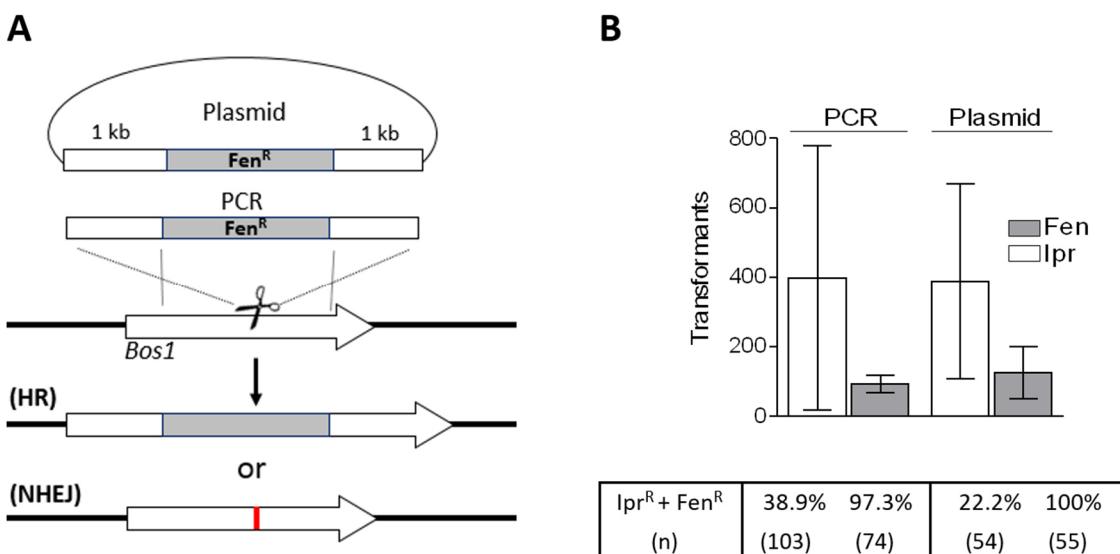

B

sgRNA	On-target score*	in vitro cleavage**	lpr ^R Transformants ***		
			Exp.1	Exp.2	Exp.3
Bos1-T2	0.6661	+++	1200	854	1824
Bos1-T1	0.7401	+++	250	771	242
Bos1-T3	0.6336	+++	145	76	36
Bos1-T5	0.6084	+	45	3	---
Bos1-T7	0.5975	+++	337	---	---
Bos1-T8	0.5421	(+)	530	30	---

845

846 **S3 Fig. In vitro and in vivo CRISPR/Cas performance of different sgRNAs targeting *Bos1*.**

847 (A) Positions and expected cleavage sites (red dotted lines) of the sgRNAs (yellow) in *Bos1*. PAM
 848 sequences for each of the sgRNAs are indicated in red. (B) Summary of on-target scores, *in vitro*
 849 cleavage activities, and transformation efficiencies with different sgRNAs. *On-target efficiency
 850 calculated with the Broad Institute GPP sgRNA Designer. **Estimated from gel pictures. *** Number
 851 of lpr^R *B. cinerea* mutants per assay.



852

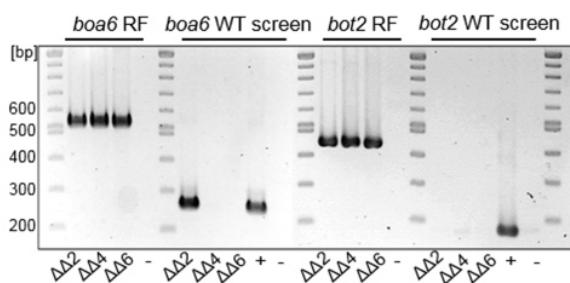
853 **S4 Fig. Analysis of PCR fragments covering CRISPR/Cas-induced cleavage-repair sites in *Bos1*, from**

854 **Ipr^R transformants.**

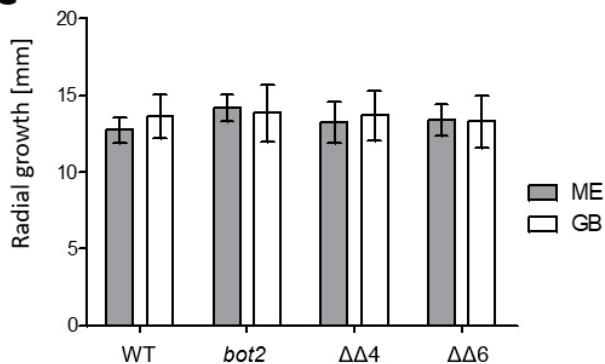
855 (A) Stained agarose gel with PCR fragments generated with primers TL_87 Bos1_check 200 Fw / TL_87
 856 Bos1_check 200 Rv, showing variations of fragment sizes due to different types of NHEJ-induced
 857 mutations in transformants obtained with Cas9/bos1-T1 RNP. (B) Origins and sequences of different
 858 NHEJ insertion types obtained with different Cas9/bos1 RNPs. Type A (not shown): 164 bp *B. cinerea*
 859 mitochondrial DNA, two joined fragments of 84 and 79 bp. Type B: *B. cinerea* *Bos1*-DNA. Type C: 15 bp
 860 fragment of the sgRNA scaffold encoding part of the T7 RNA polymerase promoter. Type D: sgRNA
 861 scaffold DNA containing part or all of the protospacer sequences of bos1-T1/-2/-3. Type E: sgRNA
 862 scaffold DNA lacking protospacer sequences.

863

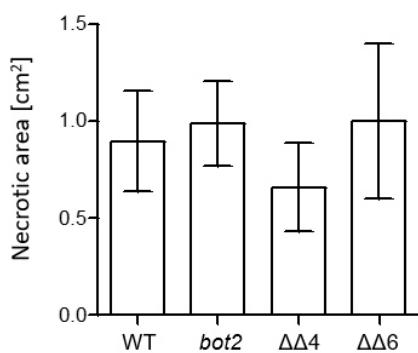
864


865 **S5 Fig. Transformation of Cas9/Bos1-T2B-gRNA RNP and Fen^R RT with 1 kb Bos1 homology flanks.**

866 (A) Experimental scheme. *Bos1* inactivation leading to *Ipr^R* occurs either by targeted integration of the
867 *Fen^R* RT via HR, or via NHEJ. (B) Transformation results: Primary selection was either for *Ipr^R* (white
868 bars) or for *Fen^R* (grey bars) (n=3). Below the diagram, the fraction of transformants with resistance to
869 both fungicides is shown. (n): Number of transformants tested. Statistical analyses were performed by
870 analysis of variance (ANOVA, followed by Dunnett's multiple comparisons. No significant differences
871 between transformation results with PCR fragments and circular plasmids, or between *Ipr^R* and *Fen^R*
872 colony numbers were observed.


A

Assay	Target gene	sgRNA	Repair	Transformants	
			template	Fen ^R	Cyp ^R
A	<i>bot2</i>	1 µg	1 µg	8	3
	<i>boa6</i>	1 µg	1 µg		
B	<i>bot2</i>	2 µg	2 µg	39	14
	<i>boa6</i>	2 µg	2 µg		
C	<i>bot2</i>	2 µg	4 µg	46	16
	<i>boa6</i>	2 µg	4 µg		

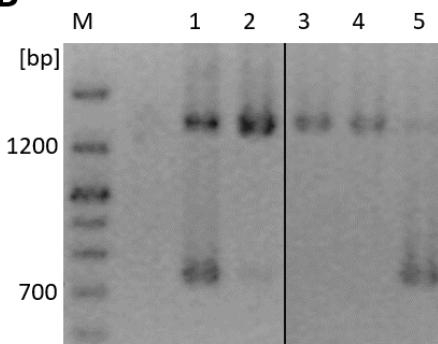

B

C

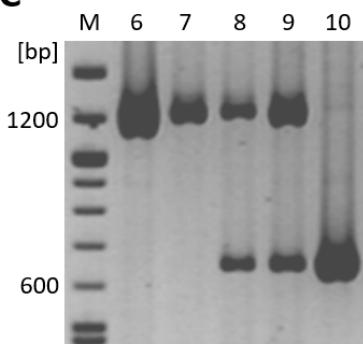
D

873

874


S6 Fig. CRISPR/Cas-HR-mediated single and double k.o. mutagenesis of *bot2* and *boa6*.

875 (A) Transformation results. (B) PCR-based verification of *bot2* *boa6* double (ΔΔ) k.o. mutants. *boa6* RT
876 right flank (RF) integration screen using primers TniaD_ol_Cyp_Fw/TL129 (537 bp); *boa6* WT screen
877 using primers TL157/TL158 (263 bp), *bot2* RT RF integration screen using primers TL130/TL132
878 (444 bp), *bot2* WT screen using primers TL133/TL159 (180 bp). (C) Growth of WT and mutants after
879 72 h on agar plates with rich (ME) and minimal (GB: Gamborg GB5 with 25 mM glucose) medium (one
880 way ANOVA; n=3). (D) Lesion formation after 72 h on tomato leaves (one way ANOVA; n=3). In (C) and
881 (D), no significant differences in radial growth and infection between WT and mutants were observed.
882

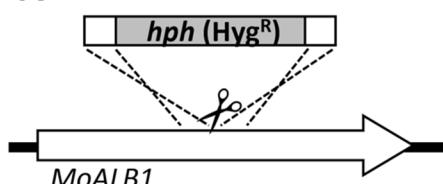

A

pTEL-Fen	sgRNA (2 µg)	Δ nep1 RT	Δ nep2 RT	Total Fen ^R transformants	Fraction of k.o. transformants (%)
10 µg	nep1-1	10 µg	---	1784	Δ nep1: 7/30 (23.3)
10 µg	nep2-1	---	10 µg	3000	Δ nep2: 5/30 (16.7)
10 µg	nep1-1 nep2-1	10 µg	10 µg	230	Δ nep1: 9/70 (12.9) Δ nep2: 7/70 (10.0) Δ nep1 Δ nep2: 0/70 (0)

B

C

883


884 **S7 Fig. Use of pTEL-Fen for marker-free k.o. mutagenesis of nep1 and nep2.**

885 (A) Transformation result. (B) PCR-based verification of nep1 deletion mutants, using primers
886 TL143/TL144; size of WT fragment 1,353 bp, size of nep1 k.o. fragment 733 bp. Lanes 1-5: Fen^R
887 transformants. Transformant #5 represents a nearly pure nep1 mutant. (C) PCR-based verification of
888 nep2 deletion mutants, using primers TL145/TL146; size of WT fragment 1,220 bp, size of nep2 k.o.
889 fragment 641 bp. Lane 6: *B. cinerea* WT; lanes 7-10: Fen^R transformants. Transformant #10 represents
890 a purified nep2 mutant. M: DNA marker.

891

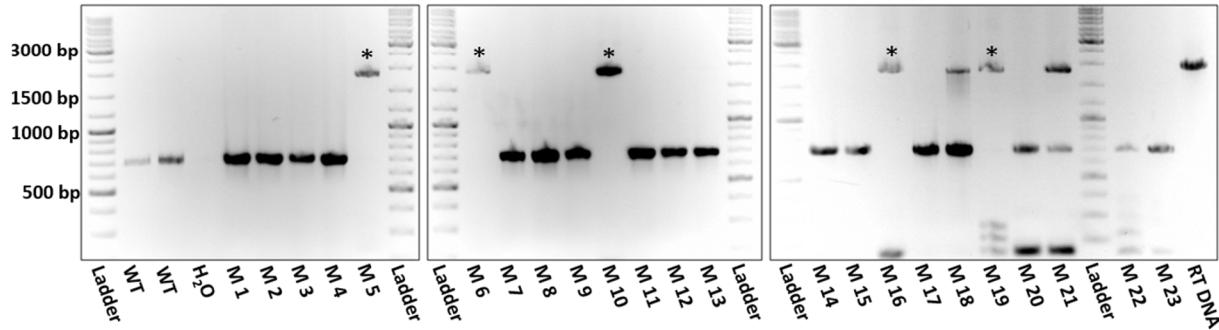
892

A

B

Transfo code	<i>M. oryzae</i> strain	Cas9-SV40 ^{x4}	sgRNA	Hyg-ALB1 RT	Hyg ^R colonies	White colonies	Targeting efficiency
A	Guy11	6 µg	2 µg	6.6 µg	22	20	91%
B	Guy11 ku80	6 µg	2 µg	4 µg	18	18	72%
B	Guy11 ku80	6 µg	2 µg	4 µg	18	12	67%

893


894 **S8 Fig. CRISPR/Cas efficiency with RNP in *M. oryzae*.**

895 (A) Scheme of CRISPR/Cas targeting of MoALB1, using a repair template with a hygromycin resistance
896 cassette and 50 bp homology flanks. (B) CRISPR/Cas components used and results of transformations
897 with *M. oryzae* strain Guy11 and Guy11 ku80.

A

<i>M. oryzae</i> strain	Cas9-SV40 ^{x4} /sgRNA	Hyg-PIT RT	pTEL-Fen	Fen ^R colonies		Fen ^R Hyg ^R colonies/k.o.s via HR
				Total	Tested	
Guy11 ku80	6 µg/ 2 µg	25 µg	6 µg	ca. 300	72	6/0
Guy11	6 µg/ 2 µg	25 µg	6 µg	ca. 670	72	23/5

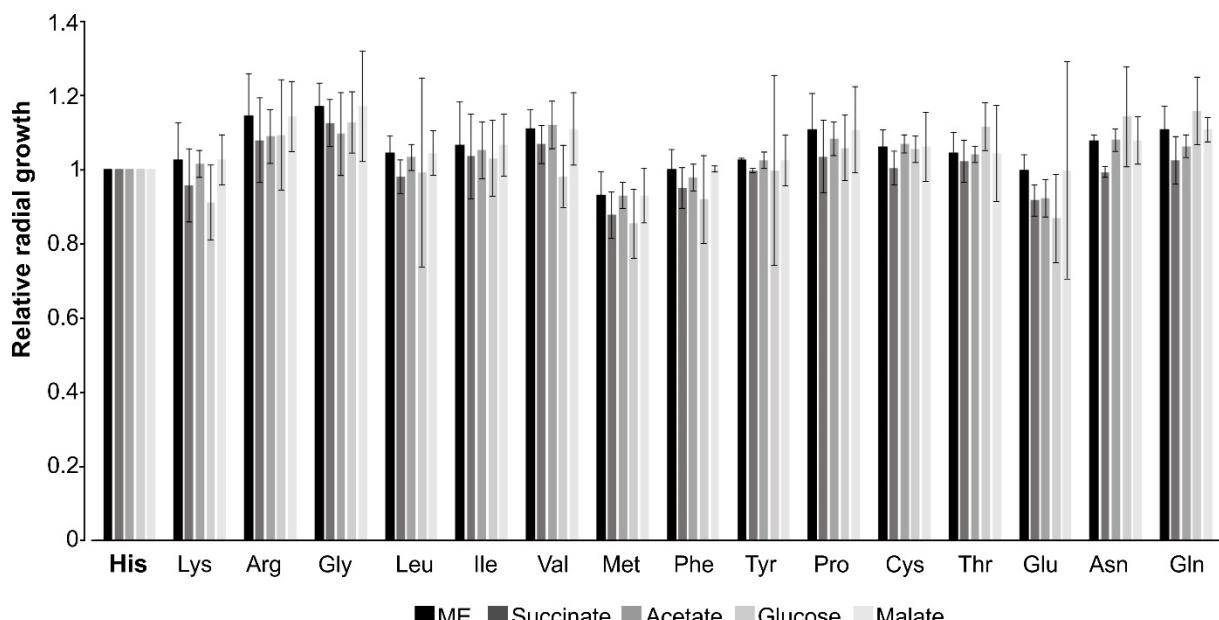
B

898

899

S9 Fig. pTEL-mediated k.o. of *MoPIT* via HR in *M. oryzae*.

(A) Results of transformations with strains Guy11 and Guy11ku80. (B) PCR-based identification of strain Guy11 *MoPIT* k.o. mutants generated by coediting, using primers MoPit FL F and MoPit FL R. HR was confirmed by sequencing PCR product amplified with primers SeqPit_F/ SeqPit_R.


904

905

906

907

908

909

910

S10 Fig. Mycelium growth after 72 h of *B. cinerea* *sdhB* codon 272 exchange mutants on agar media containing ME or YSS with different carbon sources (50 mM each), relative to the WT strain (n=3).

911 Statistical analyses were performed by analysis of variance (ANOVA) followed by Dunnett's multiple 912 comparisons (control: His). No significant differences between the growth rates of the WT strain (His) 913 and any of the mutants were observed.

916 **S1 Table. pTEL-mediated coediting via NHEJ in *M. oryzae*.**
 917 CRISPR/Cas components used and results of (co-) transformations with strain Guy11 and Guy11 ku80.
 918 Transformations with the same letter were done with the same batch of protoplasts.
 919

Experiment	<i>M. oryzae</i> strain	Cas9-SV40x4/ sgRNA amounts	pTEL-Fen			White Hyg ^R colonies (coediting rate)
				Total	Tested	
B	Guy11	---	1 µg	18	---	---
B	Guy11	---	2 µg	200	---	---
C	Guy11	---	2 µg	555	---	---
C	Guy11	---	4 µg	3,800	---	---
D	Guy11	---	4 µg	4,000	---	---
D	Guy11 ku80	---	4 µg	3,000	---	---
E	Guy11 ku80	---	12 µg	1,500	---	---
E	Guy11 ku80	6 µg/ 2 µg	12 µg	300	72	5 (7%)
B	Guy11	6 µg/ 2 µg	6 µg	96	36	17 (47%)
C	Guy11	6 µg/ 2 µg	6 µg	280	35	17 (49%)
C	Guy11	6 µg/ 2 µg	3 µg	120	36	13 (36%)

920
 921
 922
 923
 924
 925 **S2 Table. Results of cotransformation of *B. cinerea* with pTEL-Fen, sdhB272-sgRNA-RNP and 500 bp
 926 sdhB-272 (x20) repair template.**
 927

Transfor -mation ¹	sgRNA	Fen ^R colonies/ transformation	Sequenced transformants	Editing frequency	
				Counted ²	Illumina seq.
A	sdhB272-1	820	---	9/72 (12.5%)	n.a.
A	sdhB272-2	1,100	---	12/96 (12.5%)	n.a.
B	sdhB272-1	2,680	---	10/41 (24%)	n.a.
C	sdhB272-2	2,200	---	11/26 (41%)	n.a.
D	sdhB272-2	4,820	6,100	n.a.	31.6
E	sdhB272-2	6,680	6,200	n.a.	21.4
F	sdhB272-1	7,080	10,400	n.a.	11.4

928 ¹ 2x10⁷ protoplasts were transformed with 10µg pTEL-Fen, 6µg Cas9-2µg sdhB272-RNP, and 10µg sdhB-272(x20)
 929 repair template. ²To determine the fraction of edited transformants, DNA of individual transformants was
 930 prepared, amplified with primers TL151_SdhB_OS_F/ TL152_SdhB_OS_R covering the edited region, and
 931 digested with either Xhol (cut in WT *sdhB* DNA) or XbaI (cut in edited *sdhB* DNA). n.a.: Not analysed.

932 S3 Table. Oligonucleotides used

Name	5' to 3' sequence	Purpose
s	GATCTAGGCCTGCAGGATG	Generation of pFB2N from pFAC1
pFAC1-del2	CTAGCATCCTGCAGGCCA	
FB108	TTATACAGCTGAGCAAATCGCCGGCGATCAGCATG	Truncation of pFB2N
FB109	CTGATGCCGGCGATTGCTCAGCTGTA	
bos1-checkF	GGGTGAGATACTCCAACTGCAA	Sequencing of <i>Bos1</i> mutants
bos1-checkR	CGCACTTGTGTGGTGAGGTTA	
TL29 pBS_ol_bos 3.REV	CGGGCCCCCCCCTGAGGTGCGACGGTATCGATAAGCTGATCTCTCCAGATGCCCTGACA	
TL30 pBS_ol_Bos1 3.FOR	GATGTATCAGTGAGCCTAGGGGGGTCAA	
TL31 pBS_ol_Bos1 1.FOR	CTCTAGAACTAGTGGATCCCCGGGCTGCAGGAATTGATTACAGTCATAATCAACCCTGC	Generation of <i>Bos1</i> insertion construct with a Fen ^R cassette
TL32 pBS_ol_Bos1 1.REV	CCAGCCAAGCCCCAAAAAATGAGAATACTTCAGTTCTACATCTTGTACG	
TL33 Fen_ol_Bos1 2.FOR	GTAGGAACTCAAGGTATTCTCATTTTTG	
TL34 Fen_ol_Bos1 2.REV	CGATTCTGCTTGACCCCCACCTAGGCTCA	
TL37_Fen_fw	CATTTTTGGGCTTGGCTGGAG	Fen ^R cassette
TL38_Fen_rev	AGGCTCACTGATACATCTGGC	
TL65_Bos1_Fen30_fw	AGCAAGAGATGTAGGAACACTGAAGGT	
TL66_Bos1_Fen30_rev	TGGACGCCCTCGATTCTGCT	
TL67_Bos1_Fen40_fw	TCACCCGCGTAGCAAGAGAT	Synthesis of RTs targeting <i>Bos1</i> amplified from pBS_bos1_KO_Fen
TL68_Bos1_Fen40_rev	CCACATGCCCTGGACGC	
TL69_Bos1_Fen60_fw	GAGAACGTTCGCCGCCG	
TL70_Bos1_Fen60_rev	ACGTTCACTATCAATGTTCCACATG	
TL113 60bp Bos1 PD FW	GAACGAGAACTTGCCTGGTATCCAGAGTCCAAAGATTAGAACAGGGCGATCACATGCTGGCTTTGCTCACATGCATG	PAM distant RT targeting <i>Bos1</i> amplified from pTEL-Fen
TL114 60bp Bos1 PD RV	TTGAATACTGCTCCCTCAGATTGTACACCATCTGGTGTACCTTCGCTTCAGCTCATCCATGCTGCCGAAAGGACCCGCAAATG	
TL116 Sod_GFP FW	GCTTGTGGTATGTTATTCTCTATGAAGATGCAGTTCTGGACACATGACTAACATCACAGGTGTTATCGGTATTGCTGCAATGGTTCAAGGGTGAGGTAAGTA	RT synthesis for <i>sod1</i> -GFP fusion amplified from pNAH-OGG
TL134 Sod-GFP no R RV	GATTGCTTTCTGTTAAACACTACCTAGACACAGCCGGCAAACATAAGCTAAATGATCCATAACTAGCGGGCGCTTGAAAGTTC	
TL 170 Nep1 KO F	CAGCATCACAGCATCAGCTCCATTCCATATTCAATTACATTCCACATTACACTTCGATCGCGAA	RT synthesis for marker-free <i>nep1</i> k.o.
TL 171 Nep1 KO R	ACGATCTCTGACAGGAAACACTCCAGATCTCCAGAACTCTATCTAGTAAGAAAGAACTGCTTCACATGCATG	
TL 172 Nep2 KO F	CACACATCTTAACTCGCTCTCCTCTTAGTTACAAGGAAATCCAGACAAACTT	RT synthesis for marker-free <i>nep2</i> k.o.
TL 173 Nep2 KO R	GCAAAAGCCAATAGACTCCAGAATATAGCCCTTATATTCAACATCAAAGACACAAGATCGCCGGAAAGGACCCGCAAATG	
TL143 Nep1 seq F	TCTGGTGGCAGATGAAATACATCAAGTG	Check for <i>nep1</i> k.o.
TL144 Nep1 seq R	CGTTGGCTTATTCAATGCGGGAGG	
TL145 Nep2 seq F	GAACTTGAATAGTGGGAGTGGG	Check for <i>nep2</i> k.o.
TL146 Nep2 seq R	ACAAGGCACCATGATTATTCTGG	
TL118 boa6 RT FW	CTCCATTGAAAAAGCTGAGTTTCGCAACCTTTGCACAGCCCTACAGATTGCTCTTGTGCTGGCTCACATGCATG	RT synthesis for <i>boa6</i> k.o. (Cyp ^R marker)
TL 119 boa6 RT RV	GCAAAACGCCCTATCGTCAGTGTGCACTTGTGCTTTGATAGCATTGGTGGCGATCGCCGAAAGGACCCGCAAATG	
TniaD_ol_CypR_FW	ACCATCTTTGGCGAAGAATAAGTAACCTGAGAGGTGGTTAGATATGG	Integration check <i>boa6</i> k.o.
TL 129 Boa6 KO R	CTTTGCGACTATGCTGACGCCCTCG	
TL157 Boa6 WT FW	GGGGTCACATTCTCTGCTGTAGTCGG	Check for WT nuclei in <i>boa6</i> k.o.
TL158 Boa6 WT RV	GTGACTGTTGGAGCATTAAGCCGC	
TL 120 Bot2 RT FW	AAGGACACCTGAAGGAAGATCCCAGCCGCCAGCGGAGGAGGTGAAGCAGACCAATTGCCATGCTGCCCTTGTGCTCACATGCATG	RT synthesis for <i>bot2</i> k.o. (Fen ^R marker)
TL 121 Bot2 RT RV	CCTTGACTGGACACAGCTTAAACGATCCAAACATTGTTGAAAGACATATCGAATGGGAATCGCCGGAAAGGACCCGCAAATG	
TL 130 Fen check F	AACTGGCGCCGAATGCTGGG	Integration check <i>bot2</i> k.o.
TL 132 Bot2 KO R	TCGTCAAGCCATGCCAGAGACTCGTGG	
TL 133 Bot2 KO F	CGACGATCGTACGGTCTTAGTCATTGGACG	Check for WT nuclei in <i>bot2</i> k.o.
TL159 Bot2 WT RV	GACTCGGCAGTATACCGTGGTGCATTCC	
TL147 gRNA_rev	AAAAGCACCAGACTCGGTGCCACTTTCAAGTTGATAACGGACTAGCCTTATTTAACCTGCTATTCTAGCTAAAC	Constant oligonucleotide for sgRNA synthesis
gRNA Bos1-T1	AAGCTAATACGACTCACTATAGGGGGTCAAGCAGAAATCGAGTTAGAGCTAGAAATAGCAAG	sgRNA targeting <i>Bos1</i>
gRNA Bos1-T2	AAGCTAATACGACTCACTATAGGAACTGAAGGTATTCTGGTTTAGAGCTAGAAATAGCAAG	sgRNA targeting <i>Bos1</i>
gRNA Bos1-T3	AAGCTAATACGACTCACTATAGTCCTACATCTTGTACGGTTTAGAGCTAGAAATAGCAAG	sgRNA targeting <i>Bos1</i>
TL25 Bos1-T5 gRNA	AAGCTAATACGACTCACTATAGATTGAGAACGTTGCCGGTTAGAGCTAGAAATAGCAAG	sgRNA targeting <i>Bos1</i>

TL26 Bos1-T7 gRNA	AAGCTAATACGACTCACTATAGCAAGAGATGTAGGAACGTGAGTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>Bos1</i>
TL27 Bos1-T8 gRNA	AAGCTAATACGACTCACTATAGTCGAAGGCCTCAGGGCATGGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>Bos1</i>
TL 107 Sod gRNA 1	AAGCTAATACGACTCACTATAGCACATGACTAATATCTCACGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>sod1</i>
TL125 Nat gRNA1	AAGCTAATACGACTCACTATAGCTGACCGTCGAGGACATCGGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>nat</i>
TL 166 Bcnep1 gRNA	AAGCTAATACGACTCACTATAGCGCTTGGTCAACAACCCGGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>nep1</i>
TL 168 Bcnep2 gRNA	AAGCTAATACGACTCACTATAGTATGTTGAGGAGCAAAGGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>nep2</i>
TL141_SdhB-1_gRNA	AAGCTAATACGACTCACTATAgACACTATTCTCACTGCTCGGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>sdhB</i>
TL142_SdhB-2_gRNA	AAGCTAATACGACTCACTATAGCTGCTCGAGGACATGTCGAGTTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>sdhB</i>
TL148_SdhB_RT_F	AGGAAAAGAATACTTGCATCTAAGGAGGATCGTAAG	Amplification of 500bp <i>sdhB</i> codon 272 mixed RT
TL149_SdhB_RT_R	ACAATGGCTTGGCTTGGAGGACAATG	
TL151_SdhB_OS_F	CCATATCTTCAACACACCGACCCAGCACC	Check for <i>sdhB</i> editing
TL152_SdhB_OS_R	GCCCCCGAATATAATCCAACCCCTCTGAGAGG	
sdhb_F1	CATTAAGCCATATCTTCAACACACC	Primary and nested PCR for Illumina sequencing of <i>sdhB</i>
sdhb_R1	TATGGCTCTTCTTCAATTGCATTC	
sdhb_F2	AGAGTTACAGATGGCTTGCAGATT	
sdhb_R2	ACTTAGCAATAACCGCCAAAC	
MoPit FL F	ATGAGGTTTCTACGGCTTCTC	Verification of <i>MoPIT</i> k.o.
MoPit FL R	CAAGTCACCCATGGAGTGG	
MH-AlbF	GCCCCCACAGCTCCCTACCAAGGCCACGGCCATCCCGTCCAATGCGTTTATT CTTGTGACATG	Amplification of <i>hph</i> with 50bp homologous flanks of <i>MoALB1</i>
MH-Alb R	GCAGAGCCTCTTGCATGAAACCTTGAAGCTGCTTGGCCTGCTCACTGGCCGTGTT TTAC	
MH-Pit F	ATGAGGTTTCTACGGCTTCTCGCCCTGCTCTGGTCGGATGACAATGCGTTT ATTCTTGATGACATGG	Amplification of <i>hph</i> with 50bp homologous flanks of <i>MoPIT</i>
MH-Pit R	CTACAAGTCACCCATGGAGTGGCAATGCTATTCTCACTCACTGGCCGTGTT TTAC	
SeqPit_F	GCACCTCTGGTATCTACTGCC	Sequencing of HR k.o.
SeqPit_R	GTTGATGTAAGGCCCTCT	
sgRNA_Alb1	AAGCTAATACGACTCACTATA GAGAATCTGGAGACGACAGGTTTAGAGCTAGAAATAGCAAG	sgRNA targeting <i>MoALB1</i>
sgRNA_Pit	AAGCTAATACGACTCACTATAGAGTCTTGTATCAAGGCCAGGTTAGAGCTAGAA AATAGCAAG	sgRNA targeting <i>MoPIT</i>
SeqAlb F	GGATTCTCGCCGAGTTCTAC	Sequencing of <i>MoALB1</i> HR k.o.
SeqAlb R	TCGACCAGCTACCCTAGATC	

933