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Abstract

Most neuronal models are based on the assumption that ion concentrations remain
constant during the simulated period, and do not account for possible effects of
concentration variations on ionic reversal potentials, or of ionic diffusion on electrical
potentials. Here, we present what is, to our knowledge, the first multicompartmental
neuron model that accounts for electrodiffusive ion concentration dynamics in a way
that ensures a biophysically consistent relationship between ion concentrations,
electrical charge, and electrical potentials in both the intra- and extracellular space.
The model, which we refer to as the electrodiffusive Pinsky-Rinzel (edPR) model, is an
expanded version of the two-compartment Pinsky-Rinzel (PR) model of a hippocampal
CA3 neuron, where we have included homeostatic mechanisms and ion-specific leakage
currents. Whereas the main dynamical variable in the original PR model is the
transmembrane potential, the edPR model in addition keeps track of all ion
concentrations (Na®, K, Ca?*, and Cl7), electrical potentials, and the electrical
conductivities in the intra- as well as extracellular space. The edPR model reproduces
the membrane potential dynamics of the PR model for moderate firing activity, when
the homeostatic mechanisms succeed in maintaining ion concentrations close to baseline.
For higher activity levels, homeostasis becomes incomplete, and the edPR model
diverges from the PR model, as it accounts for changes in neuronal firing properties due
to deviations from baseline ion concentrations. Whereas the focus of this work is to
present and analyze the edPR model, we envision that it will become useful for the field
in two main ways. Firstly, as it relaxes a set of commonly made modeling assumptions,
the edPR model can be used to test the validity of these assumptions under various
firing conditions, as we show here for a few selected cases. Secondly, the edPR model is
a supplement to the PR model and should replace it in simulations of scenarios in which
ion concentrations vary over time. As it is applicable to conditions with failed
homeostasis, the edPR model opens up for simulating a range of pathological conditions,
such as spreading depression or epilepsy.

Author summary

Neurons generate their electrical signals by letting ions pass through their membranes.
Despite this fact, most models of neurons apply the simplifying assumption that ion
concentrations remain effectively constant during neural activity. This assumption is
often quite good, as neurons contain a set of homeostatic mechanisms that make sure
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that ion concentrations vary quite little under normal circumstances. However, under
some conditions, these mechanisms can fail, and ion concentrations can vary quite
dramatically. Standard models are thus not able to simulate such conditions. Here, we
present what to our knowledge is the first multicompartmental neuron model that in a

biophysically consistent way does account for the effects of ion concentration variations.

We here use the model to explore under which activity conditions the ion concentration
variations become important for predicting the neurodynamics. We expect the model to
be of great use for simulating a range of pathological conditions, such as spreading
depression or epilepsy, which are associated with large changes in extracellular ion
concentrations.

Introduction

The neuronal action potential (AP) is generated by a transmembrane influx of Na™,
which depolarizes the neuron, followed by an efflux of KT, which repolarizes it.
Likewise, all neurodynamics is fundamentally about the movement of ions, which are
the charge carriers in the brain. Therefore, it might seem peculiar that most models of
neuronal activity are based on the approximation that the concentrations of the main
charge carriers (Na™, K*, and C17) do not change over time. This approximation is, for
example, incorporated in the celebrated Hodgkin-Huxley model [1], and a large number
of later models based on a Hodgkin-Huxley type formalism (see, e.g., [2-7]).

Setting the ion concentrations to not change over time is often a fairly good
approximation. The reason is that the number of ions that need to cross the membrane
to charge up the neuron by, say, an AP worth of millivolts, is too small to have any
notable impact on ion concentrations on either side of the membrane (see, e.g., Box 2.2
in [8]), meaning that concentration changes on a short time scale can be neglected. On a
longer time-scale, the ionic exchange due to APs (or other neuronal events), is normally
reversed by a set of homeostatic mechanisms such as ion pumps and cotransporters,
which work to maintain constant baseline concentrations. In Hodgkin-Huxley type
models, the large number of ion pumps, cotransporters and passive ionic leakages that
strive towards maintaining baseline conditions are therefore not explicitly modeled.
Instead, they are simply assumed to do their job and are grouped into a single passive
and non-specific leakage current Ieax = gieak(dm — Fleak), which determines the cell’s
resting potential (for a critical study of this approximation, see [9]).

Another approximation commonly applied by modelers of neurons is that the
extracellular potential is constant and grounded (¢, = 0) so that the only voltage
variable that one needs to worry about when simulating neurodynamics is the
transmembrane potential (¢y,). This assumption is implicit in the majority of
morphologically explicit models of neurons, where the (spatial) signal propagation in
dendrites and axons are computed using the cable equation (see, e.g., [10-12]).
Cable-equation based, multicompartmental neuronal models are widely used within the
field of neuroscience, both for understanding dendritic integration and neuronal
response properties at the single neuron level (see, e.g., [3,4,6,7]) and for exploring the
dynamics of large neuronal networks (see e.g., [13-15]). They are even used in the
context of performing forward modeling of extracellular potentials, such as local field
potentials (LFP), the electrocorticogram (ECoG), and electroencephalogram (EEG)
(see, e.g., [16-18]), despite the evident inconsistency involved when first computing
neurodynamics under the approximation that ¢, = 0 (Fig 1A), and then in the next
step using this dynamics to predict a nonzero ¢, (Fig 1B). The approximation is
nevertheless useful since ¢, is typically so much smaller than ¢, that the (ephaptic)
effect of ¢, on neurodynamics can be neglected without severe loss in accuracy [19].

There are, however, scenarios where the assumptions of constant ion concentrations
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Figure 1. Modeling intra- and extracellular dynamics: standard theory vs.
unified framework. (A) The dynamics of the membrane potential (¢,,) and
transmembrane currents of neurons are typically modeled using cable theory. It is then
assumed that the extracellular environment is grounded (¢, = 0). Typically, it is also
assumed that ion concentrations both in the intra- and extracellular space are constant,
so that also ionic reversal potentials remain constant. (B) When knowing the
transmembrane neuronal currents (as computed in (A)), standard volume conductor
theory [20,21] allows us to estimate the extracellular potential, which is computed as
the sum of neuronal point-current sources weighted by their distance to the recording
location. An underlying assumption is that fluctuations in ¢, (as computed in (B)) are
so small that they have no effect on the neurodynamics (as computed in (A)), i.e.,
there is no ephaptic coupling. Another underlying assumption (cf. constant ion

concentrations) is that extracellular diffusive currents do not affect electrical potentials.

(C) We propose a unified, electrodiffusive framework for intra- and extracellular ion
concentration and voltage dynamics, assuring a consistent relationship between ion
concentrations, electrical charge, and electrical potential in all compartments.

and a grounded extracellular space are not justifiable. Notably, large-scale extracellular
ion concentration changes are a trademark of several pathological conditions, including
epilepsy and spreading depression [22-25]. In these cases, neurons are unable to
maintain their baseline conditions because they for various reasons are too active and/or
their homeostatic mechanisms are too slow. During spreading depression, the
extracellular K* concentration can change from a baseline value of about 3-5 mM to
pathological levels of several tens of mM, and the increased K™ concentration tends to
coincide with a slow, direct-current (DC) like drop in the extracellular potential, which
may be several tens of millivolts in amplitude [25,26], and can give rise to large spatial
gradients. For example, one experiment saw the extracellular KT-concentration and ¢,
vary by as much as 30 mM and 20 mV, respectively, over the hippocampal depth [26].
Such dramatic gradients in the extracellular environment are likely to have a strong
impact on the dynamical properties of neurons, both through the
concentration-dependent changes in ion-channel reversal potentials [27-29] and
putatively through a direct ephaptic effect from ¢, on the membrane potential.

The construction of accurate neuron models that include ion concentration dynamics
(and conservation) poses two key challenges. Firstly, ion conserving models need a finely
adjusted balance between the homeostatic machinery and all passive and active
ion-specific currents so that all ion concentrations, as well as voltages, vary in a
biophysically realistic way over time when the neuron is active. Secondly, in spatially
extended models, ions will not move only across membranes, but also within the
extracellular and intracellular space. Such ionic movement may be propelled both by
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diffusion and electrical drift. Tonic diffusion can, in principle, affect the electrical
potential (since ions carry charge), and the electrical potential can, in principle, affect
ion concentration dynamics (since ions drift along potential gradients) [30-32]. Accurate
modeling of such systems thus requires a unified, electrodiffusive framework that
ensures a physically consistent relationship between ion concentrations, charge density,
and electrical potentials.

Intra- or extracellular electrodiffusion is not an issue in single-compartment models,
of which there are quite a few that incorporate ion concentration dynamics in a more or
less consistent way [28,29,33-47]. There are also several morphologically explicit models
that have included homeostatic machinery and explicitly simulated ion concentration
dynamics (see e.g., [27,48-57]). However, neither of these have accounted for the
electrodiffusive coupling between the movement of ions and electrical potentials (see
Results section titled Loss in accuracy when neglecting electrodiffusive effects on
concentration dynamics). Hence, to our knowledge, no morphologically explicit neuron
model has so far been developed that ensures biophysically consistent dynamics in ion
concentrations and electrical potentials during long-time activity, although useful
mathematical framework for constructing such models are available [58-62].

The goal of this work is to propose what we may refer to as ”a minimal neuronal
model that has it all”. By ”has it all”, we mean that it (1) has a spatial extension, (2)
considers both extracellular- and intracellular dynamics, (3) keeps track of all ion
concentrations (Na®, K+, Ca?*, and CI7) in all compartments, (4) keeps track of all
electrical potentials (¢, de, and ¢; - the latter being the intracellular potential) in all
compartments, (5) has differential expression of ion channels in soma versus dendrites,
and can fire somatic APs and dendritic calcium spikes, (6) contains the homeostatic
machinery that ensures that it maintains a realistic dynamics in ¢, and all ion
concentrations during long-time activity, and (7) accounts for transmembrane,
intracellular and extracellular ionic movements due to both diffusion and electrical
migration, and thus ensures a consistent relationship between ion concentrations and
electrical charge. Being based on a unified framework for intra- and extracellular
dynamics (Fig 1C), the model thus accounts for possible ephaptic effects from
extracellular dynamics, as neglected in standard feedforward models based volume
conductor theory (Fig 1A-B). By "minimal” we simply mean that we reduce the number
of spatial compartments to the minimal, which in this case is four, i.e., two neuronal
compartments (a soma and a dendrite), plus two extracellular compartments (outside
soma and outside dendrite). Technically, the model was constructed by adding
homeostatic mechanisms and ion concentration dynamics to an existing model, i.e., the
two-compartment Pinsky-Rinzel (PR) model [3], and embedding in it a consistent
electrodiffusive framework, i.e., the previously developed Kirchhoff-Nernst-Planck
framework [31,32,60,62]. For the remainder of this paper, we refer to our model as the
electrodiffusive Pinsky-Rinzel (edPR) model.

The remainder of this article is organized as follows. First, we present the edPR
model and illustrate the numerous variables that it can simulate. Next, we show that
the edPR model can reproduce the firing properties of the original PR model. By
running long-time simulations (several minutes of biological time) on both models, we
identify the firing conditions under which the two models maintained a similar firing
pattern, and under which conditions concentration effects became important so that
dynamics of the edPR-model diverged from the original PR model over time. Finally,
we use the electrodiffusive edPR model to explore the validity of some important
assumptions commonly made in the field of computational neuroscience, regarding the
decoupling of electrical and diffusive signals. We believe that the IPCR model will be of
great value for the field of neuroscience, partly because it gives a deepened insight into
the balance between neuronal firing and ion homeostasis, partly because it lends itself
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to explore under which conditions the common modeling assumption of constant ion
concentrations is warranted, and most importantly because it opens for more detailed
mechanistic studies of pathological conditions associated with large changes in ion
concentrations, such as epilepsy and spreading depression [22-25].

Results

An electrodiffusive Pinsky-Rinzel model

The here proposed electrodiffusive Pinsky-Rinzel (edPR) model is inspired by the
original Pinsky-Rinzel (PR) model [3], which is a two-compartment (soma + dendrite)
version of a CA3 hippocampal cell model, initially developed by Traub et al. [2]. In the
original PR model, the somatic compartment contains Na™, and K+ delayed rectifier
currents (In, and Ix_pr), while the dendritic compartment contains a
voltage-dependent Ca2™ current (I¢,), a voltage-dependent K afterhyperpolarization
current (Ix_anp), and a Ca?t-dependent KT current (Ix_c). In addition, both
compartments contain passive leakage currents. Despite its small number of
compartments and conductances, the PR model can reproduce a variety of realistic
firing patterns when responding to somatic or dendritic stimuli, including somatic APs
and dendritic calcium spikes.

In the edPR model, we have adopted all mechanisms from the original PR model. In
addition, we have (i) made all ion channels and passive leakage currents ion-specific, (ii)
included a 3Na™ /2K™ pump ({pump), a KT /Cl™ cotransporter (Ikccz), a
Nat /KT /2CI~ cotransporter (Inkcci), and a Ca?t /2Nat exchanger, and (iii)
included two extracellular compartments (outside soma + outside dendrite). To
compute the dynamics of the edPR, we used an electrodiffusive KNP-framework for
consistently computing the voltage- and ion concentration dynamics in the intra- and
extracellular compartments [60]. The model is summarized in Fig 2 and described in
details in the Methods section.

Key dynamical variables in the electrodiffusive Pinsky-Rinzel
model

While the key variable in the original PR model is the membrane potential ¢, the
edPR model allows us to compute a multitude of variables relevant to neurodynamics.
The functionality of the edPR model is illustrated in Fig 3, which shows a 60 s
simulation where the model fires at 1 Hz for 10 s. We have plotted a selection of output
variables, including the membrane potential (Fig 3A-B), extracellular potentials

(Fig 3C-D), the dynamics of all ion concentrations in all compartments (Fig 3E-H),
concentration effects on ionic reversal potentials (Fig 3I-J), concentration effects on the
electrical conductivity of the intra- and extracellular medium (Fig 3K), and ATP
consumption (Fig 3L) of the 3Na™ /2K pump and Ca?*/2Na™ exchangers.

Unlike neuronal models based on cable theory, where ¢, is assumed to be zero so
that ¢, = ¢i, the edPR model computes ¢, ¢;, and ¢, from a consistent framework
where ephaptic effects from ¢, on ¢, are accounted for (Fig 3C). Due to the electrical
coupling between the soma and dendrite, the fluctuations in ¢,, were similar in these
compartments, and a more detailed analysis of the AP shapes is found further below.
While an action potential essentially gave a depolarization followed by a repolarization
of ¢m, its extracellular signature was essentially a voltage drop (to about —5mV)
followed by a voltage increase (to about +5 mV). This biphasic response of the

extracellular AP signature has been seen in several studies (for an analysis, see [20,21]).

In experimental recordings, amplitudes in ¢, fluctuations are typically on the order of
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Figure 2. edPR model architecture. (A) Two plus two compartments (soma +
dendrite), with intracellular space to the left and extracellular space to the right. Two
kinds of fluxes of different ion species k are involved: transmembrane fluxes (jk dm,
Jk,sm) and intra- and extracellular fluxes (jx,i, jk.e). The dynamics of the potential ¢
and ion concentration dynamics in all compartments were computed using an
electrodiffusive framework, ensuring bulk electroneutrality and a consistent relationship
between ion concentrations, electrical charge, and voltages. (B) Active currents were
taken from the original PR model [3]. In the soma, these consisted of Na® and K™
delayed rectifier currents (In, and Ix.pr). In the dendrite, these consisted of a
voltage-dependent Ca2™ current (Ic.), a Ca?t-dependent KT current (Ixc), and a
voltage-dependent K+ afterhyperpolarization current (Ix_app). Ion specific passive
(leakage-) currents and homeostatic mechanisms were taken from a previous model by
Wei et al. [45], and were identical in the soma and dendrite. These included Na™, K+t
and Cl~ leak currents, a 3Na™ /2K* pump (Ipump), a KT/Cl™ cotransporter (Ixccz),
and a Nat /KT /2C1~ cotransporter (Inkcci). In addition, the dendrite included a
Ca?*t /2Nat exchanger (Ica-dec), providing an intracellular Ca?* decay similar to that
in the PR model.

100 'V, which is much smaller than that predicted by the edPR model. The discrepancy
is an artifact that is mainly due to the 1D approximation in the edPR-model (see
Discussion). The dendritic extracellular potential (Fig 3D) was by definition zero at all
times, as this compartment was used as the reference point for the potential.

The effect of neuronal firing on the ion concentration dynamics is illustrated in
Fig 3E-H. Before the stimulus onset, the cell was resting at approximately -68 mV, and
ion concentrations remained at baseline values. During AP firing, the ion concentrations
varied in a jigsaw-like fashion. As the extracellular volume was set to be half as big as
the intracellular volume, changes in extracellular ion concentrations were about twice as
big as the changes in intracellular ion concentrations. The jigsaw pattern was most
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Figure 3. Output of the edPR model. A 28 pA step-current injection was applied
to the somatic compartment between ¢t = 10 s and ¢ = 20 s, and the model responded
with a firing rate of 1 Hz. (A-B) The membrane potential ¢y, of the soma and the
dendrite, respectively. (C-D) The extracellular (index e) potential ¢, of the soma
(index s) and the dendrite (index d), respectively. The dendritic extracellular
compartment was chosen as the reference point when calculating potentials, so ¢4, was
zero by definition. Since amplitudes in ¢y, were so much larger than for ¢, intracellular
(index 1) potentials (¢ = @e + @) Were similar to ¢y, and therefore not shown. (E-F)
Ion concentrations dynamics of all ion species k (Nat Cl=, K*, Ca?") in all four
compartments shown in terms of their deviance from baseline concentrations. (I-J)
Changes in reversal potentials for all ion species in the soma and the dendrite,
respectively. (K) Change in conductivity of the intra- and extracellular media (o; and
0o, respectively). (L) Accumulative number of ATP molecules consumed by the

3Nat /2K* pumps and Ca?*/2Na*t exchangers.

pronounced for the K™ and Na™ concentrations, as these were the main mediators of
the APs (Fig 3E-H). The pattern reflects a cycle of (i) incremental steps away from
baseline concentrations, which were mediated by the complex of mechanisms active
during the APs, followed by (ii) slower decays back towards baseline, which were
mediated by pumps and cotransporters working between the APs. In this simulation,
the decay was incomplete, so that concentrations reached gradually larger peak values
by each consecutive AP. However, as we show later (see Section titled The edPR model
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predicts homeostatic failure due to high firing rate), the concentrations did, in this case,
approach a firing-frequency dependent steady state. When the firing ceased, the pumps
and cotransporters could work uninterruptedly to re-establish the baseline ion
concentrations. Although a full recovery of ionic concentrations took on the order of 30
s, the resting membrane potential of about —68 mV was recovered much faster (ms
timescale), after which the recovery process was due to an electroneutral exchange of
ions between the neuron and the extracellular space.

As ion concentrations varied during the simulation, so did the ionic reversal
potentials, Fy (Fig 31-J). The by far largest change was seen for the Ca?* reversal
potential in the dendrite (EY q), which dropped by as much as —30 mV during an AP,
(i.e., from a baseline value of 124 mV to 94 mV). The explanation is that the basal
intracellular Ca?*-concentration is extremely low (100 nM) compared to the
concentrations of other ion species (several mM), and therefore experienced a much
larger relative change during the simulation. Among the main charge carriers (Nat CI—,
K™), the lowest concentration is found for K* in the extracellular space (Table 5 in
Methods). For that reason, the second largest change in reversal potential was found for
Ex, which increased by about 5 mV (i.e., from a basal value of -84 mV to -79 mV) in
both the soma and dendrite. The changes in Fc, and Ex had a relatively minor impact
on the firing pattern in the shown simulations, as the relative change in the driving
force ¢, — Fx was not that severe.

The conductivities (o) of the intra- and extracellular bulk solutions depend on the
availability of free charge carriers, and are in the edPR model functions of the ion
concentrations and their mobility (cf. Eq 19). The changes in ¢ were minimal during
the conditions simulated here (Fig 3K), i.e., o varied by a few uS/m over the course of
the simulation, while the basal levels were approximately 0.08 S/m and 0.67S/m for the
intra- and extracellular solutions, respectively.

Finally, the 3Nat /2K* pump and Ca?*/2Na* exchanger use energy in the form of
ATP to move ions against their gradients. The 3Na*/2K™ pump exchanges 3 Na* ions
for 2 KT ions, and consumes one ATP per cycle [63], while we assumed that the
Ca?* /2Na™ exchangers consumed 1 ATP per cycle (i.e., per Ca?" exchanged, as
in [64]). As the edPR model explicitly models these processes, we could compute the
ATP (energy) consumption of the pumps during the simulation. Fig 3L shows the
accumulative number of ATP consumed from the onset of the simulation. The
3Nat/2K™ pump was constantly active, as it combated leakage currents and worked to
maintain the baseline concentration even before stimulus onset. Before stimulus onset,
it consumed ATP at a constant rate (linear curve), which increased only slightly at
t = 10 s when the neuron started to fire (small dent in the curve). As the neuron did
not contain any passive leakage of Ca?*, the Ca?* /2Na™ exchangers were only active
while the neuron was firing. During firing, the Ca?* /2Na™ exchanger combated the
Ca?*t entering through the dendritic Ca?* channels, and then consumed approximately
the same amount of energy as the 3Na™ /2K* pump (parallel curves). A high metabolic
cost of dendritic Ca?* spikes has previously been reported also in cortical layer 5
pyramidal neurons [64].

We note that the edPR model had a stable resting state before stimulus onset and
that it returned to this resting state after the stimulus had been turned off. In this
resting state, ion concentrations remained constant, and ¢, was approximately -68 mV.
This resting equilibrium was due to a balance between the ion-specific leakage channels,
pumps, and cotransporters, which we adopted from previous studies (see Methods).
However, the existence of such a homeostatic equilibrium was not highly sensitive to the
choice of model parameters. As we confirmed through a sensitivity analysis, varying
membrane parameters with + 15% of their default values, only lead to a variation of
about + 2 mV in the resting potential, see Fig 4.
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Figure 4. Sensitivity analysis. To study the steady state’s sensitivity to the values
of the leak conductances gna,leak, JK,leak, and gci lcak, the pump strength p, and the

cotransporter strengths Upkee1 and Uyeea, we performed a sensitivity analysis usin
Uncertainpy, a Python toolbox for uncertainty quantifications and sensitivity

g

analysis [65]. We ran the model for 15 seconds and let the parameters have a uniform
distribution within a £15% interval around their default values. (A) The mean and
standard deviation of the somatic membrane potential. We see that the homeostatic
equilibrium of the model was not highly sensitive to the choice of model parameters.

(B) The total-order Sobol indices for the different parameters. We see that the

relatively small variation in the potential was mostly due to the variation of gna jcak-

This makes sense, knowing that the sodium reversal potential (55 mV) is furthest away
from the resting potential (=~ —68 mV), making the driving force (¢, — F)) of the Na™

leak current stronger than those for the other ion-specific leak currents.

The edPR model reproduces the short term firing properties of

the original PR model.

A motivation behind basing the electrodiffusive (edPR) model on a previously
developed (PR) model, was that we wanted to use the firing properties of the orig
PR model as a "ground truth” when constraining the edPR model. In particular,

inal
we

wanted the edPR model to qualitatively reproduce the interplay between somatic action
potentials and dendritic Ca?* spikes, as this was an essential feature of the original

PR-model [3]. In the PR model, this interplay depended strongly on the coupling

strength (coupling conductance) between the soma and dendrite compartment. A weak

coupling resulted in a wobbly ping-pong effect, where a somatic AP triggered a
dendritic Ca?* spike, which in turn fed back to the soma, giving rise to secondary

oscillations in ¢y, (Fig 5A). With a strong (about five times stronger) coupling, the

somatic and dendritic responses became more similar in shape, as expected (Fig 5

B).
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Figure 5. Short term dynamics of the PR and edPR models. The original PR
model (top row) and the edPR model (bottom row) exhibit the same spike shape
characteristics. (A) Spike shape in PR model for weak coupling (low coupling
conductance) between the soma and the dendrite. (B) Spike shape in PR model for
strong (high intracellular conductivity) coupling between the soma and the dendrite.
(C) Spike shape in edPR model for weak coupling between the soma and the dendrite.

(D) Spike shape in edPR model for strong coupling between the soma and the dendrite.

(A-D) A step-stimulus current was turned on at ¢ = 10s, with stimulus strength being
1.35uA /cm? in (A), 0.78uA/cm? in (B), 31 pA in (C), and 28 pA in (D). The panels
show snapshots of a selected spike. See the Parameterizations section in Methods for a
full description of the parameters used.

Since the edPR model contained membrane mechanisms and ephaptic effects not
present in the PR model, selected parameters in the edPR model had to be re-tuned in
order to obtain similar firing as the PR model (see Methods). With the selected
parameterization of the edPR model (see the Parameterizations section), we were able
to reproduce the characteristic features seen in the PR model for a weak (Fig 5C) and
strong (about five times stronger) coupling between the soma and dendrite (Fig 5D).

The edPR model predicts homeostatic failure due to high firing
rate.

As previously discussed, the PR model was, as most existing neuronal models,
constructed under the assumption that ion concentration effects are negligible, an
assumption that is justified for short term neurodynamics, and for long term dynamics
provided that the activity level is sufficiently low for the homeostatic mechanisms to
maintain concentrations close to baseline over time. Hence, we expect there to be a
scenario (S1) with a moderately low firing rate, where the PR and edPR can fire
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continuously and regularly over a long time exhibiting similar firing properties, and
another scenario (S2) with a higher firing rate, where the PR and edPR models exhibit
similar firing properties initially in the simulation, but where the dynamics of the two
models diverge over time due to homeostatic failure accounted for by the edPR model,
but not the PR model (which ad hoc assume perfect homeostasis). Simulations of two
such scenarios are shown in Figs 6 and 7.

A PR d)sm g PR [c‘(]«2+]di
0 50
> ]
T 65 ) 0
10 15 20 10 15 20
C EDPR. ¢ D EDPR free [Ca?*]g;
0 1000
E 2 500
—65
10 15 20 10 15 20
E Eys F Exa

mV
| =
J- 8

T

mV
| =
P

— Na* — ClI~
+ — a2t
G Al Ty AlK]ai

0 20

mM

I A [k] se J A [k] de
= 00— % 0.0
AR —————— Y
0 1800 3600 0 1800 3600
time [s] time [s]

Figure 6. Model comparison for scenario with low frequency firing.
Simulations on the PR model and edPR model when both models are driven by a
constant input, giving them a firing rate of about 1 Hz. Simulations covered one hour
(3600 s) of biological time. (A-D) A 10 s sample of the dynamics of the somatic
membrane potential ¢y, and dendritic Ca?* concentration in the PR model (A-B) and
edPR model (C-D). This regular firing pattern was sustained over the full 3600 s
simulation in both models (inset panels). (D) Of the total amount of intracellular
Ca?* | only 1% (as plotted) was assumed to be free (unbuffered). (E-F) Ionic reversal
potentials and (G-J) ion concentrations in the edPR model did not vary on a long time
scale. Indices i, e, s, and d indicate intracellular, extracellular, soma, and dendrite,
respectively. (A-J) Stimulus onset was ¢ = 10 s in both models, and stimulus strength
was igtim = 0.78uA /cm? in the PR model (A-B) and g, = 28 pA in the edPR model
(C-J). See the Parameterizations section in Methods for a full description of the
parameters used.

To simulate scenario S1, the PR model (Fig 6A-B) and edPR model (Fig 6C-J) were
given a constant input (see figure caption) that gave them a firing rate of about 1 Hz.
Both models then settled at a regular firing rate, and in neither of them the firing

pattern changed over time, even in simulations of as much as an hour of biological time.

For the edPR model, the S1 scenario is the same as that simulated for only a brief
period in Fig 3. There, we observed that the ion concentrations gradually changed
during the first seconds after the onset of stimulus (Fig 3E-H). However, for endured
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Figure 7. Model comparison for scenario with high frequency firing.
Simulations on the PR model and edPR model when both models are driven by a
constant input, giving them a firing rate of about 3 Hz. Simulations covered 200 s of
biological time. (A-D) A 12 s sample of the dynamics of the somatic membrane
potential ¢, and dendritic (free) Ca?* concentration in the PR model (A-B) and
edPR model (C-D). The regular firing pattern in the PR model (A-B) was sustained
over the full 200 s simulation (inset panels), while the edPR model stopped firing and
entered depolarization block around ¢ = 19 s. (D) Of the total amount of intracellular
Ca?T, only 1% (as plotted) was assumed to be free (unbuffered). (E-F) Ionic reversal
potentials and (G-J) ion concentrations in the edPR model varied throughout the
simulation, and gradually diverged from baseline conditions. Indices i, €, s, and d
indicate intracellular, extracellular, soma, and dendrite, respectively. Main panels show
12 s samples of the ion concentration dynamics, while insets show the dynamics over the
full 200 s simulations. (A-J) Stimulus onset was ¢ = 10 s in both models, and stimulus
strength was igim = 1.554A /cm? in the PR model (A-B) and i, = 46 pA in the
edPR model (C-J). See the Parameterizations section in Methods for a full description
of the parameters used.

firing, the ion concentrations and reversal potentials settled on a (new) dynamic steady
state (Fig 6E-J), where they deviated by ~ 1 mM from the baseline concentrations
during rest (i.e., for edPR receiving no input). The apparent ”thickness” of the curves
(e.g., the orange curve for KT in Fig 61) is due to concentration fluctuations at the short
time scale of AP firing. However, after each AP, the homeostatic mechanisms managed
to re-establish ionic gradients before the next AP occurred, so that no slow
concentration-dependent effect developed in the edPR model at a long time scale.

To simulate scenario S2, the PR model (Fig 7A-B) and edPR model (Fig 7C-J) were
given a constant input (see figure caption) that gave them a firing rate of about 3 Hz.
The PR model, which included no concentration-dependent effects, settled on a regular
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firing rate that it could maintain for an arbitrarily long time. Unlike the PR model, the
edPR model did not settle at a steady state, but had a firing rate of ~ 3 Hz only for a
period of ~ 5 s after stimulus onset. During this period, the ion concentrations
gradually diverged from the baseline levels (Fig 7G-J). The corresponding changes in
ionic reversal potentials (Fig 7E-F) affected the neuron’s firing properties and caused its
firing rate to gradually increase before it eventually entered the depolarization block
and got stuck at about ¢,, = —30 mV. The main explanation behind the altered firing
pattern was the change in the K+ reversal potential, which, for example, at 7 s after
stimulus onset (¢ = 17 s) had increased by as much as 15 mV from baseline. This shift
led to a depolarization of the neuron, which explains both the (gradually) increased
firing rate and the (final) depolarization block, i.e., the condition where ¢y, could no
longer repolarize to levels below the firing threshold, and AP firing was abolished due to
a permanent inactivation of active Nat channels. Neuronal depolarization block is a
well-studied phenomenon, which is often caused by high extracellular KT
concentrations [66].

The homeostatic failure in S2 was due to the edPR model having a too high firing
rate for the ion pumps and cotransporters to maintain ion concentrations close to
baseline. The firing rate of 3 Hz was the limiting case (found by trial and error), i.e., for
lower firing rates than this, the model could maintain regular firing for an arbitrarily
long time. As many neurons can fire at quite high frequencies, a tolerance level of 3 Hz
might seem a bit low, and we here provide some comments to this. Firstly, we note that
the edPR model could fire at 3 Hz (and gradually higher frequencies) for about 9 s, and
could also maintain a higher firing rate than this for a limited time. Secondly, the PR
model, and thus the edPR model, represented a hippocampal CA3 neuron, which has
been found to have an average firing rate of less than 0.5 Hz [67], so that endured firing
of > 3 Hz may be abnormal for these neurons. Thirdly, under biological conditions, glial
cells, and in particular astrocytes, provide additional homeostatic functions [68] that
were not accounted for in the edPR model, and the inclusion of such functions would
probably increase the tolerance level of the neuron. Fourthly, the (3 Hz) tolerance level
was a consequence of modeling choices and could be made higher, e.g., by increasing
pump rates or compartment volumes. However, we did not do any model tuning in
order to increase the tolerance level, as we, in light of the above arguments, considered a
3 Hz tolerance level to be acceptable.

The edPR model predicts homeostatic failure due to impaired
homeostatic mechanisms.

Above we simulated homeostatic failure occurring because the firing rate became too
high for the homeostatic mechanisms to keep up (S2). Homeostatic failure may also
occur due to impairment of the homeostatic mechanisms, either due to genetic
mutations (see, e.g., [69]) or because the energy supply is reduced, such as after a stroke
(see, e.g., [25]). Here, we have used the edPR model to simulate an extreme version of
this, i.e., a third scenario (S3) where all the homeostatic mechanisms were turned off.

In S3, the neuron received no external input, so that the dynamics of the neuron was
solely due to gradually dissipating transmembrane ion concentration gradients. After an
initial transient, we observed a slow and gradual increase in the membrane potential for
about 30 s (Fig 8A). This coincided with a slow and gradual change in the ion
concentrations (Fig 8D-G) and ionic reversal potentials (Fig 8B-C) due to
predominantly passive leakage over the membrane.

At about t = 30 s, the membrane potential reached the firing threshold, at which
point the active channels started to use what was left of the concentration gradients to
generate action potentials and Ca?* spikes. This resulted in a burst of activity. During
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Figure 8. The wave of death. Simulations on the edPR model when all homeostatic
mechanisms were turned off. The model received no external stimulus. Simulations
covered 10 minutes of biological time. (A) A 60 s sample of the dynamics of the
somatic membrane potential ¢,,. Inset shows a close-up of the burst of activity
occurring at about ¢ = 30 s. (B-C) Reversal potentials in the soma (B) and dendrite
(C). (D-G) Ion concentrations in all four compartments. Somatic and dendritic
concentrations were almost identical for all ion species except for Ca?*. Indices i, e, s,
and d indicate intracellular, extracellular, soma, and dendrite, respectively. See the
Parameterizations section in Methods for a full description of the parameters used.

this bursts of activity, ion concentrations changed even faster, since both active and
passive channels were then open. As a consequence, the "resting” membrane potential
was further depolarized and the neuron went into depolarization block [66]. After this,
the neuron continued to ”"leak” until it settled at a new steady state. The non-zero final
equilibrium potential is known as the Donnan equilibrium or the Gibbs-Donnan
equilibrium [70]. The reason why the cell did not approach an equilibrium with ¢, =0
and identical ion concentrations on both side of the membrane, is that the model
contained static residual charges, representing negatively charged macromolecules
typically residing in the intracellular environment (see Methods), the sum of which
resulted in a final state with a negatively charged inside. In addition, the membrane
was also impermeable to Ca?" in its final state (¢ > 1 min) since the Ca?* channel
inactivated, and the model contained no passive Ca?* leakage. This explains why the
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Ca?* reversal potential did not end up at Donnan-equilibrium potential, as did the
reversal potential of the other mobile ions.

A pattern resembling that in Fig 8A, i.e., period of silence, followed by a burst of
activity, and then silence again, has been seen in experimental EEG recordings of
decapitated rats [71], where the activity burst was referred to as ”the wave of death”,
and the phenomenon was ascribed to the lack of energy supply to homeostatic
mechanisms. The simulations in Fig 8A represents the single-cell correspondence to this
death wave. We note that this phenomenon has been simulated and analyzed
thoroughly in a previous modeling study, using a simpler, single compartmental model
with ion conservation [40]. We, therefore, do not analyze it further here.

Loss in accuracy when neglecting electrodiffusive effects on
concentration dynamics

The concentration-dependent effects studied in the previous subsection were
predominantly due to changes in ionic reversal potentials. Effects like this could
therefore be accounted for by any model that in some way incorporates ion
concentration dynamics [27-29,33-57], provided that the ion concentration dynamics is
accurately modeled. As we argued in the Introduction, previous multicompartmental
neuron models that do incorporate ion concentration dynamics have not done it in a
complete, ion conserving way that ensures a biophysically consistent relationship
between ion concentration, electrical charge, and electrical potentials (see,

e.g., [27,48-57]). To specify, the change in the ion concentration in a given
compartment will, in reality, depend on (i) the transmembrane influx of ions into this
compartment, (ii) the diffusion of ions between this compartments and its neighboring
compartment(s), and (iii) the electrical drift of ions between this compartment and its
neighboring compartment(s). Some of the cited models account for only (i) [27,49,51],
others account for (i) and (ii) [48,50,52-57], but neither account for (iii). When (iii) is
not accounted for, electrical and diffusive processes are implicitly treated as independent
processes, a simplifying assumption which is also incorporated in the reaction-diffusion
module [72] in the NEURON simulation environment [73]. In models that apply this
assumption, there will therefore be drift currents (along axons and dendrites) that affect
¢m (through the cable equation), but not the ion concentration dynamics, although they
should, since also the drift currents are mediated by ions.

Here, we use simulations on the edPR model to test the inaccuracy introduced when
not accounting for the effect of drift currents on ion concentration dynamics. We do so
by comparing how many ions that were transferred from the somatic to the dendritic
compartment through the intracellular (Fig 9A) and extracellular (Fig 9B) space, due
to ionic diffusion (orange curves) versus electrical drift (blue curves), throughout the
simulation in Fig 3. We note that Fig 9 shows the accumulatively moved number of ions
(from time zero to t) due to axial fluxes exclusively. That is, the large number of, for
example, Na™ ions transported intracellularly from the dendrite to the soma (negative
sign) in Fig 9A1, does not by necessity mean that Na™ ions were piling up in the soma
compartment, as the membrane efflux of Na™ was not accounted for in the figure.

Although diffusion tended to dominate the intracellular transport of ions on the long

time scale (Fig 9A1-A4), the transport due to electrical drift was not vanishingly small.

For example, the number of K™ and Cl~ ions transported by electrical drift was at the
end of the stimulus period (¢ = 20 s) about 30 and 42 %, respectively, of the transport
due to diffusion. In the extracellular space, diffusion was the clearly dominant
transporter of Na™ and KT (Fig 9B1-B2), while diffusion and electrical drift were of
comparable magnitude for the other ion species (Fig 9B3-A4). Of course, these
estimates are all specific to the ICRP model, as they will depend strongly on the
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Figure 9. Axial transport of ions and charge due to drift versus diffusion.
(A1-A4) The number of ions transported intracellularly from soma to dendrite from
time zero to t by electrical drift versus ionic diffusion. (B1-B4) The number of ions
transported extracellularly from (outside) soma to (outside) dendrite from time zero to
t. (A5) Net charge transported intracellularly from soma to dendrite, represented as
the number of unit charges et. (B5) Net charge transported extracellularly from soma
to dendrite, represented as the number of unit charges et. (A-B) The simulation was
the same as in Fig 3. See the Analysis section in Methods for a description of how we
did the calculations.

included ion channels, ion pumps and cotransporters, and on how they are distributed
between the soma and dendrite. In general, however, the simulations in Fig 9 suggest
that electrical drift is likely to have a non-negligible effect on ion concentration
dynamics, and that ignoring this effect will give rise to rather inaccurate estimates.
Finally, we also converted the sum of ionic fluxes in Fig 9 into an effective current,
represented as the number of transported unit charges, et (Fig 9A5-B5). Interestingly,
diffusion and drift contributed almost equally to the axial charge transport in the
system. We note, however, that the movement of charges per time unit is indicated by
the slope of the curves, which was much larger for the drift case (blue curve) than for
diffusion (orange curve). The drift curve had a jigsaw shape, which shows that drift was
moving charges back and forth in the system, while the diffusion always went in the
same direction, explaining why it, despite being smaller than the drift current, had a
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comparably large accumulative effect on charge transport. The temporally averaged
picture of charge transport that emerges from Fig 9A5 is that of a slow current loop
where charge is transferred intracellularly from the soma to the dendrite (Fig 9A5),

where it crosses the membrane (outward current), and then is transferred extracellularly

back from the dendrite to the soma (Fig 9B5), before crossing the membrane again
(inward current). This configuration is similar to the slow loop current seen during
spatial buffering by astrocytes (see, e.g. Fig 1 in [68]).

Loss in accuracy when neglecting electrodiffusive effects on

voltage dynamics

In the previous section, we investigated the consequences of neglecting (iii) the

contribution of drift currents on ion concentration dynamics. Here, we investigate the
consequences of neglecting the effect of ionic diffusion (along dendrites and axons) on

the electrical potential, focusing on the extracellular potential ¢.. Forward modeling of
extracellular potentials is typically based on volume conductor (VC)

theory [16-18,20,21], which assumes that diffusive effects on electrical potentials are
negligible. Being based on a unified electrodiffusive KNP framework (Fig 1), the edPR
model accounts for the effects of ionic diffusion on the electrical potentials, and can thus
be used to address the validity of this assumption.
To illustrate the effect of diffusion on ¢, we may split it into a component ¢vc e
explained by standard VC-theory, and a component @gis o representing the additional

contribution caused by diffusive currents (Eq 81). In the simulation in Fig 3, the

diffusive contribution was found to be very small compared to the VC-component (Fig
10). However, while ¢vc o fluctuated rapidly from negative to positive values during
neuronal activity, @qifr.. varied on a slower time scale and had the same directionality
throughout the simulation. This is equivalent to what we saw in Fig 9B5, i.e., that
diffusion always moved charge in the same direction. As we also have shown in previous
studies, diffusion is thus likely to be important for the slow (direct-current (DC) like)

effects on extracellular potentials [31,32,74,75]. Albeit small, the slowly varying

diffusion evoked shifts in ¢, are putatively important for explaining the DC-shifts and
long-time concentration dynamics reported during, e.g., spreading depression [25, 26].

Extracellular potential

5} Ve
A diff B
— KNP 0.25F
Z 0
)
1 1 _0.25 1 1
0 10 20 30 19360 19380 19400
time [s] time [ms]

Figure 10. Effect of diffusion on extracellular potential. The extracellular

potential ¢, in the edPR model, split (cf. Eq 81) into a component explained by

standard VC-theory (¢vc.e) and a ”correction” (@gifr,e) when diffusive contributions are

accounted for. (A-B) The simulation was the same as in Fig 3. (B) Close-up of

selected AP in (A). See the Analysis section in Methods for a description of how we

calculated ¢vc e and dgisr,e. mean(pe)= —0.0021 mV, mean(aigr,)= 0.0034 mV,

mean(¢yc,e)=—0.0055 mV
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Discussion

The original Pinsky-Rinzel (PR) is a reduced model of a hippocampal neuron, which
reproduces the essential somatodendritic firing properties of CA3 neurons despite
having only two compartments [3]. Simplified neuron models like that are useful, partly
because their reduced complexity makes them easier to analyze, and as such, can lead to
insight in key neuronal mechanisms, and partly because they demand less computer
power and can be used as modules in large scale network simulations. Whereas the PR
model, as most available neuron models, assumes that ion concentrations remain
constant during the simulated period, the electrodiffusive Pinsky-Rinzel (edPR)
proposed here models ion concentration dynamics explicitly. The edPR model may thus
be seen as a supplement to the PR model, which should be applied to simulate
conditions where ion concentrations are expected to vary with time.

In the results section, we showed that the edPR model closely reproduced the firing
properties of the PR model for short term dynamics (Fig 5), and for long term
dynamics provided that the firing rate was sufficiently low for the homeostatic
mechanisms to maintain ion concentrations close to baseline (Fig 6). We also showed
that if the firing rate became too high (Fig 7), or if the homeostatic mechanisms were
impaired (Fig 8), unsuccessful homeostasis would cause ion concentrations to gradually
shift over time, and lead to slowly developing changes in the firing properties of the
edPR model, changes that were not accounted for by the original PR model. The edPR
model was based on an electrodiffusive framework [60], which ensured a consistent
relationship between ion concentrations, electrical charge, and electrical potential in
four compartments. To our knowledge, the edPR model is the first multicompartmental
neuronal model that ensures a complete and consistent ion concentration and charge
conservation.

Model assumptions

The construction of the edPR model naturally involved making a set of modeling
choices, and the most important of these are discussed here. Firstly, in the construction
of the model, we focused on morphological simplicity, biophysical rigor, and mechanistic
understanding, rather than on replicating any specific biological scenario and
incorporating biological details. Secondly, simultaneous data of variations in all intra-
and extracellular concentrations during neuronal firing are not available, and it might
not even be feasible to obtain such data. Consequently, modeling based on biophysical
constraints may be the best means to estimate it. The concentration dynamics in the
edPR model were thus not directly constrained to data but constrained so that there
was, at all times, an internally consistent relationship between all ion concentrations
and all electrical potentials, ensuring an electroneutral bulk solution. Thirdly, to include
extracellular dynamics to models of neurons or networks of such is computationally
challenging, since the extracellular space, in reality, is an un-confined three-dimensional
continuum, locally affected by populations of nearby neurons and glial cells. As we
wanted to keep things simple and conceptual, we chose to use closed boundary
conditions, i.e., no ions and no charge were allowed to leave or enter the system
consisting of the single (2-compartment) neuron and its local and confined
(2-compartment) surrounding (Fig 2).

A consequence of using closed boundary conditions was that the extracellular (like
the intracellular) currents became one-dimensional (from soma to dendrite), while in
reality, extracellular currents pass through a three-dimensional volume conductor. The
edPR model could be made three dimensional if embedded in a bi- or tri-domain model
(as discussed below). However, currently, it is 1D, and the effect of the 1D assumption
was essentially an increase in the total resistance (fewer degrees of freedom) for
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extracellular currents, which gave rise to an artificially high amplitude in extracellular
AP signatures (Fig 3). We note, however, that the closed boundary is actually
equivalent to assuming periodic boundary conditions, so that the edPR model
essentially simulates the hypothetical case of a population of perfectly synchronized
neurons, i.e., one where all neurons are doing exactly the same as the simulated neuron,
so that no spatial variation occurs. Likely, this may give accurate predictions for ion
concentration shifts over time, as these reflect a temporal average of activity, but less
accurate predictions for brief and unique electrical events, such as action potentials,
which are not likely to be elicited in perfect synchrony by large population [31].

Fourthly, to faithfully represent a morphologically complex neuron with a reduced
number of compartments is a non-trivial task. Available analytical theory for collapsing
branching dendrites into equivalent cylinders are generally based on certain assumptions
about branching symmetries, and on preserving electrotonic distances [76]. However, it
is unlikely that the length constants of electrodynamics and ion concentration dynamics
scale in the same way. Hence, in the edPR model, the volumes and membrane areas of-,
and cross-section areas between, the two neuronal compartments were here introduces
as rather arbitrary model choices, fixed at values that were verified to give agreement
between the firing properties of the edPR model and the PR model.

Outlook

Being applicable to simulate conditions with failed homeostasis, the edPR model opens
up for simulating a range of pathological conditions, such as spreading depression or
epilepsy [22-25], which are associated with large scale shifts in extracellular ion
concentrations. A particular context in which we anticipate the edPR model to be
useful is that of simulating spreading depression. Previous spatial, electrodiffusive, and
biophysically consistent models of spreading depression have targeted the problem at a
large-scale tissue-level, using a mean-field approach [30,77,78]. These models were
inspired by the bi-domain model [79], which has been successfully applied in simulations
of cardiac tissue [80,81]. The bi-domain model is a coarse-grained model, in which the
tissue is considered as a bi-phasic continuum consisting of an intracellular and
extracellular domain. That is, a set of intra- and extracellular variables (i.e., voltages
and ion concentrations), and the ionic exchange between the intra- and extracellular
domains, are defined at each point in space. This simplification allows for large scale
simulations of signals that propagate through tissue but sacrifices morphological detail.
In the context of spreading depression, a shortcoming with this simplification is that the
leading edge of the spreading depression wave in both the hippocampus and cortex is in
the layers containing the apical dendrites [22]. This suggests that the different
expression of membrane mechanisms in deeper (somatic) and higher (dendritic) layers
may be crucial for fully understanding the propagation and genesis of the wave. In this
context, the edPR model could enter as a module in a, let us say, bi-times-two-domain
model, where each point in (xzy) space contains a set of (i) somatic intracellular
variables, (ii) somatic extracellular variables, (iii) dendritic intracellular variables and
(iv) dendritic extracellular variables, and thus accounts for the differences between the
higher and lower layers. We should note that the state of the art models of spreading
depression are not bi-domain models but rather tri-domain models, as they also include
a glial domain to account especially for the work done by astrocytes in K+

buffering [30,77,78]. Hence, to use the edPR model to expand the current spreading
depression models, a natural first step would be to include a glial (astrocytic)
compartment in it, so that it eventually could be implemented as a
tri-times-two-domain model.
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Methods
The Kirchoff-Nernst-Planck (KNP) framework

In the following section, we derive the KNP continuity equations for a one-dimensional
system containing two plus two compartments (Fig 2A), with sealed boundary
conditions (i.e., no ions can enter or leave the system). The geometrical parameters
used in the edPR model were as defined in Table 1.

Table 1. Geometrical parameters

Parameter Value

Az (distance between the two compartments) 667 - 107%m
Ag (somatic membrane area) 616 - 10~ 12 m?
Aq (dendritic membrane area) 616 - 10712 m?
A; (intracellular cross-section area) a- At

A (extracellular cross-section area) A; /2

1437 - 10~ 8 m3
1437 - 10~ ¥ m3
718.5 - 10~ 18 m?
718.5 - 10~ ¥ m?

Vs (somatic intracellular volume)
Vse (somatic extracellular volume)
ai (dendritic intracellular volume)

14
Ve (dendritic extracellular volume)

The intracellular volumes (V;, Vqi) and membrane areas (As, Ag) correspond to

spheres with radius 7pm. We used the same intra-/extracellular volume ratio as in [40].

T The parameter o describes the coupling strength of the model and is defined in the
Parameterizations section. Its default value was 2.

Two kinds of fluxes are involved: transmembrane fluxes and intra- and extracellular
fluxes. The framework is general to the choice of the transmembrane fluxes. A
transmembrane flux of ion species k (jxm) represents the sum of all fluxes through all
membrane mechanisms that allow ion k to cross the membrane.

Intracellular flux densities are described by the Nernst-Planck equation:

- _&W([k}di — [klsi) _ DinF e ¢ai — ¢si
et = A? Az X2 RT [k]; A (1)

In Eq 1, Dy is the diffusion constant, 7y is the fraction of freely moving ions, that is,
ions that are not buffered or taken up by the ER, ); is the tortuosity, which represents
the slowing down of diffusion due to obstacles, vk ([klai — [Kk]si)/Ax is the axial
concentration gradient, zy is the charge number of ion species k, I is the Faraday
constant, R is the gas constant, T' is the absolute temperature, [k], is the average
concentration, that is, vi([k]ai + [k]si)/2, and (¢ai — ¢si)/Ax is the axial potential
gradient. Similarly, the extracellular flux densities are described by

] = —& [k]de — [k]se _ DkaFm ¢de - (bse
Jk.e A2 Ax NRT e Ar
In Eq 2, we do not include ~yy, as all ions can move freely in the extracellular space.

Diffusion constants, tortuosities, and intracellular fractions of freely moving ions used in
the edPR model were as in Table 2.

(2)

Ion conservation

The KNP framework is based on the constraint of ion conservation. To keep track of ion
concentrations we solve four differential equations for each ion species k:

d[k]si o . As . Ai
7 - _]k,sm Vsi - ]k,l Vsi7 (3)
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Table 2. Diffusion constants, tortuosities, and intracellular fractions of
freely moving ions

Parameter Value Reference
Dn. (Na™ diffusion constant) 1.33-107%m?/s  [31,82]
Dk (KT diffusion constant) 1.96-10"2m?/s  [31,82]
D¢ (CI™ diffusion constant) 2.03-107%m?/s  [31,82]
D¢, (Ca?T diffusion constant) 0.71-107%m?/s  [31,82]
Ai (intracellular tortuosity) 3.2 (60, 83]
e (extracellular tortuosity) 1.6 [60,83]
YNas VK, Y1 (intracellular fractions of free ions) 1
~Yca (intracellular fraction of free ions) 0.01
d[k]ai , Aa . A
= - m’ T, it ) 4
7 Jeam 37 F ki g (4)
d[k]se . As . Ae
= sm * - e’ ) 5
a +Jk, Ve TRey (5)
d[k]de . Ad . Ae
i Lo e 6
7 Fikedm * 37— F ke 3 (6)

For each compartment, all flux densities are multiplied by the area they go through and
divided by the volume they enter to calculate the change in ion concentration. If we
insert the Nernst-Planck equation (Eq 1) for the intracellular flux density, the first of
these equations becomes:

d[k]si o . As + Aka
dt h jk,sm Vse Vsi)\iQAI’ Yk

ZkF—
klai — [klsi) + -+ Kl;(¢ai — ¢si) | 7
(5~ ) + W0 = 60|, ()
where the voltage variables so far are undefined.

Four constraints to derive ¢

If we have four ion species (Nat, KT, C17, and Ca?") in four compartments, we have
20 unknown parameters (16 for [k] and four for ¢), while Eqs 3-6 for four ion species
give us only 16 equations. To solve this, we need to define additional constraints that
allow us to express the potentials ¢ in terms of ion concentrations.

(i) Arbitrary reference point for ¢. As we may define an arbitrary reference
point for ¢, we take

¢de = Oa (8)

as our first constraint, i.e., the potential outside the dendrite is defined to be zero.

(ii) Membrane is a parallel plate capacitor The second constraint is that the
membrane is a parallel plate capacitor that always separates a charge ) on one side
from an opposite charge —@Q on the other side, giving rise to a voltage difference

Here, C,, is the total capacitance of the membrane, i.e., Cy, = ¢y A, Where ¢y, is the
more commonly used capacitance per membrane area. As, by definition, ¢, = ¢; — @,
we get:

¢dm = ¢di - Qdi/cm7 (10)
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in the dendrite (since ¢q. = 0), and

¢sm = ¢si - d)de = Qsi/Cnm (11)

in the soma.

(iii) Bulk electroneutrality. The KNP scheme is based on the assumption of bulk
electroneutrality, which means the net charge associated with the ion concentrations in
a given compartment by constraint must be identical to the membrane charge in this
compartment. The intracellular dendritic charge is thus Qg = F' Y 2k [k|aiVai- By

Kk

inserting this into Eq 10, we obtain the final expression for ¢q;:

¢ai = (Fzzk[k]divdi)/(cmAd)- (12)

k

By inserting the equivalent expression for Qg into Eq 11, we get

Gsi — Pse = Qsi/cm = (Fzzk[k]sivsi)/(cmAs)- (13)
k

Here, the extracellular potential is not set to zero, so we need a fourth constraint to
determine ¢g; and ¢g, separately.

(iv) Current anti-symmetry. For the charge anti-symmetry between the two sides
of the capacitive membrane (Q; = —Q.) to be preserved in time, we must define our
initial conditions so that this is the case at ¢ = 0, and the system dynamics so that this
stays the case. Hence, the system dynamics must ensure that dQq;/dt = —dQq./dt and
dQsi/dt = —dQse/dt. The membrane currents (in isolation) will always fulfill this
criterion, as any charge that crosses the membrane by definition disappears from one
side of it and pops up at the other. Hence, we thus need to make sure that also the
axial currents (in isolation) fulfill the criterion. The system must thus be constrained so
that, if an extracellular current transports a charge dq into a given extracellular
compartment, the intracellular current must transport the opposite charge —dq into the
adjoint intracellular compartment. That is, we must have that:

Ajiy = —Agic, (14)

where 4; and i, are the intra- and extracellular current densities, respectively. To find an
expression for these, we multiply Egs 1 and 2 by Fzyx and sum over all ion species k.
The expressions for the intra- and extracellular current densities then become:

. F F? —
=" 2As Ek:Dkak([k}di — [k]si) — NRTAz %:Dkzkz[k]i((bdi —¢si),  (15)

2 R—
i == 3 30 Dik(ae — o) — 3z 0 Dea G — 6)- (16)
€ k € k

In Eq 15, the first term is the diffusion current density:

. F
1diff,i = *)\?Tm ; Dkzk'Yk([k]di - [k]si)v (17)
which is defined by the ion concentrations. The second term is the field driven current
density
. (¢di - ¢si)
ieldi = —0i— x> 18
ifield, o AL (18)
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where we have identified the conductivity as 601
i (19)
0= —— z .
RTAZ 4= 17 1
Similarly, Eq 16 can be written in terms of 4qiff e, %ficld,c, and o.. By combining Eqs 14, e
15, and 16, we obtain: 603
(¢d1 d)m) (¢de ¢se)

— Ajigise i + Ao - = Aclaiff,e — AcOe -

Az ’ Ax

In Eq 20, ¢q; and ¢ge are already known from Eqs 8 and 12, while iq;¢¢ and o are
expressed in terms of ion concentrations. We may thus solve Eqs 13 and 20 for the last
two voltage variables ¢ge and ¢g;:

(20)

Az AeAl’ Qsi Aeoe
e = dai — = -iqiers — idiff .o — 1 , 21
Pse (¢>d1 5yttt — T ddifte — / {1+ Ao, (21)
Qs

¢si = szs + ¢se- (22)
Membrane mechanics 604
Leakage channels 605
In the original PR model, the membrane leak current represents the combined 606
contribution from all ion species. When using the KNP framework, on the other hand, o
where we keep track of all ions separately, the leak current must be ion-specific. We 608
modeled this as in [45], that is, for each ion species k, we implemented a passive flux 609
density across the membrane 610

jk,leak = gk,leak((bm - Ek)/(FZk), (23)
where gk lcak is the conductance, ¢y, is the membrane potential, E, is the reversal 611
potential, F' is the Faraday constant, and zjy is the charge number. The reversal 612
potential is a function of ion concentrations, and is calculated using the Nernst equation: 63

RT k
Ek:—n[]e. (24)
2 ks

Here, R is the gas constant, T is the absolute temperature, vy is the intracellular 614
fraction of free ions, and [k]. and [k]; are the concentrations of ion k outside and inside s
the cell, respectively. We included Nat, KT, and Cl~ leak currents in both 616
compartments. 617
Active ion channels 618

All active ion channel currents were adopted from the original PR model [3], as they
were described in [8], and converted to ion channel fluxes. The soma compartment
contained a Na™ flux (jna) and a KT delayed rectifier flux (jx_pgr), while the dendrite
contained a voltage-dependent Ca?* flux (jca), a voltage-dependent K+ AHP flux
(jx_amp), and a Ca?*-dependent K+ flux (jx_c):

JNa = gNa(@sm — ENas)/(F2Na),
JK-DR = 9DR(Psm — Fxs)/(Fzk),
Jca = 9gca(ddm — Eca,a)/(Fzca),
Jk—auP = gAHP (Pam — Ex,a)/(Fzk),
Jk—c = gc(¢dm — Fxa)/(Fzk).

N DN
O Ut

[\
(03]

~ o~ o~ —~
N [\
e ~
—_— o — T
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The voltage-dependent conductances were modeled using the Hodkin-Huxley
formalism with differential equations for the gating variables:

d

d—gtg =ax(l —z) — fxx, with x =m,h,n,s,c,q, (30)
dz  Zoo — 2

dz _ , 31
dt T, (31)

The conductances and gating variables were given by:
gNa = gNamgoha
gDR = GDRM,

(32)
(33)
gca = gcas’z, (34)
(35)
(36)

gc = geex([Cat)), 35
gAHP = GAHPY, 36
3.2.10% - ¢,
S , With ¢1 = ¢m + 0.0469 37
@ oxp(—g1/0.004) —1° Vith O1= 0m + (37)
2.8-10° - ¢y
m= , with ¢y = ¢y + 0.0199 38
P = e (@a/0.005) =17 Vith 92 = @m + (38)
Qi
_ 39
T+ B (39)
—0.043 — ¢rm
=12 _— 4
om = 128 exp ——g e (40)
4000
= , with ¢3 = ¢ + 0.02 41
P = T oxpl=gs/0.005)" "ith 93 = Pm + (41)
1.6 -10% - ¢4
n=— , with ¢4 = pm + 0.0249 42
@ oxp(—01/0.005) —1° Vith 91 = 0m + (42)
By = 250 exp(—5/0.04), with ¢5 = ¢ + 0.04 (43)
1600
s — ) 44
T 1+ exp(—72(dm — 0.005)) (44)
2-10% - ¢
= , with ¢ = dum + 0.0089 45
B = p(Be/0.005) =1’ ViR @6 = m + (45)
1
o = , with ¢7 = ¢ + 0.03 46
%0 = T oxp(gn/0.001) "R @7 = Om F (46)
Tz = 17 (47)
d) .
o 52.7exp (%51 = 5557 ) > 1 om < —0.01 V )
2000 exp(—¢o/0.027), otherwise
with ¢s = ém — 0.05 and ¢g = G — 0.0535 (49)
2000 exp(— ¢ /0.027) — ae, if ¢ < —0.01 V
e = { 2000 PL=0/0.020) ~ e, 1l O = (50)
0, otherwise
 ycalCa?t] —99.8 1076
x = min(TClCOTL =8 T0T ). 1)
aq = min(2 - 10*(yca[Ca®T] — 99.8 - 1079), 10), (52)
Bq = 1. (53)

All these equations were taken from [8] (with errata [84]), and converted so that values
are given in SI units: units for rates (a’s, 8’s, x) are 1/s, units for 7, is s, and voltages
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¢ should be inserted with units in V. The equations were used in their original form,
except those related to Ca?* dynamics, where we made the following changes: Firstly,
as a large fraction of intracellular Ca2T is buffered or taken up by the ER, we multiplied
[Ca?*] in Eqs 51 and 52 by a factor yca, which refers to the fraction of free Ca?* within
the cell, and set this to be 0.01. As [Ca?*] in Eqs 51 and 52 were multiplied with 0.01,
only the free Ca?*t could affect the Ca?t activated ion channels. We further assumed
that only the free Ca?* could move between the intracellular compartments (Eq 1) and
affect the Ca2T reversal potential (Eq 24). Secondly, the original PR model had an
abstract and unitless variable for the intracellular Ca?* concentration, with a basal
concentration of 0.2, while we defined a (biophysically realistic) baseline concentration
of 0.01 mM, which corresponds to a concentration of free Ca?* of 100 nM. In Eqs 51
and 52 we therefore subtracted 99.8 - 1076 (mol/m?) from the Ca?* concentration to
correct for the shift in baseline. Thirdly, we modified the voltage-dependent Ca?*
current to include an inactivation variable z (Egs 31 and 34). We implemented this
inactivation like they did in [85] (Eqs. A2-A3), but set the time constant 7, to 1s, the
half-activation voltage to —30mV, and the slope of the steady-state Boltzmann fit to
Zso t0 0.001. In the original PR model, inactivation was neglected due to the argument
that it was too slow to have an impact on simulation outcomes [2]. However, in our
simulations, we observed that it had a significant impact, and therefore we included it.

Homeostatic mechanisms

To maintain baseline ion concentrations for low frequency activity we added a
3Nat/2K™ pump, a KT /Cl™ cotransporter (KCC2), and a Na®™ /K*/2C1~
cotransporter (NKCC1). Their functional forms were taken from [45].

P 1.0

Jpump = 1.0 + exp((25 — [Nat];)/3) 1.0+ exp(3.5 — [K*].)’ (54)
. K*;[C17];
Jkee2 = UkccQ In <[[I<+]]JCI_L> 5 (55)

ot = Unnee (0710 (1o (G ) o (B2 ) ) o)
1

FTe) = oo -’ o

where p, Ukec2, and Upkeec1 are pump and cotransporter strengths. We assumed optimal
pump functionality and set p to be the pump strength used in [45] for the fully
oxygenated state with normal bath potassium (pmax)-

Intracellular Ca®* decay was modeled in a similar fashion as in [3], but to ensure ion
conservation we modeled it as Ca?*/NaT exchanger, exchanging one Ca** (outward)
for two Na™ (inward). The Ca?* decay flux density was defined as:

Vi
An

jCafdec =75- ([CaQJr]i - [Ca2+:|i70) : (58)

where 75 is the decay rate, same as in [3] but in SI units, and [Ca?*]; ¢ is the initial
Ca?*t concentration.
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Model summary 649

We summarize the model here for easy reference. In short, we solved four differential
equations for all ion species k:

d[K]si . A . A
-, - — sm * - — i’ 5 59
R TR 59)
dk]ai ) Aq . A;
= —Jkdm - - , 60
7 Jk,d Va + Jk, Va (60)
d[K]se . A . A,
- sm ° - . ) 61
qr = Tkem g ke g (61)
d[k]de . Ad . Ae
— - o . 62
7t +Jk,d v + Jk, Vs (62)
At each time step, ¢ in all four compartments was derived algebraically:

(bdc = 07 (63)
¢ai = Qai/(cmAa) (64)
AZL’ AeA.’E . Qsi Aeoe
se = | @di — —— ~ddiff,i — ———— " ldiff,e — 1 ; 65
o) <¢>d p Ldift, o, idifr, CmAs) /( + AiUi) (65)

Qsi
si — se- 66
¢ cmAs + b (66)
The total membrane flux densities were as follows:

.7%1; = jNa + jNa,leak + 3jpump - jnkccl - 2jCa—deC> (67)
j?s = ijDR + jK,leak - 2jpump - jnkccl + jk(:027 (68)
]E}nlb = jCl,lcak - 2jnkccl + jkccQ, (69)
.7[(111: = JCa—dec; (70)
]ﬁg = jNa,leak + 3jpump - jnkccl - 2jCa—deca (71)
j?d = JK—AHP *+ JK—C + jK,lcak - ijump — Jnkeel T Jkec2, (72)
J?jlld = jCl,leak - 2jnkccl + jkch» (73)
]ICI}]S = jCa + jCafdeo (74)

Figure 2 summarizes the model. The parameters involved in this model and their values eso
used in this study are listed in Tables 1-4. 651

Table 3. Temperature and physical constants

Parameter Value Reference
T (absolute temperature) 309.14K [45]*

F (Faraday constant) 9.648 - 10* C/mol

R (gas constant) 8.314 J/(mol K)

* The temperature is not explicitly given in [45], but from Eq 3 in [45] we know that
% =26.64 - 1073 V. By using the values of R and F listed in Table 3, we get an
absolute temperature of 309.14 K.

Original Pinsky-Rinzel model 652

We implemented the original Pinsky-Rinzel equations from Box 8.1 in [8]. The reversal s
potential of the leak current, not specified in [8], was set to —68 mV to ensure a resting  ese
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Table 4. Membrane parameters

Parameter Value Reference
Cm 3-1072F/m? [3,8]
JNa,leak 0.247 S/m2 [45]
JK leak 0.5S/m? [45]
JcCl,leak 1.0S/m? [45]
JNa 300S/m? [3,8]
JpR 150 S/m? 3,8]
Gca 118S/m?

JAHP 8S/m? 3,8]
Jc 150 S/m? [3,8
p 1.87-107%mol/(m?s)  [45]*
Uxce2 7.0 - 10~ " mol/(m?s) [45]*
U il 2.33-10""mol/(m?s)  [45]*

* We multiplied the original values from [45] by a conversion factor % -107% m to
convert the units from mM/s to mol/m?s. The conversion factor equals the initial

inverse surface area to volume ratio from [45].

potential close to that of the edPR model. We also used this as the initial potentials,
that is, ¢sm,0 = —68mV and ¢am,o = —68 mV. The other initial conditions were

no = 0.001, hg = 0.999, 5o = 0.009, ¢y = 0.007, go = 0.01, and [Ca?T]q = 0.2, same as
in [3].

Simulations
Parameterizations

The parameters listed in Tables 1-4 were used in all the simulations of the
electrodiffusive Pinsky-Rinzel (edPR) model. We tuned the Ca?* conductance jca
manually to obtain comparable spike shapes between the edPR model and the original
PR model, as well as the fraction of free Ca* inside the cell, and the coupling strength
between the soma and the dendrite.

In the edPR model, the coupling strength between the soma and dendrite was
proportional to the ratio 4;/Ax, and all model outputs depended on this ratio, and not
on A; or Az in isolation. By choice, we adjusted the coupling strength by varying
A; = oAy, through adjusting the parameter . We could have obtained the equivalent
effect by varying Az instead. The default value of o was set to 2. All simulations were
run using this value, except in Fig 5C where o was set to 0.43.

In the original PR model, the coupling strength between the soma and dendrite was
represented by a coupling conductance g., which had a default value of 10.5mS/cm?. In
Fig 5A, g. was set to 2.26 mS/cm?.

Initial conditions

The initial conditions of the edPR model are listed in Table 5. We adjusted the initial
ion concentrations manually to ensure a stable resting state of the model. Their values
give us the following reversal potentials: Fn, = 55mV, Fx = —84mV, Ec = —79mV,
and Ec, = 124mV. The variables [kyesi and [kyes]e are static residual charges. They
represent negatively charged macromolecules typically residing in the intracellular
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environment. We defined them as

mAm

[kres]i = zNa[Na+]i + ZK[K+]1 + ZCl[Cl_]i + an[ca ] + ¢m () v ik (75)
mAm
[kres]e = zNa[Na+]e + 2k [K+]e + ZC][CI_]e + ZCa[Ca ] + (bm O V F (76)
where ¢, o is the initial membrane voltage, set to —68 mV in all simulations. The 676
initial conditions were equal in both the somatic and the dendritic compartment. 677

Table 5. Initial conditions

Variables Value

[Na']; 18 mM
[Nat]. 140 mM
[K+]i 99 mM
[Kt]e 4.3mM
[Cl_]i 7mM
[C17]e 134mM
[Ca™?]; 0.01 mM*
[Cat?], 1.1 mM
[kyes)i —110mMf
[Kres]e —12mMt
n 0.0003

h 0.999

S 0.007

c 0.006

q 0.011

% 1.0

* Only 1% of this total intracellular Ca?*, that is, a 100nM, was assumed to be free
(unbuffered).

T —110mM and —12mM are approximate values. Excact values were calculated from
Egs. 75 and 76.

Stimulus current 678

We stimulated the cell by injecting a K+ current ig;y, into the soma. Previous
computational modeling of a cardiac cell has shown that stimulus with KT causes the
least physiological disruption [33]. To ensure ion conservation, we removed the same
amount of K ions from the corresponding extracellular compartment:

d[K])g

dt
d[K"]se

dt

Calibration

istim
= 7
TV (77)
Z.stim
FZK Vsc ( )

679

To let the edPR model calibrate, all simulations were run for 15 s before setting t = 0. o
That is, in all simulations shown in the results sections, the first 15 calibration seconds s

have been discarded.

682
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Analysis

Fig 9: To calculate the accumulative transport of ion species k in the intracellular
solution (from time zero to ¢) due to diffusion, we integrated A;N ajx aifr,; from time
zero to t, where IV 5 is the Avogadro constant. Similarly, we integrated AeN A jk diff,e tO
calculate the accumulative transport of ions in the extracellular solution due to
diffusion. We did the same calculations with ji arige to study the accumulative transport
of ions due to drift. When knowing the accumulative transport of each ion species,
Kaxkum, we calculated the total transport of e™ from their weighted sum:

e:'kkum = znaNad o+ 2K + 2z ClL + zcaCaZlh (79)

akkum akkum akkum*

Fig 10: To calculate ¢vc,. and @qifr,c, we looked at the extracellular axial current as it
is given in the KNP formalism:

Pse

e = 1diff,c T Ificld,e = tdiff,c + Te (80)

where the last equality follows when we insert Eq 18 for the extracellular field-driven
current density ifield,e, and use that ¢ge = 0. As in [32], we may split ¢ge into two
components:

(rbse = QSVC,se + ¢diff,sea (81)

where ¢vg sc is the potential as it would be predicted from standard volume conductor
(VC) theory [20,21], and ¢gjfr se is the additional contribution from diffusion [32]. With
this, Eq 80 can be written:

, . ove, Paift,
le = ldiff,e T Oc Axse + 0¢ Alxse' (82)
We may split this into two equations if we recognize that
. (bVC se
le = Og———, 83
e e Ax ( )

is the standard formula used in VC theory, which is based on the assumption that the
extracellular current is exclusively due to a drop in the extracellular VC-potential
¢vc,se- The remainder of Eq 82 then leaves us with

(rbdiff,se
Az

Since we already knew 7. and igif . from simulations on the KNP framework, we used
Eqgs 83 and 84 to calculate ¢vc se and @aifr s Separately.

(84)

Ldiff,e = —0Oe

Numerical implementation

We implemented the differential equations in Python 3.6 and solved them using the
solve_ivp function from SciPy. We used its default Runge-Kutta method of order 5(4),
and set the maximal allowed step size to 10~%. The code is made available at
https://github.com/CINPLA/edPRmodel and
https://github.com/CINPLA/edPRmodel _analysis.
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