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Abstract

Oesophageal adenocarcinoma (OAC) is a highly heterogeneous disease, dominated
by large-scale genomic rearrangements and copy number alterations. Such
characteristics have hampered conventional target-directed drug discovery and
personalized medicine strategies contributing to poor outcomes for patients
diagnosed with OAC. We describe the development and application of a phenotypic-
led OAC drug discovery platform incorporating image-based, high-content cell
profiling and associated image-informatics tools to classify drug mechanism-of-action
(MoA). We applied a high-content Cell Painting assay to profile the phenotypic
response of 19,555 compounds across a panel of six OAC cell lines representing
the genetic heterogeneity of disease, a pre-neoplastic Barrett's oesophagus line and
a non-transformed squamous oesophageal line. We built an automated phenotypic
screening and high-content image analysis pipeline to identify compounds that
selectively modified the phenotype of OAC cell lines. We further trained a machine-
learning model to predict the MoA of OAC selective compounds using phenotypic

fingerprints from a library of reference compounds.

We identified a number of phenotypic clusters enriched with similar pharmacological
classes e.g. Methotrexate and three other antimetabolites which are highly selective
for OAC cell lines. We further identify a small number of hits from our diverse
chemical library which show potent and selective activity for OAC cell lines and
which do not cluster with the reference library of known MoA, indicating they may be
selectively targeting novel oesophageal cancer biology. Our results demonstrate that
our OAC phenotypic screening platform can identify existing pharmacological

classes and novel compounds with selective activity for OAC cell phenotypes.
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Introduction

Combined, the two major histological subtypes of oesophageal adenocarcinoma
(OAC) and oesophageal squamous cell carcinoma (OSCC), represent the sixth
leading cause of cancer deaths worldwide with less than one in five patients
surviving five years from diagnosis *. A shift in epidemiology over the last 50 years
has meant the incidence of OAC now vastly exceeds that of OSCC in western
countries 2, accounting for more than 80 % of oesophageal cancers in the United
States °. Defining the optimal neoadjuvant treatment regime is an area of active
investigation * as, current treatments all carry a significant risk of systemic toxicity,
histological response rates remain poor > and only a limited subgroup of patients

experience any survival benefit over surgery alone ®’.

OAC is a highly heterogeneous disease, dominated by large scale genomic
rearrangements and copy number alterations 8. This has made clinically meaningful
subgroups and well validated therapeutic targets difficult to define. Clinical trials with
new molecular targeted agents have predominantly been directed towards epidermal
growth factor receptor (EGFR) and human epidermal growth factor receptor 2
(HER2) receptors ™ but thus far have proven unsuccessful. A potential
explanation is the almost ubiquitous co-amplification of alternative receptor tyrosine
kinases (RTKs) and downstream pathways leading to redundancy and drug
resistance 3% An alternative to target based drug discovery, and increasing in
popularity with technological advances, is phenotypic drug discovery, defined as the
identification of novel compounds or other types of therapeutic agents with no prior
knowledge of the drug target. Recent advances in phenotypic screening include

automated high-content profiling ***®. This approach involves quantifying a large
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number of morphological features from cell or small-model organism assays in an
unbiased way to identify changes and phenotypes of interest. One benefit to this
method is that a target does not need to be predefined but the mechanism-of-action
(MoA) of hit compounds can be inferred by reference to known compound sets using
multivariate statistics and machine learning approaches. Thus, this may prove a
beneficial strategy for complex, heterogeneous diseases were target biology is
poorly understood and where modern-target directed drug discovery strategies have

made little impact on patient care, as exemplified by OAC.

Taking an unbiased, profiling approach to phenotypic screening, we chose to apply
the Cell Painting assay to capture large amounts of information on cellular and
subcellular morphology to quantify cellular state across a panel of genetically distinct
OAC cell lines. Cell Painting is an assay developed to capture as many biologically
relevant morphological features in a single assay so as not to constrain discovery to
what we think we already know *"*8. Therefore, upon chemical perturbation we can
detect changes in a subset of profiled features allowing a phenotypic fingerprint to be
assigned to a particular perturbation or compound *>*°?!, These fingerprints can
then be used to identify specific phenotypic changes of interest, identify compounds
that cause strong alterations in cell morphology suggesting changes in cellular state
or stress, or predict MoA by similarity comparison to reference libraries of well
annotated compound mechanisms 2. However, this type of analysis is typically
performed in a single ‘model’ cell line, chosen for its suitability to image analysis. As
a proof of principle that high-content phenotypic profiling could be applied to a panel
of morphologically distinct OAC and tissue matched control cell lines, we iteratively
optimized cell culture conditions, cell plating densities and the Cell Painting assay

staining protocol across our cell panel. Assay performance in terms of distinguishing
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distinct compound MoA for each cell type was evaluated by testing a small reference
set of well annotated compounds representing eight distinct mechanistic classes and
performing Principal Component analysis (PCA) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) to visualize clustering of distinct mechanistic classes.
We further developed a machine-learning model capable of predicting MoA across
the panel of heterogeneous OAC cell lines. Following assay validation we
subsequently screened a library of 19,555 small molecules comprising target
annotated probe compounds, approved drug libraries and two diverse chemical sets
with unknown MoA. PCA clustering of compound fingerprints distinguished a number
of phenotypic clusters composed of similar pharmacological classes active in the
OAC cell lines. We also applied a Mahalanobis distance threshold and differential Z-
score on our phenotypic data to identify compounds from our screen which were
selectively active in OAC versus tissue matched control cells. For prioritized hits we
have selected a subset and validated OAC selectivity with follow up dose-response
testing and performed transcriptomic pathway analysis pre- and post-treatment on
sensitive and insensitive cell lines to further elucidate MoA. We further applied PCA
and machine learning analysis to phenotypic fingerprints from our diverse chemical
set to identify compounds which exhibit selective activity upon OAC cell phenotypes
by a mechanism distinct from our reference set indicating they may exhibit novel

MOoA.

Herein we describe the development and validation of a high-content phenotypic
profiling assay and associated image-informatics and machine learning toolbox to
classify MoA of phenotypic screening hits across a panel of OAC and tissue-

matched control cell lines . This approach has enabled the identification of chemical
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and target classes, including HDAC inhibitors, which consistently cause the same
cellular response across the panel of OAC lines, demonstrating efficacy against the
heterogeneity of the disease. In addition, we identify pharmacological classes such
as the antimetabolites and new chemical entities with high selectivity for some OAC
cell lines relative to tissue matched controls. We propose that applying high-content
multiparametric phenotypic profiling to a panel of genetically annotated OAC cell
lines may stimulate new drug discovery and drug development programs for OAC by
the identification of drug repurposing opportunities and novel chemical starting points

with selective activity for specific OAC genotypes.
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Materials and Methods

Cell Culture
EPC2-hTERT cells were a kind donation from Anil Rustgis’ Lab, University of

Pennsylvania %.

Cell Line Authentication
Cell line identification (not carried out for the EPC2-hTERT line, as there is no
reference sequence) was confirmed by short tandem repeat (STR) genotyping (Cell

Line Authentication, Public Health England).

The cell-lines were confirmed to be mycoplasma negative using the Venor™MGeM

Mycoplasma Detection PCR kit (MP0025; Sigma).

Cell Subculture

Oesophageal adenocarcinoma (OAC) lines were grown in RPMI (#31870025, Life
Technologies) supplemented with FBS (10 %) and L-glutamine (2 mM) and
incubated under standard tissue culture conditions (37 °C and 5 % CO,). The
Barrett's oesophagus line; CP-A, and the oesophageal epithelial line; EPC2-hTERT,
were grown in KSFM (#17005075, Gibco) supplemented with human recombinant
EGF (5g/L) and BPE (50 mg/L). Soybean trypsin inhibitor (250 mg/L, 5 mL) was

used to neutralise trypsin.

High-Content OAC Cell Painting Assay
Cells were seeded (50 pL per well) into 384-well, CELLSTAR® Cell Culture
Microplates (#781091, Greiner), and incubated under standard tissue culture

conditions for 24 hours before the addition of compounds. CP-A cells were seeded at
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800 cells per well, SK-GT-4 cells were seeded at 1000 cells per well and the

remaining cell lines were all seeded at 1500 cells per well.

Compound source plates were made at 1,000-fold assay concentration and added to
the cells with an overall dilution in media of 1:1000 from source to assay plate.

Library concentrations (Supplementary Table S1).

After 48 hours incubation in the presence of the compounds, cells were fixed by the
addition of an equal volume of formaldehyde (8 %, 50 pL) (#28908, Thermo
Scientific) to the existing media, incubated at room temperature (20 minutes) and
washed twice in PBS. Cells were then permeabilised in Triton-X100 (0.1%, 50 uL)
and incubated at room temperature (20 minutes) followed by two more washes with

PBS.

The staining solution (Table 1) was prepared in bovine serum albumin solution (1
%). Staining solution was added to each well (25 pL) and incubated in the dark at
room temperature (30 minutes), followed by three washes with PBS and no final

aspiration. Plates were foil sealed.

Image Acquisition
Plates were imaged on an ImageXpress micro XLS (Molecular Devices, USA)
equipped with a robotic plate loader (Scara4, PAA, UK). Four fields of view were

captured per well using a 20x objective and five filters (Table 1).

Image Analysis
CellProfiler 2D image analysis
CellProfiler v3.0.0 # image analysis software was used to segment the cells and

extract 733 features per cell per image. First the pipeline identified the nuclei from
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the DAPI channel and used these as seeds to aid a segmentation algorithm to
identify the cell boundaries from the TxRed channel, and finally these two masks
were subtracted to give the cytoplasm. These three masks marking the cellular
boundaries were then used to measure morphological features including size, shape,

texture, and intensity per object across the five image channels.
Image Preprocessing

The cell level data was aggregated to image level by taking the median for each
measured feature per image. Low quality images and image artefacts were then
identified and removed using image quality metrics extracted by CellProfiler. Images
with less than 20 cells in them were also removed from final analysis. For the
remaining images, features were normalised on a plate-by-plate basis by dividing
each feature by the median DMSO response for that feature. Features with NA
values were removed, as were features with zero or near zero variance, using the
findCorrelation and nearZero functions in the R package Caret. All remaining
features were scaled and centred globally by dividing by the standard deviation of
each feature and subtracting the feature mean respectively. The pair-wise
correlations were calculated for all remaining features, and highly correlated features
(>0.95) were removed. Finally, the image level data was aggregated to the well

(compound) level and this was used in the analysis.

Random Forest Classifier

The random forest classifier was implemented using R’'s Random Forest package
with the following specified parameters; ntree = 500, data was stratified by class and
the sample size was set to the smallest class size for balance. The images from

three concentrations for each compound were pooled and treated as a single class.
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Two different analyses were run, firstly MoA prediction was implemented for each
cell line individually, and then using leave one out (LOO) cross-validation, leaving

one OAC cell line out of the training set at a time and running that line as a test set.

Principal component analysis and T-SNE were implemented using built-in R
functions, prcomp and RTSNE respectively to visualise the clustering of the

compounds for each cell line.

Hierarchical Clustering

Z-scores and Mahalanobis scores were centred and scaled for each compound
across the panel of cell lines. Spearman correlation was then used to generate a

distance matrix and hierarchical clustering was determined using complete linkage.

NanoString Transcriptomic Analysis

Cells were seeded in 6-well plates and incubated for 24 hrs. Media was then
removed and replaced with DMSO (0.1%) or Methotrexate (5 puM) in DMSO and
incubated for 6 hours. Cells were scraped and lysed using QIAshredders (#79654,
QIAGEN), RNA was extracted by means of the Qiagen RNeasy Mini kit (#74104,
QIAGEN) (with B-mercaptoethanol) according to manufacturer instructions, and

included a DNase digestion step (#79254, QIAGEN).

Of the purified RNA, 1000Cing were used as input for amplification-free RNA
guantification by the NanoString nCounter Analysis System with the Human
PanCancer Pathways and Metabolic Pathways panels. Raw counts were normalised
to the internal positive controls and housekeeping genes, using the nSolver 4.0

software.
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Results

Assay development

Since OAC is such a heterogeneous disease, we chose to develop a high-content
phenotypic screening assay composed of a panel of OAC and tissue matched non-
transformed cell lines that captured this heterogeneity and thus provides a discovery
platform for identification of novel targets and drug MoA which selectively target
OAC. We assessed the amenability of 12 cell lines to high-content profiling, 10 OAC
lines (JH-EsoAD1, FLO-1, MFD-1, OE33, OACM5.1, OAC-P4C, SK-GT-4, ESO51,
ESO26 and OE19), and two tissue matched non-transformed lines; a Barrett’'s
oesophagus line CP-A, and a normal oesophageal squamous line immortalized by
expression of telomerase EPC2-hTERT. We assessed each cell line against a
criteria list that indicated high performance for high-content screening including, cell
adhesion quality, cellular morphology, proliferation in 384-well plates, image
segmentation, and MoA prediction accuracy. These criteria ensure image
quality/information content, high-throughput screening compatibility and image
segmentation accuracy for downstream analysis pipelines. Based on suitable cell
adhesion and morphological properties we took forward the following eight cell lines
for high-content assay development including image segmentation and machine
learning analysis (CP-A, EPC2-hTERT, FLO-1, JH-EsoAD1, MFD-1, OAC-P4C,

OE33, and SK-GT-4) (Figure 1).

The published Cell Painting protocol "*® was adapted for our cell lines specifically,
as follows; the MitoTracker DeepRed was originally added before the cells were

fixed, however, morphological changes have been seen in certain cell lines upon the
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addition of MitoTracker. Therefore we opted to fix the cells first and add all of the Cell
Painting reagents together post-fixation to prevent artefactual morphological
changes due to cell staining, and to reduce complexity for robotic handling in a high-
throughput setting. This also necessitated that we re-optimise the dye
concentrations across our cell panel. Here we increased the MitoTracker DeepRed
concentration and reduced the concentration of Hoechst, Concanavalin A, and

Wheat Germ Agglutinin and switched to a different phalloidin supply (Table 1).

Machine learning
Standard assay quality control metrics such as Z'Factor are unsuitable for
multiparametric assays, particularly cell based phenotypic profiling assays where a

desired phenotype is unknown and/or there is a lack of positive controls #*72°, |

n
order to assess assay quality from a compound MoA profiling perspective we used
MoA prediction accuracy on a small well-annotated reference library of compounds
with well-defined, known MoA (Supplementary Table S2). For this, we trained a

random forest classifier using the CellProfiler extracted phenotypic information from

the images of cells treated with the reference set of compounds.

Accuracy in the ability to predict MoA was used to assess whether, the OAC and
tissue matched control cell lines were amenable to the phenotypic profiling assay,
further validate image segmentation was accurate, and ensure that the phenotypic
information extracted was relevant and broad enough to allow accurate prediction of
MoA. In order to robustly evaluate compound selectivity and MoOA across our
heterogenous panel of genetically distinct OAC cells it was particularly important to
assess the performance of each individual cell line and ensure that one cell line did
not perform significantly better or worse than the others. A characteristic of OAC cell

lines (OE33, MFD-1 and SK-GT-4 in particular), is the migration and formation of cell
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clumps, which are challenging to segment accurately by automated image analysis.
Here we wanted to confirm that they were equal to the rest of the panel and suitable
for the assay pipeline. OAC-P4C is a particularly morphologically heterogeneous line
so it was also important to ensure that image level data can be used for phenotypic

compound profiling in these types of cell lines.

In order to visualise the phenotypic information extracted, we performed two data
reduction methods; PCA and T-SNE, on the well level data for the small reference
library of compounds and plotted the first two components, coloured by mechanistic
class. These results demonstrate that distinct compound classes (e.g. HDAC
inhibitors) generally cluster together, however some classes such as statins do not
produce strong phenotypes and clustering shows they are close to the DMSO

controls, data for FLO-1 and MFD-1 cells are provided as exemplars. (Figure 2).

We next optimised a random forest classifier to test MoA prediction on our reference
library of well annotated compounds. The extracted features from three
concentrations of each compound were pooled and used to train the classifier. We
chose 0.1, 1 and 10 uM, as using a broad range of concentrations means that each

compound does not need optimising individually across each cell line.

When trained and tested on each individual cell line the average out-of-bag error
was 20.38 % across the entire panel of cell lines. The variation between cell lines
(12-27 %) was also low, with no cell line dropping below 70 % accuracy,
demonstrating the assay was well optimised across the panel. The weakest cell line

was the OAC-P4C, which can likely be attributed to its heterogeneous morphology.

In order to confirm that the classifier was not overfitting we used leave-one-out

cross-validation. We implemented leave-one-cell-line-out and trained it on five of the
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OAC lines, testing on the remaining line. Here, as expected it performed less well
overall (Supplementary Fig. S1). However, there is still a very strong diagonal trend
in the confusion matrices indicating the ability of this classifier to be transferred to
new cell lines despite having no prior training on them and thus potential for
application of the classifier across a broader panel of cell lines without the need to

train each cell line individually.

Overall the accuracy of the machine learning demonstrates that the phenotypic
profiling assay is of high quality across all eight cell lines, including morphologically
heterogeneous cells, and feature extraction produces meaningful data for phenotypic
analysis. The phenotypic profiling assay can therefore be applied to provide an initial
evaluation of MoA of hit compounds influencing OAC cell proliferation, survival, and
morphology. As such our multiparametric high-content phenotypic profiling assay
may prove useful in prioritization of compound hits which represent novel MoA and
de-prioritization of compound which represent undesirable MoA for subsequent
medicinal chemistry and target deconvolution investments. We therefore prioritised
the full panel of eight lines that passed our quality control criteria; six OAC lines with
diverse genetic backgrounds, a Barrett's oesophagus line, and a non-transformed

squamous oesophageal line, for a phenotypic screen of 19,555 small molecules.

Small molecule screen

A total of 19,555 small molecules including approved drugs were profiled against our
panel of eight cell lines using the ImageXpress microXL high-content imaging
platform. Cells were treated with the commercially available Prestwick Chemical
Library of 1280 mostly off-patent drugs, the LOPAC library of pharmacologically
active compounds (1280 compounds), a proprietary diverse chemical library

provided by CRUK therapeutics discovery laboratories (13408 compounds), the


https://doi.org/10.1101/2020.01.20.912212
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.912212; this version posted January 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

BioAscent library of 3,200 compounds and bespoke libraries of 387 target-annotated
compounds and chemical probes. The primary phenotypic screen across all eight
cell lines encompassed, 512x384 well plates, 3.9 million images and 36 TB of data in

total. Image analysis was performed using CellProfiler across a computer cluster.

Using a panel of cell lines better represents a heterogeneous disease, and allowed
us to identify compounds which demonstrated selective activity across multiple OAC
lines and not in the tissue matched control. We ran two parallel analyses for primary
hit selection against the OAC lines; one based on broad, morphological, phenotypic
changes and the other on cell growth and survival using nuclei count. At cytotoxic
concentrations there are few attached cells and these are often rounded up leading
to a lack of information in the images. Therefore, images with 20 cells or less were

removed from the morphological analysis.

The following results focus on a subset of 3000 annotated compounds (excluding the

CRUK Therapeutics labs and BioAscent lead like molecules).

In order to identify compounds inducing strong phenotypic changes we used PCA on
the feature data to reduce the dimensions and then calculated the Mahalanobis
distance to the DMSO controls for the first 15 principal components, which explain
approximately 90% of the variation in the data across each cell line. The
Mahalanobis distance therefore provides an unbiased metric of compound activity

upon each cell line in the screen.

Phenotypic analysis identified 62 compounds that selectively target two or more of
the OAC lines over the non-transformed oesophageal cells. Clustering the cell
panel's responses to these molecules showed a number of phenotypic clusters

enriched with similar pharmacological classes, including HDAC inhibitors,
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microtubule disruptors, and antimetabolites, suggesting that hits have clustered

mechanistically (Figure 3A, Supplementary Fig. S2).

Based on cell growth and survival (i.e nuclei count), we identified 27 compounds that
were selectively active in two or more of our OAC lines. Here, hits were defined as
having a z-score of -3 or more in the OAC lines and a difference of at least 2 in one
or both of the control cell lines e.g. for a hit with a z-score of -3 in an OAC line, the z-
score in the EPC-2 would have to be greater than or equal to 0. This comparison
was made between each OAC line and the control lines to define hits and then
selected if they were selectively active in at least two OAC lines across the panel

(Figure 3B).

Compounds from the growth and survival analysis cluster into several therapeutic
classes suggesting mechanistic pathways that may be selective for OAC cell growth
and survival. Classes include antimetabolites and HDAC inhibitors. These classes
were also identified in the morphometric phenotypic analysis (Supplementary Fig.

S2).

We performed hierarchical clustering of cell line responses to the compounds, as
determined by the Mahalanobis metric (morphometric phenotypic analysis) and the
z-scores (nuclei count) (Figure 3C and D), enabling pharmacological discrimination
of cell lines. These results show that the control cell lines; EPC2-hTERT and CP-A,
can be discriminated from the OAC panel based on global drug screening data,
providing confidence that our high-content cell painting assay can identify

compounds with selectivity for OAC over the tissue matched control lines.
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Antimetabolites are selectively lethal to OAC cells

From the subset of 3000 annotated compounds we identified the drug Methotrexate
and three other structurally related antimetabolites; Pemetrexed, Raltitrexed and
Aminopterin, as highly selective for OAC cell lines relative to tissue matched control
CP-A and EPC2-hTERT cells in both the nuclei count and morphological phenotypic
analyses. We therefore validated this class of compound for dose dependent activity.
Aminopterin was removed from further analysis due to its toxicity profile in the clinic
' however, it showed potent activity in an initial dose response in the OAC lines,

validating it as a hit our screen (results not shown).

Nuclei count dose responses for Methotrexate, Pemetrexed and Raltitrexed
demonstrated strong selectivity against the OAC lines, with IC50s ranging from 1-65
nM, and showed minimal cytotoxic or phenotypic activity in either the CP-A or the
EPC2-hTERT line even at 10 uM (Figure 4A, Supplementary Table S3), validating

our hit selection criteria.

Multiparametric phenotypic dose response profiles of the antimetabolites overlaid on
the reference library of annotated compounds (Supplementary Table S2) show
strong dose dependent phenotypic changes, moving from phenotypically inactive
(clustering with DMSO controls) to clustering with the DNA damaging agents at
active concentrations (Figure 4B) in all but the JH-EsoAD1 and MFD-1 lines. All
three compounds also showed little or no effect in the control lines EPC2-hTERT and

CP-A, clustering closely with the DMSO controls at all concentrations tested.

Class probabilities from the pre-trained machine learning model for each of the
compounds predicts them to belong to the DNA damage class for all but the MFD-1

and JH-EsoADL1 lines (Figure 4C), consistent with the clustering above. Probabilities
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also increase in a dose dependent manner indicating cellular phenotypic activity
follows a linear on-target dose response relationship. These results further confirm
the ability of the Cell Painting assay to accurately predict MOA of validated hit

compounds.

NanoString differential expression analysis revealed methotrexate treatment caused
a significant reduction in the expression of Histone H3 subunits (HIST1H3B,
HIST1H3G, HISTH3H) (Figure 4D) in the sensitive cell lines only, with no effect in
either of the tissue matched controls (Supplementary Table S4). Several other
genes change with methotrexate treatment but none are significant. Further
mechanistic studies shall be required to further elucidate how and if such expression

changes confer selectivity to methotrexate.

Towards novel therapies and targets for OAC

From a subset of 13,000 small molecule compounds with unknown targets we further
identify a small number of compound hits from our diverse chemical library which
show potent and selective activity for the OAC cell lines. Compound 1 is selective for
the OAC-P4C and MFD-1 cells (Figure 5A) and machine learning probabilities for all
classes are low (Figure 5B). Compound 2 induces a strong phenotypic dose
response in the OAC-P4C and OES33 cell lines only and does not cluster with the
reference library of known MoA (Figure 5A). Machine learning predicts it to be DNA
damaging (91 % probability) in the OAC-P4C cells, however, its clustering is distinct
and the machine learning probability that it is DNA damaging in the OE33 cell line is
only 52 % (Figure 5B). Therefore it may in fact represent a novel MoA or be acting
to cause DNA damage in a novel way. This indicates that these compounds may be

selectively targeting novel oesophageal cancer biology. Subsequent transcriptomic
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and proteomic pathway analysis and target deconvolution studies may reveal the

mechanistic pathways involved.

Discussion

Conventional target-directed drug discovery strategies remain to make any impact
on the discovery and translation of effective new treatments for oesophageal cancer
patients. Key challenges in oesophageal cancer include a highly heterogeneous
genetic landscape with few mutations in oncogenic drivers, thereby confounding the
identification of clear drug-target hypothesis and modern personalized medicine
strategies. In this study we sought to adapt and evaluate the utility of an advanced
high-content phenotypic screening method as an empirical strategy for identifying

novel drug targets, MoA and pharmacological classes which target OAC.

Here we have shown that combining high-content screening and image informatics
with machine-learning can prove effective in the identification and mechanistic
characterisation of hit compounds with selective activity upon OAC cell phenotypes.
The majority of multiparametric high-content screening assays and associated
machine learning methods used to predict drug MoA are typically performed on a
single cell line. In this study we have further shown that this format can be applied to
heterogeneous panels of cancer cell lines and normal tissue match control cells for
the identification and prioritization of hit compounds and MoA which demonstrate

selectivity activity for OAC cells.

Machine-learning can be implemented as a tool for multiparametric phenotypic assay
quality control (e.g. confirming if the assay is suitable as a discovery platform to

classify specific cell phenotypes and elucidate MoA) as well as a tool for MoA
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deconvolution of hit compounds. Our results demonstrate that this can be

standardised across heterogeneous panels of cells with reasonable accuracy.

Following one class of compounds identified in our primary phenotypic screen of
19,555 small molecules tested across all eight oesophageal cell lines, we validated
antimetabolites as selectively lethal to the OAC lines in vitro following dose response
studies. Utilising the multiparametric phenotypic information to generate phenotypic
dose responses, combined with a reference library of compounds, machine-learning
and clustering techniqgues we demonstrated the ability to study/predict the MoA of
hits from the screen. Here we validated this technique using the antimetabolite hit
compounds (Methotrexate, Pemetrexed and Raltitrexed), showing DNA damage as a
likely MoA for the selectivity of these compounds which is consistent with the
literature %°. These results together with our identification of hit compounds from
our diverse chemical set which are not classified by our reference set of known
MoAs demonstrates the impact of phenotypic screening in combination with
machine-learning for MoA studies. This strategy will be used to assess and prioritise
novel small molecule hits from the diverse chemical library screen for further
mechanistic studies. From our primary phenotypic screen we have identified in total
75 compounds which match our hit selection criteria for selective activity across the
OAC panel. These 75 hits are an accumulation of the 62 compounds defined by cell
morphometric phenotypic analysis and 27 compounds defined by cell proliferation
and survival (nuclei count) analysis with 14 compounds overlapping. The 75 hits
shall be further progressed through dose-response studies and secondary assays to
confirm and prioritize classes of selective compounds for subsequent drug

repurposing and or drug discovery studies.


https://doi.org/10.1101/2020.01.20.912212
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.912212; this version posted January 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In addition, using bioinformatic approaches we hope that integration of phenotypic
data with genetic data across our panel of diverse cell lines may provide insight into
the selective activity of phenotypic hits and generate the basis for future genetic

biomarker-based clinical trials in OAC.

Overall, our high-content OAC assay has proven effective in the identification and
mechanistic characterisation of hit compounds, demonstrating its utility as a novel
empirical strategy for the discovery of new therapeutic targets, chemical starting
points and repurposing of existing drug classes to re-ignite drug discovery and

development in OAC.
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Table 1: Cell painting reagents, concentrations, excitation/emission wavelengths of

the filters used for imaging, and suppliers. ex: excitation, em: emission

Stain Structure  Wavelength Channel Concentratior Cat
(ex/em Number;
[nm]) Supplier
Hoescht Nuclei 387/447 DAPI 4 ug/ml #H1399;
33342 Mol. Probes
SYTo™ 14 Nucleoli 531/593 CY3 3uM #S7576;
Invitrogen

Phalloidin F-actin 562/624 TXRED 0.14X #ab176757;
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594 Abcam
Wheat germ Golgi and 562/624 TXRED 1 ug/ml #W11262;
agglutinin Plasma Invitrogen

Alexa Fluor™  Membrane

594
Concanavalin Endoplasmic  462/520 FITC 20 ug/ml #C11252;
A Alexa Fluor  Reticulum Invitrogen
488
MitoTracker  Mitochondria  628/692 CY5 600 nM #M22426;
DeepRed Invitrogen

Figure 1. Cell Painting Assay and the OAC Cell Panel. A) The five channels
imaged in the Cell Painting assay for representative cell line FLO-1, with dyes and
cellular structures labelled. B) Colour combined representative control (DMSO)
images of the six cell lines in the cell panel: DAPI (blue), TXRED (green), CY3 (red).

See Table 1 for additional details about the stains and channels imaged.

Figure 2. Reference Library Clustering and Machine Learning. A) The first two
components of principal component analysis (PCA) and t-distributed stochastic
neighbour embedding (T-SNE) for the reference library compound treatments for the
OAC line FLO-1 and the Barrett's line CP-A. Points are coloured by mechanistic
class and multiple compounds concentrations are plotted. B) Random Forest
Classifier: Confusion Matrices of prediction accuracies per cell line in the cell panel

for the reference library of compounds. Diagonal values show class sensitivities.
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Figure 3. Hit analysis. A) The first three components of principal component
analysis (PCA) for exemplar data from OAC cell line; JH-EsoAD1. Hits (purple) are
defined as having a Mahalanobis distance of greater than 1500 from the DMSO
controls. B) Z-score plot for all OAC lines overlaid vs EPC2-hTERT oesophageal
squamous control line. Hits (purple) are defined as having a z-score of — 3 or more in
the OAC lines and showing selectivity of at least 2 z-scores compared to the EPC2-
hTERT line. C) Z-score hierarchical clustering of the cell panels response to
compounds. D) Mahalanobis distance clustering of phenotypic response to

compound treatments across cell lines.

Figure 4. Antimetabolite evaluation. A) Dose responses for Methotrexate,
Pemetrexed, and Raltitrexed across panel of cell lines. B) Principal component
analysis of dose responses overlaid on reference library for Methotrexate in two
resistant lines (CP-A and EPC2-hTERT) and two sensitive lines (FLO-1 and OAC-
P4C). C) Probabilities expressed as percentages for DNA damaging class for each
cell line and each of Methotrexate, Pemetrexed and Raltitrexed. D) Differential
expression analysis for Methotrexate treatment (5uM, 6hrs) for FIO-1, SK-GT-4 and
OE33 cell lines. Red indicates genes reaching both P-value and fold change
threshold, blue indicates genes that reached p-value threshold and green indicates
genes that reached the fold change threshold. P-value = 0.05, log, fold change =

0.5.

Figure 5. Phenotypic analysis of novel compounds. A) Principal component
analysis of compound 1 and compound 2 dose responses overlaid on reference
library for the two most sensitive cell lines for each compound. B) Probabilities
expressed as percentages for compound 1 and compound 2 (10uM) belonging to

each class in the reference library for each cell line.
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