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Abstract 

Oesophageal adenocarcinoma (OAC) is a highly heterogeneous disease, dominated 

by large-scale genomic rearrangements and copy number alterations. Such 

characteristics have hampered conventional target-directed drug discovery and 

personalized medicine strategies contributing to poor outcomes for patients 

diagnosed with OAC. We describe the development and application of a phenotypic-

led OAC drug discovery platform incorporating image-based, high-content cell 

profiling and associated image-informatics tools to classify drug mechanism-of-action 

(MoA). We applied a high-content Cell Painting assay to profile the phenotypic 

response of  19,555 compounds across a panel of six OAC cell lines representing 

the genetic heterogeneity of disease, a pre-neoplastic Barrett’s oesophagus line and 

a non-transformed squamous oesophageal line. We built an automated phenotypic 

screening and high-content image analysis pipeline to identify compounds that 

selectively modified the phenotype of OAC cell lines. We further trained a machine-

learning model to predict the MoA of OAC selective compounds using phenotypic 

fingerprints from a library of reference compounds.  

We identified a number of phenotypic clusters enriched with similar pharmacological 

classes e.g. Methotrexate and three other antimetabolites which are highly selective 

for OAC cell lines. We further identify a small number of hits from our diverse 

chemical library which show potent and selective activity for OAC cell lines and 

which do not cluster with the reference library of known MoA, indicating they may be 

selectively targeting novel oesophageal cancer biology. Our results demonstrate that 

our OAC phenotypic screening platform can identify existing pharmacological 

classes and novel compounds with selective activity for OAC cell phenotypes. 
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Introduction  

Combined, the two major histological subtypes of oesophageal adenocarcinoma 

(OAC) and oesophageal squamous cell carcinoma (OSCC), represent the sixth 

leading cause of cancer deaths worldwide with less than one in five patients 

surviving five years from diagnosis 1. A shift in epidemiology over the last 50 years 

has meant the incidence of OAC now vastly exceeds that of OSCC in western 

countries 2, accounting for more than 80 % of oesophageal cancers in the United 

States 3.  Defining the optimal neoadjuvant treatment regime is an area of active 

investigation 4 as, current treatments all carry a significant risk of systemic toxicity, 

histological response rates remain poor 5 and only a limited subgroup of patients 

experience any survival benefit over surgery alone 6,7.     

OAC is a highly heterogeneous disease, dominated by large scale genomic 

rearrangements and copy number alterations 8. This has made clinically meaningful 

subgroups and well validated therapeutic targets difficult to define. Clinical trials with 

new molecular targeted agents have predominantly been directed towards epidermal 

growth factor receptor (EGFR) and human epidermal growth factor receptor 2 

(HER2) receptors 9–12 but thus far have proven unsuccessful.  A potential 

explanation is the almost ubiquitous co-amplification of alternative receptor tyrosine 

kinases (RTKs) and downstream pathways leading to redundancy and drug 

resistance 8,13,14. An alternative to target based drug discovery, and increasing in 

popularity with technological advances, is phenotypic drug discovery, defined as the 

identification of novel compounds or other types of therapeutic agents with no prior 

knowledge of the drug target. Recent advances in phenotypic screening include 

automated high-content profiling 15,16. This approach involves quantifying a large 
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number of morphological features from cell or small-model organism assays in an 

unbiased way to identify changes and phenotypes of interest. One benefit to this 

method is that a target does not need to be predefined but the mechanism-of-action 

(MoA) of hit compounds can be inferred by reference to known compound sets using 

multivariate statistics and machine learning approaches. Thus, this may prove a 

beneficial strategy for complex, heterogeneous diseases were target biology is 

poorly understood and where modern-target directed drug discovery strategies have 

made little impact on patient care, as exemplified by OAC.  

Taking an unbiased, profiling approach to phenotypic screening, we chose to apply 

the Cell Painting assay to capture large amounts of information on cellular and 

subcellular morphology to quantify cellular state across a panel of genetically distinct 

OAC cell lines. Cell Painting is an assay developed to capture as many biologically 

relevant morphological features in a single assay so as not to constrain discovery to 

what we think we already know 17,18. Therefore, upon chemical perturbation we can 

detect changes in a subset of profiled features allowing a phenotypic fingerprint to be 

assigned to a particular perturbation or compound 15,19–21. These fingerprints can 

then be used to identify specific phenotypic changes of interest, identify compounds 

that cause strong alterations in cell morphology suggesting changes in cellular state 

or stress, or predict MoA by similarity comparison to reference libraries of well 

annotated compound mechanisms 17,21. However, this type of analysis is typically 

performed in a single ‘model’ cell line, chosen for its suitability to image analysis. As 

a proof of principle that high-content phenotypic profiling could be applied to a panel 

of morphologically distinct OAC and tissue matched control cell lines, we iteratively 

optimized cell culture conditions, cell plating densities and the Cell Painting assay 

staining protocol across our cell panel. Assay performance in terms of distinguishing 
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distinct compound MoA for each cell type was evaluated by testing a small reference 

set of well annotated compounds representing eight distinct mechanistic classes and 

performing Principal Component analysis (PCA) and t-Distributed Stochastic 

Neighbor Embedding (t-SNE) to visualize clustering of distinct mechanistic classes. 

We further developed a machine-learning model capable of predicting MoA across 

the panel of heterogeneous OAC cell lines. Following assay validation we 

subsequently screened a library of 19,555 small molecules comprising target 

annotated probe compounds, approved drug libraries and two diverse chemical sets 

with unknown MoA. PCA clustering of compound fingerprints distinguished a number 

of phenotypic clusters composed of similar pharmacological classes active in the 

OAC cell lines. We also applied a Mahalanobis distance threshold and differential Z-

score on our phenotypic data to identify compounds from our screen which were 

selectively active in OAC versus tissue matched control cells. For prioritized hits we 

have selected a subset and validated OAC selectivity with follow up dose-response 

testing and performed transcriptomic pathway analysis pre- and post-treatment on 

sensitive and insensitive cell lines to further elucidate MoA. We further applied PCA 

and machine learning analysis to phenotypic fingerprints from our diverse chemical 

set to identify compounds which exhibit selective activity upon OAC cell phenotypes 

by a mechanism distinct from our reference set indicating they may exhibit novel 

MoA. 

 

Herein we describe the development and validation of a high-content phenotypic 

profiling assay and associated image-informatics and machine learning toolbox to 

classify MoA of phenotypic screening hits across a panel of OAC and tissue-

matched control cell lines . This approach has enabled the identification of chemical 
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and target classes, including HDAC inhibitors, which consistently cause the same 

cellular response across the panel of OAC lines, demonstrating efficacy against the 

heterogeneity of the disease. In addition, we identify pharmacological classes such 

as the antimetabolites and new chemical entities with high selectivity for some OAC 

cell lines relative to tissue matched controls. We propose that applying high-content 

multiparametric phenotypic profiling to a panel of genetically annotated OAC cell 

lines may stimulate new drug discovery and drug development programs for OAC by 

the identification of drug repurposing opportunities and novel chemical starting points 

with selective activity for specific OAC genotypes. 
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Materials and Methods  

Cell Culture 

EPC2-hTERT cells were a kind donation from Anil Rustgis’ Lab, University of 

Pennsylvania 22.  

Cell Line Authentication 

Cell line identification (not carried out for the EPC2-hTERT line, as there is no 

reference sequence) was confirmed by short tandem repeat (STR) genotyping (Cell 

Line Authentication, Public Health England). 

The cell-lines were confirmed to be mycoplasma negative using the VenorTMGeM 

Mycoplasma Detection PCR kit (MP0025; Sigma). 

Cell Subculture 

Oesophageal adenocarcinoma (OAC) lines were grown in RPMI (#31870025, Life 

Technologies) supplemented with FBS (10 %) and L-glutamine (2 mM) and 

incubated under standard tissue culture conditions (37 °C and 5 % CO2). The 

Barrett's oesophagus line; CP-A, and the oesophageal epithelial line; EPC2-hTERT, 

were grown in KSFM (#17005075, Gibco) supplemented with human recombinant 

EGF (5g/L) and BPE (50 mg/L). Soybean trypsin inhibitor (250 mg/L, 5 mL) was 

used to neutralise trypsin. 

High-Content OAC Cell Painting Assay 

Cells were seeded (50 µL per well) into 384-well, CELLSTAR® Cell Culture 

Microplates (#781091, Greiner), and incubated under standard tissue culture 

conditions for 24 hours before the addition of compounds. CP-A cells were seeded at 
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800 cells per well, SK-GT-4 cells were seeded at 1000 cells per well and the 

remaining cell lines were all seeded at 1500 cells per well. 

Compound source plates were made at 1,000-fold assay concentration and added to 

the cells with an overall dilution in media of 1:1000 from source to assay plate. 

Library concentrations (Supplementary Table S1). 

After 48 hours incubation in the presence of the compounds, cells were fixed by the 

addition of an equal volume of formaldehyde (8 %, 50 µL) (#28908, Thermo 

Scientific) to the existing media, incubated at room temperature (20 minutes) and 

washed twice in PBS. Cells were then permeabilised in Triton-X100 (0.1%, 50 uL) 

and incubated at room temperature (20 minutes) followed by two more washes with 

PBS.  

The staining solution (Table 1) was prepared in bovine serum albumin solution (1 

%). Staining solution was added to each well (25 µL) and incubated in the dark at 

room temperature (30 minutes), followed by three washes with PBS and no final 

aspiration. Plates were foil sealed. 

Image Acquisition 

Plates were imaged on an ImageXpress micro XLS (Molecular Devices, USA) 

equipped with a robotic plate loader (Scara4, PAA, UK). Four fields of view were 

captured per well using a 20x objective and five filters (Table 1).  

Image Analysis 

CellProfiler 2D image analysis 

CellProfiler v3.0.0 23 image analysis software was used to segment the cells and 

extract 733 features per cell per image. First the pipeline identified the nuclei from 
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the DAPI channel and used these as seeds to aid a segmentation algorithm to 

identify the cell boundaries from the TxRed channel, and finally these two masks 

were subtracted to give the cytoplasm. These three masks marking the cellular 

boundaries were then used to measure morphological features including size, shape, 

texture, and intensity per object across the five image channels.  

Image Preprocessing 

The cell level data was aggregated to image level by taking the median for each 

measured feature per image. Low quality images and image artefacts were then 

identified and removed using image quality metrics extracted by CellProfiler. Images 

with less than 20 cells in them were also removed from final analysis. For the 

remaining images, features were normalised on a plate-by-plate basis by dividing 

each feature by the median DMSO response for that feature. Features with NA 

values were removed, as were features with zero or near zero variance, using the 

findCorrelation and nearZero functions in the R package Caret. All remaining 

features were scaled and centred globally by dividing by the standard deviation of 

each feature and subtracting the feature mean respectively. The pair-wise 

correlations were calculated for all remaining features, and highly correlated features 

(>0.95) were removed. Finally, the image level data was aggregated to the well 

(compound) level and this was used in the analysis. 

Random Forest Classifier 

The random forest classifier was implemented using R’s Random Forest package 

with the following specified parameters; ntree = 500, data was stratified by class and 

the sample size was set to the smallest class size for balance. The images from 

three concentrations for each compound were pooled and treated as a single class. 
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Two different analyses were run, firstly MoA prediction was implemented for each 

cell line individually, and then using leave one out (LOO) cross-validation, leaving 

one OAC cell line out of the training set at a time and running that line as a test set. 

Principal component analysis and T-SNE were implemented using built-in R 

functions, prcomp and RTSNE respectively to visualise the clustering of the 

compounds for each cell line.  

Hierarchical Clustering 

Z-scores and Mahalanobis scores were centred and scaled for each compound 

across the panel of cell lines. Spearman correlation was then used to generate a 

distance matrix and hierarchical clustering was determined using complete linkage. 

NanoString Transcriptomic Analysis 

Cells were seeded in 6-well plates and incubated for 24 hrs. Media was then 

removed and replaced with DMSO (0.1%) or Methotrexate (5 µM) in DMSO and 

incubated for 6 hours. Cells were scraped and lysed using QIAshredders (#79654, 

QIAGEN), RNA was extracted by means of the Qiagen RNeasy Mini kit (#74104, 

QIAGEN) (with β-mercaptoethanol) according to manufacturer instructions, and 

included a DNase digestion step (#79254, QIAGEN). 

Of the purified RNA, 100�ng were used as input for amplification-free RNA 

quantification by the NanoString nCounter Analysis System with the Human 

PanCancer Pathways and Metabolic Pathways panels. Raw counts were normalised 

to the internal positive controls and housekeeping genes, using the nSolver 4.0 

software.  
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Results  

Assay development 

Since OAC is such a heterogeneous disease, we chose to develop a high-content 

phenotypic screening assay composed of a panel of OAC and tissue matched non-

transformed cell lines that captured this heterogeneity and thus provides a discovery 

platform for identification of novel targets and drug MoA which selectively target 

OAC. We assessed the amenability of 12 cell lines to high-content profiling, 10 OAC 

lines (JH-EsoAD1, FLO-1, MFD-1, OE33, OACM5.1, OAC-P4C, SK-GT-4, ESO51, 

ESO26 and OE19), and two tissue matched non-transformed lines; a Barrett’s 

oesophagus line CP-A, and a normal oesophageal squamous line immortalized by 

expression of telomerase EPC2-hTERT. We assessed each cell line against a 

criteria list that indicated high performance for high-content screening including, cell 

adhesion quality, cellular morphology, proliferation in 384-well plates, image 

segmentation, and MoA prediction accuracy. These criteria ensure image 

quality/information content, high-throughput screening compatibility and image 

segmentation accuracy for downstream analysis pipelines. Based on suitable cell 

adhesion and morphological properties we took forward the following eight cell lines 

for high-content assay development including image segmentation and machine 

learning analysis (CP-A, EPC2-hTERT, FLO-1, JH-EsoAD1, MFD-1, OAC-P4C, 

OE33, and SK-GT-4) (Figure 1).  

The published Cell Painting protocol 17,18 was adapted for our cell lines specifically, 

as follows;  the MitoTracker DeepRed was originally added before the cells were 

fixed, however, morphological changes have been seen in certain cell lines upon the 
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addition of MitoTracker. Therefore we opted to fix the cells first and add all of the Cell 

Painting reagents together post-fixation to prevent artefactual morphological 

changes due to cell staining, and to reduce complexity for robotic handling in a high-

throughput setting.  This also necessitated that we re-optimise the dye 

concentrations across our cell panel. Here we increased the MitoTracker DeepRed 

concentration and reduced the concentration of Hoechst, Concanavalin A, and 

Wheat Germ Agglutinin and switched to a different phalloidin supply (Table 1).  

Machine learning 

Standard assay quality control metrics such as Z’Factor are unsuitable for 

multiparametric assays, particularly cell based phenotypic profiling assays where a 

desired phenotype is unknown and/or there is a lack of positive controls 24–26. In 

order to assess assay quality from a compound MoA profiling perspective we used 

MoA prediction accuracy on a small well-annotated reference library of compounds 

with well-defined, known MoA (Supplementary Table S2). For this, we trained a 

random forest classifier using the CellProfiler extracted phenotypic information from 

the images of cells treated with the reference set of compounds.  

Accuracy in the ability to predict MoA was used to assess whether, the OAC and 

tissue matched control cell lines were amenable to the phenotypic profiling assay, 

further validate image segmentation was accurate, and ensure that the phenotypic 

information extracted was relevant and broad enough to allow accurate prediction of 

MoA. In order to robustly evaluate compound selectivity and MoA across our 

heterogenous panel of genetically distinct OAC cells it was particularly important to 

assess the performance of each individual cell line and ensure that one cell line did 

not perform significantly better or worse than the others. A characteristic of OAC cell 

lines (OE33, MFD-1 and SK-GT-4 in particular), is the migration and formation of cell 
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clumps, which are challenging to segment accurately by automated image analysis. 

Here we wanted to confirm that they were equal to the rest of the panel and suitable 

for the assay pipeline. OAC-P4C is a particularly morphologically heterogeneous line 

so it was also important to ensure that image level data can be used for phenotypic 

compound profiling in these types of cell lines.  

In order to visualise the phenotypic information extracted, we performed two data 

reduction methods; PCA and T-SNE, on the well level data for the small reference 

library of compounds and plotted the first two components, coloured by mechanistic 

class. These results demonstrate that distinct compound classes (e.g. HDAC 

inhibitors) generally cluster together, however some classes such as statins do not 

produce strong phenotypes and clustering shows they are close to the DMSO 

controls, data for FLO-1 and MFD-1 cells are provided as exemplars. (Figure 2). 

We next optimised a random forest classifier to test MoA prediction on our reference 

library of well annotated compounds. The extracted features from three 

concentrations of each compound were pooled and used to train the classifier. We 

chose 0.1, 1 and 10 µM, as using a broad range of concentrations means that each 

compound does not need optimising individually across each cell line.   

When trained and tested on each individual cell line the average out-of-bag error 

was 20.38 % across the entire panel of cell lines. The variation between cell lines 

(12-27 %) was also low, with no cell line dropping below 70 % accuracy, 

demonstrating the assay was well optimised across the panel. The weakest cell line 

was the OAC-P4C, which can likely be attributed to its heterogeneous morphology.  

In order to confirm that the classifier was not overfitting we used leave-one-out 

cross-validation. We implemented leave-one-cell-line-out and trained it on five of the 
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OAC lines, testing on the remaining line. Here, as expected it performed less well 

overall (Supplementary Fig. S1). However, there is still a very strong diagonal trend 

in the confusion matrices indicating the ability of this classifier to be transferred to 

new cell lines despite having no prior training on them and thus potential for 

application of the classifier across a broader panel of cell lines without the need to 

train each cell line individually.  

Overall the accuracy of the machine learning demonstrates that the phenotypic 

profiling assay is of high quality across all eight cell lines, including morphologically 

heterogeneous cells, and feature extraction produces meaningful data for phenotypic 

analysis. The phenotypic profiling assay can therefore be applied to provide an initial 

evaluation of MoA of hit compounds influencing OAC cell proliferation, survival, and 

morphology. As such our multiparametric high-content phenotypic profiling assay 

may prove useful in prioritization of compound hits which represent novel MoA and 

de-prioritization of compound which represent undesirable MoA for subsequent 

medicinal chemistry and target deconvolution investments. We therefore prioritised 

the full panel of eight lines that passed our quality control criteria; six OAC lines with 

diverse genetic backgrounds, a Barrett’s oesophagus line, and a non-transformed 

squamous oesophageal line, for a phenotypic screen of 19,555 small molecules. 

Small molecule screen 

A total of 19,555 small molecules including approved drugs were profiled against our 

panel of eight cell lines using the ImageXpress microXL high-content imaging 

platform. Cells were treated with the commercially available Prestwick Chemical 

Library of 1280 mostly off-patent drugs, the LOPAC library of pharmacologically 

active compounds (1280 compounds), a proprietary diverse chemical library 

provided by CRUK therapeutics discovery laboratories (13408 compounds), the 
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BioAscent library of 3,200 compounds and bespoke libraries of 387 target-annotated 

compounds and chemical probes. The primary phenotypic screen across all eight 

cell lines encompassed, 512x384 well plates, 3.9 million images and 36 TB of data in 

total. Image analysis was performed using CellProfiler across a computer cluster. 

Using a panel of cell lines better represents a heterogeneous disease, and allowed 

us to identify compounds which demonstrated selective activity across multiple OAC 

lines and not in the tissue matched control. We ran two parallel analyses for primary 

hit selection against the OAC lines; one based on broad, morphological, phenotypic 

changes and the other on cell growth and survival using nuclei count. At cytotoxic 

concentrations there are few attached cells and these are often rounded up leading 

to a lack of information in the images. Therefore, images with 20 cells or less were 

removed from the morphological analysis.  

The following results focus on a subset of 3000 annotated compounds (excluding the 

CRUK Therapeutics labs and BioAscent lead like molecules). 

In order to identify compounds inducing strong phenotypic changes we used PCA on 

the feature data to reduce the dimensions and then calculated the Mahalanobis 

distance to the DMSO controls for the first 15 principal components, which explain 

approximately 90% of the variation in the data across each cell line. The 

Mahalanobis distance therefore provides an unbiased metric of compound activity 

upon each cell line in the screen.  

Phenotypic analysis identified 62 compounds that selectively target two or more of 

the OAC lines over the non-transformed oesophageal cells. Clustering the cell 

panel’s responses to these molecules showed a number of phenotypic clusters 

enriched with similar pharmacological classes, including HDAC inhibitors, 
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microtubule disruptors, and antimetabolites, suggesting that hits have clustered 

mechanistically (Figure 3A, Supplementary Fig. S2).  

Based on cell growth and survival (i.e nuclei count), we identified 27 compounds that 

were selectively active in two or more of our OAC lines. Here, hits were defined as 

having a z-score of  -3 or more in the OAC lines and a difference of at least 2 in one 

or both of the control cell lines e.g. for a hit with a z-score of -3 in an OAC line, the z-

score in the EPC-2 would have to be greater than or equal to 0. This comparison 

was made between each OAC line and the control lines to define hits and then 

selected if they were selectively active in at least two OAC lines across the panel 

(Figure 3B).  

Compounds from the growth and survival analysis cluster into several therapeutic 

classes suggesting mechanistic pathways that may be selective for OAC cell growth 

and survival. Classes include antimetabolites and HDAC inhibitors. These classes 

were also identified in the morphometric phenotypic analysis (Supplementary Fig. 

S2).  

We performed hierarchical clustering of cell line responses to the compounds, as 

determined by the Mahalanobis metric (morphometric phenotypic analysis) and the 

z-scores (nuclei count) (Figure 3C and D), enabling pharmacological discrimination 

of cell lines. These results show that the control cell lines; EPC2-hTERT and CP-A, 

can be discriminated from the OAC panel based on global drug screening data, 

providing confidence that our high-content cell painting assay can identify 

compounds with selectivity for OAC over the tissue matched control lines. 
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Antimetabolites are selectively lethal to OAC cells 

From the subset of 3000 annotated compounds we identified the drug Methotrexate 

and three other structurally related antimetabolites; Pemetrexed, Raltitrexed and 

Aminopterin, as highly selective for OAC cell lines relative to tissue matched control 

CP-A and EPC2-hTERT cells in both the nuclei count and morphological phenotypic 

analyses. We therefore validated this class of compound for dose dependent activity. 

Aminopterin was removed from further analysis due to its toxicity profile in the clinic 

27, however, it showed potent activity in an initial dose response in the OAC lines, 

validating it as a hit our screen (results not shown).  

Nuclei count dose responses for Methotrexate, Pemetrexed and Raltitrexed 

demonstrated strong selectivity against the OAC lines, with IC50s ranging from 1-65 

nM, and showed minimal cytotoxic or phenotypic activity in either the CP-A or the 

EPC2-hTERT line even at 10 µM (Figure 4A, Supplementary Table S3), validating 

our hit selection criteria.  

Multiparametric phenotypic dose response profiles of the antimetabolites overlaid on 

the reference library of annotated compounds (Supplementary Table S2) show 

strong dose dependent phenotypic changes, moving from phenotypically inactive 

(clustering with DMSO controls) to clustering with the DNA damaging agents at 

active concentrations (Figure 4B) in all but the JH-EsoAD1 and MFD-1 lines. All 

three compounds also showed little or no effect in the control lines EPC2-hTERT and 

CP-A, clustering closely with the DMSO controls at all concentrations tested. 

Class probabilities from the pre-trained machine learning model for each of the 

compounds predicts them to belong to the DNA damage class for all but the MFD-1 

and JH-EsoAD1 lines (Figure 4C), consistent with the clustering above. Probabilities 
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also increase in a dose dependent manner indicating cellular phenotypic activity 

follows a linear on-target dose response relationship.  These results further confirm 

the ability of the Cell Painting assay to accurately predict MOA of validated hit 

compounds. 

NanoString differential expression analysis revealed methotrexate treatment caused 

a significant reduction in the expression of Histone H3 subunits (HIST1H3B, 

HIST1H3G, HISTH3H) (Figure 4D) in the sensitive cell lines only, with no effect in 

either of the tissue matched controls (Supplementary Table S4). Several other 

genes change with methotrexate treatment but none are significant. Further 

mechanistic studies shall be required to further elucidate how and if such expression 

changes confer selectivity to methotrexate. 

Towards novel therapies and targets for OAC 

From a subset of 13,000 small molecule compounds with unknown targets we further 

identify a small number of compound hits from our diverse chemical library which 

show potent and selective activity for the OAC cell lines. Compound 1 is selective for 

the OAC-P4C and MFD-1 cells (Figure 5A) and machine learning probabilities for all 

classes are low (Figure 5B). Compound 2 induces a strong phenotypic dose 

response in the OAC-P4C and OE33 cell lines only and does not cluster with the 

reference library of known MoA (Figure 5A). Machine learning predicts it to be DNA 

damaging (91 % probability) in the OAC-P4C cells, however, its clustering is distinct 

and the machine learning probability that it is DNA damaging in the OE33 cell line is 

only 52 % (Figure 5B). Therefore it may in fact represent a novel MoA or be acting 

to cause DNA damage in a novel way. This indicates that these compounds may be 

selectively targeting novel oesophageal cancer biology. Subsequent transcriptomic 
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and proteomic pathway analysis and target deconvolution studies may reveal the 

mechanistic pathways involved.  

 

Discussion 

Conventional target-directed drug discovery strategies remain to make any impact 

on the discovery and translation of effective new treatments for oesophageal cancer 

patients. Key challenges in oesophageal cancer include a highly heterogeneous 

genetic landscape with few mutations in oncogenic drivers, thereby confounding the 

identification of clear drug-target hypothesis and modern personalized medicine 

strategies. In this study we sought to adapt and evaluate the utility of an advanced 

high-content phenotypic screening method as an empirical strategy for identifying 

novel drug targets, MoA and pharmacological classes which target OAC.   

Here we have shown that combining high-content screening and image informatics 

with machine-learning can prove effective in the identification and mechanistic 

characterisation of hit compounds with selective activity upon OAC cell phenotypes. 

The majority of multiparametric high-content screening assays and associated 

machine learning methods used to predict drug MoA are typically performed on a 

single cell line. In this study we have further shown that this format can be applied to 

heterogeneous panels of cancer cell lines and normal tissue match control cells for 

the identification and prioritization of hit compounds and MoA which demonstrate 

selectivity activity for OAC cells. 

Machine-learning can be implemented as a tool for multiparametric phenotypic assay 

quality control (e.g. confirming if the assay is suitable as a discovery platform to 

classify specific cell phenotypes and elucidate MoA) as well as a tool for MoA 
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deconvolution of hit compounds. Our results demonstrate that this can be 

standardised across heterogeneous panels of cells with reasonable accuracy.  

Following one class of compounds identified in our primary phenotypic screen of 

19,555 small molecules tested across all eight oesophageal cell lines, we validated 

antimetabolites as selectively lethal to the OAC lines in vitro following dose response 

studies.  Utilising the multiparametric phenotypic information to generate phenotypic 

dose responses, combined with a reference library of compounds, machine-learning 

and clustering techniques we demonstrated the ability to study/predict the MoA of 

hits from the screen. Here we validated this technique using the antimetabolite hit 

compounds (Methotrexate, Pemetrexed and Raltitrexed), showing DNA damage as a 

likely MoA for the selectivity of these compounds which is consistent with the 

literature 28,29. These results together with our identification of hit compounds from 

our diverse chemical set which are not classified by our reference set of known 

MoAs demonstrates the impact of phenotypic screening in combination with 

machine-learning for MoA studies. This strategy will be used to assess and prioritise 

novel small molecule hits from the diverse chemical library screen for further 

mechanistic studies. From our primary phenotypic screen we have identified in total 

75 compounds which match our hit selection criteria for selective activity across the 

OAC panel. These 75 hits are an accumulation of the 62 compounds defined by cell 

morphometric phenotypic analysis and 27 compounds defined by cell proliferation 

and survival (nuclei count) analysis with 14 compounds overlapping. The 75 hits 

shall be further progressed through dose-response studies and secondary assays to 

confirm and prioritize classes of selective compounds for subsequent drug 

repurposing and or drug discovery studies. 
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In addition, using bioinformatic approaches we hope that integration of phenotypic 

data with genetic data across our panel of diverse cell lines may provide insight into 

the selective activity of phenotypic hits and generate the basis for future genetic 

biomarker-based clinical trials in OAC.  

Overall, our high-content OAC assay has proven effective in the identification and 

mechanistic characterisation of hit compounds, demonstrating its utility as a novel 

empirical strategy for the discovery of new therapeutic targets, chemical starting 

points and repurposing of existing drug classes to re-ignite drug discovery and 

development in OAC. 
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Table 1: Cell painting reagents, concentrations, excitation/emission wavelengths of 

the filters used for imaging, and suppliers. ex: excitation, em: emission 

Stain Structure Wavelength 

(ex/em 

[nm]) 

Channel Concentration Cat 

Number; 

Supplier 

Hoescht 

33342 

Nuclei 387/447 DAPI 4 ug/ml #H1399; 

Mol. Probes 

SYTOTM 14 Nucleoli 531/593 CY3 3 uM #S7576; 

Invitrogen 

Phalloidin F-actin 562/624 TxRED 0.14X #ab176757; 
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594 Abcam 

Wheat germ 

agglutinin 

Alexa FluorTM 

594 

Golgi and 

Plasma 

Membrane 

562/624 TxRED 1 ug/ml #W11262; 

Invitrogen 

Concanavalin 

A Alexa Fluor 

488 

Endoplasmic 

Reticulum 

462/520 FITC 20 ug/ml #C11252; 

Invitrogen 

MitoTracker 

DeepRed 

Mitochondria 628/692 CY5 600 nM #M22426; 

Invitrogen 

 

 

Figure 1. Cell Painting Assay and the OAC Cell Panel. A) The five channels 

imaged in the Cell Painting assay for representative cell line FLO-1, with dyes and 

cellular structures labelled. B) Colour combined representative control (DMSO) 

images of the six cell lines in the cell panel: DAPI (blue), TxRED (green), CY3 (red). 

See Table 1 for additional details about the stains and channels imaged. 

Figure 2. Reference Library Clustering and Machine Learning. A) The first two 

components of principal component analysis (PCA) and t-distributed stochastic 

neighbour embedding (T-SNE) for the reference library compound treatments for the 

OAC line FLO-1 and the Barrett’s line CP-A. Points are coloured by mechanistic 

class and multiple compounds concentrations are plotted. B) Random Forest 

Classifier: Confusion Matrices of prediction accuracies per cell line in the cell panel 

for the reference library of compounds. Diagonal values show class sensitivities.  
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Figure 3. Hit analysis. A) The first three components of principal component 

analysis (PCA) for exemplar data from OAC cell line; JH-EsoAD1. Hits (purple) are 

defined as having a Mahalanobis distance of greater than 1500 from the DMSO 

controls. B) Z-score plot for all OAC lines overlaid vs EPC2-hTERT oesophageal 

squamous control line. Hits (purple) are defined as having a z-score of – 3 or more in 

the OAC lines and showing selectivity of at least 2 z-scores compared to the EPC2-

hTERT line. C) Z-score hierarchical clustering of the cell panels response to 

compounds. D) Mahalanobis distance clustering of phenotypic response to 

compound treatments across cell lines.  

Figure 4. Antimetabolite evaluation. A) Dose responses for Methotrexate, 

Pemetrexed, and Raltitrexed across panel of cell lines. B) Principal component 

analysis of dose responses overlaid on reference library for Methotrexate in two 

resistant lines (CP-A and EPC2-hTERT) and two sensitive lines (FLO-1 and OAC-

P4C). C) Probabilities expressed as percentages for DNA damaging class for each 

cell line and each of Methotrexate, Pemetrexed and Raltitrexed. D) Differential 

expression analysis for Methotrexate treatment (5µM, 6hrs) for FlO-1, SK-GT-4 and 

OE33 cell lines. Red indicates genes reaching both P-value and fold change 

threshold, blue indicates genes that reached p-value threshold and green indicates 

genes that reached the fold change threshold. P-value = 0.05, log2 fold change = 

0.5.  

Figure 5. Phenotypic analysis of novel compounds. A) Principal component 

analysis of compound 1 and compound 2 dose responses overlaid on reference 

library for the two most sensitive cell lines for each compound. B) Probabilities 

expressed as percentages for compound 1 and compound 2 (10µM) belonging to 

each class in the reference library for each cell line. 
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