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Abstract 
Statistical deconvolution strategies have emerged over the past decade to estimate the 
proportion of various cell populations in homogenate tissue sources like brain using gene 
expression data. Here we show that several existing deconvolution algorithms which estimate 
the RNA composition of homogenate tissue, relates to the amount of RNA attributable to each 
cell type, and not the cellular composition relating to the underlying fraction of cells. 
Incorporating "cell size" parameters into RNA-based deconvolution algorithms can successfully 
recover cellular fractions in homogenate brain RNA-seq data. We lastly show that using both 
cell sizes and cell type-specific gene expression profiles from brain regions other than the 
target/user-provided bulk tissue RNA-seq dataset consistently results in biased cell fractions. 
We report several independently constructed cell size estimates as a community resource and 
extend the MuSiC framework to accommodate these cell size estimates 
(​https://github.com/xuranw/MuSiC/​). 
 

Introduction 
 
Homogenate tissues like brain and blood contain a mixture of cell types which can each have 
unique genomic profiles, and these mixtures of cell types, termed "cellular composition", can 
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vary across samples​1​. The importance of considering cellular composition within heterogeneous 
tissue sources has been highlighted in epigenetics research over the past several years​1–3​, as, 
generally, failure to account for cellular composition when analyzing heterogeneous tissue 
sources can increase both false positives and negatives​4​. Previous work has identified 
widespread epigenetic differences between neurons and glia using DNA methylation (DNAm) 
data ​3,5​, and false positives may arise when there are cellular composition differences associated 
with dissection variability, disease, normal development or any other outcome of interest. For 
example, ​loss of neurons (or glia) because of disease may cause spurious loci associations with 
illness that stem solely from differing cellular compositions between disease states, or cell-type 
specific biological differences may exist that become more difficult to detect in the presence of 
unaffected cell types​.  
 
Statistical algorithms estimate the relative or absolute amounts of each cell type in the 
homogenate tissue data. These so called "cellular deconvolution" algorithms have been 
especially popular using DNAm data ​6​ as DNAm levels are constrained between 0 and 1 and are 
binary within single cells (i.e. individual CpGs are either methylated or unmethylated) . These 
deconvolution algorithms can be classified into two general types, termed "referenced-based" 
and "reference-free" ​6,7​. Reference-free approaches only require as input an estimate of the 
number of potential cell types in a particular dataset (which can be non-trivial), and return latent 
components that preferentially capture cellular heterogeneity that can be adjusted for in 
differential methylation analysis ​1,6,8​. However, these approaches do not return fractions of cells 
and may capture potential batch effects in addition to cellular composition. Conversely, 
reference-based approaches require cell type-specific genomic profiles for each cell type of 
interest as an input and return the relative fraction of each input cell type for each queried bulk 
sample ​2​, akin to an ​ in silico​ cell counter. This class of algorithms therefore requires the 
generation of potentially many pure cell populations, which are typically generated from flow 
cytometry for applications to DNAm data from bulk tissue. 
 
While DNAm data can generate accurate absolute cell fractions in homogenate brain tissue ​3,5,9​ , 
there are several important considerations limiting more widespread application. First, RNA and 
gene expression profiling has been much more popular in postmortem brain studies, with more 
samples profiled with RNA sequencing (RNA-seq) than DNAm microarrays or sequencing. 
Secondly, the two cell classes typically used by DNAm-deconvolution algorithms are likely too 
broad to identify more subtle differences in dissection variability and potential stereological 
differences ​10,11​. While recent work has extended the number of cell populations that can be 
isolated by antibodies to separate neurons into their excitatory and inhibitory subclasses and 
oligodendrocytes from other glia ​12​, there are likely very few additional cell types that are 
possible to isolate using nuclear antibodies for DNAm samples. Researchers have therefore 
turned to using cell type-specific RNA microarray and sequencing datasets to adapt these 
reference-based deconvolution algorithms to homogenate RNA-seq samples ​7,13–23​. The majority 
of these studies have focused on tissues other than the brain, which can be freshly obtained 
and dissociated into individual cells for single cell RNA-seq (scRNA-seq) or be sorted into 
specific cell populations using flow cytometry for cell type-specific expression profiling. For 
example, the popular CIBERSORT approach ​13​ was designed for blood gene expression 
microarray data, but has been adapted to RNA-seq datasets in other tissues. Several of the 
above algorithms have been designed, adapted or implemented for brain tissue, including linear 
regression followed by quadratic programming using the Houseman algorithm ​2​,​22,23​, 
non-negative least squares​21​, the support vector machine-based CIBERSORT​24,25​, the empirical 
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Bayes method MIND​18​, and MuSiC, which combines a recursive tree based approach with 
weighted non-negative least squares for cell type proportion estimation ​14​.  
 
However, few of these approaches have validated that the resulting composition estimates are 
accurate, i.e, are absolutely similar to the true underlying composition, particularly in brain 
tissue. No approach to our knowledge has quantified the consequences of parameter and 
algorithm choices when ​only non-ideal reference data is available (e.g., mismatched tissue type, 
species, sequencing protocol, etc.)​, which occurs in almost all applications. Many reference 
datasets have been constructed from purified cell type-specific RNA-seq data from mouse ​26​, or 
RNA-seq data from sorted or dissociated nuclei in humans ​27–31​, and not whole cells, which are 
typically profiled in homogenate sequencing studies. Gene expression levels are also 
quantitative within individual cells (and not binary like in DNAm data) and the necessity of 
absolute expression levels for absolute composition quantification has largely been overlooked.  
 
Here we directly evaluated the absolute accuracy of several popular RNA-seq-based 
deconvolution strategies using several different reference datasets including a bulk/homogenate 
dataset with paired DNAm and RNA-seq data from the nucleus accumbens (NAc) from 200+ 
deceased individuals​32​. We used the DNAm data to estimate absolute neuronal fractions for 
each sample, and evaluated absolute RNA-based deconvolution accuracy across a variety of 
scenarios. We first evaluated the effects of using deep single cell RNA-seq (scRNA-seq) from 
healthy fresh human tissue obtained from surgically resected temporal cortex ​33​. This dataset 
likely produces the most comparable RNA-seq profiles to frozen bulk postmortem tissue, since 
whole cells were profiled, and 90% of RNA is cytosolic in the cortex​34​. However, this dataset 
was derived from cells in a cortical brain region. We next produced snRNA-seq data from 
postmortem human NAc to use as a reference dataset, which results in potentially less 
comparable nuclear reference profiles but comes from a more comparable brain region. We 
lastly used cyclic-ouroboros single-molecule fluorescence in situ hybridization (osmFISH) 
imaging data from the somatosensory cortex region in mouse ​35​ to derive important parameters 
in popular deconvolution algorithms. Together, our results demonstrate that many algorithms 
are not accurate, even when estimating only two cell classes (neurons and glia), and we offer 
several strategies to assess and improve accuracy that can be applied across multiple datasets 
and cell types.  

 
 

Results 

We motivate this work with a large human postmortem brain genomic dataset from the NAc, a 
brain region containing functionally distinct cell types critical in reward-processing and addiction 
36,37​. Genomic data from this region has been underrepresented in postmortem human brain 
sequencing studies, which have primarily focused on the frontal cortex ​21,38,39​ but its 
underrepresentation allows us to more comprehensively evaluate the accuracy of cellular 
deconvolution using potentially imperfect and/or mismatched reference datasets (described 
below). We dissected homogenate NAc tissue from the ventral striatum (anterior to the optic 
chiasm) across 223 adult donors and concurrently extracted DNA and RNA from the exact same 
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tissue aliquot (see Methods), which allows for directly comparable cellular composition in each 
fraction. We profiled genome-wide DNAm with the Illumina Infinium MethylationEPIC microarray 
and performed reference-based deconvolution to estimate the fraction of neurons in each 
sample (see Methods). We have previously demonstrated the absolute accuracy of the 
Houseman deconvolution algorithm​2​ in postmortem human brain DNAm data ​5,9​; here we found 
very high correlation (  = -0.949, Figure S1) between the neuronal fraction and the firstρ  
principal component (PC) of the entire DNAm profile (32.3% of variance explained), which we 
have shown to be an accurate surrogate of composition in frontal cortex​40​ and blood ​1​. The 
corresponding RNA was sequenced using the Illumina sequencing with RiboZero Gold library 
preparations (see Methods). This "gold standard" dataset, therefore, has DNAm-derived 
neuronal composition values and RNA-seq data from 223 samples to explore the accuracy and 
concordance of many popular cellular deconvolution algorithms.  
 

Mismatched reference datasets bias deconvolution 

 
Figure 1: Deconvolution in bulk NAc data using gene expression profiles from the temporal 
cortex (Darmanis); Scatter plots showing the estimated neuronal proportions across the 223 
individuals using the Houseman approach for DNAm reference vs neuronal proportions 
estimated using (​A​) the Houseman approach with scRNA reference, (​B)​ MuSiC with default 
settings and scRNA reference data, and (​C)​ CIBERSORT with scRNA reference data. 

We first assessed the accuracy and concordance of four reference-based deconvolution 
algorithms: Houseman, CIBERSORT, NNLS/MIND, and MuSiC for two cell populations - 
neurons and non-neurons/glia - in our NAc RNA-seq dataset using recommended default 
settings (see Methods). We initially used single-cell RNA-seq (scRNA-seq) data from the 
temporal cortex of eight adult donors obtained during surgical resection generated and 
described in Darmanis et al., 2015 ​33​ as the cell type-specific reference profiles for these 
algorithms. Importantly, these reference data were generated from fresh tissue, which 
preserved the integrity of the cells and corresponding cytosolic RNA, the predominant fraction of 
total RNA from brain ​34​ profiled in homogenate tissue. Furthermore, these reference profiles 
provide coverage of entire transcripts (as opposed to only the 3' ends) using Fluidigm C1 
sequencing. Therefore, these expression profiles should be more comparable to bulk brain 
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sequencing studies, with the caveat that the reference dataset was obtained from a different 
brain region (temporal cortex versus NAc and from living subjects as opposed to postmortem 
subjects).  

We used measures of root mean square error (RMSE) to assess accuracy and squared 
Pearson correlation coefficients (R​2​)  to assess concordance for each algorithm's estimated 
neuronal fraction compared to the DNAm-based neuronal fractions (Figure 1). RMSE quantifies 
the degree of bias, i.e., how much our cell type estimates (RNA composition estimates) deviate 
from the absolute cell type fractions, with smaller values corresponding to the cellular 
composition and RNA composition being more similar. R​2​ quantifies the amount of information 
our estimates contain about how the absolute cell type fractions vary in the population being 
studied, i.e., how much variability of the cell type fractions, across individuals, is captured by our 
composition estimates.  Houseman (Figure 1A), MuSiC (Figure 1B), and NNLS produced 
concordant (high correlation; Houseman R​2​ = 0.51, p < 2.20E-16; MuSiC R​2​ = 0.56, p < 
2.20E-16; NNLS R​2​ = 0.54, p < 2.20E-16 ) but biased (high RMSE, ​>​0.35) neuronal fraction 
estimates. CIBERSORT produced more discordant (moderate correlation; R​2​ = 0.25, p = 
5.13E-03) neuronal fraction estimates (Figure 1C), but with less bias (low RSME, 0.09). We 
found that CIBERSORT, compared to either MuSiC or the Houseman RNA approach, was the 
most accurate. However, its estimates provided the least information (R​2 ​value) about the 
variability of the estimates based on DNAm data. In comparing the R​2 ​metric across the three 
approaches, we found that MuSiC provided the most information about the observed variability 
of the observed cell type proportions among the 223 individuals but was the most biased. These 
results suggest that all four of these approaches overestimated the proportion of neurons in bulk 
brain tissue, even under the simplest application to deconvoluting two distinct cell populations. 
However, it was unclear how much algorithm parameters and reference dataset differences (in 
regards to technology and brain region) contributed to the performance of these methods. 

Methods for reducing bias in cellular deconvolution 

Table 1: Cell sizes used for deconvolution.  

Cell type NAc 50 
genes (UMIs) 

NAc 25 
genes (UMIs) 

NAc all 
genes (UMIs) 

Temporal 
cortex, 
Darmanis 
et al. 
(Counts) 

osmFISH cell 
Area (​μ ​m​2​) 

osmFISH 
nRNA 
(​intensity​) 

Glial 710.63 453.24 5763.55 12879.73 90.87 180.46 

Neuronal 4513.58 2793.54 29884.65 18924.66 122.96 198.86 

Neuronal
/glial 
ratio 

6.35 6.16 5.19 1.47 1.35 1.1 

UMI, unique molecular identifier, counts=  log2(cpm+0.5), intensity = sum of probe intensities across 24,048 
genes.  
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Figure 2:  Deconvolution in bulk NAc data based on a single nucleus RNAseq (snRNA-seq) 
reference dataset from the same brain region. Scatter plots comparing the estimated neuronal 
proportion obtained for each individual using the Houseman approach with DNAm reference 
dataset vs neuronal proportions obtained using (​A​) MuSiC with default settings and a 
snRNA-seq NAc reference dataset, (​B)​ MuSiC based on a snRNA-seq NAc reference dataset 
with cell sizes for each cell type estimated using osmFISH cell area (mouse), and (​C​) MuSiC 
based on a snRNA-seq NAc reference dataset with cell sizes for each cell type estimated using 
osmFISH total RNA abundance (mouse) per cell type. 
 
Many of the above deconvolution strategies have several parameters whose adjustment could 
reduce the observed bias (i.e. maximize accuracy) and increase the concordance between 
these neuronal fractions. The MuSiC algorithm particularly has an interpretable "cell size" (see 
Methods) parameter used in the deconvolution process. Different cell types could have more or 
less absolute RNA abundance, for example if they were larger or smaller, or if they were more 
or less transcriptionally active. We hypothesized that the overestimation of neuronal fractions 
resulted from neurons being larger and more transcriptionally active. However, this "cell size" 
parameter, regularly defined by the algorithm as the average expression level for a given cell 
type summed across genes, is estimated directly from the reference cell type-specific RNA-seq 
profiles by default (see Methods). However, some scRNA-seq (or snRNA-seq) library 
preparation and sequencing strategies, like the Fluidigm C1 system, may normalize cDNA 
libraries to the same concentration prior to sequencing, which will remove potential variability in 
RNA abundances across cell types. We therefore sought to use external data to better estimate 
these cell size parameters (Table 1) and assessed the resulting effects on cellular 
deconvolution accuracy.  
 
First, we used external ouroboros single-molecule fluorescence in situ hybridization (osmFISH) 
data from mouse somatosensory cortex​35​ to construct two different types of cell size parameters 
for the MuSiC algorithm (as data from NAc did not exist). We extracted the estimates of both cell 
size (via their provided segmentations) and total RNA abundance (via the sum of all gene 
fluorescence signal)  aggregated across neuronal and non-neuronal cell types. We 
subsequently utilized these estimates as proxies for cell size in human RNA-seq data when 
deconvoluting neuronal fractions. In these data, comparing neurons to non-neurons, neurons 
were both larger (123 vs 91 μ ​m​2​, p < 2.20E-16) and had more total RNA (199 vs 180 intensity, p 
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= 1.73E-05) as we observed in the estimated cell size in the MuSiC algorithm using the 
Darmanis dataset (18,925 vs 12,880 normalized counts). We did not observe any improvement 
in the concordance (osmFISH cell area R​2​ = 0.55, p < 2.2E-16; osmFISH totalRNA R​2​ = 0.54, p 
< 2.2E-16 ) or accuracy (osmFISH cell area RMSE = 0.39; osmFISH totalRNA RMSE = 0.43) of 
the estimated cell type fractions when we compared our results from default settings to those 
based on applying cell size proxies using mouse data (Figure S2 A-B). These results may not 
be particularly surprising, given the numerous differences between mouse and human 
morphology, and the different brain regions profiled. 

 
We then generated snRNA-seq dataset from 2 postmortem NAc donors and 4,169 total nuclei to 
produce more comparable cell type specific cell size (see Methods) parameters  and reference 
expression profiles (see Methods). First, we used the NAc reference dataset at the single 
nucleus level and ran the MuSiC algorithm with default settings, which used both NAc-based 
cell sizes and expression profiles, to deconvolute neuronal fractions (Figure 2A). We confirmed 
that, on average, neurons had more total RNA than non-neurons using this NAc snRNA-seq 
dataset (103  vs. 72  unique molecular identifiers [UMIs] per gene, p < 2.2E-16).  Furthermore, 
while there was a high correlation among neuron-specific gene expression effects across the 
NAc and temporal cortex (Darmanis et al.) reference profile datasets, we observed genes with 
different magnitudes of effects based on differential expression results between neuronal and 
non-neuronal cell types (Figure S3). When using both the NAc-based cell size and gene 
expression reference profiles, we observed a substantial improvement in both the concordance 
and the RMSE for the estimated neuronal fractions compared to using the temporal cortex 
dataset only. However, the estimates were still biased, and this bias increased as the neuronal 
fraction across individuals increased, suggesting that the NAc-based cell sizes together with the 
estimated abundance may be incorrectly characterizing the true underlying neuronal expression 
level for these individuals. Eliminating the cell size parameter resulted in similarly reduced 
concordancies in both the temporal cortex and the NAc reference datasets, but increased 
accuracy only using the NAc reference dataset (Table 2). This implies that the underlying broad 
cellular composition was well captured by the gene “abundance” information for a matched brain 
region.  
 

 
We then combined different estimates of cell size parameters (NAc snRNA-seq versus 
osmFISH) and gene expression reference profiles (NAc snRNA-seq versus temporal cortex 
scRNA-seq ) and assessed the effects on deconvolution accuracy in bulk NAc RNA-seq data. 
When running MuSiC using the estimates of cell size based on osmFISH data with the NAc 
expression reference profiles, we observed further improvements in the bias of the estimated 
cell type fractions but saw a minimal difference in the concordance (Figure 2B and C). 
Surprisingly, when we used only the Darmanis cell type-specific expression levels, the best 
(least biased and most concordant) deconvolution results were produced using cell sizes 
estimated from NAc snRNA-seq data, with improvements in both the concordance and the 
RMSE (Figure 3A). Specifically, when we compared the R​2​ and the RMSE estimates to those 
observed under the default setting for the Darmanis reference with the mismatched brain region, 
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we see a small (6% relative change, p = 3.3E-02) increase for the concordance and a 
substantial (78% relative change, p < 1E-04 ) decrease for the RMSE. We further refined the 
NAc cell size estimates using sets of the top 25 and 50 cell type discriminating genes (see 
Methods), which slightly improved our estimates of the absolute cell type fractions (Figure 3B 
and 3C). Both the concordance (7% relative change, p = 3.5E-02) and RMSE (86% relative 
change, p < 1E-04) improved even more when compared to the default approach using a 
mismatched reference dataset. Across all approaches, the most accurate (least biased) result 
occurred when we used cell sizes estimated from Darmanis scRNAseq data and gene 
expression from NAc snRNA-seq data, while the most concordant results were observed when 
we used NAc snRNAseq data exclusively.  
 
Table 2: Bias and concordance results for deconvolution of bulk NAc data using each cell size 
and gene expression reference dataset. 

Method Cell size Reference dataset 

scRNA-seq in temporal 
cortex (Darmanis et al.) 

snRNA-seq in NAc 

Concordance 
(R​2​) 

Accuracy 
(RMSE) 

Concordance 
(R​2​) 

Accuracy 
(RMSE) 

MuSiC 

None 0.54 0.45 0.54 0.08 

scRNAseq in 
temporal cortex 
(Darmanis et al.) 

0.56 0.37 0.58 0.05 

snRNAseq in NAc 0.59 0.08 0.71 0.17 

snRNAseq in NAc 
(Top 25 genes) 

0.59 0.06 0.71 0.18 

snRNAseq in NAc 
(Top 50 genes) 

0.59 0.05 0.72 0.18 

osmFISh-Cell area 0.55 0.38 0.57 0.05 

osmFISh-Total RNA 0.54 0.43 0.54 0.06 

CIBERSORT N/A 0.25 0.09 N/A N/A 

NNLS N/A 0.54 0.40 0.72 0.22 
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In summary, when we used a region-matched appropriate dataset - NAc snRNA data - as the 
reference, or to derive estimates of the cell size, we observed that estimates of the cell type 
proportions generally improved (Table 2, Figure 2 A and Figure 3A-C). In settings where we had 
a mismatched reference dataset (e.g., mismatched on brain region or species), incorporating 
estimated cell sizes obtained from the matched brain region (NAc) provided the best result in 
metrics for both concordance and accuracy, and we slightly improved these metrics when we 
refined the gene sets used to estimate the cell sizes.  

 

 
 
Figure 3: Deconvolution in bulk NAc data using gene expression profiles from the temporal 
cortex (Darmanis et al) and different estimates of cell size. Scatter plots comparing the neuronal 
fraction estimated for each individual using DNAm data and the Houseman method vs neuronal 
fractions based on scRNA-seq data and estimated using MuSiC with (​A​) cell-size estimated 
using all genes expressed in the NAc snRNAseq reference dataset, (​B​) cell-size estimated 
using the top 50 cell type discriminating genes in the NAc snRNAseq reference dataset, and (​C​) 
cell-size estimated using the top 25 cell type discriminating genes in the NAc  snRNAseq 
reference dataset.  
 
 
 
 
 

Discussion 
 
Statistical deconvolution strategies have emerged over the past decade to estimate the 
proportion of various cell populations in homogenate tissue sources like blood and brain from 
both gene expression and DNAm data. Our results together suggest that many existing RNA 
deconvolution algorithms estimate the RNA composition of homogenate tissue, e.g. the amount 
of RNA attributable to each cell type, and not the cellular composition, which relates to the 
underlying fraction of cells. This was evident by the consistent overestimation of larger and 
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more transcriptionally active neuronal cells. We have identified that incorporating cell size 
parameters into RNA-based deconvolution algorithms can successfully recover cellular fractions 
in homogenate brain RNA-seq data. We have lastly shown that using both cell sizes and cell 
type-specific gene expression profiles from brain regions other than the target/user-provided 
bulk tissue RNA-seq dataset consistently resulted in overestimating neuronal fractions. We have 
developed an extension of the MuSiC framework ​14​ that allows for the incorporation of 
independent cell size estimates, and have further provided cell size estimates for human brain 
(shown in Table 1) as a part of the package: ​https://github.com/xuranw/MuSiC​.  
 
 
Characterizing cellular heterogeneity is especially important in human brain, where the 
underlying cell types can have diverse functions and disease associations that could be missed 
in studies of bulk tissue ​(Michels et al. 2013)​. Here we show that RNA-based deconvolution for 
just two cell populations - neurons and non-neurons - largely fails to estimate the underlying 
cellular composition of bulk human brain tissue across a variety of algorithms and strategies. 
We quantified the diverse range of neuronal fractions estimated by several popular algorithms to 
better understand the effects of reference cell type-specific expression profiles and differences 
in cell size and/or activity profiles on deconvolution. We specifically examined the common 
scenario of performing RNA deconvolution using cell type-specific reference datasets that can 
be fundamentally different from user-provided homogenate tissue target datasets, for example 
differing in profiled brain region, sequencing technology and/or cellular compartment. These 
problems are likely magnified in human brain tissue compared to suspended cells like blood, 
where deconvolution strategies are more easily validated against true cell fractions obtained by 
routine complete cell counts ​13​. We lastly emphasize caution when performing RNA-based 
deconvolution using many cell types ( i.e., more finely-partitioned cell classes) without having 
the ability to validate cell counts on at least a subset of samples. 
 
We therefore offer several recommendations for performing RNA-based deconvolution in bulk 
human brain gene expression data, particularly when aiming to identify cellular, and not RNA, 
composition.  
 

1. Providing estimates of cell size for each reference cell type improves the concordance 
and reduces bias when performing RNA deconvolution to estimate cellular fractions. 
Biologically-motivated and valid external estimates of cell-size improve the accuracy of 
the estimated cell type fractions, even when gene expression profiles for reference cell 
populations are obtained from other brain regions (Figure 3). The exact biological 
interpretation of these estimated cell sizes, particularly when estimated across species, 
is arguably unclear, but likely relates to correcting for absolute RNA abundance and 
differences in transcriptional activity between cell populations. Regardless of the method 
used for deriving cell sizes, neurons consistently had more RNA than glia. We note that 
our recommended strategies for estimating cell size have only been assessed for broad 
classes of cell types, and further work is needed to validate extensions to more stratified 
subclasses of cells.  
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2. The concordance and bias improvements using full-length single cell sequencing from a 

different brain region (temporal cortex), rather than single nuclei RNA-seq from the target 
brain region (NAc) highlighted the importance of comparability between reference gene 
expression profiles and the homogenate tissue expression levels. While previous reports 
have identified high correlation between nuclear and cytosolic gene expression levels in 
both bulk ​41​ and single cell ​30,42​ resolution, comparable absolute (and not relative) 
expression levels are seemingly important for the accuracy of these RNA-based cellular 
deconvolution algorithms. There further is an experimental design tradeoff between 
profiling more nuclei (1000s) using 3' technologies like 10x Genomics Chromium Single 
Cell Gene Expression compared to profiling fewer nuclei (or cells, 100s) using full-length 
sequencing technologies like SMART-seq if researchers wish to generate their own 
reference profiles.  
 

3. Using reference cell type-specific expression profiles from comparable brain regions as 
the bulk RNA-seq target dataset is important, and can especially greatly increase the 
concordance of these RNA deconvolution strategies with neuronal fractions.  

 
The choice of maximizing accuracy (by minimizing bias) versus increasing concordance in 
assessing these algorithms is an important consideration, particularly when generating custom 
expression reference profiles is prohibitive (Table 2). These two objectives largely relate to 
whether the goal of RNA deconvolution is to estimate cell fractions (and maximize accuracy) or 
RNA fractions (and maximize concordance). Estimation of RNA fractions (by maximizing 
concordance) may be sufficient to control for potential confounding due to composition 
differences between outcome groups ​4​. We note this can also be accomplished using 
"reference-free" deconvolution ​6​ or through the estimation of potentially sparse principal 
components ​1,8​ that control for relative differences in cellular composition. However, estimation 
of cellular fractions (and maximizing accuracy) is arguably more useful, both for assessing 
human brain tissue dissection during data generation and to identify cell type-specific effects 
when using these cellular fractions in downstream differential expression analyses ​43​.  
 
Together, our results demonstrate that many RNA deconvolution algorithms do not produce 
accurate cellular fractions when estimating only two cell classes (neurons and non-neurons). 
We offer several strategies and corresponding software to assess and improve accuracy that 
can be applied across multiple datasets and cell types.  
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Methods 

Bulk NAc Data Generation and Processing 
Data generation and processing were described extensively in Markunas et al. 2019 ​32​. Briefly, 
the nucleus accumbens (NAc) was dissected under visual guidance using a hand-held dental 
drill.  Samples were obtained from the ventral striatum, anterior to the optic chiasm, at the level 
where the NAcforms a bridge between the putamen and the head of the caudate. DNA and 
RNA were concurrently extracted from dissected tissue using the Qiagen AllPrep DNA/RNA Mini 
Kit (Cat No./ID: 80204).  

NAc DNA was profiled with the Infinium MethylationEPIC microarray using the 
manufacturer's protocol. Raw idat files were processed and normalized using the minfi 
Bioconductor package ​44​ using stratified quantile normalization ​45​. Resulting neuronal fractions 
were estimated using the minfi estimateCellCounts function ​1​ using sorted reference data from 
the DLPFC for neurons and non-neurons ​5,46​ using the Houseman algorithm ​2​. 

NAc RNA was subjected to RNA-seq library preparations using the Illumina RiboZero 
Gold kits and sequenced using 2x100bp paired end reads on an Illumina HiSeq 3000.  
  
 

Reference Datasets 
 
Darmanis ​(Darmanis et al., 2015)  
scRNA-seq data for 58,037 genes and 556 cells were obtained for brain samples across 8 
individuals, as described previously ​(Darmanis et al., 2015)​. We filtered this dataset by removing 
cells based on embryonic samples and retaining cells from one of the following five cell types; 
Neuronal, Oligodendrocyte progenitor cells (OPC), Astrocytes, Oligodendrocytes, and Microglia. 
We also removed genes that had no expression for all cells in the reference dataset or did not 
show any expression in the bulk dataset (i.e., mean and variance zero). In total, we used 265 
cells for this reference and 24,048 genes to estimate the cell type proportions for the 223 
samples with bulk NAc data. 
 

Single-nucleus RNA-seq data generation and processing in nucleus accumbens  

We performed single-nucleus RNA-seq (snRNA-seq) on nucleus accumbens (NAc) tissue from 
two donors using 10x Genomics Single Cell Gene Expression V3 technology.  Nuclei were 
isolated using a “Frankenstein” nuclei isolation protocol developed by Martelotto et al. for frozen 
tissues​27,47–50​. Briefly, ~40mg of frozen NAc tissue was homogenized in chilled Nuclei EZ Lysis 
Buffer (MilliporeSigma) in a glass dounce with ~15 strokes per pestle. Homogenate was filtered 
using a 70um-strainer mesh and centrifuged at 500xg for 5 minutes at 4°C in a benchtop 
centrifuge. Nuclei were resuspended in the EZ lysis buffer, centrifuged again, and equilibrated 
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to nuclei wash/resuspension buffer (1x PBS, 1% BSA, 0.2U/uL RNase Inhibitor). Nuclei were 
washed and centrifuged in this nuclei wash/resuspension buffer three times, before labeling with 
DAPI (10ug/mL). The sample was then filtered through a 35um-cell strainer and sorted on a BD 
FACS Aria II Flow Cytometer (Becton Dickinson) at the Johns Hopkins University Sidney 
Kimmel Comprehensive Cancer Center (SKCCC) Flow Cytometry Core.  Gating criteria 
hierarchically selected for whole, singlet nuclei (by forward/side scatter), then for G​0​/G​1​ nuclei 
(by DAPI fluorescence). A null sort was additionally performed from the same preparation to 
ensure nuclei input was free of debris. Approximately 8,500 single nuclei were sorted directly 
into 25.1uL of reverse transcription reagents from the 10x Genomics Single Cell 3’ Reagents kit 
(without enzyme). Libraries were prepared according to manufacturer’s instructions (10x 
Genomics) and sequenced on the Next-seq (Illumina) at the Johns Hopkins University 
Transcriptomics and Deep Sequencing Core. 

We processed the sequencing data with the 10x Genomics’ Cell Ranger pipeline, aligning to the 
human reference genome GRCh38, with a reconfigured GTF such that intronic alignments were 
additionally counted given the nuclear context, to generate UMI/feature-barcode matrices. We 
used R package Seurat​51​ for raw feature-barcode quality control, dimensionality reduction 
(PCA), choosing the top 30 PCs as the optimal dimensions for clustering. We performed 
graph-based clustering with the default Louvain ​approach, taking a computed K-nearest 
neighbors graph as input, which were then annotated with well-established cell type markers for 
nuclear type identity​31​. We also used Seurat’s implementation of non-linear dimensionality 
reduction techniques, t-SNE and UMAP, simply for visualization of the high-dimensional 
structure in the data, which complemented the clustering results (Supp Figure 4). With the five 
broad cell type annotations (neurons, oligodendrocytes, oligodendrocyte precursors, astrocytes, 
and microglia) of nuclear clusters, we identified unbiased cluster-driving genes (with Seurat’s 
‘FindAllMarkers​()’ function, using the Wilcoxon rank-sum test), that were upregulated in each 
cell type/cluster, compared to all other nuclei. Using the same set of 24,048 genes, we have 
4,169 high-quality nuclei in this reference, evenly distributed across donors. The top 50- and top 
25-per-cell-type gene sets had 247 and 125 genes, respectively, which included many cell type 
marker genes used for annotation. 

 
 

Estimation procedures 
 

HOUSEMAN 
This algorithm ​(Houseman et al., 2012)​ uses a linearly constrained quadratic optimization 
approach with additional non-negative constraints on the parameters. The linear constraint does 
not require that the sum of all coefficients equal one. This allows the possibility of unknown cell 
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types in case the specification is not comprehensive. It was implemented using the minfi R 
Bioconductor package ​(Aryee et al. 2014)​. 
 

MuSiC 
The MuSiC ​(Wang et al., 2019)​ approach models the relationship between the relative 
abundance of gene g in the bulk RNA-seq data and the mean expression level of the same 
gene in the reference dataset for a given individual. The relationship is provided below 

 ∝ S θY g ∑
K

k = 1
pk k k

g
 
 

Where k = 1,...,K is the index of the cell types, is the proportion of cells from cell type k, andpk  

is the relative abundance for the gth gene with respect to the kth cell type. is the cell sizeθkg
 

Sk  
parameter and is defined as the average number of total mRNA molecules for cell type k. By 
default,  is estimated automatically by MuSiC. For the deconvolution method comparisonsSk  
that assessed cell size impact on neuronal cell type proportion estimation,  was derived fromSk  
one of multiple data sources (Table 1) using 1) default settings 2) osmFISH or 3) the average 
number of total mRNA molecules for cell type k using only the top 25 or 50 most discriminating 
genes per cell type. We defined "most discriminating" as genes with the smallest p-values and 
fold change >0.25, relative to other cell types. All estimation was carried out using the MuSiC 
package in R.  
 

CIBERSORT 
CIBERSORT uses a machine learning approach called nu-support vector regression ​(Newman 
et al., 2015; Schölkopf et al., 2000)​ and requires at least 2 input datasets to work. The first is a 
signature matrix that identifies the set of genes that are informative for the deconvolution 
procedure. The second is a bulk RNA-seq dataset to estimate cell type proportions.  
 
The signature matrix depends on the tissue of interest. We generated a custom signature 
matrix. Using the Darmanis reference dataset, we generated both a reference sample file 
(gene-by-cell matrix) and a phenotype classes file (cell type-by-dummy variable identifying the 
cell type for each cell) and used the default setting (​CIBERSORT​) to obtain a custom signature 
gene expression matrix. The specified false discovery rate (FDR) threshold used to include 
genes in the signature matrix was 0.30 (i.e. q = 0.30, default). Using this signature matrix, we 
then performed deconvolution on our bulk NAc RNA-seq data. ​As suggested in the 
documentation for CIBERSORT (​CIBERSORT​)​, we disabled quantile normalization for our RNA-seq 
data. 
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NNLS/MIND 
This is a simple linear regression with non-negativity constraints on the parameter estimates. 
The estimated fractions are then the value of each parameter estimate divided by the sum of all 
parameter estimates across cell types. MIND (​https://github.com/randel/MIND​) uses NNLS to 
estimate cell type fractions. 
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Supplementary Table 1: Proportion of cell types in datasets used to generate cell sizes or as reference data 

Cell type NAc Darmanis osmFISH 

Non-neuronal 0.83 0.51 0.31 

Neuronal 0.17 0.49 0.69 
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Supplementary Figure 1(DNAm estimated neuronal fractions vs PC1): Scatter plot of neuronal 
fractions estimated using the Houseman approach with a DNAm reference vs the first principal 
component estimated from the bulk RNA-Seq data. 
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Supplementary Figure 2: Deconvolution in bulk NAc data using gene expression profiles from 
the temporal cortex (Darmanis et al)  with cell size estimates derived using mouse samples 
(osmFISH estimates of cell size). Scatter plots comparing neuronal fraction estimated for each 
individual using DNAm data and the Houseman method vs neuronal fractions based on 
scRNA-seq data and estimated using MuSiC with (​A) ​osmFISH cell area as cell size, and (​B​) 
osmFISH total RNA molecule count as cell size 
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Supplementary Figure 3: Neuronal enrichment of gene expression in scRNA-seq from temporal 

cortex and snRNA-seq from nucleus accumbens. Scatter plot shows the relationship, based on

(fold change) comparing neuronal to glial, between the Darmanis reference datasetlog 2  

(y-axis) and the NAc reference dataset (x-axis). Each dot represents an estimated (foldlog2  

change) for  a given gene.  
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Supplementary Figure 4: t-distributed stochastic neighbor embedding (t-SNE) of single-nucleus 

RNA-seq data from the two postmortem NAc samples, representing the 4,169 high-quality 

nuclei after processing.  Nuclei are colored by cell type annotation after graph-based clustering, 

which shown here is largely in agreement with t-SNE coordinates. OPC represents 

Oligodendrocyte progenitor cell 
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