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Abstract: Natural selection imposes a complex filter on which variants persist in a population
resulting in evolutionary patterns that vary greatly along the genome. Some sites evolve close to
neutrally, while others are highly conserved, allow only specific states or only change in concert
with other sites. Most commonly used evolutionary models, however, ignore much of this complex-
ity and at best account for variation in the rate at which different sites change. Here, we present
an efficient algorithm to estimate more complex models that allow for site-specific preferences
and explore the accuracy at which such models can be estimated from simulated data. We find
that an iterative approximate maximum likelihood scheme uses information in the data efficiently
and accurately estimates site-specific preferences from large data sets with moderately diverged
sequences. Ignoring site-specific preferences during estimation of branch length of phylogenetic
trees — an assumption of most phylogeny software — results in substantial underestimation compa-
rable to the error incurred when ignoring rate variation. However, the joint estimation of branch
lengths, site-specific rates, and site-specific preferences can suffer from identifiability problems and
is typically unable to recover the correct branch lengths. Site-specific preferences estimated from
large HIV pol alignments show qualitative concordance with intra-host estimates of fitness costs.
Analysis of site-specific HIV substitution models suggests near saturation of divergence after a
few hundred years. Such saturation can explain the inability to infer deep divergence times of

HIV and SIVs using molecular clock approaches and time-dependent rate estimates.

Introduction

Over time, genome sequences change through muta-
tions and are reshuffled by recombination. Modifications
to the genomes are filtered by selection for survival such
that beneficial variants spread preferentially and those
that impair function are purged. As a result, some parts
of genomes change rapidly, while other are strongly con-
served. In addition to variation of the evolutionary rate,
different sites in a genome only explore different subsets
of the available states. Some positions in a protein, for
example, might only allow for hydrophobic amino acids,
while others require acidic side chains. Patterns of con-
servation and variation, possibly involving more than one
site, are therefore shaped by functional constraints which
in turn allows inference of biological function from genetic
variation.

Similarly, phylogenetics aims at reconstructing the re-
lationships and history of homologous sequences from the
substitutions that occurred in the past. Modern phy-
logenetic methods describe this stochastic evolutionary
process with probabilistic models of sequence evolution
and aim to find phylogenies that either maximize the
likelihood of observing the alignment or sample phylo-
genies from a posterior probability distribution (Felsen-
stein), 2004).

Inferring phylogenies is a computationally challenging
problem since the number of phylogenies grows super-
exponentially with the number of taxa and because the
calculation of the likelihood is computationally costly
(though linear in the number of taxa). Due to this com-

putational complexity, the most commonly used substi-
tution models are simple caricatures of biological com-
plexity. The simplest substitution models assume that
all sites and sequence states are equivalent and evolve at
the same rate, i.e., they assume an unconstrained non-
functional sequence that mutates at random between the
different sequence states. Such simple models are clearly
inadequate and ignoring rate heterogeneity tends to re-
sult in biased estimates of divergence times or otherwise
erroneous results (Yang) (1996). Most commonly used
models account for variation in substitution rates among
sites and average properties of the substitution process
such as transition/transversion bias or more likely sub-
stitution between similar amino acids (Nguyen et al.,
2015}, |Price et al.l 2010; [Stamatakisl 2014} |Yang, [1994)).
To avoid over-fitting, these methods typically don’t es-
timate a rate for each site, but treat site-specific rates
as random effects that are integrated out (often using
discrete approximations of a Gamma distribution (Yang,
1996), mixture of multiple unimodal distributions (May-
rose et al., 2005)), or a small number of fixed rates).

In addition to rate variation, different sites in a pro-
tein differ in amino acid they allow. Recent deep muta-
tional scanning experiments have shown that site-specific
preferences are mostly conserved between moderately di-
verged proteins (Doud et all [2015). Using such ex-
perimentally inferred site-specific models in phylogenetic
inference greatly increases the likelihood of the data
(Bloom, 2014). More than two decades ago, [Halpern
and Bruno| (1998) pointed out that ignoring that equi-
librium frequencies vary from one position to another
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will result in underestimation of branch lengths of a phy-
logeny — possibly dramatically when frequencies are heav-
ily skewed. [Hilton and Bloom| (2018) recently showed
that experimentally measured preference not only im-
prove the phylogenetic fit, but also results in longer
branch length estimates. Models with site-specific prefer-
ences are also known as mutation-selection balance mod-
els (Bruno, [1996; [Yang and Nielsen, [2008) reflecting the
intuition that equilibrium frequencies are determined by
competition of diversifying processes (like mutation) and
selection for an optimal function.

While biologically plausible, estimating such models
from data exacerbates the over-fitting problem and it
rarely attempted in practice. In the context of the site-
specific models this issue has become known as extensive
parametrization or even infinitely many parameters prob-
lem (Rodrigue, 2013; [Spielman and Wilke, 2016). With
sufficient data, however, site-specific parameters can be
accurately estimated (Scheffler et al.,|2014;|Spielman and
Wilkel |2016; [Tamuri et al., [2012). Here, we implement
an EM-style algorithm inspired by (Brunol 1996)) to infer
site-specific rates and preferences from simulated data,
quantify its accuracy and the different sources of bias
and noise, and show how divergence time estimates de-
pend on the fidelity with which site-specific model pa-
rameters are known. We apply this algorithm to large
HIV-1 alignments and explore the consequences for phy-
logenetic inference.

Efficient inference of site-specific substitution models

Following work by Halpern and Bruno| (1998)), we pa-
rameterize a site-specific general time-reversible (GTR)
substitution model at site a from state j to ¢ as:

5 = WpiWij for i # j,

ho= ) Qe (1)
k

Here, p* is the substitution rate at site a, p¢ is the
equilibrium frequency of state i at site a, and Wj; is
a symmetric substitution matrix that we assume to be
the same for all sites (in what follows, super script a
will always refer to the position in the sequence, while
subscript 4, j, n, m refers to the state). The second equa-
tion ensures conservation of probability. In addition, we
require ) . p? =1 and Zle Zi# Wijp¢p§ = L to nor-
malize the frequencies and fix the scale of Wj;.

Extending the approach by [Bruno| (1996)), we show in
Materials and Methods and the supplement that the it-
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approximately maximize the likelihood of the data. Here
7;" is the time site a spends in state j across the tree, nf;
are the number of transitions from state j to state ¢ at site
a, cis a pseudocount analogous to a Dirichlet prior that in
the absence of data will drive the p¢ to a flat distribution
and the substitution rates to ¢ divided by the total tree
length. To make the behavior of these update rules more
explicit, we have multiplied numerator and denominator
with the parameter that is being updated. This (i) shows
that the update rules are multiplicative and therefore
ensure positivity, and (ii) illustrates that each of these
rules are the ratio of the observed number of transitions
between states nf; and the ezpected number piW;;7s" —
each appropriately summed over sites or states. These
update rules are an example of non-negative factorization
algorithms (Lee and Seung, [2001)).

Accuracy of inferences

The validity of this iterative solution will depend (i)
on the accuracy of the linear approximation, (ii) the ac-
curacy to which n{; and 7§ can be estimated, and (iii)
the accuracy of the tree reconstruction. In addition, the
Maximum Likelihood estimates might deviate from the
true parameters due to over-fitting.

To assess these sources of error independently, we
simulated sequences evolving along trees and explicitly
recorded n¢; and the 7¢ for a range of sample sizes, levels
of divergence, and different degrees of variation between
sites, see Materials and Methods. For each parameter
set, we generated two random Yule trees, for each tree
generated two random site-specific models, and for each
tree/model pair two alignments, resulting in a total of
eight data set per parameter combination. We quantified
the accuracy of the inferences as x? = L™' Y . (p¢ —p¢)?
where p¢ and p¢ are the inferred and true equilibrium
probabilities, respectively. We compared inferences us-
ing (i) the true ancestral sequences, (ii) reconstructed
ancestral sequences, and (iii) reconstructions on the true
phylogenetic tree.

Fig. 1| shows the average squared error x? for a trees
with n € [100, 300, 1000, 3000] taxa and a range of sub-
stitution rates as a function of the expected number of
substitutions per site. The graph contains estimates of p¢
from the alignment and via the iterative scheme with cor-
rect ng; and 7" as input. The data are shown on double
logarithmic scales, such that the approximately straight
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FIG. 1 Accuracy of iterative estimation of site-specific GTR models as a function of the expected number of
state changes along the tree. (A) Mean squared error of the inferred p§ scales inversely with the tree length, suggesting
the accuracy is limited by the Poisson statistics of observable mutations. Colored lines correspond to data generated assuming
Gamma distributed rate variation with o = 1.5, gray lines with a = 3. The estimates are more accurate than naive estimates
from the state frequencies in alignment columns. The advantage over naive estimates increases with data set size as seen from
different curves with n € [100, 300, 1000, 3000] sequences per tree. (B) The relative substitution rates are accurately inferred
as soon as the typical site experiences several substitutions across the tree as quantified here as Pearson correlation coefficient
between true and inferred rates. Regularization via pseudo-counts reduces over-fitting at low divergence. Analogous results for
alphabets of size ¢ = 20 are shown in Fig.
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FIG. 2 Quantification of errors stemming from tree inference and ancestral reconstruction. Panels A and B
show the mean-squared deviation x? of inferred p¢ from the true p¢ for 4-letter and 20-letter alphabets, respectively. At large
root-to-tip distances, ancestral reconstruction becomes less and less certain and estimation of p§ fails (red lines). These errors
are gradually eliminated by first summing over ancestral uncertainty (violet), iteratively redoing ancestral reconstruction using
the inferred model (brown), and re-optimizing branch lengths using the updated models (or using the true tree, yellow/pink).
Data in this figure uses was generated assuming Gamma distributed rate variation with o = 1.5.

decrease of x? with slope -1 implies that the accuracy is
inversely proportional to the expected number of substi-
tutions. This scaling suggests that accuracy is limited
by the inherent stochasticity of the evolutionary process
and that the inference uses all available information ef-
ficiently. The simulation data was generated by draw-
ing site-specific rates from a Gamma distribution with
a = 1.5 (colored lines) and o = 3 (grey lines). The scal-

ing behavior ya(tree length)~! is more evident for a = 3
than for « = 1.5. In case of strong rate variation, the av-
erage accuracy is dominated by a small number of sites
with low rates at which frequencies are estimated poorly
and the average tree length does not capture behavior at
these sites. A naive approach using the frequencies of dif-
ferent sequences states in the alignment as estimates for
p¢ is much less accurate due to the correlation induced
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by shared ancestry (orange lines in Fig. )

At the largest substitution rates, branch lengths are on
the order of 0.5 and the linear approximation underlying
the iterative equations is not longer accurate. Neverthe-
less, the accuracy of the p¢ continues to increase. While
equilibrium frequencies are insensitive, the substitution
rate estimates are affected by linearization and Eq. [2| will
consistently underestimate p®. This is expected as the
linearization ignores cases where the same site changes
twice along a branch in very much the same way as Ham-
ming distance will underestimate branch length. The
relative substitution rates, however, are accurately es-
timated (with Pearson correlation coefficients > 0.9 as
soon as the majority of sites experience several muta-
tions across the tree), see Fig. .

In a typical scenario, ancestral sequences are unknown
and need to be inferred or summed over (marginalized).
To test the influence of tree and ancestral state recon-
struction, we reconstructed phylogenetic trees using 1Q-
tree (Nguyen et al.,|2015) with a GTR+R10 model (sim-
ulated nucleotide sequences) or FastTree (Price et al.l
2009) using the default 20 category (simulated amino-
acid sequences). Fig[2| compares different schemes to re-
construct ancestral sequences, infer substitution models,
and optimize the tree. The simplest approach is to take
the inferred tree as given, reconstruct the ancestral states
using a standard evolutionary model (e.g. Jukes-Cantor
model) and calculate ng; and 7 from this reconstruc-
tion. This naive approach works well up to root-to-tip
distances of about 0.3, beyond which estimates deteri-
orate, see Fig [2| (“Reconstructed ancestral sequences”,
red line). Instead of using only the most likely ances-
tral sequences, we can instead average over all possible
ancestral states, which results in a modest improvement
in accuracy (“Marginalized ancestral sequences”, purple
line in Fig. . More significant gains are made when
iterating model inference and ancestral reconstruction
using the inferred site-specific model (“Iterative model
estimation”, brown line). The accuracy now continues
to improve up to root-to-tip distances of about one. At
this level of divergence, tree reconstruction starts becom-
ing problematic and branch lengths deviate substantially
from their true values. Using the true tree instead of
the reconstructed tree leads to continuous improvements
of accuracy with increasing levels of divergence (yellow
line). Similar improvements are achieved by optimizing
tree branch lengths along with the model. We found
qualitatively similar patterns for 4-letter and 20-letter
alphabets in the overall accuracy of the estimated model
and its dependence on the different approximations, com-
pare Fig. 2JA&B. For larger alphabets, the breakdown at
large root-to-tip distances is less dramatic and sets in at
larger values. However, these difference depend on the
skew of the equilibrium probabilities.

4

Ignoring site-specific frequencies results in branch length
underestimates

As previously observed by various authors (Halpern
and Bruno| [1998; |Hilton and Bloom, 2018)), sites with
heavily skewed preferences for specific states result in
underestimation of branch lengths if uniform equilibrium
frequencies are assumed. This is a straightforward con-
sequence of the fact that the probability of observing the
same state at random is ), p?z is increasing sharply with
more peaked preferences. Models that don’t account for
site-specific frequencies will take a large number of sites
that agree between two sequences as evidence for their
close evolutionary relationship, while it is simply a con-
sequence of resampling the same states with high proba-
bility. In other words, this underestimation is the result
of incorrect models of saturation and is closely related to
the observation that incomplete purifying selection can
result in erroneous and apparently time dependent evo-
lutionary rates Wertheim and Kosakovsky Pond| (2011)).

Fig. |3| shows the average branch length (panel A) and
the average root-to-tip distance of mid-point rooted trees
(panel B) with branch length optimized using (i) the
true model, (ii) using the GTR+R10 model of IQ-tree,
and (iii) inferred models using different degrees of reg-
ularization. While branch lengths are accurately esti-
mated when using the true model, they are systemat-
ically underestimated by the GTR+R10 model without
site-specificity. Underestimation is particularly severe for
the average root-to-tip distance which is dominated by
long branches deep in the phylogenies which are prone
to underestimation. When ignoring site-specific prefer-
ences, the inferred root-to-tip distance is essentially in-
dependent from the true value for distances greater than
1 (Fig. ) This effect is entirely due to skewed equilib-
rium frequencies, as branch length inference by IQ-tree
is accurate if the simulated data had flat p¢ = ¢~! with
the same rate variation. The underestimation of branch
lengths is less severe for larger alphabets of if frequencies
are not heavily skewed, see Fig.

Surprisingly, using the inferred site-specific models
only partially rectified the problem of branch length
under-estimation, despite the fact that these models are
close to the true model in terms of low x2. The principle
contributor to this deviation are inaccuracies in the rate
estimates. Combining the true rates with inferred prefer-
ences reduces the error in branch length estimation (see
Fig. |3} lines labeled “(true rates)”.

Minor model deviations can have substantial effects on
divergence estimates

In the previous section, we have observed that model
deviations, for example the error made during model in-
ference, can result in substantial errors in branch length
estimates. To investigate this effect more systematically,
we constructed mixtures of the true model and a model
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with flat p? and/or u® as follows: For a mixing fraction
a, we constructed a model with rates

Ma = a(ua> + (1 - a):u“?rue (3)

where (u?) is the expectation value of the rate. Mixtures
of site-specific frequencies are constructed analogously.
Fig. A shows how deviation from the true model af-
fect relative branch length estimates. Deviation in rate
estimates result immediately in underestimated branch
length, while substantial effects of too flat site-specific
preferences only manifest themselves once deviations are
of order a = 0.3. If the same preferences are used for
every site (o = 1), however, deviations are substantial.
Deviations in rate and preferences are approximately ad-

ditive. These observations are consistent with the finding
above that using inferred preferences and true substitu-
tion rates result in more accurate branch length estimates
than inferring both rates and preferences.

Fig.[ B shows the degree of mis-estimation when using
flat preferences, flat rates, or both as a function of the
degree of divergence. The relative error increases approx-
imately linearly with the average evolutionary rate.

Applications to large HIV alignments

Since its zoonosis, HIV-1 has diversified into several
different subtypes that differ from each other at about
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20% of sites in their genome. For each subtype, thou-
sands of sequences are available, which typically dif-
fer by about 10% (Los Alamos HIV sequence databasel
2017). This large sample of moderately diverged se-
quences should be suited to apply our iterative inference
frame work. We downloaded alignments of HIV-1 pol
sequences from the LANL data base, constructed phylo-
genetic trees, and inferred site-specific GTR models at
the nucleotide and amino acid level, see Materials and
Methods.

One of the original motivations for site-specific mod-
els was the idea that equilibrium frequencies reflect the
relative fitness of the different states at each position
(Halpern and Brunol [1998)). Simple population genetic
models predict that the fixation probability ff: of a mu-
tation from state j to state ¢ at site a should depend on
the fitness difference s§; and the effective population size
N as (Kimura} 1964)

o l—e®h {2 s3>0
si; <0

0= = N a (4)
Y1 2sfe? N

On longer time scales, the fixation rates fi% should corre-
spond to transitions rates of the site-specific GTR model

ij- The effective population size N plays the role of
a coalescent time scale T, and in general has little to
do with census population sizes, in particular in rapidly
adapting populations (Neher, 2013)). Nevertheless, the
logarithm of the ratio log 1‘;/ 7~ 2Nsi; is an inter-
pretable quantity related to the average fitness difference
between states on time scales longer than the population
genetic scale N ~ T,.. We generalize this notion to multi-
ple states and define a fitness score of state i at position
a as the ratio of rates into and out of state ¢

a ..
2Ns? _ Uin o Zj i WU
Fout Zj WZ‘J‘TF?

()

The logarithm of this ratio is expected to be proportional
to the fitness difference between state i and the average
alternative state at site a, while the multiplicative factor
2N is unknown. We compared this proxy of fitness differ-
ences to fitness costs measured using mutation selection
balance models and with-in host diversity data of HIV
(Zanini et al., 2017). However, instead of a linear rela-
tion ship between s{ and within host estimates of fitness
costs, we observed a linear relationship between the loga-
rithm of fitness effects measured with-in host and s¢ ( see
Fig. [5)) Interestingly, this correlation between the intra-
host estimates and cross-sectional estimates decreased as
soon as regularization increased above 0.05 and we there
for used a weak regularization of ¢ = 0.01. This relation-
ship explains about half the variance of nucleotide effects
and about one third of amino acid effects.

The fact that the relationship deviates from the expec-
tation

cross-sectional ~ with-in host

6

and instead is approximately
cross-sectional ~ log (with-in host)

points towards different process that drive cross-sectional
and with-in host diversification. While the order of fit-
ness effects with-in host and cross-sectionally seem to be
mostly concordant, with-in host variation is much greater
than cross-sectional variation. Within host fitness effects
are masked and damped at the population level, possi-
bly due to fluctuating selection by diverse host immune
systems or epistasis (Shekhar et all [2013} |Zanini et al.,
2015). Such fluctuations in genetic background (epis-
tasis) and environment (immune system) can result in
non-linear averages at the population level. The ratio of
in/out rates e~ 2V si is, however, a very good correlate of
alignment diversity (see Fig. .

Next, we quantified the effect of ignoring site-specific
preferences on branch length estimates. We generated se-
quence pairs that evolved for a specific time ¢ under the
site-specific model inferred from the HIV-1 pol alignment
and then estimated a maximum likelihood branch length
between these two sequences. This estimate was done
using a model with homogeneous equilibrium frequencies
set to the average frequencies across sites while maintain-
ing site-specific rate variation. As soon as the length of
the simulated branch approaches 0.2, the length inferred
by a model without site-specific preferences deviates sub-
stantially from the true value and saturates around 0.5
for larger and larger t. As expected, these deviations
are even more severe when estimating branch length as
simple sequence divergence (p-distance), while using the
generating model reproduces the correct branch length.

Assuming a typical evolutionary rate of HIV of 0.002
changes per site and year, this analysis suggests that
length estimates of branches longer than 100 years start
to become inaccurate. Furthermore, this analysis sug-
gests very little signal to estimate the length of branches
that are longer than 300 years.

Discussion

Sequence evolution models attempt to capture some
biological realism while being computationally tractable
and easy to parameterize. A common compromise is to
model rate heterogeneity as random effects, while assum-
ing identical site preferences across the sequence. Differ-
ent positions in a DNA sequence or protein, however,
differ markedly in the preferences for different states —
this site-specific preference is the basis of all common
homology search tools. While the need to account for
this variation has been known for decades (Brunol [1996;
Halpern and Bruno, [1998), it is typically not modeled
due to over-fitting concerns and due to computational
complexity. However, amino acid preferences can now
be measured with high-throughput (Fowler and Fields)
2014)) and data set sizes are increasing rapidly such that
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Analogous results for the genes gag and nef are shown in Fig.
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a substitution rate of 0.002/year and site. Error bars denote one standard deviation. Panel B shows the distribution of rates
across sites for both models. About 20% of sites are essentially invariable, while the rates of the remainder vary by at least
10fold. The distributions differ slightly in the overall scale since rates have been rescaled such that the average substitution
rate in both models is identical.

more complex models can be estimated. Large data sets, the ancestral states, and the branch lengths is necessary.
however, require efficient and scalable methods. The computational complexity of the inference is domi-
Here, we presented method to estimate site-specific n'at(.ed b}’ ancesfzral'reconstru(?tic.)n and branch length Op-
GTR models using an iterative EM-type approach in- t.lmlzat.lon, which Is quadratic in the alphabet size apd
spired by (1996). We showed that site-specific linear in sample size and sequence length
models can be inferred with an accuracy limited by the ' We hafve implemented the algomthm. fOF site-
Poisson statistics of the substitution process using an ef- §pe01ﬁc model inference and branch length optimization
ficient iterative scheme. For short branch lengths a par- 11 TreeTime (Sagulenko et al} [2017).
simonious ancestral reconstruction is sufficient, while for We further explored how model choice affects the max-
more diverged samples iterative inference of the model, imum likelihood estimates of branch lengths. As has been
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reported before, branch lengths are underestimated when
variation in rate or preferences are not fully accounted
for (Halpern and Bruno| |1998; Hilton and Bloom) 2018)).
While such underestimation often has a moderate effect
on the total length of a tree, it can result in substantial
underestimation of root-to-tip distance that are domi-
nated by a few long branches close to the root. While us-
ing the correct model results in correct branch length es-
timates, joint inference of site-specific models and branch
lengths is typically unable to recover the true branch
lengths and substantial underestimation remains. This
points to parameter identifiability problems rooted in the
similar effects that skewed equilibrium frequencies, low
rates, and shorter branch length have on the likelihood
of the data.

Branch length estimates using models constructed by
mixing the true model and flat Jukes-Cantor type models
showed that misspecified equilibrium frequencies result in
substantial errors as soon as the model deviates from the
true model by 30% or more. This mirrors observations
by [Hilton and Bloom| (2018), who found that preferences
measured for influenza HA proteins of type H1 or H3 af-
fect branch length of in the vicinity of the focal sequence,
but not globally on the tree. Using site-specific models
inferred from HIV alignments, we quantified the error
made when ignoring site-specific preferences. While the
true models are unknown in this case, this analysis nev-
ertheless suggests that errors are substantial as soon as
branch length exceed ¢t = 0.2 (~ 100 years) and sequence
divergence saturates at levels around 0.3. This result is
consistent with the discrepancy between molecular clock
based or biogeography based estimates of the divergence
times of different SIV lineages (Worobey et all |2010]):
Beyond a few hundred years, there is very little signal to
estimate branch length — in particular when the underly-
ing site-specific model parameters need to be estimated
themselves. This lack of information is further under-
scored by the average nucleotide distances between pol
sequences of different HIV and SIV strains: HIV-1 sub-
types differ at about 10% of sites, distances between pol
and HIV-1 and SIVcpz are on the order of 25% and dis-
tances between sequences in the HIV-1/HIV-2/SIV com-
pendium alignment are about 35% (all distances ignore
sites with > 20% gaps). These observations are com-
patible with evidence for frequent reversion of HIV to a
preferred sequence state following immune escape (Carl-
son et al., 2014; Leslie et al., [2004} |Zanini et al.,|2015]).

This potentially large error in branch length estimates
can seriously affect deep divergence time estimates. Typ-
ically, short branches close to the tips of the tree are used
to calibrate molecular clock models. The deep branches,
however, tend to be much longer and rate estimation and
variation of site-specific preferences will result in satura-
tion effects not accounted for by the model (Hilton and
Bloom)| [2018). This effective variation in rate is related to
the effect of transient deleterious mutations that inflate
the rate on short time scales (Ho et al., 2005; [Wertheim
and Kosakovsky Pond| [2011)): the time it takes purifying
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selection to prune deleterious mutations is related to the
relaxation time scales of GTR models with site-specific
preferences. Instead of the ¢—1 degenerate eigenvalues of
a Jukes-Cantor model, each site has a spectrum of eigen-
values and different eigenmodes relax at different speeds,
generating apparently time dependent rates.

Estimating site-specific models from sequence align-
ments faces one fundamental problem: Reliable estimates
require observation of many changes at each site which
requires many sufficiently diverged sequences. At the
same time, preferences at individual sites are expected
to change due to epistatic interactions with other sites in
the sequence, as for example witnessed by the gradual di-
vergence of experimentally determined preferences (Doud
et al.2015; Haddox et al.,|2018). Hence the approach de-
scribed in this work is largely restricted to cases like HIV
where many moderately diverged sequences (~10%) are
available. Outside of this limit there either isn’t enough
data to reliably estimate the large number of coefficients,
or epistatic interactions need to be taken into account —
probably at the expense of ignoring phylogenetic signals
(Morcos et all, 2011)).
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Most models of sequence evolution express the probability that sequence § evolved from sequence 7 in time ¢ as

P(5« 7.t,Q) = ﬁ (e2") (6)

S(I ,r-a
a=1 ’

where Q? is the substitution matrix governing evolution at site a, and s® and r* are the sequence states at position a.
The product runs over all L sites a and amounts to assuming that different sites of the sequence evolve independently.

In absence of recombination, homologous sequences are related by a tree and the likelihood of observing an alignment
A = {s},k = 1..n} conditional on the tree T and the substitution model Q* can be written in terms of propagators
defined in Eq.[6] It is helpful to express this likelihood as product of sequence propagators defined in Eq. [6] between
sequences at the ends of each branch in the tree (implicitly assuming that evolution on different branches is independent


https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty407/5001388
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty407/5001388
https://academic.oup.com/ve/article/4/2/vey033/5163287
https://academic.oup.com/ve/article/4/2/vey033/5163287
https://academic.oup.com/mbe/article/22/7/1561/974191
https://academic.oup.com/mbe/article/22/7/1561/974191
http://www.jstor.org/stable/3211856
http://www.jstor.org/stable/3211856
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
https://academic.oup.com/bioinformatics/article/28/19/2520/290322
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
https://www.nature.com/articles/nm992
https://www.nature.com/articles/nm992
http://www.pnas.org/content/108/49/E1293
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271533/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271533/
http://mbe.oxfordjournals.org/content/26/7/1641.abstract
http://mbe.oxfordjournals.org/content/26/7/1641.abstract
http://dx.doi.org/10.1371%2Fjournal.pone.0009490
http://dx.doi.org/10.1371%2Fjournal.pone.0009490
http://www.genetics.org/content/193/2/557
https://link.aps.org/doi/10.1103/PhysRevE.88.062705
https://link.aps.org/doi/10.1103/PhysRevE.88.062705
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998144/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998144/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247791/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3247791/
https://doi.org/10.1007/BF00160154
https://doi.org/10.1007/BF00160154
https://doi.org/10.1101/2020.01.18.911255
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.18.911255; this version posted January 18, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license. 10

and follows the same time reversible model). Unknown sequences of internal nodes {5'} need to be summed over and
the likelihood can be expressed as

L
LAIT, Q) =Y [I v ] PG 5,t,Q) =) UHTD (7)
{5}

{#}a=1  keT

where 5, and 5, are the child and parent sequences of branch k, respectively, and the factor [, pgg is the product of
the probabilities of the root sequence s over all positions a. The probabilities p* are the equilibrium probabilities of
the substitution model at position a. The latter ensures that the likelihood is insensitive to a particular choice of the
tree root. This equation defines the log-likelihood ¢ of a particular internal node assignment {s'} which is given by

(A {FHT, Q) =) [bg(pé‘g) + ) log (th)] ®

a keT

where s¢ and s;, are indices corresponding to the child and parent sequence of branch k.

The sum over unknown ancestral sequences can be computed efficiently using standard dynamic programming
techniques. Nevertheless, it requires O(n x L x ¢?) operations (where ¢ is the size of the alphabet A) and optimizing
it with respect to a large number of parameters is costly. Our goal here is to infer site-specific substitution models
using a computationally efficient iterative procedure.

Instead of inferring completely independent models for every site in the genome, we follow [Halpern and Bruno
(1998) and only allow for site-specific rates and equilibrium frequencies while using the same transition matrix for
every site. Such a site-specific general time-reversible (GTR)) model, can be parameterized as:

5 = pipiWi; for i # j,
W= - ZQZi (9)
k

where Wj; is a symmetric matrix with W;; = 0 and the second equation ensures conservation of probability. In
addition, we require ) . p$ = 1 and ZaL=1 Zi# Wi;jpipj = L to ensure that the average rate per site is p“.

Iterative optimization algorithm

The derivatives of £ with respect to u?, pf, and W;; need to vanish at the values that maximize L.

OL(A|T,Q) sy HSHT. Q)
—x = %e — oy =0 (10)

where X is one of the parameters we vary.
These conditions can be solved iteratively. Here, we derive the update for u® and refer to the supplement for the
other update rules. The derivative of the log-likelihood for a specific sequence assignment is given by

OUTNTQ) _ g ta Zi Pt (0.
Oue  pe (e9%9) ’

a a
s%,8%

(11)
BEeT

where s, and s; are the states at site a at the parent and child end of branch 8. The individual terms in this sum

behave very differently for cases where si = sj (no change at site a on branch 3) and s¢ # kj (at least one mutation).

In the limit of short branches p%ts < 1, we can expand the matrix exponential eQt = 0ij + Qt + --- to obtain
approximate but solvable conditions for maximum likelihood parameter estimates, see supplement. We will separate
the sum over branches into those with sg = s and s¢ # s3. Suppressing the index a for the position in the sequence,
we find

Q

B Z i3 Zk;ﬁsc P Wis, n Z tpDs. Wscsp

d
—A0({5HT
du {HT.Q) 1_t6/‘Zk;ﬁscpkasc tﬁﬂpschcsp

BET,sc=sp BET,sc#sp

- Z tﬁZPkasc+ Z l:*ZPkaﬂerZn?j/ﬂ

BET,sc=s, k#sc BET,sc#sp J.k#] i

(12)

Q
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where 7/ is the sum of all branch length along which site a is in state j and nf; is the number of times the sequence
at site a changes from j to ¢ along branches of the tree (we have re-instantiated the position index a in the last
line). Additional terms necessary for regularization and normalization are discussed in the supplement. Setting this
expression to zero (and the corresponding ones in the supplement) suggests solving for u® at fixed 77 and nj; using

the iterative update rules given in Eqgs. 2l The quantities n{; and 7;* can be averaged over unknown ancestral states.

Implementation

We extended our package TreeTime (Sagulenko et al.,2017) to handle site-specific GTR models by adding an addi-
tional class GTR_site_specific that generalizes the GTR class. Since these classes have an almost identical interface
and can be used interchangeably in other analysis run by TreeTime. Using the new class, TreeTime can generate
sequences with site-specific evolutionary models and infer these models from sequence data using the algorithms above.

Generation of simulated data

To generate models and sequence ensembles for which the ground truth is known, we sampled binary trees with
n = 100, 300, 1000, 3000 leaves and Yule tree branch length statistics using betatree (Neher et al., |2013) for values of
the average substitution rate given by (u) = [0.005,0.01,0.02,0.05,0.1,0.15,0.2,0.25,0.35, 0.5].

For each tree, we sampled two site-specific models for sequences of length I = 1000 from following distribution:
Site-specific rates p® were sampled iid from a Gamma distribution with parameter & = 1.5 or 3.0. Site-specific
preferences p? (or equilibrium probabilities) were sampled from Dirichlet distributions with parameters o = 1 for
alphabets with ¢ = 4 states (nucleotides) or a = 0.2 and o = 0.5 for alphabets with ¢ = 20 (amino acids). The
entries of the transition matrix W;; were sampled from a Dirichlet distribution with oo = 2. The average substitution
rate of these models was fixed to the required (u). In addition, we generated one set of models (¢ = 4) with rate
variation but uniform p{ and W;;. For each combination of tree and model, two sets of sequences were evolved using
the sequence generation function of TreeTime.

In total, this amounts to 80 alignments for each of the data set sizes n = 100, 300, 1000,3000 and four dif-
ferent ensembles. For each alignment, we reconstructed phylogenetic trees using IQ-tree (Nguyen et all [2015)
with a GTR+R10 model or FastTree (Price et al., |2009) using the default 20 category model for nucleotide
and amino-acid sequences, respectively. These trees were used to infer site-specific models from data, see below.
The exact workflow is documented in the script src/generate_toy_data.py in the associated git repository at
github.org/neherlab/2019_Puller_SiteSpecificGTR.

Model inference from simulated data

Simulated data and trees (reconstructed or true) were read in by TreeTime and models reconstructed us-
ing functions of TreeTime to infer models with the different approximations discussed in the text. The ex-
act workflow is documented in the script src/reconstruct_toy_data.py in the associated git repository at
github.org/neherlab/2019_Puller_SiteSpecificGTR.

HIV sequence analysis

HIV-1 sequences were downloaded from LANL HIV database (Los Alamos HIV sequence database) [2017) setting
filters to “one sequence per patient”, “non-ACGT<0.3”. Separate downloads where made for sequences the following
sets: pol, subtype B (2019-05-05); pol, subtype C (2019-05-13); gag, nef, subtype B (2019-06-07).

Sequences were aligned to the HXB2 reference sequences using mafft (Katoh and Standleyl, [2013), phylogenies were
inferred using IQ-tree (Nguyen et al.l |2015), and ancestral sequences were inferred using TreeTime (Sagulenko et al.,
2017) via the nextstrain’s augur pipeline (Hadfield et al., [2018). The different steps were assembled into a pipeline
using the workflow manager Snakemake (Koster and Rahmann) [2012]).

The sequences and trees were then used for site-specific GTR inference as implemented in TreeTime (Sagulenko
et all 2017). The scripts detailing this analysis and producing the figures are available on GitHub in repository
github.org/neherlab/2019_Puller_SiteSpecificGTR.
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