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Abstract

By modulating the structure, diversity and trophic outputs of microbial communities,
phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of
katabatic winds, constrained nutrients and low water availability are known to limit
microbial activity. Although phages may substantially govern trophic interactions in
cold deserts, relatively little is known regarding the precise ecological mechanisms.
Here, we provide the first evidence of widespread antiphage innate immunity in
Antarctic environments using metagenomic sequence data from hypolith
communities as model systems. In particular, immunity systems such as DISARM
and BREX are shown to be dominant systems in these communities. Additionally, we
show a direct correlation between the CRISPR-cas adaptive immunity and the
metavirome of hypolith communities, suggesting the existence of dynamic host-
phage interactions. In addition to providing the first exploration of immune systems in
cold deserts, our results suggest that phages actively challenge niche communities
in Antarctic polar deserts. We provide evidence suggesting that the regulatory role
played by phages in this system is an important determinant of bacterial host

interactions in this environment.
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Importance

In Antarctic environments, the combination of both abiotic and biotic stressors results
in simple trophic levels dominated by microbiomes. Although the past two decades
have revealed substantial insights regarding the diversity and structure of
microbiomes, we lack mechanistic insights regarding community interactions and
how phages may affect these. By providing the first evidence of widespread
antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche
communities. Our analyses reveal several antiphage defense systems including
DISARM and BREX, which appear to dominate in cold desert niche communities. In
contrast, our analyses revealed that genes, which encode antiphage adaptive
immunity were under-represented in these communities suggesting lower infection
frequencies in cold edaphic environments. We propose that by actively challenging
niche communities, phages play crucial roles in the diversification of Antarctic

communities.
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Introduction

Antarctic terrestrial environments including open soils, permafrost and the
surface and interior of rocks, are typically oligotrophic and dominated by
psychrophilic and psychrotolerant microbial communities (1-4). It has been
suggested that the extreme abiotic pressures of the environment such as
temperature, desiccation stress and UV radiation are dominant drivers of both the
diversity and function of cold-adapted bacterial communities in terrestrial polar
deserts (5-7). Similarly, biotic interactions such as competition, symbioses, horizontal
gene transfer (HGT) and predation have also been shown to play a role in the
distribution and diversity of microbial communities in these soil ecosystems (8-10).
The presence of viruses, including bacteriophages, in these cold hyper-arid desert
soils potentially adds an additional layer of complexity to the microbial system, but
the extent to which phage-host interactions play a role in shaping community
compositions and processes in cold desert soil niches remains a matter of
speculation (11, 12).

Antarctic desert hypolithic communities, in particular, have been shown to
contain substantial viral populations, dominated by tailed bacteriophages of the order
Caudovirales (11, 13-15). Micro-array analysis of lithic niches identified an even
greater phage diversity, including signatures of RNA bacteriophages of the family
Leviviridae, ssDNA phage of the family Microviridae and non-tailed dsDNA
tectiviruses (16). Together, these observations suggest that phages may play an
important role of in microbial community structures and functions.

The presence of active bacteriophages in a microbial community inevitably
leads to the evolution of specialized bacterial defensive measures (17), and a

diverse range of bacterial defense mechanisms against parasitic phages have been
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83 identified (18, 19). These include adaptive immunity elements, such as the CRISPR-
84 Cas systems, and innate immunity mechanisms, such as restriction-modification
85 (RM) and toxin-antitoxin abortive infection (Abi) systems (18). Recent pangenomics
86  studies have also identified novel defense systems that are widely distributed across
87  bacterial taxa and are thought to play a role in anti-phage resistance (20-23). These
88 include the bacteriophage exclusion (BREX) system, coded by a 4-8 gene cluster,
89 that provides resistance to Siphoviridae and Myoviridae tailed phages by inhibition of
90 phage DNA replication (21), and other less well characterized systems such as the
91 Thoeris, Shedu and Gabija elements that increase bacterial host resistance to
92  specific groups of phages (22).
93 Combining the valuable evidence on phage diversity and prevalence in polar
94  desert soils, we hypothesize that phage-host interactions play an important role in
95 shaping the structure of edaphic microbial communities in these environments. To
96 test our hypothesis, we assess the known bacterial defense systems in
97 metagenomic sequence data derived from niche Antarctic hypolith community. We
98 were able to link some of these data to specific phage genomes and propose that
99 phages play an active role in shaping the immunity of Antarctic soil microbial

100 communities.

101

102 Results

103  The distribution of anti-phage defense mechanisms shows an abundance of

104 innate immunity genes

105 The distribution of antiphage defense systems in the metagenome was

106 determined by mapping defense genes against the taxonomically assigned contigs.

107 In total, 24,941 defense genes were detected, compromising 1.2% of the entire
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108 metagenome gene count. Approximately 40% of these were found in contigs
109 attributed to unknown phyla. The general distribution of defense genes across known
110 phyla was consistent with the relative abundance of each phylum in the metagenome
111  (Figure 1A, Table S4). Proteobacteria harbored the highest number of anti-phage
112 genes (5289 genes, 1.1% of total gene count for this phylum), followed by
113  Actinobacteria (3808, 0.9% total gene count) and Bacteroidetes (2128, 1.08% of total
114  contig count). RM, DISARM and BREX systems were the most abundant systems in
115 the metagenome, contributing 67.6% of the total gene hits for anti-phage defense
116  systems. On the other side of the spectrum, the defense systems Shedu, Hachiman
117 and CRISPR-type 2 were present at relatively low abundances, and therefore had
118 little apparent contribution to the global defense system distribution. The average
119 contribution of defense genes to the total gene count per phyla was 1.8%, with
120 Deferribacteres and Candidatus Tectomicrobia as outliers. However, it is important
121 to note that these phyla represent a very small portion of the metagenome, and
122  therefore the possibility that the high percentage of defense genes is biased toward
123  the low gene count for these phyla cannot be disregarded.

124 Analysis of the relative contribution of each defense system within each
125  phylum also showed that genes belonging to the RM, DISARM, and BREX systems
126  were the main contributors across the majority of phyla (Figure 1B). The recently
127 discovered Zorya system was predominantly represented in the phyla
128 Gemmatimonadetes, Bacteroidetes, Planctomycetes, Proteobacteria  and
129  Verrumicrobia, while CRISPR systems showed the highest contribution in
130 Cyanobacteria and Euryarchaeota. Interestingly, non-canonical anti-phage systems

131 represented more than 50% of the defense systems identified for all phyla aside from
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132  Euryarchaeota, with Verrucomicrobia, Planctomycetes and Acidobacteria possessing
133  the highest distribution of non-canonical defense genes.

134

135 Innate immunity is dominated by BREX and DISARM genes

136 As highlighted above, anti-phage systems across phyla in the hypolith
137 metagenome were dominated by non-canonical innate systems. Further analysis of
138 the distribution of defense genes revealed that anti-phage systems in the majority of
139  phyla were dominated by BREX and DISARM genes. The two systems together
140 accounted for 33.4% of defense genes, compared to 31.7% genes belonging to
141 canonical RM systems.

142 A total of 3758 genes for the DISARM system were identified. These included
143 the Class | marker gene drmD (449 counts, 11.9% of DISARM genes), which
144  encodes the SNF2-like helicase (23), as well as the Class Il marker gene drmA
145 (1020, 17.1% of DISARM genes), which encodes a protein with a putative helicase
146 domain (23). Similarly, a total of 4598 genes representing all BREX types were
147 identified in the metagenome. Interestingly, the most abundant gene from this
148 system found in the metagenome, pglW (2640, 57.4% of BREX genes), which codes
149 for a serine/threonine kinase, is specific to the type 2 BREX system, also called the
150 Pgl system (21). By comparison, of the 7908 RM genes found in the metagenome,
151 the most abundant is hsdM (1423, 18% of RM genes), a type | DNA methylase
152  responsible for the protection of host DNA (24). In fact, more than 50% of RM
153 defense genes were attributed to type | RM systems.

154 The third non-canonical system representing more than 10% of the anti-phage
155 defense systems in a subset of the phyla, the Zorya system, included a total of 2411

156  genes in the metagenome. The majority of these were homologous to the two genes
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157  that make up a proton channel, zorA and zorB. This is a common feature in all types
158 of Zorya system and is thought to cause depolarization of the membrane upon
159 infection (22).

160

161 Type | CRISPR-Cas genes comprise the bulk of anti-phage adaptive immunity
162 genes

163 In total, 2234 CRISPR-cas genes were identified in 1601 contigs by searching
164  for shared sequence similarities against the CDD database. A substantial proportion
165 of all classified CRISPR-cas loci (71.4%) belonged to type | CRISPR-Cas systems,
166 followed by type Il (18.5%) and type 1l (10.2%) (Table S5). While the abundance of
167 Cas I-B loci sequences in the public databases suggests that the Cas-1 mechanism
168 is the most common in both bacteria and archaea (20 and 30% of total CRISPR loci
169 (25), less than 3% of these loci were present in our composite metagenome (Table
170 S5, Figure 2). Surprisingly, CRISPR-cas loci linked to Types I-C and I-E were the
171 most prevalent, at 24.1% and 12.9% of classified CRISPR-cas loci, respectively.
172 Another subtype identified at higher relative abundances than previously reported
173  (25) was I-U, at 10.76% of classified cas loci. This subtype is characterized by the
174  marker GSU0054 domain, which was the fourth most abundant cas CDD overall
175 (108 occurrences) after cas4, casl, and cas2.

176  Phage presence in the niche community is correlated with the CRISPR arrays
177 CRISPR arrays represent the history of infection by invading DNA (e.g.
178 phages, plasmids (26, 27), and a study of their composition and frequencies
179  provides insights into phage-host interactions in an ecological context (28). A total of
180 878 CRISPR arrays harboring 10,292 spacers were identified in the metagenome,

181 with an average length of 36 protospacers per array (Figure S1A). CRISPR array
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182  sizes ranged from 2 to 249, with the majority (83.5% of total arrays) falling between 2
183  and 18 protospacers per array (Figure S1B).

184 The distribution of CRISPR array sizes in the metagenome was compared to
185 data collected from a ground-water microbiome (29), to compare the array size
186  distributions from environments with potentially different phage-host dynamics (11).
187 The results show that CRISPR arrays in the hypolith metagenome exhibited a
188 smaller and narrower size range, compared to the ground-water community
189 metagenome (Figure 3). This suggests the existence of distinct phage infection
190 frequencies between the different environments; i.e., lower infection frequencies in
191 the cold edaphic community.

192 In addition to using the CRISPR array as a tool for understanding infection
193 history, the viral population in the Antarctic soil community was also assessed by
194 assembly of the metavirome. A total of 793 contigs was assembled from the
195 metagenomic sequence data using VirSorter (30). Taxonomic annotation of these
196  contigs, using a database of viral reference genomes (31), unambiguously assigned
197 645 of these as viral, 560 of which were further assigned to the order of tailed
198 phages Caudovirales. Within this order, the majority of contigs were assigned to
199  Siphoviridae (52%), followed by unclassified Caudovirales (14%), and viruses with
200 no assigned family (13%) (Figure S2). To access the correlation between the viral
201 contigs and the CRISPR arrays, spacers from the metagenome were matched to
202  both the VirSorter contigs and a set of contigs from environmental datasets (IMG/VR
203  (32), which allowed for the taxonomic assignment of 394 (3.8% of total number of
204  spacers) CRISPR-cas spacers (Figure S3). The resulting similarity network (Figure
205 4) showed that all 73 VirSorter phage contigs included in the network (red nodes)

206 matched to CRISPR-cas spacers (grey nodes), suggesting that a substantial fraction
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(11.3%) of the identified viral population had a history of infection in situ in the host
population, and may therefore be actively involved in shaping the adaptive immunity
of the microbial community. In addition, several distinct clusters showed matches
between a single VirSorter contig and several spacers, suggesting these viral contigs
are common infection agents.

Functional analysis using eggNOG showed the presence of genes that
facilitate infection such as genes that code for chitinases, which are involved in the
degradation of the protective biofilm (33), as well as a AntA/AntB antirepressor
gene, thought to be involved in phage anti-immunity (34) (Figure 5). In addition, the
eggNOG functional analysis of the 645 VirSorter viral contigs also revealed the
presence of genes contributing to phage virulence (Table S2), the most abundant of
which encode for methyltransferases, which are actively involved in the evasion of
the R.M systems (35). This result suggests the possibility of an evolutionary pressure
for the phages to develop evasion mechanisms against their hosts, which further

hints at active phage-host dynamics in these long-enduring Antarctic hypoliths.

Discussion

Due to the relatively simple trophic structures in cold desert systems,
including Antarctic soils, cryptic microbial communities are considered to be
important drivers of local ecosystem services (36). However, the extent to which
these communities are influenced by phages remains largely unexplored. Such
interactions may shape the diversification and community interactions in cold desert
systems. Qualitative surveys of Antarctic metaviromics have reported a high diversity
of viruses associated with microbial communities of open soils, and cryptic niches

(12, 13). Evidence, albeit limited, that Antarctic soil phages exist predominantly in a

10
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lysogenic rather than lytic lifestyle (14), has led to suggestions that the functional role
of phages in this spatially restricted, water-constrained desert soil niche may be
limited (11).

The results presented in this study provide the first evidence of interaction
between phage and hosts in this psychrophilic edaphic environment. This is most
evident in the correlation between the metavirome of the hypolith community and the
CRISPR-arrays, which suggest the active evolution of the adaptive immune system
against local viral threats. This idea of community adaption to local phage threat is
further implied by the positive correlation between the CRISPR arrays and viruses
extracted from local soils. In fact, a previous study (37) has already suggested that
recruitment from surrounding soils plays an important role in the development of
hypoliths, and this might also be extended to the recruitment of phages from the
surrounding ecosystem. Another indication of active interaction between phage and
host is suggested by the presence of several methyltransferases in the
metagenome-assembled viral contigs, which are a hallmark of viral evasion against
native host RM systems (31, 35). Other genes found in this virome contigs include
genes specifically involved in the degradation of biofilm matrices and evasion against
RM systems, further suggesting that there is a complex network of interactions at

play between phages and their hosts in the hypolithic environment.

While the metagenomics data analysed in this study does not give a direct
indication of the temporal scale of the phage-host interactions occurring in the
hypolith, the short sizes of CRISPR-array sizes in the hypolith metagenome suggest
a low frequency of infection. This low frequency is further hinted at when comparing

the hypolith CRISPR-array sizes with those of a more fluid and homogenous

11
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257  environment, where viral-host interactions are assumed to be a frequent occurrence
258 (29). Together, these results imply a model for viral-host interactions in hypoliths
259 that follows the ‘static-step-static’ development model suggested by Pointing et al.
260 (38), driven by the stochastic and intermittent nature of rain events in such water-
261 limited ecosystems. A surprising result from this study is the prevalence of non-
262  canonical innate immunity systems, the most prominent of which are the BREX and
263 DISARM systems. While these two systems have been shown to be widespread in
264  bacteria using a pan-genomic dataset (21, 23), the present study represent the first
265 evidence for the prevalence of these systems in ecological samples. As such, this
266  result implies that non-canonical innate immunity is more important for anti-phage
267  microbial community defense than previously thought and should therefore be the
268  focus for future studies into innate immunity in the ecological context. There are also
269 indications from the hypolith metagenome that the prevalence of non-canonical
270 innate immunity over traditional RM and Abi system for defense against phages is
271 related to the adaptation of the hypolith communities to specific local viral
272  populations. For instance, the Zorya system, the third most prevalent non-canonical
273  immunity system in the metagenome, is hypothesized to operate similarly to the Abi
274 system (22). In turn, Zorya systems provide resistance against a limited range of
275 phages, including the ssDNA family Microviridae (22), which has been shown to be
276  prevalent in Antarctic aquatic and soil niches (39).

277

278 Conclusion

279 Together, these results are not consistent with the suggestion that the
280  constraints of the environment, such as low temperatures, low a,, and resulting very

281 limited capacity for inter-particle diffusion, lead to extremely localized phage-host

12
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interactions (11). Rather, the data are suggestive of a dynamic and continual
interaction between host and phage. Nevertheless, inter-particle communication and
exchange may be limited to brief periods when bulk liquid water is present, after
snow melt, for example. Furthermore, the low metabolic rates (the inevitable
consequence of Arrhenius effects (temperature dependence of reaction rates) in cold
environments) should also limit the rates at which phages can replicate and
propagate, further limiting the frequency of interactions with their hosts (40). We
suggest that the localized nature of host-phage interactions in the hypolith niche and
the limited inter-particle communication, where bacterial hosts are not frequently
challenged by novel phage threats, leads to a reliance of microbial communities on
innate immunity as the primary defense against phage infection. The smaller sizes of
CRISPR arrays in the Antarctic soil metagenome sequences compared to those from
a temperate aquatic environment, and the under-representation of CRISPR systems,
give further credence to the temporally sporadic interaction between phages and
their hosts. Nevertheless, the correlation between the metavirome and the CRIPR-
cas arrays, together with the presence of bacteriophage evasion genes in the
metavirome, suggest that phage-host interactions within the hypolith community are
a dynamic process that leads to co-evolution of both phages and hosts. We therefore
suggest that phages play a hitherto underestimated role in driving the evolution of

Antarctic soil microbial communities by shaping their collective immunity.

Materials and Methods

Sample collection, DNA extraction and metagenomic sequencing

13
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The sample collection, DNA extraction and metagenomic sequencing
protocols used in this study have been described previously (41). Briefly, a total of 50
samples were collected from hypolithic niches in the Antarctica Miers Valley (GPS
78°09'36.0"S 164°06'00.0"E) and stored in sterile Whirl-Pak bags (Nasco
International, Fort Atkinson, WI, USA) at -20 °C. Metagenomic DNA was extracted
from each sample using a PowerSoil DNA isolation kit (MO BIO, Carlsbad, CA,
USA), and the purified DNA was pooled before further processing. Purified DNA was
sheared into fragments of approximately 300 bps and further purified from 1%
agarose gels. Subsequent sequencing was performed using lllumina HiSeq-2000
paired-end technology (2 x 101 bp), and the resulting reads were trimmed and

assembled as described below.

Metagenome assembly and taxonomical annotation

Metagenomic DNA sequence data were quality-filtered by trimmomatic
version 0.36 using a phred cut-off > 30 (42). The assembly of high-quality reads from
the metagenome sequence dataset was conducted using the IDBA-UD tool (43) and
contig lengths were extended (scaffolded) using SSPACE Basic (43). The statistics
for the assembly of the metagenome are presented in Table S1. Contigs were
taxonomically assigned using the MEGAN v6 pipeline (44) with the NCBI taxonomy

database for taxon ID assignment.

Detection of the innate and adaptive defense systems
Metagenomic contigs were used for functional gene predictions using prodigal
v2.50, with the —meta parameter implementation (45). Predicted genes were

subsequently screened for domain similarity with known defense systems against

14


https://doi.org/10.1101/2020.01.17.911081
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911081; this version posted January 20, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

330 the conserved domain database (CDD) of clusters of orthologous groups (COGS)
331 and protein families (Pfams) using rps-blast (E value < 1e-02) (33). These results
332 were manually filtered for the identification of phage-specific defense systems, which
333 include restriction-modification (R.M), bacteriophage exclusion (BREX), abortive
334 infection (Abi), defense island system associated with restriction-modification
335 (DISARM), and other recently identified systems using a refined list of COG and
336 Pfam position-specific score matrices (PSSMs) for marker genes in these systems
337 (21-23, 46). A list of the marker genes used in this study can be found in Table S2.
338 Additionally, defense genes that could not be clustered into a specific system were
339 classified as ambiguous as were not considered for subsequent analysis (Table S3).
340 ORFs predicted using prodigal v2.50 were queried against the CDD database
341 for the presence of putative CRISPR-cas genes (47), using delta-blast at a cutoff E
342  value of 1e-03. Multi-gene cas modules were identified as those having multiple cas
343 annotated genes with <5 ORF spacings. Type and subtype classifications were
344  assigned following the updated classification set by Makarova et al. (25).

345

346 Phage genome identification and CRISPR spacer matching

347 Antarctic hypolith phage genomes were identified from the assembled
348 metagenome using VirSorter (30) on the iVirus platform hosted by Cyverse (48),
349 using the virome database and the microbial decontamination option. Only
350 predictions of categories 1, 2, 4 and 5 were used (phages and prophages identified
351 with the “pretty sure” and “quite sure” qualification). Additional phage environmental
352 phage contigs were downloaded from the IMG/VR database version 2018-07-01_4
353 (32) and used for the network construction. Taxonomic assignment of assembled

354  contigs was performed by using the DIAMOND blastx function with a viral database
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downloaded from the NCBI Viral Genomes Resource and e-value set to 1e-5. ORFs
of VirSorter contigs were predicted using Prodigal v2.50 (31, 49) with the virus
genomes setting and annotated using eggNOG-mapper v1 (50) with the DIAMOND
option and the EggNOG v4.5.1 database (51). Annotation were visualized with the

ApE v2.0.55 plasmid editor (http:/jorgensen.biology.utah.edu/wayned/ape/).

The CRISPR recognition tool (CRT) v1.2 was used with the default settings to
search for CRISPR arrays in the hypolith metagenome (52). The identified spacers in
the arrays were matched with the VirSorter phage database and the IMG/VR
database using blastn of the BLAST+ suite with the following parameters: -
gcov_hsp_perc 80 -task blastn -dust no -soft_masking false (53). Spacer matches of
> 90% sequence identity for the VirSorter genomes and >95% identity for the
IMG/VR genomes were exported and visualized as a network in Cytoscape (54),
where the nodes are spacers (grey) or genomes (blue = IMG/VR; red = VirSorter)

and the edges blastn matches.
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