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Abstract

Background: The three-dimensional genome organization is critical for gene regulation and
can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-
binding factor (CTCF) has been characterized as a DNA-binding protein with important functions
in maintaining the topological structure of chromatin and inducing DNA looping. Among the
prolific binding sites in the genome, several events with altered CTCF occupancy have been
reported as associated with effects in physiology or disease. However, there is no hitherto a
comprehensive survey of genome-wide CTCF binding patterns across different human cancers.
Results: To dissect functions of CTCF binding, we systematically analyze over 700 CTCF
ChlP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding
patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events
are associated with altered chromatin interactions in patient samples, but not always with DNA
methylation changes or sequence mutations. While lost bindings primarily occur near gene
promoters, most gained CTCF binding events are induced by oncogenic transcription factors
and exhibit enhancer activities. We validate these findings in T-cell acute lymphoblastic
leukemia and show that oncogenic NOTCH1 induces specific CTCF binding and they
cooperatively activate expression of target genes, indicating transcriptional condensation
phenomena.

Conclusions: Cancer-specific CTCF binding events are not always associated with DNA
methylation changes or mutations, but can be induced by other transcription factors to regulate
oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional

epigenomic signature of cancer.

Keywords: CTCF, 3D genome organization, integrative analysis, gene regulation, transcription

factor, enhancer, T-cell lymphoblastic leukemia, NOTCH1
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Background

The eukaryotic genome is known to fold into a hierarchical three-dimensional (3D) structure
organized by numerous chromatin and transcription factor (TF) proteins[1]. High-throughput
technologies such as Hi-C has helped delineate components of 3D genome organization,
including topological associating domains (TADs)[2-4] and DNA loops[5]. Studies have shown
that various protein factors have roles in chromatin folding that is required for proper gene
expression[3,6-9]. One such factor is CCCTC-binding factor (CTCF), a DNA-binding protein that
induces chromatin looping and binds at TAD boundaries[10]. CTCF is integral to cell survival as
total knockouts in mice are lethal early in embryogenesis and heterozygous knockouts are
significantly predisposed to cancer[10-12]. Our previous studies using T-cell acute
lymphoblastic leukemia (T-ALL) models have shown that cell-type conserved constitutive CTCF
binding sites frequently occur at chromatin domain boundaries and facilitate interactions
between TF-bound distal enhancers and their target genes[13]. We demonstrated that TAD
boundary intensity associates with CTCF levels, which might also serve to isolate super-
enhancers[14]. While CTCF binding at TAD boundaries is usually conserved across diverse cell
types and throughout development[15], we and others have shown that CTCF binding within

TADs can also exhibit tissue specificity[14,16-18].

The functional importance of CTCF is highlighted in disruptions to CTCF binding coupled with
alterations in gene expression, which have been widely observed[19-22]. Deletions of insulator
CTCF binding sites can cause aberrant chromatin interactions and differential expression of
genes within TADs in developmental disorders and cancers[19,20,23-25]. Many cases of CTCF
disruption have been associated with changes in DNA methylation such as in isocitrate
dehydrogenase (IDH) mutant gliomas[21], succinate dehydrogenase (SDH)-deficient
gastrointestinal stromal tumors (GIST)[22] and immunoglobulin or T-cell receptors[18].

Additionally, the CTCF gene itself or its binding sequence can be mutated and has been
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suggested to be a haploinsufficient tumor suppressor[12]. CTCF mutations affecting the DNA
binding zinc finger domains compromise binding to the genome[26], and can occur in
cancer[20,27-29] or abnormal limb development[19]. Mispositioning of even one CTCF binding

locus can trigger interactions leading to oncogene activation[20].

While specific CTCF binding sites have been shown to affect gene expression in development,
physiology, and cancers[30-34], most others have seemingly little effect on chromatin
interaction or gene expression[9,35]. To date, there is no comprehensive analysis of global and
cancer-specific CTCF binding patterns and their functional links to disease-related phenotypes.
Here, we performed a novel integrative analysis of a large number of genomic profiles for CTCF
as well as other TFs, chromatin marks, gene expression, DNA methylation, somatic mutation,
and in situ Hi-C to infer CTCF binding site functions. In six different cancer types, we identified
cancer-specific gained or lost CTCF binding sites, and showed that gain of CTCF binding in
cancer associates with increased chromatin interactions and cancer-specific gene activation,
while loss of CTCF binding occurred at promoters of genes present with lower expression in
cancer compared to normal cells. We validated our findings in T-ALL, and found that cancer-
specific CTCF binding sites are potentially incurred by the activity of oncogenic TFs such as
NOTCH1. These findings show that cancers exhibit an oncogenic CTCF binding signature that
is intimately tied to chromatin topology and dysregulated gene expression. The putative
causative link to oncogenic transcription program suggests that altered CTCF binding is an

important component of the mechanism of cancer pathogenesis.

Results
Cancers exhibit unique CTCF binding patterns in the genome
CTCF binding sites are among the most stable regulatory elements in the human genome

across cell types, compared to gene promoters and distal enhancers (Fig. 1a). To
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comprehensively study the genomic repertoire of CTCF binding, we collected 771 high-quality
CTCF ChIP-seq datasets from the public domain. These datasets cover over 200 human cell
types, including normal tissues and multiple cancer types (Fig. S1a, Table S1). We collectively
identified 688,429 distinct CTCF binding sites by merging shared peaks called from each
dataset (Fig. S1b-c). To study the binding occupancy pattern across cell types, we assigned an
occupancy score to each CTCF site by tallying the ChIP-seq datasets exhibiting peaks within
the site (Fig. S1a). We obtained a broad spectrum of CTCF binding site distribution from cell-
type specific to cross-cell-type conserved (constitutive) (Fig. 1b) and focused on the 285,467
high-confidence CTCF binding sites with occupancy score = 3. We identified 22,097 constitutive
CTCEF binding sites, which were defined as binding present in at least 80% of all 771 datasets

determined by an empirical model (Fig. 1b, S1d).

To identify cancer-specific CTCF binding patterns, we surveyed six cancer types: T-cell acute
lymphoblastic leukemia (T-ALL), acute myeloid leukemia (AML), breast cancer (BRCA),
colorectal cancer (CRC), lung cancer (LUAD) and prostate cancer (PRAD). These cancers have
CTCF ChlIP-seq data available in both cell lines and corresponding normal tissues (Table S2).
We compared both CTCF occupancy frequencies and normalized CTCF binding levels in
samples from each cancer type versus all other datasets (Fig. 1c, S1e-i) as well as their
corresponding normal tissue (Fig. S1j) to account for variations due to tissue type specificity.
We categorized a CTCF binding event as lost in a cancer if it had a lower occupancy score and
lower binding level in the cancer cell lines compared to the corresponding normal tissue and to
all other samples. A site was characterized as gained in a cancer if it had a higher occupancy
score and higher binding level in the cancer cell lines compared to the corresponding normal
tissue as well as to all other samples. Using this approach, we identified lost and gained CTCF
binding sites in each of the six cancer types. The CTCF binding patterns at 102 lost and 72

gained sites identified in T-ALL are shown in Fig. 1d-f, comparing normal CD4" T cell with two
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T-ALL cell lines, Jurkat and CUTLL1[33,34,36-39] . Different cancer types share few commonly
lost or gained sites, indicating cancer-type specificity of the identified CTCF binding patterns
(Fig. 19). Across cancer types, however, lost sites are enriched at gene promoter regions (<2kb
from any transcription start site, TSS), while gained sites are primarily located at distal and non-
coding regions (Fig. 1h). This suggests that different cancers may employ similar mechanisms

leading to CTCF binding loss or gain.

We further explored these lost and gained CTCF binding events identified from cancer cell lines
in patient samples, to confirm that these unique patterns are not cell line-specific phenomena. In
two T-ALL patient samples, 78 of the 102 lost sites (T-ALL,.s) were also depleted in at least one
sample, and 33 of the 72 gained sites (T-ALL4aineq) are present in at least one sample (Fig. S1k,
Table S3). As CTCF binding positively correlates with chromatin accessibility (Fig. S2a, Table
S4), we systematically surveyed ATAC-seq data in BRCA, COAD, LUAD and PRAD patient
samples from The Cancer Genome Atlas (TCGA)[40], and consistently observed that lost or
gained CTCF sites identified from cell lines exhibit lower or higher chromatin accessibility,
respectively, compared to the entire TCGA cohort (Fig. 1i), indicating that unique losses or
gains in CTCF binding exist extensively in cancer patients. Specific CTCF binding pattern may
also be indicative of clinical outcomes, as patients with elevated chromatin accessibility at

gained CTCF binding sites have lower overall survival rates (Fig. S2b,c).

Unique CTCF binding sites link to patterns of chromatin interaction

As CTCF is known to induce DNA looping and is enriched at TAD boundaries[1], we then
interrogated the relationship between altered CTCF occupancy and chromatin conformation in
cancer. We performed in situ Hi-C in Jurkat, healthy donor CD4" T cells, and patient T-ALL
cells[5,41,42]. Differential analysis of our Hi-C data reveals that T-ALL sites have decreased

and T-ALL,.ineq Sites have increased contact frequencies with their flanking regions (Fig. 2a,b,
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S3a) compared to constitutive CTCF sites as controls. These findings were corroborated in our
two T-ALL patient samples (Fig. 2c-f, S3b,c) and in other malignancies (Fig. 2g,h, S3d, Table
S4). Together, these results suggest that cancer-specific alterations to CTCF binding highly

associate with changes in local chromatin contacts relative to their normal physiological state.

In addition to regulating chromatin conformation, CTCF occupancy has been suggested to act
as a boundary against spreading of histone modifications between loops and TADs[2,5].
Therefore, we assessed whether cancer-specific CTCF binding is implicated in histone
modification patterns. Using publicly available ChlP-seq data, we examined the activating
histone marks H3K4me1, H3K27ac, and the repressive mark H3K27me3, and found that
cancer-specific gained CTCF binding associates with increased levels of enhancer marks
H3K4me1 and H3K27ac, while lost CTCF sites do not significantly correlate with any of the
histone modifications tested (Fig. S4). Analysis of T-ALL patient samples yielded similar results

(Fig. S5).

Cancer-specific CTCF binding gain and loss associate with differential gene expression
within chromatin domains

To study the effects of CTCF binding on gene expression, we used an unbiased approach in
which we compiled a comprehensive list of all possible combinations of CTCF site and gene
pairs that are located within the same chromosome[4,12,13]. We measured both CTCF binding
level and gene expression level for each CTCF-gene pair and calculated their correlation across
54 cell types for which both CTCF ChlP-seq and RNA-seq data are available (Table S4). This
correlation score represents the association between CTCF binding and gene expression (Fig.
3a). Upon dividing the CTCF-gene pairs into two groups based on whether the paired loci are in
the same or different divergently oriented constitutive CTCF-bound chromatin domains[13] (Fig.

3b), we found that pairs in the same domain are more likely to be highly correlated, regardless
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of genomic distance (Fig. 3c). This indicates that any effect of CTCF binding in regulating gene
expression tends to be confined within constitutive CTCF-bound chromatin domains[13]. These

domains are highly consistent with TADs identified from Hi-C maps[43] (Fig. S6a,b).

We then tested whether those CTCF binding sites specifically lost or gained in cancer associate
with expression of genes within the same chromatin domains. If a CTCF binding site is located
in a gene promoter region, we directly used that gene as the candidate target. Otherwise, we
assigned all genes located within the same domain as the CTCF site as intra-domain candidate
target genes. Using this rubric, we found that cancer-specific lost CTCF binding events tend to
have higher correlation with their promoter target genes, which are also more likely to be down-
regulated in cancer (Fig. 3d). Genes that strongly associate with cancer-specific gained CTCF
binding sites, on the other hand, tend to be up-regulated in cancer (Fig. 3e). In general, without
considering CTCF-gene pair correlations, genes surrounding lost CTCF binding sites within the
same chromatin domain tend to be down regulated while genes surrounding gained CTCF
binding sites are more likely to be activated. This relationship holds in both cancer cell lines
(Fig. S6c¢,d) and the two T-ALL patient samples (Fig. 3f,g). Furthermore, we found that genes
highly correlated with BRCAgaines intra-domain gained CTCF are enriched for the essential
genes identified using CRISPR-screen data from the breast cancer cell line T47D[44],

suggesting that gained CTCF is involved in cancer functions (Fig. S6e).

Differential DNA methylation or sequence mutation do not explain all cancer-specific
CTCF binding patterns

We next sought to identify determinants of cancer-specific CTCF binding. To date, the primary
identified effectors of variation in CTCF binding at specific loci in cancers include altered DNA
methylation at a CTCF motif[20,21,29,45] or mutations affecting the CTCF binding motif[29].

Prior studies have shown that CTCF binding negatively correlates with DNA methylation[15,46].
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We collected DNA methylation profiles from T-ALL, BRCA, CRC, LUAD and PRAD and their
corresponding normal tissue, and calculated the differential levels of DNA methylation over a
300bp region centered at each identified lost or gained CTCF binding site. We noticed that
some but not all lost CTCF binding sites associate with increased DNA methylation (Fig. 4a),
while most gained CTCF sites do not associate with DNA methylation reduction (Fig. 4b). The
result was confirmed in the T-ALL patient samples (Fig. S7). We therefore concluded that DNA

methylation can only explain a portion of cancer-specific CTCF binding changes.

Stable CTCF binding is highly specific to the presence of its DNA binding motif and can be
compromised by mutations affecting the consensus motif sequence[20,29]. We performed
whole genome sequencing (WGS) in T-ALL samples and found very few genetic alterations at
gained or lost binding loci (Fig. S8). Using WGS data for AML, BRCA, CRC, LUAD and PRAD
patient samples from the International Cancer Genome Consortium (ICGC) [47], we consistently
observed that CTCF loss or gain does not associate with mutations altering the consensus
binding sequence (Fig. S9). These data show that neither sequence mutations nor DNA

methylation changes can fully explain cancer-specific CTCF binding events.

Cancer-specific gained CTCF co-activates target genes with oncogenic transcription
factors

CTCF has been shown to co-bind DNA with other factors to establish DNA loops and control
gene expression[19,48]; thus, we looked for TFs potentially involved in cancer-specific CTCF
gain events that associate with dynamic chromatin interaction and increased gene expression.
Using our in situ Hi-C[4,5,14,49,50] data in T-ALL compared with normal CD4" T cells, we
identified genomic regions within the same chromatin domain that interact more frequently with
T-ALL 4ainea CTCF sites (Fig. S10a,b) and used BART[51] to identify putative TFs that

preferentially bind in these regions. We found that NOTCH1[13], a major oncogenic driver in T-
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ALL, is one of the top TFs with binding sites enriched in these regions (Fig. 5a). Potential
oncogenic TFs in CRC were also identified using the same approach (Fig. S10c, Table S5).
Indeed, compared to normal CD4" T cells, gained CTCF sites in T-ALL interact more frequently
with “dynamic” NOTCH1 binding sites, previously defined as those sensitive to gamma-
secretase inhibitor (ySl) treatment followed by inhibitor washout[13] (Fig. S10d). Furthermore,
we analyzed the genome-wide relationship between NOTCH1 and CTCF occupancy in T-ALL
and found that both NOTCH1 and dynamic NOTCH1 sites are significantly enriched in
chromatin domains containing T-ALLg.ines CTCF sites (Fig. 5b, S10e), although NOTCH1 and
CTCF do not co-occupy the same loci (Fig. S10f). These T-ALLgaineqg CTCF sites are also
associated with increased levels of H3K27ac in T-ALL, indicative of potential enhancer function

(Fig. 5c,d). An example locus is shown in Fig. 5e.

CTCF and NOTCH1 require each other to activate their oncogenic targets in T-ALL

The significant association between T-ALLgaineq CTCF binding and dynamic NOTCH1 binding
suggests that CTCF might cooperate with NOTCH1 to activate gene expression in T-ALL. To
test for dependency of T-ALL gaines CTCF binding on NOTCH1, we treated Jurkat cells with ySI
for 72 hours to inhibit the release and nuclear translocation of the intracellular, transcriptionally-
active domain of NOTCH1, and then washed out the inhibitor to allow for recovery of
intracellular NOTCH1 levels for 16 hours. CTCF ChIP-seq showed that yS| treatment abrogated
CTCF binding at most T-ALL gaineq Sites (Fig. 6a), and a portion of those ySl-sensitive binding
events recovered upon yS| washout (Fig. S11a). Meanwhile, chromatin accessibility decreased
at T-ALL gaines CTCF sites with ySI treatment compared to DMSO, and significantly reversed after
yvSl washout (Fig. 6b). These results suggest that functional NOTCH1 binding is required for

CTCF binding at T-ALLgaineq Sites.

10
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As NOTCH1 and CTCF do not physically interact with each other (Fig. 6¢) and do not co-bind at
the same genomic loci (Fig. S10f), we hypothesized that NOTCH1 may mediate the creation of
an accessible chromatin configuration to allow for CTCF binding. Recent studies have shown
that chromatin remodelers affect CTCF binding[52,53], and NOTCH1 can interact with the
catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex BRG1
(SMARCAA4), as well as other members of the BAF and PBAF chromatin remodeling
complexes[54]. We confirmed the NOTCH1-BRG1 interaction in our T-ALL cell lines (Fig. 6¢),
which indicates that NOTCH1 may induce chromatin remodeling. Interestingly, BRG1 in the
AML cell lines EOL1 and MOLM13 has higher enrichment at AMLg.ineq CTCF sites than at
constitutive CTCF sites (Fig. 6d, S11b)[55], although CTCF itself has lower binding levels at
their respective gained sites in both AML and T-ALL than at constitutive sites (Fig. 6e, S11c¢,d),
suggesting that gained CTCF binding might need BRG1 to open chromatin. Thus, a potential
mechanism by which NOTCH1 permits T-ALLgaine¢ CTCF binding could occur through BAF

complex recruitment to open chromatin for CTCF binding.

The aforementioned findings suggest a potential role for T-ALLgained CTCF in oncogenic
transcription mediated by NOTCH1. To test whether CTCF is required for NOTCH1’s oncogenic
transcription function, we knocked down CTCF with short hairpin RNAs (shRNA) in T-ALL cells
(CUTLL1). Genes in the same chromatin domains containing T-ALLgaines CTCF binding sites,
especially those genes with higher expression in T-ALL compared to normal CD4" T cells were
significantly affected by CTCF silencing (Fig. 6f), indicating that T-ALL g.ineqd CTCF sites are the
most disrupted in our silencing study. Interestingly, BART analysis revealed that the shCTCF-
downregulated genes are most likely regulated by NOTCH1 (Fig. 6g). Thus, reducing CTCF
levels may disrupt NOTCH1’s ability to activate its target genes. Indeed, most NOTCH1 target
genes in CUTLL1 are downregulated in shCTCF cells (Fig. 6h). Genes down-regulated in

shCTCF cells are also significantly enriched for genes down-regulated in ySl-treated cells (Fig.

11
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S11e), and reactivated after ySI wash-out (Fig. S11f). These data show that CTCF is required
for NOTCH1 to regulate its target genes. Additionally, we found that genes located in chromatin
domains containing both dynamic NOTCH1 and T-ALLg.ines CTCF sites are most up-regulated in
T-ALL compared to normal CD4" T cells (Fig. 6i). Of these T-ALL-upregulated genes, those
located in chromatin domains with increased interaction between dynamic NOTCH1 sites and T-
ALL gained CTCF sites are the ones whose expression is the most down-regulated upon CTCF
silencing (Fig. S11g). Our collective findings suggest that NOTCH1 and CTCF cooperatively

activate oncogenic transcriptional programs in T-ALL.

Discussion

Through integrative analysis of genomic data collected from the public domain, we presented a
comprehensive CTCF binding repertoire in the human genome, from which we identified
specific CTCF binding patterns in six distinct cancer types. We characterized a series of
genomic and epigenomic features of cancer-specific CTCF binding events using multi-omics
profiling techniques including WGS, TF and histone modification ChlP-seq, RNA-seq, ATAC-
seq, RRBS, and in situ Hi-C. In contrast to previous studies that primarily focused on the effects
of mutations or other modifications to CTCF itself or its binding sites[20,21,29,45,56,57], we
identified unique CTCF binding patterns in specific cancer types that arise independently of
mutations or DNA methylation changes at binding sites. Instead, cancer-specific CTCF
recruitment likely results from other TFs that indirectly open chromatin and alter chromatin
conformation. CTCF at these sites functions cooperatively with other TFs to facilitate enhancer-
promoter interactions and to activate oncogenic transcription programs. In T-ALL, we identified
such a cooperative program occurring between NOTCH1 and CTCF, in which NOTCH1 binding
is required for gained CTCF binding in the same chromatin domain. This potentially occurs
through NOTCH1-induced opening of chromatin at the CTCF binding sites. Gained CTCF

binding then cooperates with NOTCH1 to activate transcription of its target genes. Interestingly,
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we observed substantial enrichment of BRG1 at gained CTCF binding sites (Fig. 6d), as well as
a direct protein-protein interaction between NOTCH1 and BRG1 (Fig. 6c). Although previous

t57

studies suggested that CTCF and BRG1 might physically interact®, we do not find this to be the

case in T-ALL (Fig. S11h).

The dynamic interactions involving multiple factors and novel CTCF binding within a single
chromatin domain may indicate the formation of phase-separated transcriptional condensates at
super-enhancers[58-60]. In T-ALL, NOTCH1 binding drives the establishment of super-
enhancers[13]. Thus, T-ALLg.ines CTCF binding may be recruited by clusters of TFs and co-
activators including chromatin remodeling complexes within phase-separated transcriptional
condensates around super-enhancers. The potential for NOTCH1 as a master TF to direct the
formation of 3D spatial clusters has been reported recently[61]. Transcriptional condensates
maintain a highly active environment, which is consistent with the enrichment of H3K27ac
observed near T-ALLg.ineq CTCF sites (Fig. 5¢). By inducing the frequency of chromatin
contacts, gained CTCF binding may function to maintain the condensation state that helps drive
transcription. A schematic model of the relationships between dynamic NOTCH1 binding, CTCF

gain and activation of NOTCH target genes in T-ALL is shown in Fig. 7.

Our work in T-ALL found that gains in CTCF binding are located in distal enhancer regions,
while cancer-specific CTCF binding loss events are enriched at gene promoter regions and
correlate with repressed transcription of these promoters and decreased chromatin interactions.
Recently, an enhancer-docking mechanism described by Schuijers et al. [62] proposed that a
single CTCF binding upstream of a promoter can function as a docking site for multiple distal
enhancers; in this way, multiple enhancers loop to a single CTCF site to activate a single target
gene promoter[62]. Loss of such a docking CTCF site then removes the ability to form these

multiple enhancer loops, thus greatly reducing the ability to activate transcription. While our
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observations of cancer-specific lost CTCF sites are consistent with this “enhancer docking”
model, further studies are required to understand the causal relationships between CTCF

binding loss and gene repression.

Our study is built upon integrative computational analyses of multi-source public data coupled
with our multi-omics experimental validations using T-ALL as a model system. As a pan-cancer
study, our work is limited by data availability and quality. For example, coverage of RRBS and
sequencing depths might lead to potential underestimation of differential DNA methylation.
Nevertheless, existence of gained CTCF binding independent of DNA methylation is validated.
Our findings pave the way for further mechanistic studies of causal relationships between CTCF
binding alteration and oncogenic TF activities in leukemia as well as other cancers. Following
our proposed model, oncogenic drivers can lead to novel CTCF binding at distinct enhancer
regions in the genome, thus creating a signature pattern of CTCF binding. Having observed
evidence supporting this model in T-ALL, we believe that studying aberrant CTCF binding
events in other cancer types can further our understanding of the underlying oncogenic
transcriptional regulatory networks specific to that cancer. In conclusion, unique aberrant CTCF
binding pattern represents a novel epigenomic signature of cancer that can be independent of
mutations and DNA methylation changes. Our work provides insights into a new angle of

mechanistic research on cancer epigenomics.

Methods

EXPERIMENTAL PROCEDURE

Patient Xenografting and Cell Culture
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Jurkat and CUTLL1 cells have been described previously[36,63]. Cells were cultured in
RPMI1640 medium with L-glutamine and 25mM HEPES (Corning) supplemented with 10%
heat-inactivated fetal bovine serum (Sigma-Aldrich), 10 U/mL of penicillin-streptomycin (Gibco),
and 1x glutaMAX (Gibco) in a humidified incubator at 37°C and 5% CO,. Human CD4" T cells
were purchased from AllCells. Primary human samples were collected by collaborating
institutions with informed consent and analyzed under the supervision of the Institutional Review
Board of Padova University, the Associazone Italiana Ematologia Oncologia Pediatrica, and the
Berlin-Frankfurt-Manster (AIEOP-BFM) ALL 2000/2006 pediatric clinical trials. Informed consent
to use leftover material for research purposes was obtained from all of the patients at trial

entry in accordance with the Declaration of Helsinki.

Antibodies and Reagents

Western blots were performed using the following antibodies: Actin and CTCF from Millipore
Sigma (clone C4; 07-729) and cleaved NOTCH1 (Val1744) from Cell Signaling Technology
(4147). ChiP-seq were performed using the following antibodies: CTCF from Millipore Sigma
(07-729), H3K27Ac (8173S) and H3K27me3 (9733S) from Cell Signaling Technology, and

H3K4me1 (07-473) from Millipore.

In Situ Hi-C

In situ Hi-C was performed on CD4+ T cells, Jurkat, CUTLL1, and patient xenografts as
previously described[5]. In brief, cells were crosslinked with 1% formaldehyde for 10 minutes at
room temperature. Per Hi-C reaction, 5 million cells were lysed and nuclei were permeabilized.
DNA was digested with Mbol from New England Biolabs (R0147M). Digested fragments were
labeled with biotinylated d-ATP from Jena Bioscience (NU-835-B1014-S) and ligated. After

RNase treatment and Proteinase K treatment to reverse crosslinks, nuclei were sonicated using
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a Covaris E220 to produce an average fragment length of 400 bp. Streptavidin beads from
ThermoFisher Scientific (65001) were used to pull down biotin-labeled fragments. Following
purification and isolation of DNA, final libraries were prepared using the NEBNext® Ultra™ ||
DNA Library Prep Kit for lllumina® and sequenced via paired end sequencing at a read length

of 150 bp on an Illumina HiSeq 2500 to produce on average 400 million reads per sample.

ChiP-seq Profiling

CD4+ T cells, Jurkat, CUTLL1, and patient xenografts were crosslinked with 1% formaldehyde
and 1% fetal bovine serum in PBS for 10 minutes at room temperature. The reaction was
quenched with 0.2M glycine at room temperature for 5 minutes. Cells were then washed with

PBS and pelleted.

For CTCF ChIPs, immunoprecipitation was performed based on a protocol described
previously[64]. A pellet containing 50 million cells was lysed with 5mL of lysis buffer (50 mM
HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-
100) for 10 minutes at 4°C. Nuclei were pelleted at 1350xg for 7 minutes and resuspended in 10
mM Tris pH 8, 1 mM EDTA and 0.1% SDS. Chromatin was sheared with a Covaris E220
system to an average fragment length of 400 bp and spun at 15,000 rpm for 10 minutes to
remove insoluble chromatin and debris. The supernatant was incubated with 20 uL of
Dynabeads Protein G for 30 minutes before discarding the beads. 1% of the total volume was
saved as input and the rest was incubated with anti-CTCF antibody overnight. 100 pL of
Dynabeads Protein G was added for 2 hours. Bound fragments were washed twice with 1 mL of
low salt buffer (20 mM Tris-HCI pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% w/v Triton X-100, and
0.1% w/v SDS), once with high salt buffer (20 mM Tris-HCI pH 8.0, 500 mM NaCl, 2 mM EDTA,

1% wi/v Triton X-100, and 0.1% w/v SDS), once with lithium chloride buffer (10 mM Tris-HCI pH
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8.0, 250 mM LiCIl, 1 mM EDTA, 1% w/v NP-40, and 1% w/v deoxycholic acid) and twice with TE

(10mM Tris pH 8, 1 mM EDTA).

For histone ChlPs, cells were lysed in 375 L of nuclei incubation buffer (15 mM Tris pH 7.5, 60
mM KCI, 150 mM NaCl, 15 mM MgCl,, 1 mM CaCl,, 250 mM sucrose, 0.3% NP-40, 1 mM NaV,
1 mM NaF, and 1 EDTA-free protease inhibitor tablet (Roche)/10 mL in H,O) for 10 min on ice.
Nuclei were washed once with digest buffer (10 mM NaCl, 10 mM Tris pH 7.5, 3 mM MgCl,, 1
mM CaCl,, 1 mM NaV, 1 mM NaF, and 1 EDTA-free protease inhibitor tablet (Roche)/10 mL in
H,0) and resuspended in 57-uL Digest Buffer containing 4.5 units MNase (USB) for 1 hour at
37°C. MNase activity was quenched for 10 minutes on ice upon the addition of EDTA to a final
concentration of 20 mM. Nuclei were pelleted and resuspended in 300-uL Nuclei Lysis Buffer
(50 mM Tris-HCI pH 8.0, 10 mM EDTA pH 8.0, 1% SDS, 1 mM NaV, 1 mM NaF, and 1 EDTA-
free protease inhibitor tablet (Roche)/10 mL in H,O) before sonication with a Bioruptor Pico
(Diagenode) for 5 minutes (30 seconds on, 30 seconds off). Lysate was centrifuged at max
speed for 5 minutes to remove debris. 9 volumes of IP Dilution Buffer (0.01% SDS, 1.1% Triton
X-100, 1.2 mM EDTA pH 8.0, 16.7 mM Tris-HCI pH 8.0, 167 mM NaCl, 1 mM NaV, 1 mM NaF,
and 1 EDTA-free protease inhibitor tablet (Roche)/10 mL in H,O) were added to the
supernatant. 50 pyL of Dynabeads Protein G were added and the sample was incubated at 4°C
for 30 minutes, rotating. 1% of the sample was kept as input, and the remaining sample was
split into 3 tubes. 50 uL of Dynabeads Protein G conjugated to 15 L of the appropriate antibody
were added to each tube prior to overnight incubation at 4°C, rotating. Bead-bound complexes
were washed for 5 minutes each in 1 mL of low salt buffer, high salt buffer, LiCl buffer, and twice

with TE.

To elute bead-bound complexes, beads were resuspended in 50 uL of elution buffer (100 mM

NaHCOs;, 1% w/v SDS) and incubated at 65°C for 15 minutes, shaking at 1,000 RPM on a
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thermomixer (ThermoScientific). Elution was repeated a second time, and then 100 uL RNase
Buffer (12 uL of 5M NaCl, 0.2 uL 30 mg/mL RNase, and 88 uL TE) was added to each ChIP and
input sample. Samples were incubated at 37°C for 20 minutes, followed by the addition of 100
uL of proteinase K buffer (2.5 yL 20 mg/mL proteinase K, 5 yL 20% SDS, and 92.5 yL TE)
overnight at 65°C. An equal volume of phenol:chloroform solution was added and mixed
thoroughly. The mixture was transferred to MaXtract High Density tubes (Qiagen) and
centrifuged for 8 minutes at 15,000 rpm. The upper phase was transferred to new tubes and
mixed with 1.5 yL 20 mg/mL glycogen, 30 uL 3 M sodium acetate and 800 pL ethanol. Samples
were incubated at -80°C until frozen and then centrifuged at 15,000 rpm for 30 minutes at 4°C.
The supernatant was removed and pellets were washed in 800 pL 70% ice cold ethanol and
spun for 10 minutes at 4°C at 15,000 rpm. Following careful removal of ethanol, pellets were air-
dried and resuspended in 30 pyL of 10mM Tris at pH 8.

IP and input DNA were then quantified using a Qubit 3.0 fluorometer. Libraries were prepared
using the KAPA HyperPrep Kit (KK8505) and sequenced with an lllumina NextSeq 500 to an

average depth of 28 million reads per sample.

RNA-seq Profiling

RNA was isolated from 3 million cells per sample using the Bio-Rad Aurum™ Total RNA Mini Kit
and quantified with the Agilent RNA 6000 Nano Kit with the Agilent Bioanalyzer. Libraries were
prepared by rRNA depletion using the lllumina TruSeq® Stranded mRNA Library Prep Kit for a
low concentration of starting sample and sequenced by single end sequencing on an lllumina

NextSeq 500 to an average depth of 18 million reads per sample.

DNA Methylation Profiling
Genomic DNA was isolated using the AllPrep DNA/RNA Micro Kit (Qiagen). To assess genome-

wide DNA methylation status, we performed mRRBS (PMCID PMC1258174). Following
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fluorometric quantification using a Qubit 3.0 instrument, we digested genomic DNA with the
restriction enzyme Mspl (New England Biolabs) and size selected for fragments approximately
100-250 base pairs in length using solid phase reversible immobilization (SPRI) beads (MagBio
Genomics). Resulting DNA underwent bisulfite conversion using the EZ DNA Methylation-
Lightning Kit (Zymo Research). We created libraries from bisulfite-converted single stranded
DNA using the Pico Methyl-Seq Library Prep Kit (Zymo Research), which were then pooled for
sequencing on an lllumina NextSeq 500 instrument using the NextSeq 500/550 V2 High Output

reagent kit (1 x 75 cycles) to a minimum read depth of 50 million reads per sample.

Whole Genome Sequencing

3 million cells from cell lines or patient samples were pelleted and resuspended in 1 mL of Cell
Lysis Solution (Qiagen) mixed with 500 pg of RNase A. The lysis reaction was carried out at
37°C for 15 minutes. 333 uL of Protein Precipitation Solution (Qiagen) was added to each
sample which was then vortexed and then centrifuged at 2000 x g for 10 minutes. The
supernatant was mixed with 1 mL of isopropanol until DNA strands precipitated from solution.
Upon discarding the supernatant, the DNA pellet was washed with 1 mL of 70% ethanol and
centrifuged at 2000 x g for 1 minute. The ethanol was then poured out and the pellet was air-
dried for 15 minutes before resuspension in 50 to 100 pL of DNA Hydration Solution (Qiagen).

DNA was sequenced with paired end lllumina sequencing at 30x coverage.

Immunoprecipitation

100 million cells for each immunoprecipitation reaction were pelleted and incubated in Buffer A
(10 mM HEPES pH 8.0, 1.5 mM MgCl,, 10 mM KCI, 0.5mM DTT) for 10 minutes on ice. Cells
were then lysed upon 12 strokes with a 7mL loose pestle tissue grinder (Wheaton, 357542) and
centrifuged at 2000 rpm for 7 minutes. Nuclear pellets were resuspended in 5 volumes of TENT

buffer (50 mM Tris pH 7.5, 5 mM EDTA, 150 mM NaCl, 1% Triton X-100, 5 mM MgCl,) and
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treated with benzonase for 30 minutes before 5 passages through a 25g x 5/8 in syringe. The
insoluble fraction was removed following centrifugation at 2000 rpm for 7 minutes and incubated
overnight with Dynabeads Protein G hybridized with antibody. 2 million cells were removed for
input. Beads and nuclei lysates were washed 6 times with TENT buffer and then eluted in 0.1M
glycine pH 2.5 with 100 mM Tris pH 8.0 prior. NUPAGE LDS sample buffer was added to
eluates and inputs, which were then incubated at 70°C for 15 minutes before analysis by

western blot.

PUBLIC DATA COLLECTION

Public CTCF ChlP-seq data were collected from Cistrome Data Browser[65] (for peak files) and
NCBI GEOI[66] (for fastq files, Table S1). Histone modification ChIP-seq data were collected
from NCBI GEO and ENCODE[67] (for bam files). Public RNA-seq data in multiple cell types
were collected from ENCODE (for fastq files). DNA methylation profiling data were collected
from ENCODE (for bed bedMethyl files) and NCBI GEO. Hi-C data were collected from NCBI
GEO and ENCODE (for fastq files). ATAC-seq data were collected from NCBI GEO (for fastq
files). Whole Genome Sequencing data for BRCA, COAD, LUAD and PRAD samples were
collected from International Cancer Genome Consortium (ICGC) Data Portal[47]. Survival data
for BRCA, COAD and LUAD were downloaded from the TCGA Data Portal[68]. Detailed
information including accession IDs of all public datasets collected in this work can be found in

Table S4.

DATA PROCESSING

ChiP-seq Data Analysis
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Sequence alignment for ChlP-seq data in fastq files was performed using the same standard
analysis pipeline as used in Cistrome DB[65], for consistence and reproducibility. All sequence
data genomic alignment were performed using the Chilin[69] pipeline with default parameters
($ chilin simple -p narrow [--pe] -s hg38 --threads 8 -t IN.fq -i PRENAME -o OUTDIR). Briefly,
sequence reads were aligned to the human reference genome (GRCH38/hg38) using BWA[70]
($ bwa aln -q 5-132 -k 2 -t 8 INDEX IN.fq > PRENAME.sai $ bwa {samse | sampe} INDEX
PRENAME.sai IN.fq > PRENAME.sam). Sam files were then converted into bam files using
samtools[71] ($ samtools view -bS -q 1 -@ 8 PRENAME.sam > PRENAME.bam). For CTCF
ChlP-seq datasets, MACS2[72] was used to call peaks under the FDR threshold of 0.01

($ macs2 callpeak --SPMR -B -q 0.01 --keep-dup 1 -g hs -t PRENAME.bam -n PRENAME --
outidr OUTDIR). Peaks with fold enrichment of at least 4 were retained. Bigwiggle files were
generated using BEDTools[73] and UCSC tools[74] ($ bedtools slop -i PRENAME.bdg -g
CHROMSIZE -b 0|bedClip stdin CHROMSIZE PRENAME.bdg.clip $ LC_COLLATE=C sort -k1,1
-k2,2n PRENAME .bdg.clip > PRENAME.bdg.sort.clip $ bedGraphToBigWig
PRENAME.bdg.sort.clip CHROMSIZE PRENAME.bw). Finally, only the CTCF ChIP-seq

samples that have at least 2,000 peaks were included in the downstream integrative analysis.

ATAC-seq Data Analysis

Trim Galore[75] was used to trim the raw sequencing reads ($ trim_galore --nextera --phred33 --
fastqc --paired R1.fq R2.fq -o OUTDIR). Reads were aligned to the human reference genome
(GRCH38/hg38) using Bowtie2[76] ($ bowtie2 -p 10 -X 2000 -x INDEX -1 R1.fq -2 R2.fq -S
PRENAME.sam). Sam files were then converted into bam files using samtools[71] ($ samtools
view -bS -q 1 -@ 8 PRENAME.sam > PRENAME.bam). Bedtools was used to convert bam files
into bed format ($ bamToBed -i PRENAME.bam -bedpe > PRENAME_PE.bed). Reads mapped

to mitochondria DNA were discarded from downstream analysis.
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RNA-seq Data Analysis

RNA-seq datasets were processed using Salmon[77] ($ salmon quant --gcBias -i INDEX -| A -p
8 {-1 R1.fq -2 R2.fq| -r IN.fq} -0 OUTDIR). Transcriptome index was built on the human
reference genome (GRCH38/hg38). Transcripts-level abundance estimates were summarized
to the gene-level using the “tximport’[78] package for differential expression analysis.
DESeq2[79] was used to identify differentially expressed genes, and different thresholds used in

different analysis were listed correspondingly in the manuscript.

Hi-C Data Analysis
Hi-C data were processed using HiC-Pro[80] ($ HiC-Pro -i INDIR -0 OUTDIR -c CONFIG -p).
Contact maps were generated at a resolution of 5kb. Raw matrix data were normalized using

the approach described in Normalization of Chromatin Interactions.

DNA Methylation Data Analysis

DNA methylation data (for T-ALL cell lines and T-ALL patients) were demultiplexed with
bcl2fastq followed by trimming of 10 base pairs from the 5’ end to remove primer and adaptor
sequences using TrimGalore[75]. Sequence alignment to the GRCh38/hg38 reference genome
and methylation calls were performed with Bismark[81] ($ bismark --multicore 8 --bowtie2 -q -N
1 INDEX INFILE.fq). Coverage (counts) files for cytosines in CpG context were generated using
Bismark[81,82] ($ bismark_methylation_extractor --multicore 8 --comprehensive --bedGraph

INFILE_bismark_bt2.bam).

Whole Genome Sequencing Data Analysis
Mutations were identified for two T-ALL cell lines (Jurkat and CUTLL1) and two T-ALL patient
samples from the whole genome sequencing data. We aligned the lllumina short-read

sequences to the human reference genome (GRCH38/hg38) using BWA[70] mem. We used
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SAMBIlaster[83] to identify the discordant pairs, split reads and flag the putative PCR duplicates.
We used SAMBAMBA[84] to convert the SAM aligned into the BAM format, and samtools[71]

was used to sort those aligned to create a BAM file corresponding to each sample.

We used VarDict[85] to identify the variants that overlapped the union CTCF binding sites. We
used all the default parameters except -f 0.1’ which was used to identify variants that were
supported by greater than 10% of the reads at that location. We annotated the variants using
Variant Effect Predictor (VEP)[86], and used custom scripts to identify the variants that influence

TF binding.

We again used VarDict[85] to identify the variants in the CTCF and NOTCH1 genes for the four
samples. We used all the default parameters except -f 0.1’ which was used to identify variants
that were supported by greater than 10% of the reads at that location. We annotated the
variants using Variant Effect Predictor (VEP)[86], and then filtered it to identify the mutations
that were either (a) not seen in more than 1% of any normal human population, or (b) had a

CADD score of deleteriousness > 20, or (c) was present in the COSMIC database.

INTEGRATIVE MODELING AND STATISTICAL ANALYSIS

Identification of CTCF Binding Repertoire in the Human Genome

For CTCF ChiIP-seq, we included a total of 793 datasets, including 787 public datasets and 6
datasets we generated (Table S1). 765 public CTCF ChIP-seq datasets with peaks more than
2,000 were further included in this study. Each dataset can yield MACS2-identified CTCF peaks
in the range between 2,050 and 198,021, with a median of 46,451, and a total of 36,873,077

peaks (Fig. S1b). The distribution of the interval lengths between adjacent CTCF peak summits
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of all 36,873,077 peaks from 771 datasets has an inflection point at ~150bp (Fig. S1c) indicating
the boundary between the same binding site and different binding sites[87]. Therefore, we used
150 bps as the cutoff to merge CTCF peaks. In practice, we extended +/-75 bps from each peak
summit to generate a 150bp region centered at the summit to represent each peak, and merged
all overlapping peak regions to generate a union set of CTCF binding sites, which contains
688,429 non-overlapping sites. Each binding site was assigned a CTCF occupancy score,
defined as the tally of ChlP-seq datasets that exhibit a peak within the site. Accordingly, we
defined the occupancy frequency as the ratio of the occupancy score over the total number of
CTCF ChlIP-seq datasets. To further ensuring the robustness of the identified CTCF binding
sites, we selected 285,467 high-confidence sites with occupancy score =3 for downstream
analyses. CTCF motifs within the union binding sites were searched by FIMO[88] with
Jaspar[89] matrix (ID: MA0139.1), with a p-value threshold of 1e-4. One motif with the smallest

p-value was retained for each CTCF binding site.

Identification of Constitutive CTCF Binding Sites
The distribution of occupancy scores of all 285,467 CTCF binding sites (Fig. S1d, blue curve)
shows that the majority of the CTCF binding sites occur in only a few datasets, and the number
of binding sites decreases with increasing occupancy score when the occupancy score is small.
However, there are CTCF binding sites that are highly conserved across almost all datasets
(e.g., binding sites with occupancy score greater than 600). We use a power law function to fit
the distribution curve (blue) shown in Fig. S1d to determine the cutoff for constitutive CTCF
sites. We denote 0; as the number of observed CTCF binding sites with occupancy score equal
to i, and E; as the number of expected CTCF sites with occupancy score equal to i. The power
law fitting to data 0; can be described as (Fig. S1d, green):

E; = (1/1.17e-5) * (x — 1.37)"12°

where x is the occupancy score. We define the cutoff A for constitutive CTCF binding sites as:
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X77N0; - Ey) > 5)
ST7TE,

A = min {i|
In other words, the total observed CTCF sites with occupancy score greater than A should be 6
times more than expected. We then determined A=615, and used an occupancy frequency

cutoff of 80% to define 22,097 constitutive CTCF binding sites, which corresponds to the

occupancy score 2616 in all 771 CTCF ChIP-seq datasets.

Identification of Cancer Specific Gained/Lost CTCF Binding Sites
We used the following 2 criteria to identify cancer-specific lost CTCF binding sites: 1) The CTCF
binding site should have a significantly lower occupancy frequency for datasets of that cancer
type compared to the occupancy frequency for all datasets; and 2) CTCF binding level
(quantified as normalized ChIP-seq read counts) at the site is significantly lower in cancer
datasets than in other datasets. For gained CTCF sites, we used the vice versa set of criteria.
Briefly, for each CTCF binding site in each cancer type, the occupancy score in the cancer
datasets were calculated along with its occupancy score in all 771 datasets. CTCF binding
levels were obtained from a normalized read count matrix in which the ChIP-seq read counts
(RPKM) were first calculated for union CTCF binding sites in all datasets and then followed by
qguantile normalization. We used unpaired two-tailed Student’s t-test to quantify the difference of
binding levels between different groups of datasets, and the p-value was then adjusted using
the Benjamini-Hochberg Procedure[90]. In addition, binding occupancy scores and binding
levels were compared between cancer datasets and datasets from the matched normal tissue
or cell types, in order to take into account the potential confounding factor of tissue-specificity
rather than cancer-specificity. Detailed criteria for identifying cancer specific CTCF binding sites
are described below:

* Cancer-specific lost CTCF binding sites: (1) occupancy frequency <0.2 in cancer

datasets; (2) occupancy frequency 20.7 in 771 datasets; (3) occupancy frequency 20.5
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(with occupancy score =2) in matched normal tissue datasets; (4) CTCF levels are lower
in cancer compared to all other datasets (statistic score <0), (5) CTCF levels are lower in
cancer compared to matched normal tissue datasets (statistic score <0), (6) averaged
CTCF binding signals (RPKM) <5 in cancer datasets.

* Cancer-specific gained CTCF binding sites: (1) occupancy frequency =20.5 (with
occupancy score 22) in cancer datasets; (2) occupancy frequency <0.2 in 771 datasets;
(3) occupancy score =0 in matched normal tissue datasets; (4) CTCF levels are
significantly higher in cancer compared to all other datasets (FDR <0.01), (56) CTCF
binding levels are significantly higher in cancer compared to matched normal tissue
datasets (FDR <0.01), (6) averaged CTCF binding signals (RPKM) >2 in cancer
datasets.

The specific gained and lost CTCF binding sites for each cancer type are shown in Table S3.

Quantification of Differential Chromatin Accessibility

We used the processed data from Ref. [40] that include a matrix of normalized ATAC-seq
insertion counts within the TCGA pan-cancer peak set to assess the differential chromatin
accessibility around CTCF binding sites. For each cancer type among BRCA, CRC, LUAD and
PRAD, the pan-cancer ATAC-seq peaks that overlap with identified cancer-type-specific lost or
gained CTCF binding sites were used for downstream analyses. The ATAC-seq differential
score for each peak was quantified as the fold change of the average of the normalized ATAC-
seq insertion counts from patient samples in the corresponding cancer type versus from patients
in other cancer types, and the ATAC-seq differential score was then assigned to the peak

overlapped CTCF binding site.

For consistency, we applied the same approach used for TCGA ATAC-seq data to analyze the

collected ATAC-seq data from T-ALL cell line Jurkat and normal CD4+ T cells. A data matrix
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was generated using ATAC-seq raw read counts on union CTCF binding sites for all Jurkat and
T cells datasets. Quantile normalization was applied on the log2 scaled matrix (pseudo count
=5). The ATAC-seq differential score was measured as the fold change of the averaged
normalized ATAC-seq counts between datasets of Jurkat versus CD4+ T cell at each CTCF

binding site.

Survival Analysis

Survival analysis was applied on patient samples having both supported TCGA clinical data and
ATAC-seq data[40]. For each cancer type among BRCA, CRC and LUAD, the patient samples
are separated into two equal-sized groups based on the chromatin accessibility at identified
cancer-specific lost or gained CTCF binding sites as follows: (1) For each cancer type, get the
pan-cancer ATAC-seq peaks that also present in cancer-specific lost or gained CTCF binding
sites. (2) Rank the patient samples by the normalized ATAC-seq insertion counts at each
individual ATAC-seq peak, and assign the sum of ranks across all ATAC-seq peaks to each
TCGA patient sample. (3) Separate the patient samples from the corresponding cancer type into
two equal-sized groups (top 50% and bottom 50%) based on the sum of all ranks, e.g., patient
samples with more or less chromatin accessibility on cancer specific CTCF binding sites. The
Kaplan-Meier (K-M) method was then used to create the survival plots and log-rank test was

used to compare the differences of survival curves.

Normalization of Chromatin Interactions

Given a Hi-C contact map A = {a;;}, the score a;; reflects mapped reads between two genomic
regions i and j. Suppose the bin size is 5kb, regions i and j will have a genomic distance of |i —
j| * 5kb. Since the contact probability between two bins decreases with increasing genomic

distance[91], we normalized the contact map as follows: for any given genomic distance d;, =
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k = 5kb, we quantify a normalization factor §dk as the averaged interactions among all bin pairs
with the same genomic distance d; in a same chromosome, e.g., S_dk = (Xj-i=k aij)/n, where n
is the total number of bin pairs with distance dj. The interaction score a;; between two bins with

distance d; was then normalized by S_dkas a; aij/(fdk * B) , where B is the number of valid

j =
interaction pairs per billion for each sample. Using this approach, we normalized the matrix A

into A" = {a;;} within each chromosome.

Detection of Differential Chromatin Interactions

We denoted the normalized Hi-C contact maps in the cancer dataset and the normal dataset as
C = {c;j} and N = {n;;}, respectively. For a given CTCF binding site x (with coordinate x.) and a
pre-defined genomic distance L, the chromatin interactions between x and its nearby non-
overlapped 5kb bins with genomic distance up to L are collected from C and N respectively.
Specifically, interaction scores between x and its nearby 5kb bins in C are collected as IC =
{Cij} , While either i or j equals to |x./5kb], and 0 < (j — i) * 5kb < L. Similarly, the interaction
scores between x and its nearby 5kb bins in N were collected as IN = {n;;}. A paired two-tailed
Student’s t-test was then applied on IC and IN to quantify the differential interaction between

cancer and normal cells surrounding CTCF binding site x.

Association of CTCF Binding with Gene Expression

54 cell types for which both CTCF ChlP-seq data and RNA-seq data are publicly available were
selected (Table S4) for investigating the association between CTCF binding and gene
expression for each CTCF-gene pair in the same chromosome. To obtain the CTCF binding
level, a read count matrix was generated using reads per kilobase per million (RPKM) on union
CTCF binding sites from ChlP-seq data. The read count matrix was scaled with square root of

RPKM followed by quantile normalization. Gene expression level was measured for each gene
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using the square root of transcripts per million (TPM) from RNA-seq data. For each CTCF-gene
pair, we quantified the association between the CTCF site and the gene across all 54 cell types
using the correlation coefficient R between the normalized CTCF binding level and gene
expression (Fig. 2e). CTCF-gene pairs were deemed “highly correlated” with R? greater than

0.25.

Identification of Constitutive CTCF-Bounded Chromatin Domains

For each CTCF binding site, we defined its associated chromatin domain as the genomic region
that: (1) includes this specific CTCF binding site; (2) is bounded by a pair of constitutive CTCF
binding sites with motifs of opposite orientations; and (3) occupy a minimum of 100kb and a
maximum of 1MB region on each side of the CTCF binding site. Fig. 2f contains schematic of

how constitutive CTCF-bounded chromatin domains were defined.

Detection of DNA Methylation Changes Surrounding CTCF Binding Sites

DNA methylation changes were detected within a 300bp region centered at each CTCF binding
site. Regions with at least 3 CpGs covered by at least 5 reads (=5x) in both cancer cell lines and
matched normal tissues were retained. A 300bp region was detected as differentially methylated
if the averaged differential methylation levels of all CpGs (=5x) within this region was greater

than 20%[92].

Detection of Differential Mutation Rate and Motif Score

For each CTCF binding site, the mutation rate was calculated as the occurrence of mutation
events against the number of samples/patients at each single base pair within a 400bp region
centered at the CTCF binding site. The mutation rate for a group of CTCF binding sites was

considered as the averaged mutation rate for each base pair within the 400bp region.
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Motif score was measured by scoring the CTCF position weight matrix (Jaspar[89], Matrix ID:
MAO0139.1) to a 19bp DNA sequence centered at the CTCF motif or CTCF binding site using log
likelihood ratios (with background nucleotide frequency as [0.275,0.225, 0.225, 0.275] for
A,C,G,T). The differential motif score was calculated by comparing motif scores for the

reference and the mutated sequences.

Identification of CTCF Intra-Domain Differentially Interacted Regions

For a given set of CTCF binding sites, the chromatin interaction changes between a CTCF site
and each of its intra-domain non-overlapped bins, measured from normalized Hi-C contact
maps in cancer cells over matched normal cells, were collected for each of the CTCF binding
sites (Fig. S11b). Regions with decreased interactions (log2 FC <-1, averaged log2

interaction >0) with cancer-specific lost CTCF binding sites, and regions with increased
interactions (log2 FC >1, averaged log2 interaction >0) with cancer-specific gained CTCF

binding sites were used for downstream transcription factor (TF) enrichment analysis.

Transcription Factor Enrichment Analysis

A revised version of the BART algorithm[51] was used for TF enrichment analysis. Briefly, a
collection of union DNase | hypersensitive sites[93] (UDHS) was previously curated as a
repertoire of all candidate cis-regulatory elements in the human genome, and 7032 ChlP-seq
datasets were collected for 883 TFs[51], with each TF having one or more ChIP-seq datasets
from multiple cell types or conditions. A binary profile was generated for each TF on UDHS
indicating whether the TF has at least one peak from any of its ChlP-seq datasets locate within
each of the UDHS. Binding enrichment analysis was applied for each TF by comparing the TF
binding on a subset of UDHS overlapping the selected genomic regions versus the TF binding

on UDHS. P value was obtained using two-tailed Fisher’s exact test.
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Figure legends

Figure 1. Identification of cancer-specific CTCF binding patterns in the human genome.
a, Distribution of coefficient of variation of chromatin accessibility at different genomic features,
calculated using DNase-seq data from over 60 cell lines from ENCODE.

b, Distribution of occupancy score for all 688,429 union CTCF binding sites (blue), and
percentage of CTCF sites that contain a CTCF motif at each occupancy score (orange).

¢, Distribution of CTCF binding occupancy score in 8 ChlP-seq datasets for T-ALL cell lines (y)
and the occupancy frequency score in the other 763 ChIP-seq datasets (x). Color density in

each unit represents the number of CTCF binding sites with designated scores.
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d, CTCF ChlP-seq signals at a 2kb region surrounding T-ALL s (top) and T-ALLgaineq (Dottom)
binding sites in normal CD4+ T cells and the T-ALL cell lines Jurkat and CUTLL1, and SMC3
signals at the same regions in CUTLL1.

e, Example of CTCF ChlIP-seq signals around a T-ALL-specific lost CTCF binding site.

f, Example of CTCF ChIP-seq signals around a T-ALL-specific gained CTCF binding site.

g, Number of identified gained (left) and lost (right) CTCF binding sites in each of the 6 cancer
types and number of shared sites between each pair of cancer types. Color density of each
element represents the level of similarity measured by Jaccard index.

h, Genomic distribution of identified lost (left) and gained (right) CTCF binding sites in the 6
cancer types. Promoter regions are defined as +/-2kb from any TSS in the genome.

i, Differential chromatin accessibility (ATAC-seq) in TCGA patient samples at identified cancer-
specific lost (blue), gained (red), and constitutive (grey) CTCF binding sites in each of the 4
cancer types compared to all other TCGA samples. *, p<0.05, **, p<0.001, by unpaired two-

tailed Student’s t-test.

Figure 2. Gained/lost CTCF binding events associate with chromatin dynamics.

a,c,e,g, Volcano plots showing differential chromatin interaction levels between cancer and
normal cells at cancer-specific lost (blue), gained (red), and constitutive (grey) CTCF binding
sites, measured by Hi-C. Each point represents the interaction changes between a CTCF
binding site and 5kb bins located within 500kb from the site. Horizontal dotted line represents p-
value cutoff of 0.05, by paired two-tailed Student’s f-test.

b,d,f,g, Boxplots showing differential interaction frequencies between cancer and normal
matched tissues for each group of CTCF binding sites. *, p<0.05, **, p<0.001, by unpaired two-

tailed Student’s t-test.
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Figure 3. Gained/lost CTCF binding events associate with differential gene expression in
cancer.

a, CTCF ChlIP-seq signals (x) and gene expression levels (y) for one CTCF site — gene pair in
54 cell types with matched data available. R?is calculated as the association score. Sqrt,
Square root; TPM, transcript count per million reads; RPKM, read count per kilobases per
million reads.

b, Schematic of categories of intra-chromatin-domain and inter-chromatin-domain gene-CTCF
pairs.

¢, Distribution of highly correlated CTCF-gene pairs (defined as R? > 0.25) as a function of the
distance between the CTCF binding site and the gene’s TSS. Pairs located within the same
CTCF domain (intra-domain, blue) and across different CTCF domains (inter-domain, grey) are
plotted separately. P values were obtained using two-tailed Fisher’s exact test.

d,e, Top: Percentage of highly correlated CTCF-gene pairs in which the gene sits within the
same domain as a cancer-specific lost (d) or gained (e) binding site, with constitutive sites as
control. “Promoter” designates genes having a promoter region (TSS +/-2kb) that contains its
paired CTCF binding site; “Intra-domain” designates genes paired with a CTCF binding site
located within the same chromatin domain. Bottom: Percentage of differentially expressed
genes (|log2FC|>1, FDR<1e-5) contained within the corresponding group of either Promoter or
Intra-domain highly correlated CTCF-gene pairs in the corresponding cancer type.

f,g, Percentage of genes that are up-regulated (top, log2FC>1, FDR<1e-5) or down-regulated
(bottom, log2FC<-1, FDR<1e-5) located in the chromatin domains containing certain group of

lost (f) or gained (g) CTCF sites. *, p<0.05, **, p<0.001, by two-tailed Fisher’s exact test.

Figure 4. Patterns of differential DNA methylation near cancer-specific lost/gained CTCF

sites.
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a,b, ChlP-seq signals and differential DNA methylation levels surrounding specific lost (a) or
gained (b) CTCF binding sites in cancer versus normal matched tissues for each of the 5 cancer
types. ChiP-seq heatmaps cover 2kb regions centered at each CTCF site. Differential DNA
methylation plots cover 300bp regions centered at each CTCF site. Purple bars represent
increased and green bars represent decreased DNA methylation levels (with values in a range
from 0 to 100). Grey area with the center vertical line (above the horizontal line) represents
regions without enough signal to make confident call of differential methylation. Grey area
without the center vertical line (below the horizontal line) represents regions without any
detectable methylation signal. Rows in corresponding ChlP-seq and DNA methylation plots are

ranked identically.

Figure 5. T-ALL 4.ined CTCF binding associates with oncogenic NOTCH1 binding and
increased chromatin interaction.

a, BART-predicted transcription factors binding in genomic regions that have increased
interaction with T-ALL gained CTCF sites comparing Jurkat cells with normal CD4" T cells.

b, Percentage of chromatin domains including different groups of CTCF binding that contain a
NOTCH1 binding site or a dynamic NOTCH1 binding site. *, p<0.05, **, p<0.001, by two-tailed
Fisher’s exact test.

c,d, T-ALL gaineq Sites associate with increased H3K27ac level in Jurkat cells. ¢, Volcano plot
showing differential H3K27ac level between Jurkat cells and normal CD4" T cells measured by
ChlP-seq; each point represents a 10kb region surrounding a CTCF binding site. d, Regions
containing dynamic NOTCH1 binding sites were highlighted in red.

e, Example of Hi-C interaction maps and ChlIP-seq tracks around a T-ALLgaineq CTCF binding

site.

Figure 6. T-ALL 4.ined CTCF binding facilitates oncogenic NOTCH1 transcriptional activity.
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a, MA plot showing differential CTCF binding levels after GSI treatment in Jurkat cells. Binding
levels of most T-ALLg.inea CTCF sites (red) are significantly decreased (P < 0.001, by unpaired
two-tailed Student’s t-test).

b, ATAC-seq levels at T-ALLgaine¢ CTCF sites in Jurkat cells at DMSO, GSlI treated for 72 hours,
and GSI washout for 16 hours. *, p<0.05, **, p<0.001, by paired two-tailed Student’s t-test.

¢, FLAG-NOTCH1 immunopurified proteins from control and NOTCH1-FLAG-expressing
CUTLLA1 cells were resolved on SDS-PAGE gels and interacting partners are visualized by
western blot. IgG was immunopurified as a negative control. IB, immunoblot; IP,
immunoprecipitation.

d,e, ChlP-seq signals for BRG1 (d) and CTCF (e) surrounding constitutive (grey), AML,ys (blue),
and AMLgaineq (red) CTCF binding sites in AML cell line EOL1. Normalized ChIP-seq read counts
(RPKM) covering 2kb regions centered at CTCF binding sites were plotted per 10bp non-
overlapped bins.

f, Percentage of genes in different groups that are down-regulated (log2FC<-0.26, FDR<0.001)
in sShCTCF experiment in CUTLL1. Black: Genes located in the T-ALLgaines-CTCF-containing
chromatin domains. Red: Genes located in the T-ALLg.ineq-CTCF-containing domains that are
also up-regulated (log2FC>0.26, FDR<0.001) in T-ALL compared to normal T cell. *, p<0.05, **,
p<0.001, by two-tailed Fisher’s exact test.

g, BART-predicted TFs that target the down-regulated genes (log2FC<-0.58, FDR<0.01) upon
CTCF silencing experiments in CUTLLA1.

h, MA plot showing differential gene expression after shCTCF treatment in CUTLL1. Most
NOTCH1 target genes (red) are downregulated.

i, Differential gene expression between CUTLL1 and normal T-cells. Group A: genes located in
dynamic-NOTCH1-containing domains. Group B: genes located in domains containing both
dynamic-NOTCH1 and T-ALL gaines CTCF binding sites. *, p<0.05, **, p<0.001, by unpaired two-

tailed Student’s t-test.
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Figure 7. Schematic model of CTCF facilitated oncogenic transcriptional activation in T-
ALL.

a, Without gained CTCF binding, intracellular NOTCH1 transcriptional complexes recognize
RBPJ, the DNA binding sequence motif, and recruit SWI/SNF / BAF complexes.

b, With gained CTCF binding, NOTCH1, BAF complexes and CTCF protein molecules
cooperatively alter the chromosome conformation and form a transcriptional condensate

(dashed circle) to regulate expression of the target gene.
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