

1 **Expanded Phylogenetic Diversity and Metabolic Flexibility of Microbial Mercury**

2 **Methylation**

3

4 Elizabeth A. McDaniel¹, Benjamin Peterson¹, Sarah L.R. Stevens^{3,4}, Patricia Q. Tran^{1,2},

5 Karthik Anantharaman¹, Katherine D. McMahon^{1,5*}

6

7 ¹ Department of Bacteriology, University of Wisconsin – Madison, Madison, WI

8 ² Department of Integrative Biology, University of Wisconsin – Madison, Madison, WI

9 ³ Wisconsin Institute for Discovery, University of Wisconsin – Madison, Madison WI

10 ⁴ American Family Insurance Data Science Institute, University of Wisconsin – Madison,
11 Madison WI

12 ⁵ Department of Civil and Environmental Engineering, University of Wisconsin –
13 Madison, Madison WI

14 * Corresponding Author: kdmcmahon@wisc.edu

15

16

17 Running title: Diversity of microbial mercury methylation

18

19

20

21

22

23

24 **ABSTRACT**

25 Methylmercury is a potent, bioaccumulating neurotoxin that is produced by specific
26 microorganisms by methylation of inorganic mercury released from anthropogenic
27 sources. The *hgcAB* genes were recently discovered to be required for microbial
28 methylmercury production in diverse anaerobic bacteria and archaea. However, the full
29 phylogenetic and metabolic diversity of mercury methylating microorganisms has not
30 been fully explored due to the limited number of cultured, experimentally verified
31 methylators and the limitations of primer-based molecular methods. Here, we describe
32 the phylogenetic diversity and metabolic flexibility of putative mercury methylating
33 microorganisms identified by *hgcA* sequence identity from publicly available isolate
34 genomes and metagenome-assembled genomes (MAGs), as well as novel freshwater
35 MAGs. We demonstrate that putative mercury methylators are much more
36 phylogenetically diverse than previously known, and the distribution of *hgcA* is most likely
37 due to several independent horizontal gene transfer events. Identified methylating
38 microorganisms possess diverse metabolic capabilities spanning carbon fixation, sulfate
39 reduction, nitrogen fixation, and metal resistance pathways. Using a metatranscriptomic
40 survey of a thawing permafrost gradient from which we identified 111 putative mercury
41 methylators, we demonstrate that specific methylating populations may contribute to *hgcA*
42 expression at different depths. Overall, we provide a framework for illuminating the
43 microbial basis of mercury methylation using genome-resolved metagenomics and
44 metatranscriptomics to identify methylators based upon *hgcA* presence and describe their
45 putative functions in the environment.

46

47 **IMPORTANCE**

48 Specific anaerobic microorganisms among the *Delta*proteobacteria, *Firmicutes*,
49 and *Euryarchaeota* have been shown to produce the bioaccumulating neurotoxin
50 methylmercury. Accurately assessing the sources of microbial methylmercury production
51 in the context of phylogenetic identification, metabolic guilds, and activity in the
52 environment is crucial for understanding the constraints and effects of mercury impacted
53 sites. Advances in next-generation sequencing technologies have enabled large-scale,
54 cultivation-independent surveys of diverse and poorly characterized microorganisms of
55 numerous ecosystems. We used genome-resolved metagenomics and
56 metatranscriptomics to highlight the vast phylogenetic and metabolic diversity of putative
57 mercury methylators, and their depth-discrete activities in the environment. This work
58 underscores the importance of using genome-resolved metagenomics to survey specific
59 putative methylating populations of a given mercury-impacted ecosystem.

60

61

62

63

64

65

66

67

68

69

70 INTRODUCTION

71 Methylmercury is a potent neurotoxin that biomagnifies upward through food webs.
72 Inorganic mercury deposited in sediments, freshwater, and the global ocean from both
73 natural and anthropogenic sources is converted to the bioavailable and biomagnifying
74 organic methylmercury (1, 2). Methylmercury production in the water column and
75 sediments of freshwater lakes is one of the leading environmental sources that leads to
76 fish consumption advisories (3, 4). Additionally, the majority of methylmercury exposure
77 stems from contaminated marine seafood consumption (5). Consumption of
78 methylmercury-contaminated fish is the most problematic for childbearing women and
79 results in severe neuropsychological deficits when developed fetuses are exposed (6, 7).
80 The biotransformation from inorganic to organic mercury is thought to be carried out by
81 specific anaerobic microorganisms, namely sulfur-reducing (SRB) and iron-reducing
82 (FeRB) bacteria and methanogenic archaea (8–10). Recently, the *hgcAB* genes were
83 discovered to be required for mercury methylation. The *hgcA* gene encodes a corrinoid-
84 dependent enzyme that is predicted to act as a methyltransferase, and *hgcB* encodes a
85 2[4Fe-4S] ferredoxin that reduces the corrinoid cofactor (11). Importantly, these genes
86 are known to only occur in microorganisms capable of methylating mercury. This
87 discovery has allowed for high-throughput identification of microorganisms with the
88 potential to methylate mercury in diverse environmental datasets based upon *hgcAB*
89 sequence presence (12, 13).

90 Currently, the known diversity of mercury methylating microorganisms has been
91 described based on cultured isolates, amplicon sequencing of the 16S rRNA and/or *hgcA*
92 loci of mercury impacted sites, *hgcA* quantitative PCR (qPCR) primers targeting specific

93 groups, or identification of *hgcA* on assembled metagenomic contigs (11, 13–20).
94 However, the complete phylogenetic and metabolic diversity of microorganisms capable
95 of methylating mercury is not fully understood due to previous efforts focusing on a few
96 cultured representatives, and poor predictive power of methylation potential based on
97 16S rRNA phylogenetic signal (8, 10, 21). Additionally, amplicon sequencing is limited in
98 detection of phylogenetic diversity, and the metabolic capabilities of these
99 microorganisms cannot be reliably studied using these techniques. Furthermore, a recent
100 study of microbial methylation in sulfate-impacted lakes demonstrated that 16S rRNA
101 amplicon-based surveys and *hgcA* clone libraries may not capture the true phylogenetic
102 diversity of many methylating microorganisms (22).

103 In this study, we identified nearly 1,000 genomes containing the *hgcA* marker from
104 publicly available isolate genomes, metagenome assembled genomes (MAGs), and
105 novel bins assembled from three freshwater lakes. Using this collection of MAGs and
106 reference genomes, we identified putative methylators spanning 30 phyla from diverse
107 ecosystems, some of which from phyla that, to our knowledge, have never been
108 characterized as methylating groups. The *hgcAB* phylogenetic signal suggests this
109 diverse region originated through extensive horizontal gene transfer events, and provides
110 insights into the difficulty of predicting methylation status using ribosomal sequences or
111 “universal” *hgcA* primers (17, 22). Putative methylators span metabolic guilds beyond
112 traditional sulfate and iron reducing bacteria and methanogenic archaea, carrying genes
113 for traits such as such as nitrogen fixation transformations and metal resistance
114 pathways. To understand *hgcA* expression in a potentially mercury impacted
115 environment, we analyzed depth-discrete metatranscriptomes from a permafrost thawing

116 gradient from which we identified 111 putative methylators. This work demonstrates the
117 significance of reconstructing population genomes from mercury impacted environments
118 to accurately capture the phylogenetic distribution and metabolic capabilities of key
119 methylators in a given system.

120

121 **MATERIALS AND METHODS**

122 **Accessed Datasets, Sampled Sites, and Metagenomic Assembly**

123 We used a combination of publicly available MAGs, sequenced isolates, and newly
124 assembled MAGs from three freshwater lakes. We sampled Lake Tanganyika in the East
125 African Rift Valley, Lake Mendota in Madison, WI, and Trout Bog Lakes near Minocqua,
126 WI. We collected depth-discrete samples along the northern basin of Lake Tanganyika at
127 two stations (Kigoma and Mahale) (23). 24 samples were passed through a 0.2 μ m pore
128 size-fraction filter, and used for shotgun metagenomic sequencing on the Illumina HiSeq
129 2500 platform at the Department of Energy Joint Genome Institute using previously
130 reported methods with minor modifications (24). Each of the 24 metagenomes were
131 individually assembled with MetaSPAdes and binned into population genomes using a
132 combination of MetaBat, MetaBat2, and MaxBin. Across these binning approaches,
133 approximately 4000 individual bins were assembled. To derePLICATE identical bins
134 assembled through different platforms, we applied DasTool (25) to keep the most
135 representative bin for a given cluster, resulting in 803 total MAGs. Using a
136 completeness/contamination cutoff of $\geq 70\%$ and $\leq 10\%$, respectively, this resulted in
137 approximately 431 MAGs. All dereplicated Lake Tanganyika genomes including identified

138 putative methylators are available through the JGI IMG portal under GOLD study ID
139 Gs0129147.

140 Five depth-discrete samples were collected from the Lake Mendota hypolimnion
141 using a peristaltic pump through acid-washed Teflon tubing onto a 0.2 μ m Whatman filter,
142 and used for Illumina shotgun sequencing on the HiSeq4000 at the QB3 sequencing
143 center in Berkeley, CA, USA. Samples were individually assembled using MetaSPAdes
144 (26), and population genomes were constructed using a combination of the MetaBat2,
145 Maxbin, and CONCOCT binning algorithms. Resulting MAGs were aggregated with
146 DasTool and dereplicated into representative sets by pairwise average nucleotide identity
147 comparisons (25). Population genomes from samples collected from Trout Bog Lake were
148 assembled as previously described (24, 27, 28). All Trout Bog Lake MAGs including the
149 4 putative methylators are available through the JGI IMG portal under GOLD study ID
150 Gs0063444. All publicly available isolate genomes and MAGs were accessed from
151 Genbank in August of 2019, resulting in over 200,000 genomes in which to search for
152 *hgcA*. Genomes from Jones et al. 2019 were accessed from JGI/IMG in March of 2019
153 at GOLD study ID Gs0130353 (22). Only genomes of medium quality according to MiMAG
154 standards with > 50% completeness and < 10% redundancy were kept for downstream
155 analyses, as calculated with CheckM (29, 30).

156 **Identification of Putative Methylators**

157 Using a collection of *hgcA* protein sequences from experimentally verified
158 methylating organisms, we built a Hidden Markov Model (HMM) profile of the *hgcA* protein
159 (11, 31). The constructed HMM profile was then used to identify putative mercury
160 methylating bacteria and archaea. For all genome sequences, open reading frames and

161 protein-coding genes were predicted using Prodigal (32). Using the HMM profile built for
162 the *hgcA* marker, we searched all protein sequences with an e-value cutoff of 1e-50.
163 Sequence hits with an e-value cutoff score below 1e-50 and/or a score of 300 were
164 removed from the results to ensure high confidence in all hits. All archaeal and bacterial
165 *hgcA* hits were concatenated and aligned with MAFFT (33). Alignments were manually
166 visualized using AliView (34), and sequences without the conserved cap-helix domain
167 reported in Parks et al. 2013 were removed (11).

168 From this set of putative methylators, the taxonomy of each genome was assigned
169 and/or confirmed using both an automatic and manual classification approach. Each
170 genome was automatically classified using the genome taxonomy database toolkit
171 (GTDB-tk) with default parameters (35). Additionally, each genome was manually
172 classified using a set of 16 ribosomal protein markers (36). If a genome's taxonomy could
173 not be resolved between the GTDB-tk classification and the manual ribosomal protein
174 classification method, the genome was removed from the dataset (approximately 30
175 genomes). We kept specific genomes designated as "unclassified" as a handful of
176 genomes with this designation belong to newly assigned phyla that have not been
177 characterized in the literature, such as the proposed phyla BMS3A and Moduliflexota in
178 the GTDB. This resulted in a total of 904 putative methylators used for downstream
179 analyses as described. All genome information for each putative methylator including
180 classification by each method, quality and genome statistics are provided in
181 Supplementary Table 1 and summarized in Supplementary Figure 1.

182 ***hgcAB* and Ribosomal Phylogenies**

183 We selected the highest quality methylator from each phyla (total of 30 individual
184 phyla containing a putative methylator) to place in a prokaryotic tree of life. Bacterial and
185 archaeal references (the majority from Anantharaman et al. (37)) were screened for the
186 16 ribosomal protein HMMs along with the select 30 methylators. Individual ribosomal
187 protein hits were aligned with MAFFT (33) and concatenated. The tree was constructed
188 using FastTree and further visualized and edited using iTOL (38, 39) to highlight
189 methylating phyla and novel methylating groups.

190 We created an HMM profile of *hgcB* from experimentally verified methylators as
191 described above for *hgcA* (12, 40). From the set of 904 putative methylators identified by
192 *hgcA* presence, we searched for *hgcB* by using a threshold cutoff score of 70 and
193 requiring the resulting hit to either be directly downstream of *hgcA* or within five open
194 reading frames, as some methylators have been observed to have genes between
195 *hgcAB*. We recognize that this criterion might be overly conservative, potentially excluding
196 some genomes with both genes (e.g. *hgcB* on a separate contig) but prefer to avoid any
197 false positives. This resulted in 844 of 904 identified methylators also containing *hgcB*.
198 To create a representative HgcAB tree to compare against a concatenated ribosomal
199 protein phylogeny, a given genome had to contain 12 or more ribosomal protein markers
200 to ensure accurate comparisons. Additionally, we removed sequences with low bootstrap
201 support using RogueNaRok (41). Overall, this resulted in 650 HgcAB sequences to create
202 a representative tree.

203 The HgcAB protein sequences were aligned separately using MAFFT and
204 concatenated (33). The alignment was uploaded to the Galaxy server for filtering with
205 BMGE1.1 using the BLOSUM30 matrix, a threshold and gap rate cutoff score of 0.5, and

206 a minimum block size of 5. (42, 43). A phylogenetic tree of the hits was constructed using
207 RAxML with 100 rapid bootstraps (44). The tree was automatically rooted and edited using
208 the interactive tree of life (iTOL) online tool (39). For visualization ease, we collapsed
209 clades by the dominant, monophyletic phyla when possible. For example, if a
210 monophyletic clade contained a majority (approximately 80-90%) of *Delta*proteobacteria
211 sequences and one *Nitrospirae* sequence, we collapsed and identified the clade as a
212 whole as *Delta*proteobacteria. This was done to broadly highlight the sparse phylogenetic
213 nature of identified HgcAB sequences. To reduce complexity, identified HgcAB
214 sequences of candidate phyla containing few individuals are not assigned individual
215 colors. The full phylogenetic tree with non-collapsed branches and most resolved
216 taxonomical names is provided in Supplementary Figure 2.

217 The corresponding ribosomal tree of the representative HgcAB sequences was
218 constructed using a collection of 16 ribosomal proteins provided in the metabolisHMM
219 package (36, 45). Each marker was searched for in each genome using specific HMM
220 profiles for each ribosomal protein, and individually aligned using MAFFT (33). Hits for
221 archaeal and bacterial taxa were concatenated separately to create an archaeal and
222 bacterial ribosomal protein tree. A phylogenetic tree was constructed with RAxML with
223 100 bootstraps and visualized using iTOL (44, 39).

224 **Functional Annotations, Metabolic Reconstructions, and *in silico* PCR analysis**

225 All genomes were functionally annotated using Prokka (46). Using the locus tag of
226 the predicted *hgcA* protein with the above HMM-based approach, the predicted gene
227 sequence for each *hgcA* open reading frame was obtained. *In silico* PCR of the universal
228 *hgcA* primers and group-specific qPCR *hgcA* primers were tested using Geneious

229 (Biomatters Ltd, Auckland, NZ), with primer sequences from Christensen et al. (20). The
230 settings allows for both 0 and 2 mismatches, and the primer amplification “hit” results
231 were compared to the full-genome classification of the given *hgcA* gene sequence. For
232 genome synteny analysis of select permafrost methylators, Easyfig was used to generate
233 pairwise BLAST results and view alignments (47). We did not use one of the
234 *Myxococcales* MAGs as it was exactly identical to the other. The *Opitutae* genome
235 GCA_003154355 from the UBA assembled set was not used because *hgcA* was found
236 on only a very short contig.

237 Broad metabolic capabilities were characterized across all methylating organisms
238 based on curated sets of metabolic HMM profiles provided in the metabolisHMM package
239 (45, 37). An HMM of the putative transcriptional regulator was built using the alignment
240 of the five putative transcriptional regulators with similar *hgcAB* sequences with muscle
241 and hmmbuild (40, 48), and searched for among all methylators with hmmsearch (40). A
242 genome was considered to have a hit for the putative transcriptional regulator if the
243 identified protein contained a search hit e-value of greater than 1e-10 and was
244 immediately upstream of *hgcAB* or 1-2 genes upstream. *Mer* genes for mercury transport
245 were accessed from KofamKOALA using the corresponding threshold cutoff scores (49).
246 Raw presence/absence results are provided in Supplementary Table 5.

247 Metabolic reconstruction of the MENDH-Thermoleophilia bin was supplemented
248 with annotations using the KofamKOALA distribution of the KEGG database, and parsed
249 for significant hits (49). The phylogeny of the MENDH-Thermoleophilia MAG was
250 confirmed by downloading representative/reference sequences from Genbank and
251 Refseq for the entire Actinobacteria phyla, depending on which database/designation was

252 available for the particular class. All *Thermoleophilia* class genomes were downloaded as
253 designated by the Genome Taxonomy Database (35). We included *Bacillus subtilis* strain
254 168 as an outgroup. The phylogeny was constructed using the alignment of concatenated
255 ribosomal proteins as described above. The tree was constructed using RAxML with 100
256 rapid bootstraps and visualized with iTOL (44, 39).

257 **Transcriptional Activity of Methylators in a Permafrost System**

258 To investigate the transcriptional activity of methylators in the environment, we
259 tracked activity of the identified methylating organisms in a permafrost thaw gradient
260 published by Woodcroft et al. 2018 (50). All 26 raw metatranscriptomes from the palsa,
261 bog, and fen sites were downloaded from NCBI. Adapters were removed and sequences
262 quality filtered with fastp (51). Each transcriptome was mapped to the indexed open
263 reading frames of the 111 putative methylators identified in this ecosystem using kallisto
264 (52). Annotated open reading frames and size in base pairs for each genome were
265 supplied using Prokka (46). For every sample, counts were normalized by calculating
266 transcripts per million (TPM), which equates for every 1 million reads in an RNA-seq
267 sample, “x” amount came from a certain gene/transcript. Briefly, TPM was calculated by
268 dividing the number of raw reads mapping to a given gene by dividing by the length of
269 that gene in base pairs. The sum of all normalized counts was divided by 1 million to
270 create a “per million” scaling factor. Each transcript’s normalized count is divided by the
271 1 million factor, which creates the final TPM value.

272 The *hgcA* open reading frame for each genome was identified by the
273 corresponding locus tag from the HMM profile annotation as described above. We did not
274 detect expression of any of the putative methylators in any of the palsa samples, and

275 therefore did not include these samples in the results. *hgcA* expression within a phylum
276 was calculated by total TPM expression of *hgcA* within that phylum. Total *hgcA*
277 expression within a sample was calculated as the total TPM-normalized expression of
278 *hgcA* counts within that sample. The total average expression of methylators within a
279 phylum was calculated by adding all TPM-normalized counts for all genomes within a
280 phylum, and averaged by the number of genomes within that phyla to represent the
281 average activity of that group compared to *hgcA* activity. Expression of *hgcA* was
282 compared to the housekeeping gene *rpoB*, which encodes the RNA polymerase beta
283 subunit. *rpoB* loci were predicted from Prokka annotations, and we compared expression
284 between *hgcA* and *rpoB* at the phylum level. Normalized counts of *hgcA* and *rpoB* were
285 summed within each phylum for each sample.

286 **Data and Code Availability**

287 Lake Tanganyika genomes have been deposited in Genbank under the project ID
288 PRJNA523022 and are available at <https://osf.io/pmhae/>. The four Trout Bog genomes
289 can be accessed from JGI/IMG under accession IDs 2582580680, 2582580684,
290 2582580694, and 2593339183. A complete workflow including all code and analysis
291 workflows can be found at <https://github.com/elizabethmcd/MEHG>. All supplementary
292 files including metadata, *hgcA* sequences and alignments, and tables are available on
293 FigShare at <https://figshare.com/account/home#/projects/70361> under the CC-BY 4.0
294 license.

295

296 **RESULTS AND DISCUSSION**

297 **Identification of Diverse, Novel Putative Mercury Methylating Microorganisms**

298 We identified nearly 1000 putative bacterial and archaeal mercury methylators
299 spanning 30 phyla among publicly available isolate genomes and MAGs recovered from
300 numerous environments (Figure 1). Well-known methylators among the
301 *Delta*proteobacteria, Firmicutes, Euryarchaeota, and Bacteroidetes represent well over
302 half of all identified putative methylators, with the majority among the *Delta*proteobacteria
303 (Figure 1C). We also expanded upon groups of methylators that until recently have not
304 been considered to be major contributors to mercury methylation. Putative methylators
305 belonging to the Spirochaetes and the PVC superphylum (consisting of Planctomycetes,
306 Verrucomicrobia, Chlamydiae, and Lentisphaerae phyla and several candidate divisions)
307 have been identified from metagenomic contigs (13) and reconstructed MAGs from Jones
308 et al (22). Additionally, *hgcA* sequences have been detected on metagenomic contigs
309 belonging to the Nitrospirae, Chloroflexi, and Elusimicrobia (19, 53), but overall it is
310 unknown how these groups contribute to methylmercury production. We identified
311 putative methylators belonging to phyla that, to our knowledge, have not been previously
312 described as mercury methylators. We identified 7 Acidobacteria methylators, 5 of which
313 from the permafrost gradient system, in which these are considered to be the main plant
314 biomass degraders (50). We also identified 17 Actinobacterial methylators, which all
315 belong to poorly characterized lineages within the Coriobacteria and Thermoleophilia
316 classes, as described below. A handful of putative methylators belong to recently
317 described candidate phyla, such as Candidatus Aminicenantes, Candidatus
318 Firestonebacteria, and WOR groups (Supplementary Figure 1D).

319 We reconstructed MAGs from three freshwater lakes with diverse biogeochemical
320 characteristics. Lake Mendota is a large, dimictic, eutrophic lake in an urban setting in

321 Madison, WI, USA, with a sulfidic anoxic hypolimnion. Trout Bog Lake is a small, dimictic
322 humic lake in a rural area near Minocqua, WI, that is surrounded by sphagnum moss,
323 which leaches large amounts of organic carbon. Lake Tanganyika is a meromictic lake
324 with an anoxic monimolimnion in the East African Rift Valley, and is the second largest
325 lake in the world both by volume and depth, from which we recently reconstructed nearly
326 4000 MAGs from (23). From these reconstructed freshwater MAGs, we identified 55
327 putative mercury methylators. Several understudied *Verrucomicrobia* clades were
328 recovered from the Lake Mendota hypolimnion. Members of this phylum are ubiquitous
329 in freshwater and marine environments, display a cosmopolitan distribution, and can
330 make up approximately 7% of the total microbial community in these ecosystems (28,
331 54–56). In Lake Mendota, members of the PVC superphylum account for approximately
332 40% of the microbial community in the hypolimnion, the majority of which do not contain
333 *hgcA* (Peterson unpublished 2020).

334 A majority of the identified methylators were from subsurface aquifer system and
335 thawing permafrost gradient assembled by Anantharaman et al. and Woodcroft et al.,
336 respectively (50, 57) (Figure 1B). Additionally, we identified methylators from hydrocarbon
337 contaminated sites such as oil tills and sand ponds, sediments and wetlands, engineered
338 systems, hydrothermal vents, and the built environment. A handful of methylating
339 organisms were recovered from marine systems, as the Tara Ocean projects mostly
340 includes samples from surface waters (58), and therefore would not include traditionally
341 anaerobic methylating microorganisms. Interestingly, we identified marine
342 endosymbionts of a mouthless, gutless worm (59), and Foraminifera spp. Although not
343 as numerous as MAGs from various metagenomic surveys, we identified *hgcA* in over

344 150 isolate genomes, providing an expanded resource of isolates for experimentation
345 (Supplementary Figure 1A). Using an extensive set of genomes mostly recovered from
346 anoxic environments, we were able to greatly expand upon the known phylogenetic
347 diversity of putative mercury methylating microorganisms.

348 **Novel *Actinobacterial* Methylating Lineages**

349 To our knowledge, members of the *Actinobacteria* have never been characterized
350 as putative methylators or found to contain the *hgcA* marker. We identified 17
351 *Actinobacterial* putative methylators among diverse environments, including our Trout
352 Bog and Lake Mendota freshwater datasets, as well as within the permafrost gradient
353 and MAGs recovered from hydrocarbon contaminated sites (50, 60). In freshwater
354 systems, *Actinobacteria* are ubiquitous and present a cosmopolitan distribution, with
355 specific lineages comprising up to 50% of the total microbial community (61, 62).
356 Freshwater *Actinobacteria* traditionally fall within the class *Actinobacteria*, but have a
357 lower abundance distribution in the hypolimnion due to decreasing oxygen concentrations
358 (63, 64). None of the *Actinobacterial* putative methylators belong to ubiquitous freshwater
359 lineages.

360 All of the 17 identified *Actinobacterial* putative methylators belong to poorly
361 described classes or ill-defined lineages that may branch outside of the established six
362 classes of *Actinobacteria* (62). Nine fall within the *Coriobacteriia* class, four fall within the
363 *Thermoleophilia* class, and the other four diverge from the existing *Actinobacteria*
364 lineages. Three of the ill-defined *Actinobacterial* MAGs have been designated within the
365 proposed class UBA1414, with two assembled from the permafrost system and one from
366 the Lake Mendota hypolimnion. The other ill-defined *Actinobacterial* MAG was designated

367 within the proposed class RBG-13-55-18 and was also recovered from the permafrost
368 system. While some *Coriobacteriia* have been identified as clinically-significant members
369 of the human gut, all identified putative methylators belong to the OPB41 order (65), which
370 refers to the 16S rRNA sequence identified by Hugenholtz et al. from the Obsidian Pool
371 hot spring in Yellowstone National Park (66). Members of the OPB41 order have also
372 been found to subsist along the subseafloor of the Baltic Sea, an extreme and nutrient
373 poor environment (67).

374 Members of the *Thermoleophilia* are known as heat- and oil-loving microbes due
375 to their growth restriction to only substrate n-alkanes (68). Within this deep-branching
376 lineage, the two orders *Solirubrobacterales* and *Thermoleophilales* are currently
377 recognized based on sequenced isolates and the most updated version of Bergey's
378 Taxonomy (69, 70). However, our *Thermoleophilia* MAGs from the hypolimnia of Lake
379 Mendota and Trout Bog as well as two other putative *Thermoleophilia* methylators from
380 the permafrost thawing gradient do not cluster within the recognized orders (Figure 2).
381 According to the GTDB, these MAGs cluster within a novel order preliminarily named
382 UBA2241, as the only MAGs recovered from this novel order to-date have been from the
383 author's corresponding permafrost system (35, 50). Additionally, based on collected
384 isolates, members of the *Thermoleophilia* are assumed to be obligately aerobic (70).

385 The functional potential of *Thermoleophilia* members has been poorly described
386 due to few sequenced isolates and high-quality MAGs (71). We reconstructed the main
387 metabolic pathways of a high-quality *Thermoleophilia* MAG, referred to as MENDH-
388 Thermo (Supplementary Table 2). All components of the glycolytic pathway are present
389 for using a variety of carbohydrates for growth. A partial TCA cycle for providing reducing

390 power is present; only missing the step for converting citrate to isocitrate, which can be
391 transported from outside sources. Interestingly, the MENDH-Thermo genome encodes
392 the tetrahydromethanopterin-dependent *mch* and *fwdAB* enzymes, pointing to either
393 formate utilization or detoxification (72, 73). We could not detect the presence of a
394 putative acetate kinase, and therefore autotrophic growth through forming acetate is
395 unlikely. Interestingly, the MENDH-Thermo genome encodes a full pathway for 4-
396 Hydroxybutyrate formation, a storage polymer (74). As the MENDH-Thermo genome can
397 also synthesize the amino acids glycine and serine, combined with the ability to use
398 reduced carbon compounds and form storage polymers, the MENDH-Thermo genome
399 could exhibit a methylotrophic lifestyle, but is missing key steps for
400 tetrahydromethanopterin cofactor synthesis and formate oxidation (75). The identification
401 of putative methylators within the *Thermoleophilia* not only highlights novel metabolic
402 features of putative methylators, but also of a poorly described class within the
403 *Actinobacteria*.

404 **Implications for Horizontal Gene Transfer of *hgcAB***

405 The HgcAB protein phylogeny exhibits patterns of extensive horizontal gene
406 transfer (HGT) compared to a concatenated phylogeny of ribosomal proteins of
407 corresponding genomes (Figure 3). For example, *Delta*proteobacterial HgcAB sequences
408 are some of the most disparate sequences surveyed, clustering with HgcAB sequences
409 of *Actinobacteria*, *Nitrospirae*, *Spirochaetes*, and members of the PVC superphylum.
410 Although *Firmicutes* HgcAB sequences are not as disparate, they also cluster with HgcAB
411 sequences of other phyla such as *Delta*proteobacteria and *Spirochaetes*. The only HgcAB
412 sequences that cluster monophyletically among our dataset are the

413 *Bacteroidetes/Ignavibacteria* groups and *Nitrospirae*. These observations have
414 implications for the underlying evolutionary mechanisms of the methylation pathway and
415 modern methods for identifying methylating populations in the environment.

416 Gene gain/loss mediated through several HGT events have been previously
417 suggested to underpin the sparse and divergent phylogenetic distribution of *hgcAB* (11,
418 22). Metabolic functions can be horizontally transferred across diverse phyla through
419 numerous mechanisms, such as phage transduction, transposon-mediated insertion of
420 genomic islands or plasmid exchanges, direct conjugation, and/or gene gain/loss events.
421 We were unable to identify any *hgcA*-like sequences on any viral contigs in the NCBI
422 database or within close proximity to any known insertion sequences or transposases,
423 and all known *hgcA* sequences have been found on the chromosome. Structural and
424 mechanistic similarities between the cobalamin binding domains of HgcA and the carbon
425 monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) of the reductive acetyl-CoA
426 pathway (also known as the Wood-Ljungdahl pathway) suggests associations between
427 the two pathways (11, 13). Interestingly, *hgcA* sequences of *Euryarchaeota* and
428 *Chloroflexi* cluster together, which was recently found to also be true for the CODH of
429 these groups (76). Inter-phylum HGT among anaerobic microorganisms has been
430 proposed to account for approximately 35% of metabolic genes and contributes to
431 functional redundancy across diverse phyla (77). It is plausible that a gene duplication
432 event followed by rampant gene gain/loss and independent transfers of both the CODH
433 and HgcA proteins could explain the disparate phylogeny, as has been respectively
434 described for both pathways (11, 13, 76).

435 To illustrate inter-phylum *hgcAB* HGT, we selected methylators assembled from a
436 permafrost system containing *hgcAB* regions with approximately 70% DNA sequence
437 similarity (Figure 4). Five methylators encompassing four different phyla (one
438 *Delta*proteobacteria, two *Acidobacteria*, one *Verrucomicrobia*, and an *Actinobacteria*)
439 contain highly similar *hgcAB* regions, and the *hgcA* phylogeny does not match the
440 ribosomal protein phylogeny. All *hgcAB* sequences of these methylators are preceded by
441 a hypothetical protein that also shares sequence similarity among all methylators, but
442 which is annotated as a putative transcriptional regulator in the *Opitutae* genome. We
443 screened for this putative transcriptional regulator among all methylators in our dataset
444 and identified it immediately upstream of *hgcAB* in 112 genomes (Supplementary Table
445 3). Interestingly, we identified 12 genomes in which the putative transcriptional regulator
446 was upstream of *hgcAB*, but separated by one or two other genes. These genes were
447 mostly annotated as hypothetical proteins, but included esterases, oxidoreductases, and
448 methyltransferases. Otherwise, the gene neighborhoods of these similar permafrost
449 *hgcAB* sequences does not share any other obvious sequence or functional similarities.
450 The *hgcAB* genes are flanked by numerous hypothetical proteins, varying amino acid
451 synthesis and degradation genes, and oxidoreductases for core metabolic pathways.

452 Methylating populations have been identified in the environment through a
453 combination of nonspecific methods such as associations through 16S rRNA amplicon
454 sequencing (15, 78, 79), *hgcA* identification on metagenomic contigs (18, 53), universal
455 qPCR primers, and specific assays such as clade-specific qPCR primers (19, 20).
456 However, universal and clade-specific primers were constructed based on a handful of
457 experimentally verified methylators (20), which likely does not capture the complete or

458 true diversity of methylating microorganisms. We tested the accuracy of these primers *in*
459 *silico* on the coding regions of *hgcA* in all our identified putative methylators, using the
460 taxonomical assignment of each putative methylator from the full genome classification
461 (Supplementary Table 2). Depending on the number of *in silico* mismatches allowed, only
462 experimentally verified methylators could be identified, or *hgcA* sequences belonging to
463 other phyla would be hit (Supplementary Table 4). For example, *Deltaprobacterial*-
464 specific *hgcA* qPCR primers picked up related *Actinobacterial*, *Spirochaetes*, and
465 *Nitrospirae* sequences. Whereas the *Firmicutes*-specific primers did detect all
466 experimentally-verified *Firmicutes* methylators and a few environmental *hgcA* sequences,
467 overall they missed the diversity of *Firmicutes* *hgcA* sequences. Evidence of extensive
468 HGT of *hgcAB* across diverse phyla suggests that “universal” or even targeted guild
469 amplicon approaches may not be accurate. Instead, finer-scale primers of specific
470 methylating groups could be constructed based on recovered population genomes from
471 a specific environment containing *hgcAB* to ensure accuracy.

472 **Diversity of Metabolic Capabilities of Identified Methylators**

473 We next characterized the broad metabolic capabilities among high-quality
474 isolates and MAGs. From our analysis of metabolic profiles spanning several
475 biogeochemical cycles (37), *hgcA* is the only genetic marker linking high-quality
476 methylating genomes other than universally conserved markers (Figure 5). We detected
477 putative methylators with methanogenesis and sulfate reduction pathways, as is expected
478 for archaeal and bacterial methylating guilds, respectively (17, 22). Although the presence
479 of sulfate has been thought to select for methylating bacteria and drive methylation, very
480 few guilds we examined exhibited dissimilatory sulfate reduction pathways. We detected

481 machinery for dissimilatory sulfate reduction within the *Acidobacteria*,
482 *Delta*proteobacteria, *Firmicutes*, and *Nitrospirae*. However, for example, only half of the
483 *Delta*proteobacterial methylators screened contained the *dsrABD* subunits for sulfate
484 reduction. Similarly, we detected few guilds with the sulfate adenylyltransferase (*sat*)
485 marker for assimilatory sulfate reduction for incorporating sulfur into amino acids. This
486 suggests that mercury methylating groups may be composed of guilds other than
487 canonical SRBs and methanogenic archaea.

488 Interestingly, we found that several methylating guilds contain the essential
489 subunits that form the nitrogenase complex for nitrogen fixation. The three main
490 components of the nitrogenase complex are *nifH* and *nifD/nifK*, which encode the
491 essential iron and molybdenum-iron protein subunits, respectively. We detected
492 machinery for the nitrogenase complex within the *Acidobacteria*, *Actinobacteria*,
493 *Delta*proteobacteria, *Euryarchaeota*, *Firmicutes*, *Nitrospirae*, and *Spirochaetes*
494 methylators. Notably, over half of all *Delta*proteobacterial methylators and approximately
495 half of all *Firmicutes* methylators contain all three subunits for the nitrogenase complex.
496 Recently, the presence of nitrate has been suggested to regulate methylmercury
497 concentrations (80) leading to nitrate addition in an attempt to control methylmercury
498 accumulation in freshwater lakes (81). Although we detected parts of the denitrification
499 pathway in a handful of lineages, none of the putative methylators contained a full
500 denitrification pathway for fully reducing nitrate to nitrogen gas. Previous studies have
501 identified putative methylators among *Nitospina* nitrite oxidizers in marine systems (18,
502 82). Although we did not detect putative *Nitospina* methylators (possibly due to these

503 *hgcA* sequences being unbinned, within low-quality MAGs, or low-confidence hits), links
504 between the nitrogen cycle and mercury methylation warrants further exploration.

505 As mentioned above, structural and functional similarities between HgcA and the
506 carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) suggests
507 associations between the two pathways. This also raises the question if methylators use
508 the reductive acetyl-CoA pathway for autotrophic growth. We screened for the presence
509 of the *codhC* and *codhD* subunits of the carbon monoxide dehydrogenase, which have
510 been suggested as potential paralogous origins of HgcA (11, 13). Among high-quality
511 putative methylators, we detected both subunits among *Actinobacteria*, *Chloroflexi*,
512 *Delta proteobacteria*, *Euryarchaeota*, *Firmicutes*, *Nitrospirae*, and members of the PVC
513 Superphylum. We also screened for the presence of the CODH catalytic subunit, which
514 would infer acetyl-CoA synthesis. Although we detected the CODH catalytic subunit, it
515 was not detected in all methylating lineages, such as the *Elusimicrobia*, *Synergistes*,
516 *Spirochaetes*. This suggests other growth strategies than autotrophic carbon fixation
517 among a large proportion of methylators, such as fermentation pathways as suggested
518 previously by Jones et al. (22).

519 Interestingly, over 50% of the putative methylators contain a thioredoxin dependent
520 arsenate reductase, which detoxifies arsenic through the reduction of arsenate to arsenite
521 (83, 84). As(V) reduction to the even more toxic As(III) is tightly coupled to export from
522 the cell, which has interesting similarities to the methylation system. Hg(II) uptake has
523 been shown to be energy dependent and therefore is imported through active transport
524 mechanisms (85). Hg(II) uptake is highly coupled to MeHg export, suggesting the
525 methylation system may act as a detoxification mechanism against environmental Hg(II)

526 (85). Interestingly, nearly none of the screened putative methylators contain the canonical
527 *mer* mercury resistance genes, including the *merA* mercury reductase to detoxify Hg(II)
528 to Hg(0). Additionally, very few members of the *Delta proteobacteria*, *Euryarchaeota*, and
529 *Firmicutes* contain the *merP* periplasmic mercuric transporter, suggesting a different
530 mechanism for mercury transport and detoxification than the *mer* system. Overall,
531 putative methylators are composed of metabolic guilds other than the classical SRBs and
532 methanogenic archaea and employ diverse growth strategies other than autotrophic
533 carbon fixation.

534 **Expression of Putative Methylators in a Permafrost System**

535 While the connection between the presence of the *hgcA* marker and methylation
536 status has been well established in cultured isolates, there have been few studies
537 investigating *hgcA* transcriptional activity under laboratory conditions (86) or in a specific
538 environment (87). Additionally, the mere presence of a gene does not predict its functional
539 dynamics or activity in the environment. Assessing actively contributing microbial
540 populations to methylmercury production is important for identifying constraints on this
541 process. Genome-resolved metatranscriptomics provides an ideal approach for exploring
542 methylating population activity in the natural environment. Woodcroft et al. sampled
543 across three sites of the Stordalen Mire peatland in northern Sweden (50). This site
544 includes well-drained but mostly intact palsas, intermediately-thawed bogs with
545 *Sphagnum* moss, and completely thawed fens. Extensive spatiotemporal sampling paired
546 with genome-resolved metagenomic, metatranscriptomic, and metaproteomic
547 sequencing was applied to understand microbial contributions to carbon cycling along the
548 thawing gradient. We identified 111 putative methylators among MAGs assembled from

549 this permafrost system spanning well-known methylators belonging to the
550 *Delta proteobacteria*, *Firmicutes*, and *Euryarchaeota*, but also less explored putative
551 methylators within the *Acidobacteria*, *Actinobacteria*, *Elusimicrobia*, and *Verrucomicrobia*.
552 We chose this extensive dataset to explore gene expression patterns of putative
553 methylators since it is largely an anaerobic environment, and has potential links for
554 methylmercury production due to the buildup of mercury gas beneath frozen permafrost
555 layers (88, 89).

556 We mapped the transcriptional reads for each sample to the open reading frames
557 of all identified putative methylators, normalized by transcripts per million (TPM). We
558 specifically investigated the depth-discrete expression patterns of *hgcA* within phylum-
559 level groups (Figure 6). We were unable to detect *hgcA* transcripts at any time-point or
560 depth among the palsa sites or the shallow bog depths, and therefore these sites and
561 depths are not included. The highest total *hgcA* transcript abundance was detected in the
562 fen sites, which is the most thawed along the permafrost gradient. The highest expression
563 of *hgcA* was contributed from the *Bacteroidetes* in the medium and deep depths of the
564 fen sites across multiple time-points, followed by those belonging to *Delta proteobacteria*
565 in the medium and deep depths of the bog sites. Interestingly, *hgcA* expression in the bog
566 samples are almost exclusively dominated by *Delta proteobacteria*, whereas the fen
567 samples contain a more diverse collection of phyla expressing *hgcA*, albeit *Bacteroidetes*
568 is the most dominant. Overall, methylators belonging to *Bacteroidetes* and
569 *Delta proteobacteria* also constitute the most highly transcriptionally active members
570 across all samples.

571 All of the putative *Bacteroidetes* methylators transcribing *hgcA* belong to the
572 vadinHA17 class. The name vadinHA17 was given to the 16S rRNA clone recovered from
573 an anaerobic digester treating winery wastewater, referring to the vinasses anaerobic
574 digestor of Narbonne (VADIN) (90). Members of the vadinHA17 group remain uncultured,
575 and have been suggested to be involved in hydrolyzing and degrading complex organic
576 matter, co-occurring with methanogenic archaea (91, 92). Currently, the three publicly
577 available *Bacteroidetes* strains containing *hgcA* in belong to the *Paludibacteraceae* and
578 *Marinilabiliaceae*, and are not closely related to members of the vadinHA17 class.
579 However, the dominant *Delta*proteobacterial member expressing *hgcA* in the bog
580 samples is classified within the *Syntrophobacterales* order, specifically a member of
581 *Smithella* spp. Among the publicly available sequenced *Delta*proteobacterial isolates we
582 identified *hgcA* in, 3 are among the *Syntrophobacterales* order, including the *Smithella*
583 sp. F21 strain. This methylating strain may be an appealing experimental system to
584 further explore *hgcA* expression patterns under different conditions.

585 We compared *hgcA* transcript abundance against that of the housekeeping gene
586 *rpoB*, which encodes the RNA polymerase beta subunit, to differentiate *hgcA* activity
587 against overall expression (Supplementary Figure 3). Low levels of *hgcA* expression were
588 detected within the *Ignavibacteria*, *Chloroflexi*, *Euryarchaeota*, *Nitrospirae*, and
589 *Planctomycetes*. Within the *Ignavibacteria* and *Chloroflexi*, expression of *rpoB* is on
590 average higher in most samples than that of *hgcA*. This same trend occurs within the
591 *Delta*proteobacteria, where on average *rpoB* expression is higher than that of *hgcA*,
592 although the majority of total *hgcA* transcripts within the bog sites is contributed to
593 *Delta*proteobacterial methylators. We did not detect *hgcA* transcripts within the

594 *Aminicenantes* and *Elusimicrobia*, but genomes within these groups exhibited low activity
595 overall as shown by their *rpoB* expression. Interestingly, we found examples of genomes
596 within phyla that exhibited appreciable amounts of overall transcriptional activity, but did
597 not detect *hgcA* expression. We did not detect *hgcA* expression within the *Acidobacteria*
598 or *Actinobacteria*, but did detect *rpoB* expression. These groups exhibited higher overall
599 expression than groups in which we detected *hgcA* expression, such as the *Nitrospirae*.

600 This may have interesting implications for understanding methylmercury
601 production in the environment, as currently the presence of *hgcAB* is used to connect
602 specific microorganisms to biogeochemical characteristics. However, it may be possible
603 that only a few groups exhibit *hgcA* activity and actually contribute to methylmercury
604 production. Although this study does not contain environmental data on inorganic mercury
605 or methylmercury concentrations, these results provide insights into *hgcA* expression for
606 further follow-up.

607

608 CONCLUSIONS

609 In this study, we greatly expanded upon the known diversity of microorganisms
610 that perform mercury methylation. We demonstrated using a set of publicly available
611 isolate genomes, MAGs, and novel freshwater MAGs that putative methylators
612 encompass 30 phylum-level lineages and diverse metabolic guilds. Apparent extensive
613 HGT of the diverse *hgcAB* region poses unique challenges for screening methylating
614 populations in the environment, in which “universal” amplicon or even group-specific
615 approaches may not accurately reflect the true phylogenetic origin of specific methylators.
616 Furthermore, genome-resolved metatranscriptomics of putative methylators in a thawing

617 permafrost system revealed that specific methylating populations are transcriptionally
618 active at different sites and depths. These results highlight the importance of moving
619 beyond identifying the mere presence of a gene to infer a specific function and
620 investigating transcriptionally active populations. Overall, genome-resolved 'omics
621 techniques are an appealing approach for accurately assessing the controls and
622 constraints of microbial methylmercury production in the environment.

623

624 **ACKNOWLEDGEMENTS**

625 We would like to thank the many authors and groups for making a vast and
626 valuable amount of genomic, metagenomic, and metatranscriptomic data publicly
627 available, as our work was greatly improved by these datasets. We thank the U.S.
628 National Science Foundation North Temperate Lakes Long-Term Ecological Research
629 site (NTL-LTER DEB-1440297) for providing funding of the Microbial Observatory for
630 long-term sampling of Lake Mendota and Trout Bog. Funding was also provided to KDM
631 by the Wisconsin Alumni Research Foundation. We thank members of the McMahon lab
632 for constructive feedback on drafts of the manuscript, specifically Amber White. We thank
633 Kristopher Kieft and Adam Breister for providing NCBI viral searches and tree of life
634 ribosomal sequences, respectively. We thank the U.S. Department of Energy Joint
635 Genome Institute for sequencing and assembly (CSPs 394 and 2796). This research was
636 performed in part using the computer resources and assistance of the Center for High-
637 Throughput Computing (CTTC) at UW-Madison in the Department of Computer
638 Sciences. CHTC is supported by UW-Madison, the Advanced Computing Initiative, the
639 Wisconsin Alumni Research Foundation, the Wisconsin Institute for Discovery, and the

640 National Science Foundation. CHTC is an active member of the Open Science Grid,
641 which is supported by the National Science Foundation and the U.S. Department of
642 Energy Office of Science. Virtual machines were also accessed for computing through
643 UW-Madison's Campus Computing Infrastructure. This research was also performed in
644 part using the Wisconsin Energy Institute computing cluster, which is supported by the
645 Great Lakes Bioenergy Research Center as part of the U.S. Department of Energy Office
646 of Science.

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663 **REFERENCES**

664 1. Wood JM. 1974. Biological cycles for toxic elements in the environment. *Science*
665 183:1049–52.

666 2. Chad R. Hammerschmidt* † and, Fitzgerald‡ WF. 2006. Methylmercury in
667 Freshwater Fish Linked to Atmospheric Mercury Deposition.

668 3. Krabbenhoft DP. 2004. Methylmercury Contamination of Aquatic Ecosystems: A
669 Widespread Problem with Many Challenges for the Chemical Sciences.

670 4. Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA. 2013. Mechanisms
671 regulating mercury bioavailability for methylating microorganisms in the aquatic
672 environment: A critical review. *Environ Sci Technol* 47:2441–2456.

673 5. Sunderland EM, Li M, Bullard K. 2018. Decadal Changes in the Edible Supply of
674 Seafood and Methylmercury Exposure in the United States. *Environ Health
675 Perspect* 126:17006.

676 6. Mahaffey KR, Clickner RP, Jeffries RA. 2009. Adult women's blood mercury
677 concentrations vary regionally in the United States: Association with patterns of
678 fish consumption (NHANES 1999-2004). *Environ Health Perspect* 117:47–53.

679 7. Schober SE, Sinks TH, Jones RL, Bolger PM, McDowell M, Osterloh J, Garrett
680 ES, Canady RA, Dillon CF, Sun Y, Joseph CB, Mahaffey KR. 2003. Blood
681 Mercury Levels in US Children and Women of Childbearing Age, 1999-2000.
682 *JAMA* 289:1667.

683 8. Choi S-C, Chase T, Bartha R. 1994. Metabolic Pathways Leading to Mercury
684 Methylation in *Desulfovibrio desulfuricans* LStAPPLIED AND ENVIRONMENTAL
685 MICROBIOLOGY.

686 9. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP. 2006.

687 Mercury Methylation by Dissimilatory Iron-Reducing Bacteria. *Appl Environ*
688 *Microbiol* 72:7919–7921.

689 10. Yu R-Q, Reinfelder JR, Hines ME, Barkay T. 2013. Mercury methylation by the
690 methanogen *Methanospirillum hungatei*. *Appl Environ Microbiol* 79:6325–30.

691 11. Parks JM, Johs A, Podar M, Bridou R, Hurt RA, Smith SD, Tomanicek SJ, Qian Y,
692 Brown SD, Brandt CC, Palumbo A V, Smith JC, Wall JD, Elias DA, Liang L. 2013.

693 The genetic basis for bacterial mercury methylation. *Science* 339:1332–5.

694 12. Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC,
695 Johs A, Hurt RA, Bailey KL, Elias DA. 2013. Mercury methylation by novel
696 microorganisms from new environments. *Environ Sci Technol* 47:11810–11820.

697 13. Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo A V.,
698 Somenahally AC, Elias DA. 2015. Global prevalence and distribution of genes
699 and microorganisms involved in mercury methylation. *Sci Adv* 1:e1500675–
700 e1500675.

701 14. Bravo AG, Zopfi J, Buck M, Xu J, Bertilsson S, Schaefer JK, Poté J, Cosio C.
702 2018. Geobacteraceae are important members of mercury-methylating microbial
703 communities of sediments impacted by waste water releases. *ISME J* 12:802–
704 812.

705 15. Bravo AG, Peura S, Buck M, Ahmed O, Mateos-Rivera A, Ortega SH, Schaefer
706 JK, Bouchet S, Tolu J, Björn E, Bertilsson S. 2018. Methanogens and iron-
707 reducing bacteria: the overlooked members of mercury methylating microbial
708 communities in boreal lakes. *Appl Environ Microbiol AEM*.01774-18.

709 16. Xu J, Buck M, Eklof K, Osman OA, Schaefer JK, Bishop K, Björn E, Skyllberg U,
710 Bertilsson S, Bravo AG. 2018. Mercury methylating microbial communities of
711 boreal forest soils. *bioRxiv* 299248.

712 17. Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA. 2018. Robust Mercury
713 Methylation across Diverse Methanogenic Archaea. *MBio* 9:e02403-17.

714 18. Villar E, Cabrol L, Heimburger-Boavida LE. 2019. Widespread microbial mercury
715 methylation genes in the global ocean. *bioRxiv* 648329.

716 19. Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally
717 AC, Callister SJ, Brewer H, Podar M, Brown SD, Palumbo A V., Brandt CC,
718 Wymore AM, Brooks SC, Hwang C, Fields MW, Wall JD, Gilmour CC, Elias DA.
719 2019. Determining the Reliability of Measuring Mercury Cycling Gene Abundance
720 with Correlations with Mercury and Methylmercury Concentrations. *Environ Sci
721 Technol* 53:8649–8663.

722 20. Christensen GA, Wymore AM, King AJ, Podar M, Hurt RA, Santillan EU, Soren A,
723 Brandt CC, Brown SD, Palumbo A V., Wall JD, Gilmour CC, Elias DA. 2016.
724 Development and validation of broad-range qualitative and clade-specific
725 quantitative molecular probes for assessing mercury methylation in the
726 environment. *Appl Environ Microbiol* 82:6068–6078.

727 21. Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado
728 JC, Guyoneaud R. 2009. Overview of Mercury Methylation Capacities among
729 Anaerobic Bacteria Including Representatives of the Sulphate-Reducers:
730 Implications for Environmental Studies. *Geomicrobiol J* 26:1–8.

731 22. Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey J

732 V. 2019. Molecular evidence for novel mercury methylating microorganisms in
733 sulfate-impacted lakes. *ISME J* 1.

734 23. Tran PQ, McIntyre PB, Kraemer BM, Vadeboncoeur Y, Kimirei IA, Tamatamah R,
735 McMahon KD, Anantharaman K. 2019. Depth-discrete eco-genomics of Lake
736 Tanganyika reveals roles of diverse microbes, including candidate phyla, in
737 tropical freshwater nutrient cycling. *bioRxiv* 834861.

738 24. Linz AM, He S, Stevens SLR, Anantharaman K, Rohwer RR, Malmstrom RR,
739 Bertilsson S, McMahon KD. 2018. Freshwater carbon and nutrient cycles
740 revealed through reconstructed population genomes. *PeerJ* 6:e6075.

741 25. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, Banfield JF.
742 2018. Recovery of genomes from metagenomes via a dereplication, aggregation
743 and scoring strategy. *Nat Microbiol* 1.

744 26. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new
745 versatile metagenomic assembler. *Genome Res* 27:824–834.

746 27. Bendall ML, Stevens SL, Chan L-K, Malfatti S, Schwientek P, Tremblay J,
747 Schackwitz W, Martin J, Pati A, Bushnell B, Froula J, Kang D, Tringe SG,
748 Bertilsson S, Moran MA, Shade A, Newton RJ, McMahon KD, Malmstrom RR.
749 2016. Genome-wide selective sweeps and gene-specific sweeps in natural
750 bacterial populations. *ISME J* 10:1589–1601.

751 28. He S, Stevens SLR, Chan L-K, Bertilsson S, Rio TG del, Tringe SG, Malmstrom
752 RR, McMahon KD. 2017. Ecophysiology of Freshwater Verrucomicrobia Inferred
753 from Metagenome-Assembled Genomes. *mSphere* 2:e00277-17.

754 29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:

755 assessing the quality of microbial genomes recovered from isolates, single cells,
756 and metagenomes. *Genome Res* 25:1043–55.

757 30. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
758 TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN,
759 Copeland A, Clum A, Becroft ED, Malmstrom RR, Birren B, Podar M, Bork P,
760 Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO,
761 Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S,
762 Konstantinidis KT, Liu W-T, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon
763 KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke
764 C, Kyrpides NC, Schriml L, Garrity GM, Hugenholtz P, Sutton G, Yilmaz P, Meyer
765 F, Glöckner FO, Gilbert JA, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I,
766 Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF,
767 Hugenholtz P, Woyke T. 2017. Minimum information about a single amplified
768 genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria
769 and archaea. *Nat Biotechnol* 35:725–731.

770 31. Eddy SR. 1996. Hidden Markov models. *Curr Opin Struct Biol* 6:361–365.

771 32. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010.
772 Prodigal: prokaryotic gene recognition and translation initiation site identification.
773 *BMC Bioinformatics* 11:119.

774 33. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid
775 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res*
776 30:3059–66.

777 34. Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for

778 large datasets. *Bioinformatics* 30:3276–3278.

779 35. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarszewski A, Chaumeil P-A,
780 Hugenholz P. 2018. A standardized bacterial taxonomy based on genome
781 phylogeny substantially revises the tree of life. *Nat Biotechnol* 36:996.

782 36. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ,
783 Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA,
784 Finstad KM, Amundson R, Thomas BC, Banfield JF. 2016. A new view of the tree
785 of life. *Nat Microbiol* 1:16048.

786 37. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas
787 BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS,
788 Banfield JF. 2016. Thousands of microbial genomes shed light on interconnected
789 biogeochemical processes in an aquifer system. *Nat Commun* 7:13219.

790 38. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 – Approximately Maximum-
791 Likelihood Trees for Large Alignments. *PLoS One* 5:e9490.

792 39. Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the
793 display and annotation of phylogenetic and other trees. *Nucleic Acids Res*
794 44:W242–W245.

795 40. Eddy SR. 2011. Accelerated Profile HMM Searches. *PLoS Comput Biol*
796 7:e1002195.

797 41. Aberer AJ, Krompass D, Stamatakis A. 2013. Pruning Rogue Taxa Improves
798 Phylogenetic Accuracy: An Efficient Algorithm and Webservice. *Syst Biol* 62:162–
799 166.

800 42. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, Chilton J,

801 Clements D, Coraor N, Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S,
802 Jalili V, Rasche H, Soranzo N, Goecks J, Taylor J, Nekrutenko A, Blankenberg D.
803 2018. The Galaxy platform for accessible, reproducible and collaborative
804 biomedical analyses: 2018 update. *Nucleic Acids Res* 46:W537–W544.

805 43. Criscuolo A, Gribaldo S. 2010. BMGE (Block Mapping and Gathering with
806 Entropy): a new software for selection of phylogenetic informative regions from
807 multiple sequence alignments. *BMC Evol Biol* 10:210.

808 44. Stamatakis A. 2014. The RAxML v8 . 0 . X Manual 1–55.

809 45. McDaniel EA, Anantharaman K, McMahon KD. 2019. metabolisHMM:
810 Phylogenomic analysis for exploration of microbial phylogenies and metabolic
811 pathways. *bioRxiv* 2019.12.20.884627.

812 46. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
813 30:2068–2069.

814 47. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: A genome comparison
815 visualizer. *Bioinformatics* 27:1009–1010.

816 48. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and
817 high throughput. *Nucleic Acids Res* 32:1792–1797.

818 49. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H.
819 2019. KofamKOALA: KEGG ortholog assignment based on profile HMM and
820 adaptive score threshold. *bioRxiv* 602110.

821 50. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF,
822 Hoelzle RD, Lamberton TO, McCalley CK, Hodgkins SB, Wilson RM, Purvine SO,
823 Nicora CD, Li C, Frolking S, Chanton JP, Crill PM, Saleska SR, Rich VI, Tyson

824 GW. 2018. Genome-centric view of carbon processing in thawing permafrost.

825 Nature 560:49–54.

826 51. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ

827 preprocessor. Bioinformatics 34:i884–i890.

828 52. Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-

829 seq quantification. Nat Biotechnol 34:525–527.

830 53. Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo A V,

831 Somenahally AC, Elias DA. 2015. Global prevalence and distribution of genes

832 and microorganisms involved in mercury methylation. Sci Adv 1:1–13.

833 54. Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, Walsh DA.

834 2018. Microbial life under ice: Metagenome diversity and *in situ* activity of

835 Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol 20:2568–

836 2584.

837 55. Chiang E, Schmidt ML, Berry MA, Biddanda BA, Burtner A, Johengen TH,

838 Palladino D, Denef VJ. 2018. Verrucomicrobia are prevalent in north-temperate

839 freshwater lakes and display class-level preferences between lake habitats. PLoS

840 One 13:e0195112.

841 56. Cabello-Yeves PJ, Ghai R, Mehrshad M, Picazo A, Camacho A, Rodriguez-

842 Valera F. 2017. Reconstruction of Diverse Verrucomicrobial Genomes from

843 Metagenome Datasets of Freshwater Reservoirs. Front Microbiol 8:2131.

844 57. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, Thomas

845 BC, Singh A, Wilkins MJ, Karaoz U, Brodie EL, Williams KH, Hubbard SS,

846 Banfield JF. 2016. Thousands of microbial genomes shed light on interconnected

847 biogeochemical processes in an aquifer system. *Nat Commun* 7:13219.

848 58. Tully BJ, Graham ED, Heidelberg JF. 2018. The reconstruction of 2,631 draft

849 metagenome-assembled genomes from the global oceans. *Sci Data* 5:170203.

850 59. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Glöckner FO,

851 Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann

852 M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N. 2006. Symbiosis

853 insights through metagenomic analysis of a microbial consortium. *Nature*

854 443:950–955.

855 60. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN,

856 Hugenholtz P, Tyson GW. 2017. Recovery of nearly 8,000 metagenome-

857 assembled genomes substantially expands the tree of life. *Nat Microbiol* 2:1533–

858 1542.

859 61. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A Guide to the

860 Natural History of Freshwater Lake BacteriaMicrobiology and Molecular Biology

861 Reviews.

862 62. Newton RJ, Jones SE, Helmus MR, McMahon KD. 2007. Phylogenetic Ecology of

863 the Freshwater Actinobacteria a cl Lineage. *Appl Environ Microbiol* 73:7169–7176.

864 63. Crump BC, Armbrust E V, Baross JA. 1999. Phylogenetic analysis of particle-

865 attached and free-living bacterial communities in the Columbia river, its estuary,

866 and the adjacent coastal ocean. *Appl Environ Microbiol* 65:3192–204.

867 64. Glöckner FO, Zaikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A,

868 Amann R. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals

869 globally distributed phylogenetic clusters including an abundant group of

870 actinobacteria. *Appl Environ Microbiol* 66:5053–65.

871 65. Bisanz JE, Soto-Perez P, Lam KN, Bess EN, Haiser HJ, Allen-Vercoe E, Rekdal
872 VM, Balskus EP, Turnbaugh PJ. Illuminating the microbiome's dark matter: a
873 functional genomic toolkit for the study of human gut Actinobacteria.

874 66. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR. 1998. Novel division level
875 bacterial diversity in a Yellowstone hot spring. *J Bacteriol* 180:366–76.

876 67. Bird JT, Tague ED, Zinke L, Schmidt JM, Steen AD, Reese B, Marshall IPG,
877 Webster G, Weightman A, Castro HF, Campagna SR, Lloyd KG. 2019.
878 Uncultured Microbial Phyla Suggest Mechanisms for Multi-Thousand-Year
879 Subsistence in Baltic Sea Sediments. *MBio* 10:e02376-18.

880 68. Zarilla KA, Perry JJ. 1986. Deoxyribonucleic acid homology and other
881 comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a
882 proposal for *Thermoleophilum minutum* sp. nov. *Int J Syst Bacteriol* 36:13–16.

883 69. Ludwig W, Euzéby J, Schumann P, Busse H-J, Trujillo ME, Kämpfer P, Whitman
884 WB. 2012. Road map of the phylum Actinobacteria, p. 1–28. *In* Bergey's Manual®
885 of Systematic Bacteriology. Springer New York, New York, NY.

886 70. Suzuki K, Whitman WB. 2015. *Thermoleophilia* class. nov., p. 1–4. *In* Bergey's
887 Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd,
888 Chichester, UK.

889 71. Hu D, Zang Y, Mao Y, Gao B. 2019. Identification of Molecular Markers That Are
890 Specific to the Class Thermoleophilia. *Front Microbiol* 10:1185.

891 72. Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME. 1999.
892 Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic

893 bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J
894 Bacteriol 181:5750–7.

895 73. Crowther GJ, Kosály G, Lidstrom ME. 2008. Formate as the main branch point for
896 methylotrophic metabolism in *Methylobacterium extorquens* AM1. J Bacteriol
897 190:5057–5062.

898 74. Anderson AJ, Dawes EA. 1990. Occurrence, Metabolism, Metabolic Role, and
899 Industrial Uses of Bacterial PolyhydroxyalkanoatesMICROBIOLOGICAL
900 REVIEWS.

901 75. Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME. 2003. Methylotrophy in
902 *Methylobacterium extorquens* AM1 from a genomic point of view. J Bacteriol.

903 76. Adam PS, Borrel G, Gribaldo S. 2018. Evolutionary history of carbon monoxide
904 dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes.
905 Proc Natl Acad Sci U S A 115:E1166–E1173.

906 77. Caro-Quintero A, Konstantinidis KT. 2015. Inter-phylum HGT has shaped the
907 metabolism of many mesophilic and anaerobic bacteria. ISME J 9:958–967.

908 78. Xu J, Buck M, Eklöf K, Ahmed OO, Schaefer JK, Bishop K, Skyllberg U, Björn E,
909 Bertilsson S, Bravo AG. 2019. Mercury methylating microbial communities of
910 boreal forest soils. Sci Rep 9:518.

911 79. Vishnivetskaya TA, Hu H, Van Nostrand JD, Wymore AM, Xu X, Qiu G, Feng X,
912 Zhou J, Brown SD, Brandt CC, Podar M, Gu B, Elias DA. 2018. Microbial
913 community structure with trends in methylation gene diversity and abundance in
914 mercury-contaminated rice paddy soils in Guizhou, China. Environ Sci Process
915 Impacts 20:673–685.

916 80. Todorova SG, Driscoll CT, Matthews DA, Effler SW, Hines ME, Henry EA. 2009.
917 Evidence for Regulation of Monomethyl Mercury by Nitrate in a Seasonally
918 Stratified, Eutrophic Lake. *Environ Sci Technol* 43:6572–6578.

919 81. Matthews DA, Babcock DB, Nolan JG, Prestigiacomo AR, Effler SW, Driscoll CT,
920 Todorova SG, Kuhr KM. 2013. Whole-lake nitrate addition for control of
921 methylmercury in mercury-contaminated Onondaga Lake, NY. *Environ Res*
922 125:52–60.

923 82. Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, Schofield
924 R, Krabbenhoft DP, Holt KE, Moreau JW. 2016. Microbial mercury methylation in
925 Antarctic sea ice. *Nat Microbiol* 1:16127.

926 83. Achour-Rokbani A, Cordi A, Poupin P, Bauda P, Billard P. 2010. Characterization
927 of the ars gene cluster from extremely arsenic-resistant *Microbacterium* sp. strain
928 A33. *Appl Environ Microbiol* 76:948–55.

929 84. Mukhopadhyay R, Rosen BP. 2002. Arsenate reductases in prokaryotes and
930 eukaryotes. *Environ Health Perspect* 110 Suppl 5:745–8.

931 85. Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM. 2011. Active
932 transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria.
933 *Proc Natl Acad Sci U S A* 108:8714–9.

934 86. Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J, Monperrus M,
935 Guyoneaud R. 2015. Relationships between bacterial energetic metabolism,
936 mercury methylation potential, and hgcA/hgcB gene expression in *Desulfovibrio*
937 *dechloroacetivorans* BerOc1. *Environ Sci Pollut Res* 22:13764–13771.

938 87. Bravo AG, Loizeau J-L, Dranguet P, Makri S, Björn E, Ungureanu VG,

939 Slaveykova VI, Cosio C. 2016. Persistent Hg contamination and occurrence of
940 Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt
941 River (Romania). *Environ Sci Pollut Res* 23:10529–10541.

942 88. Gordon J, Quinton W, Branfireun BA, Olefeldt D. 2016. Mercury and
943 methylmercury biogeochemistry in a thawing permafrost wetland complex,
944 Northwest Territories, Canada. *Hydrol Process* 30:3627–3638.

945 89. Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD,
946 Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP, Liu L, Herman-Mercer N,
947 Mu C, Roth DA, Schaefer T, Striegl RG, Wickland KP, Zhang T. 2018. Permafrost
948 Stores a Globally Significant Amount of Mercury. *Geophys Res Lett* 45:1463–
949 1471.

950 90. Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R. 1997. Molecular
951 microbial diversity of an anaerobic digestor as determined by small-subunit rDNA
952 sequence analysis. *Appl Environ Microbiol* 63:2802–2813.

953 91. Rojas P, Rodríguez N, de la Fuente V, Sánchez-Mata D, Amils R, Sanza JL.
954 2018. Microbial diversity associated with the anaerobic sediments of a soda lake
955 (Mono Lake, California, USA). *Can J Microbiol* 64:385–392.

956 92. Baldwin SA, Khoshnoodi M, Rezadehbashi M, Taupp M, Hallam S, Mattes A,
957 Sanei H. 2015. The microbial community of a passive biochemical reactor treating
958 arsenic, zinc, and sulfate-rich seepage. *Front Bioeng Biotechnol* 3.

959

960

961

962 **FIGURE LEGENDS**

963

964 **Figure 1. Phylogenetic Distribution and Diversity of Putative Methylators.**

965 Phylogenetic diversity and distribution of putative and novel methylators. **A)** Putative and
966 novel methylators among the prokaryotic tree of life. The highest quality methylator from
967 each identified phylum was selected as a representative among the tree of life. Purple
968 dots represent methylating phyla, and purple dots with stars represent phyla that, to our
969 knowledge, have not been identified as mercury methylators before this study. Groups in
970 bold and/or colored are methylating groups, whereas a few uncolored groups in non-bold
971 face are noted only for orientation. **B)** Number of putative methylating genomes found in
972 various environments, or genomes sequenced from isolates. **C)** Number of genomes
973 belonging to each phylum. Phylum names are given for all groups except the
974 *Delta*proteobacterial class of *Proteobacteria*, as no putative *Proteobacterial* methylators
975 were identified outside of the *Delta*proteobacteria. The group “other” contains several
976 candidate phyla and genomes within groups with few representatives, described in
977 Supplementary Figure 1.

978

979 **Figure 2. Novel Putative Methylators within the *Thermoleophilia* class of**
980 ***Actinobacteria***

981 Phylogenetic tree of publicly available and assembled *Thermoleophilia* MAGs and
982 *Actinobacteria* references. Representative or reference genomes belonging to the other
983 5 classes of *Actinobacteria* were used, with *Bacillus subtilis* used as an outgroup. Orders
984 are clustered and colored by GTDB proposed designation. The phylogeny was

985 constructed with RaxML using 100 rapid bootstraps, and nodes with bootstrap support
986 greater than 60 are shown as black circles. Stars denote putative methylators identified
987 in this study.

988

989 **Figure 3. Horizontal Gene Transfer of HgcAB Relative to Corresponding Ribosomal
990 Protein Phylogeny**

991 Phylogeny of HgcAB compared to a concatenated ribosomal protein phylogeny of select
992 methylators. **A)** Phylogeny of HgcAB of select methylators was constructed as described
993 in the Materials and Methods. The tree was constructed using RaxML with 100 rapid
994 bootstraps, and nodes with bootstrap support greater than 60 are depicted as a black
995 circle. **B)** Corresponding concatenated ribosomal protein phylogeny of the select
996 methylators. The tree was constructed using a set of 16 ribosomal proteins,
997 concatenated, and built using RaxML with 100 rapid bootstraps. Nodes with bootstrap
998 support of greater than 60 are denoted as a black circle. A fully annotated HgcAB tree is
999 provided in Supplementary Figure 2.

1000

1001 **Figure 4. Gene Neighborhoods of Diverse Permafrost Methylators Containing
1002 similar *hgcAB* Regions**

1003 Contigs containing similar *hgcAB* regions from putative methylators identified in a
1004 permafrost thawing system (50) were compared. Pairwise nucleotide BLAST between the
1005 genes for each contig was performed and visualized in easyfig (47). Colors correspond
1006 to predicted functions of each gene. *hgcAB* genes were identified based on curated

1007 HMMs and reference sequences, while all other gene assignments were made based on
1008 Prokka predictions.

1009

1010 **Figure 5. Metabolic Characteristics of Putative Methylators**

1011 Summary of broad metabolic characteristics present among high-quality putative
1012 methylators. Genomes with > 90% completeness and <10% redundancy and belonging
1013 to phyla with more than 5 genomes in that group were screened. HMM profiles spanning
1014 the sulfur, nitrogen, and carbon cycles, and metal resistance markers were searched for.
1015 The intensity of shading within a cell equates to the corresponding colored legend of
1016 percentage of genomes within that group that contain that marker. *hgcA* = Mercury
1017 methylation corrinoid protein, *arsC* = arsenite reductase, *codhCD/catalytic* = carbon
1018 monoxide dehydrogenase C,D, and catalytic subunits, *nifDHK* = nitrogenase subunits,
1019 *narGZ* = nitrate reductase subunits, *nirBDK* = nitrite reductase subunits, *norBD* = nitric
1020 oxide reductase subunits, *nosDZ* = nitrous oxide reductase subunits, *dsrABD* =
1021 dissimilatory sulfite reductase, *sat* = sulfate adenylyltransferase. Individual *nif*, *nar*, *nir*,
1022 *nor*, and *nos* subunit presence/absence results were averaged together, respectively.

1023

1024

1025 **Figure 6. Transcriptional Activity of Putative Methylators in a Permafrost Thawing**

1026 **Gradient**

1027 Mapped metatranscriptomic reads to 111 putative methylators identified in a permafrost
1028 thawing gradient (50). Bog and fen samples are shown, as no expression of *hgcA* was
1029 detected in any of the palsa samples. **Center)** Total reads mapping to the *hgcA* gene

1030 within a phylum per sample normalized by transcripts per million (TPM). **Right**) Total
1031 *hgcA* counts per sample. **Top**) Average overall expression of genomes within a phylum
1032 across all samples.

1033

1034 **Supplementary Figure 1. Overall Putative Methylating Genome and MAG Statistics**

1035 **A)** Number of putative methylators that are isolates and the phylum they belong to. **B)**
1036 Estimated genome size of all putative methylators. **C)** Estimated GC content of all putative
1037 methylators **D)** Estimated genome size of putative methylating isolates. **E)** Estimated GC
1038 content of putative methylating isolates. **F)** Number of genomes belonging to “other” phyla
1039 designated in Figure 1B. **G)** Estimated genome size and GC content of various candidate
1040 phyla methylators. **H)** Estimated genome completeness and contamination of putative
1041 methylators that are MAGs. Only medium quality (>50% complete and <10% redundancy)
1042 putative methylating MAGs were included in the dataset.

1043

1044 **Supplementary Figure 2. Full Annotated Reference HgcAB tree**

1045 Reference HgcAB tree of select methylators with uncollapsed nodes showing individual
1046 branch labels. Branch labels are sourced either from the name of the Genbank
1047 assembly, or custom name given to newly assembled Lake MAGs. Corresponding
1048 assembly names, classifications, and genome characteristics are provided in
1049 Supplementary Table 1. Available at

1050 <https://figshare.com/account/projects/70361/articles/11620356>

1051

1052

1053 **Supplementary Figure 3. Expression of *hgcA* compared to housekeeping gene**

1054 ***rpoB***

1055 Comparison of expression of *hgcA* and the beta subunit of the RNA polymerase *rpoB* of
1056 putative methylators in the permafrost thawing gradient. Each data point is the sum of
1057 normalized counts by transcripts per million (TPM) within a sample for that phylum.
1058 Therefore all points of the boxplot are comparing total normalized counts of gene
1059 expression between different samples within a phylum. Expression of samples within
1060 palsa sites are not included since we did not detect any *hgcA* expression in any of these
1061 samples, and did not include these results in Figure 6.

1062

1063 **SUPPLEMENTARY TABLES AND DATA FILES**

1064 *All supplementary files are available at*

1065 https://figshare.com/projects/Expanded_Diversity_and_Metabolic_Flexibility_of_Microbial_Mercury_Methylation/70361.

1067

1068 **Supplementary Table 1. Genome Characteristics**

1069 Genome characteristics for all Genbank accessions and assembled freshwater MAGs
1070 containing confident *hgcA* hits. Available at [https://figshare.com/articles/mehg-](https://figshare.com/articles/mehg-metadata/10062413)
1071 [metadata/10062413](https://figshare.com/articles/mehg-metadata/10062413)

1072 **Supplementary Table 2. MENDH-Thermo Metabolic Reconstruction Annotations**

1073 Annotation results for specific pathways in the MENDH-Thermo MAG performed with
1074 Prokka and KofamKOALA. Available at

1075 <https://figshare.com/account/projects/70361/articles/11620104>

1076 **Supplementary Table 3. Putative Conserved *hgcAB* Regulator Results**

1077 Results for searching for putative conserved regulator of *hgcAB* found in permafrost
1078 methylators. Available at <https://figshare.com/account/projects/70361/articles/11620107>

1079 **Supplementary Table 4. Universal and Group-Specific *hgcA* Primer Results**

1080 *In silico* PCR results of universal and group-specific *hgcA* primer sets. The ORNL
1081 universal, Archaeal-specific, Deltaproteobacterial-specific, and Firmicutes-specific
1082 primer sets were ran in Genious allowing for both 0 and 2 mismatches, and matches
1083 with the taxonomical name in the metadata in Supplementary Table 1. Available at
1084 <https://figshare.com/account/projects/70361/articles/10093535>

1085 **Supplementary Table 5. Presence/Absence Matrix of Metabolic Markers Among
1086 High-Quality Methylators**

1087 Raw presence/absence matrix of select metabolic markers without the conversion of
1088 results greater than 1 converted to 1, due to uncertainty of copy number variation in
1089 MAGs. Available at <https://figshare.com/account/projects/70361/articles/10203530>

1090

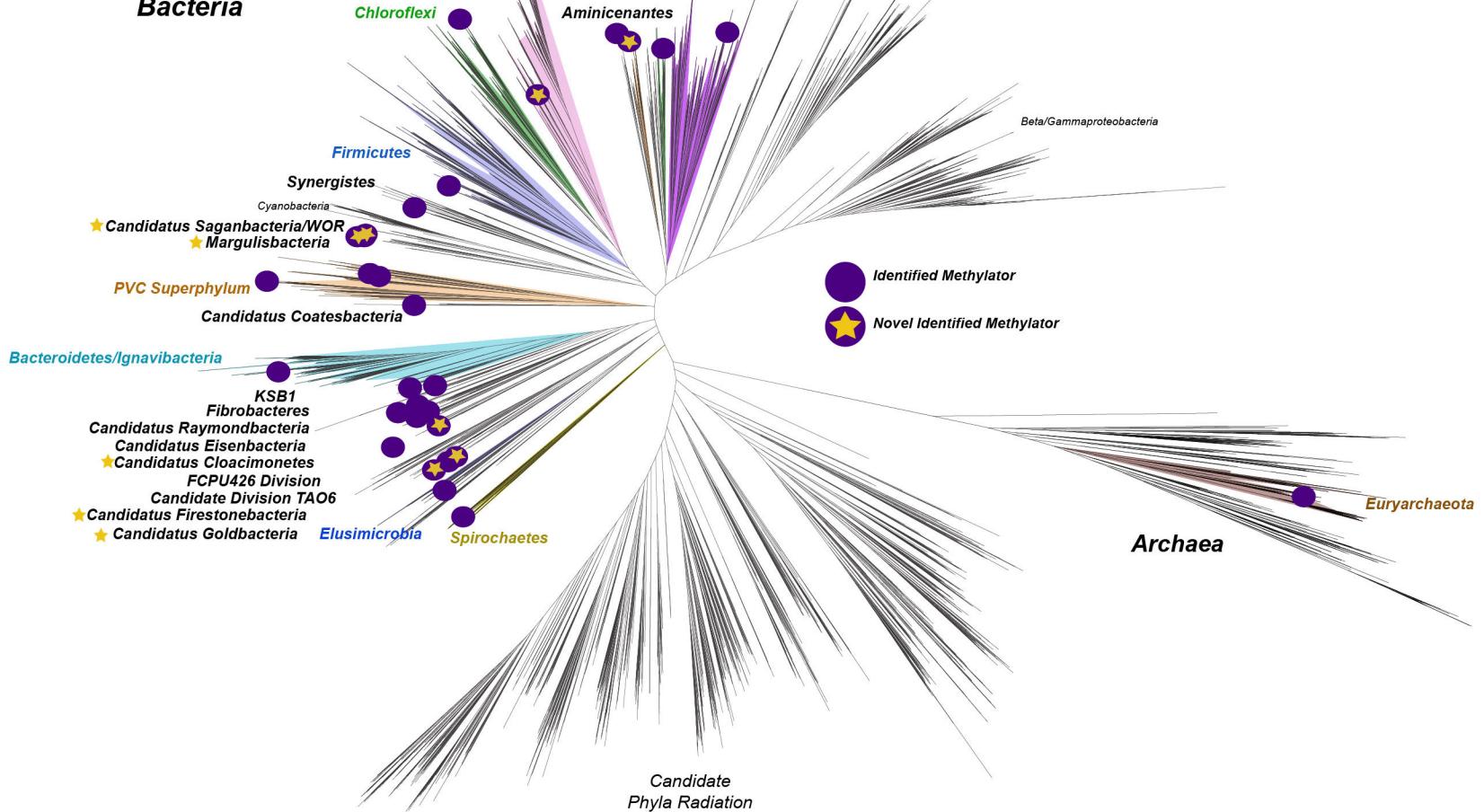
1091 **Data File 1. HgcA Hidden Markov Profile**

1092 Available at <https://figshare.com/account/projects/70361/articles/10084610>

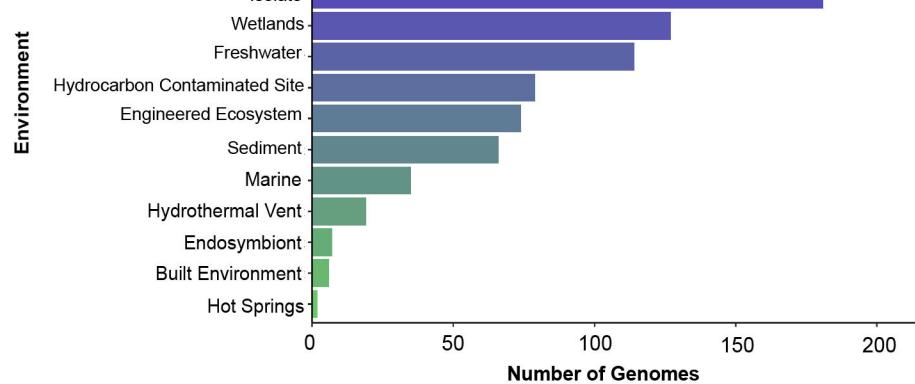
1093 **Data File 2. FASTA Formatted file of all Identified HgcA Protein Sequences**

1094 Available at <https://figshare.com/account/projects/70361/articles/10084601>

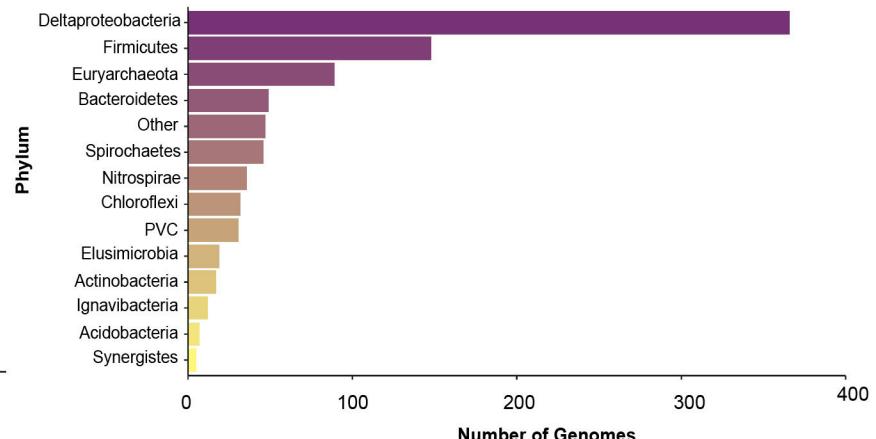
1095 **Data File 3. HgcB Hidden Markov Profile**

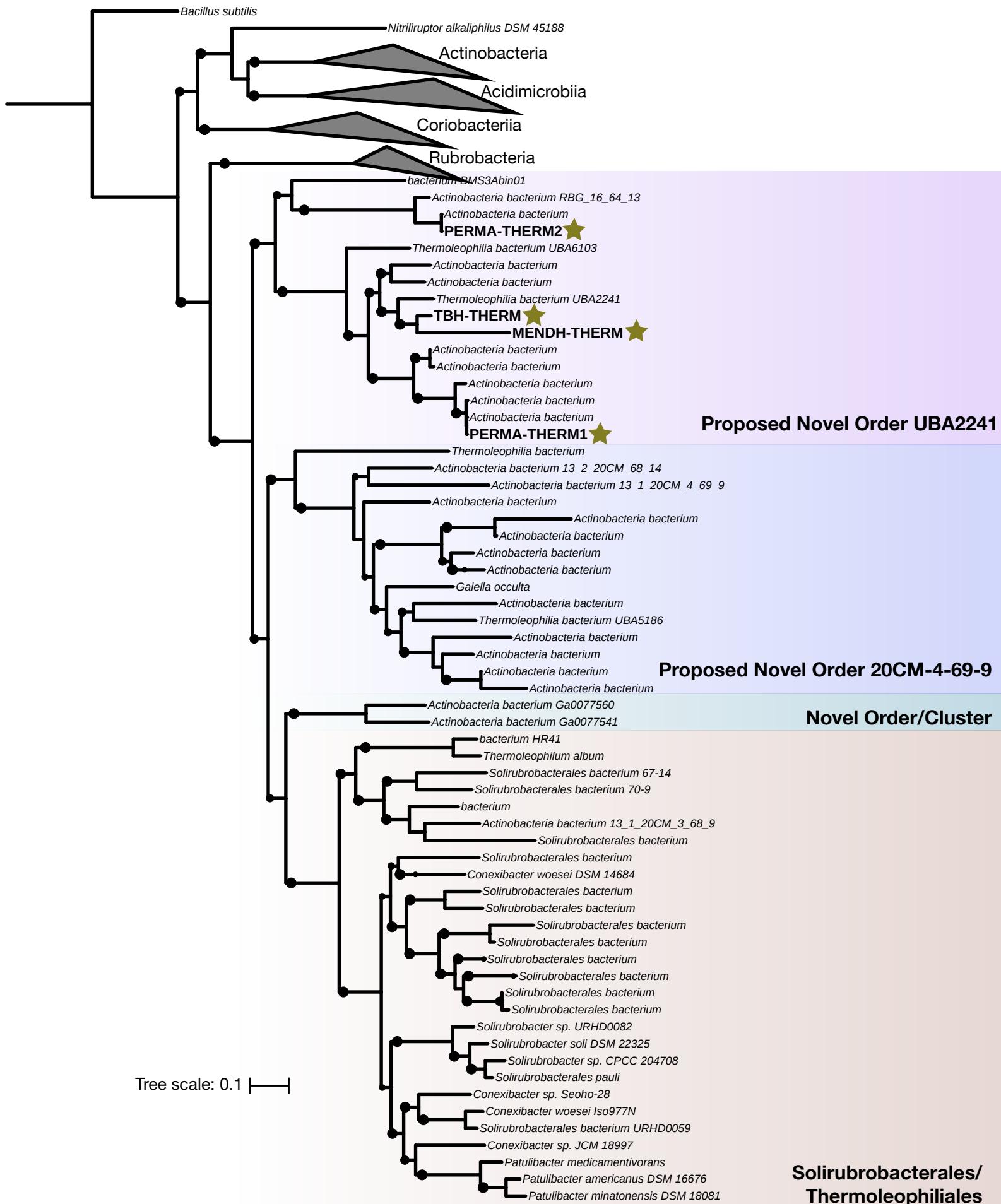

1096 Available at <https://figshare.com/account/projects/70361/articles/11620113>

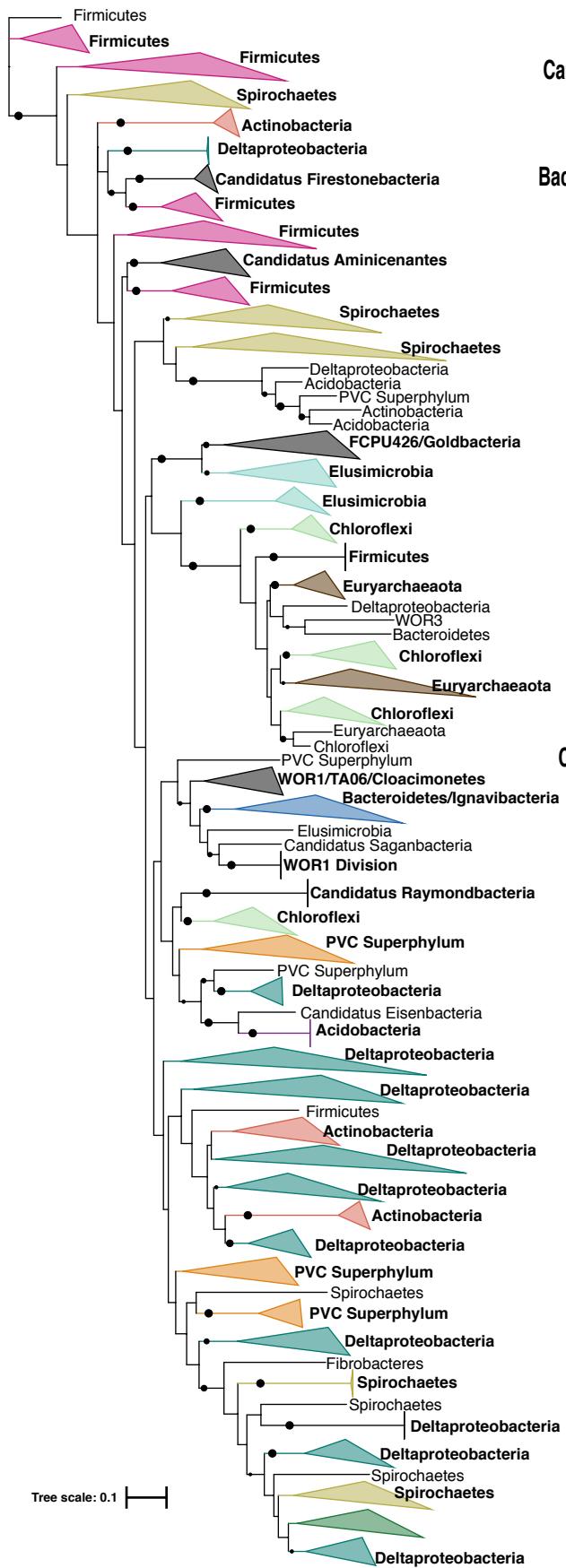
1097 **Data File 4: HgcAB Alignment**

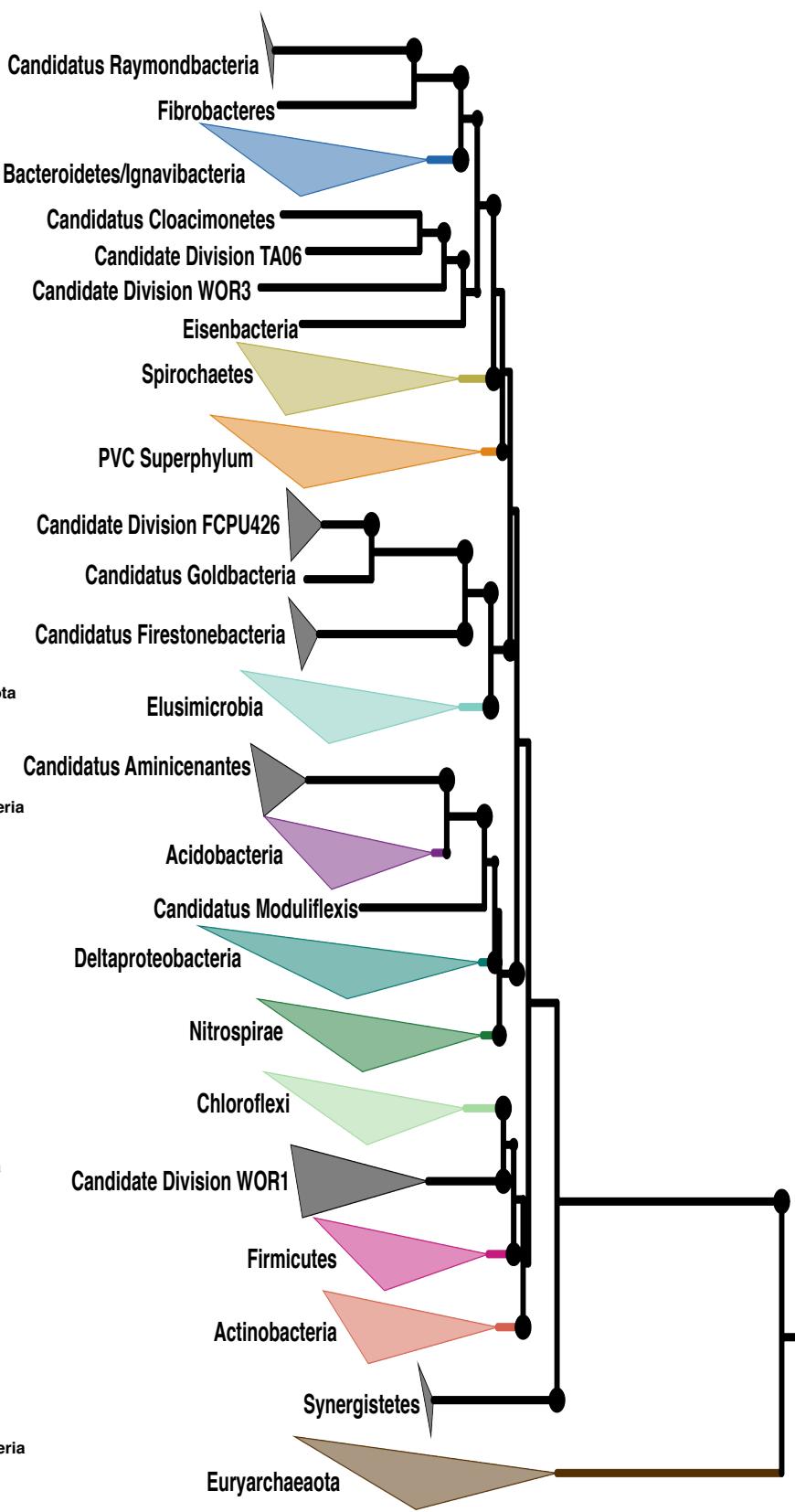

1098 Available at <https://figshare.com/account/projects/70361/articles/11620116>

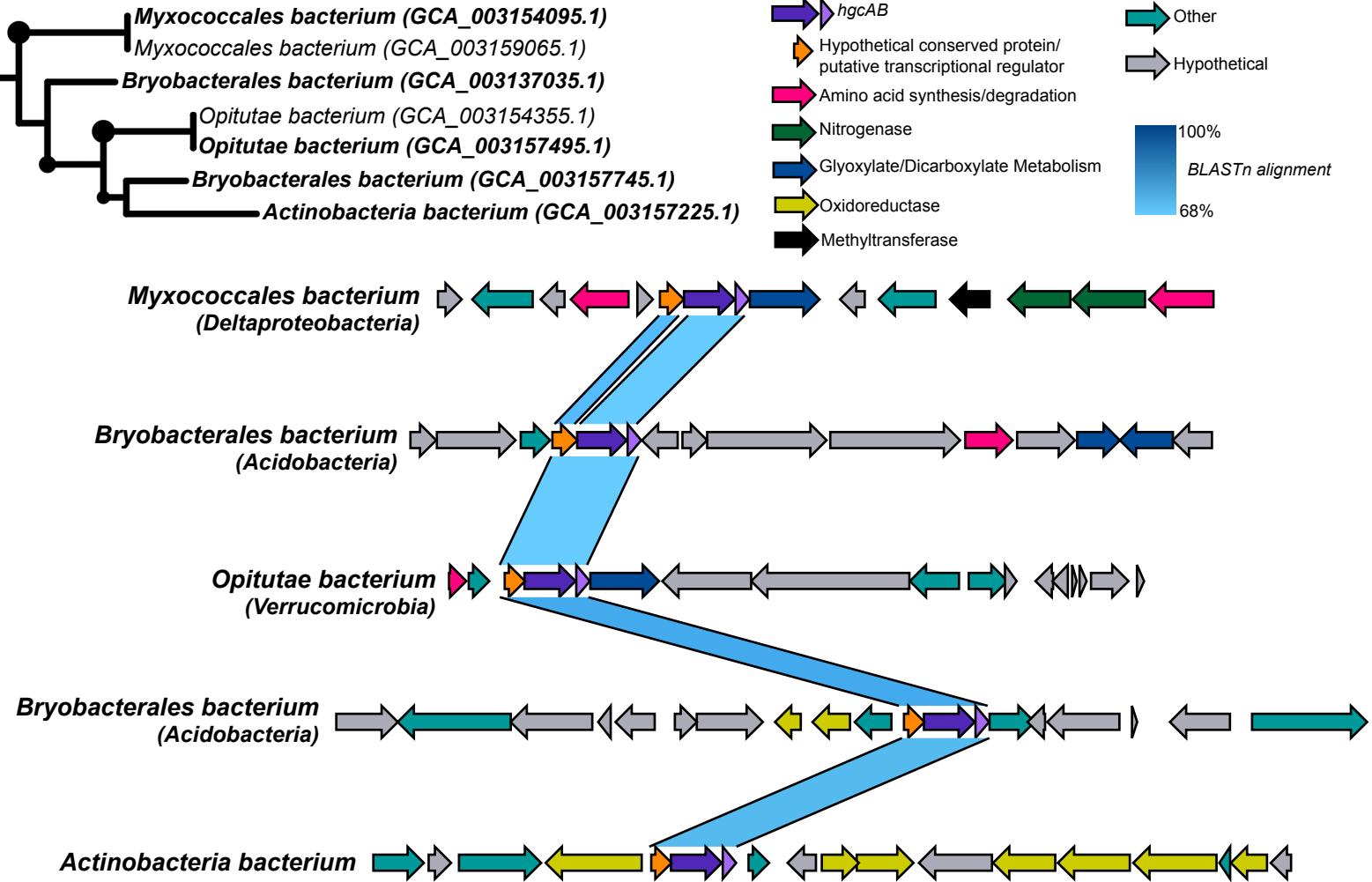
1099


1A


1B

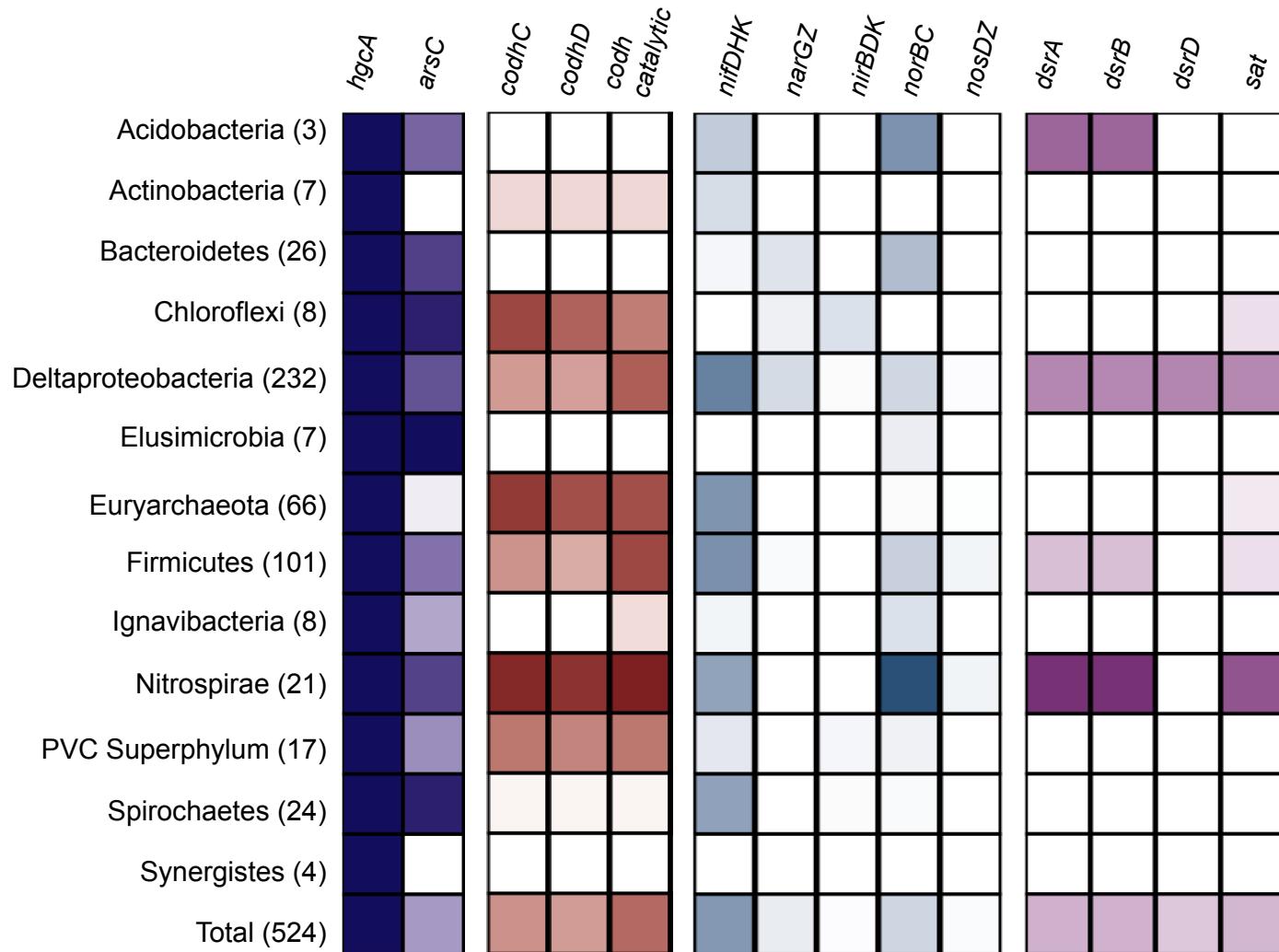

1C


2.

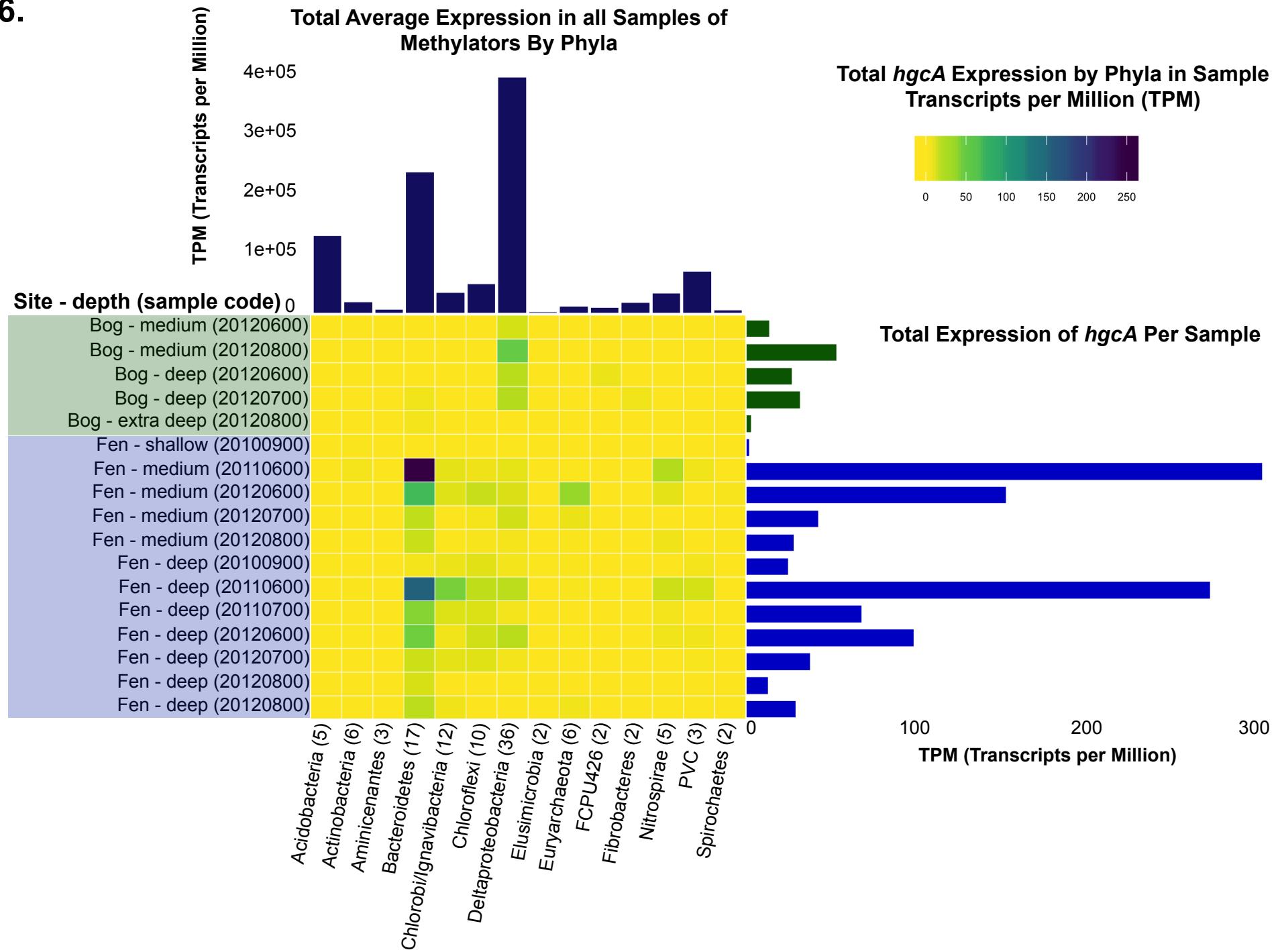

3A.

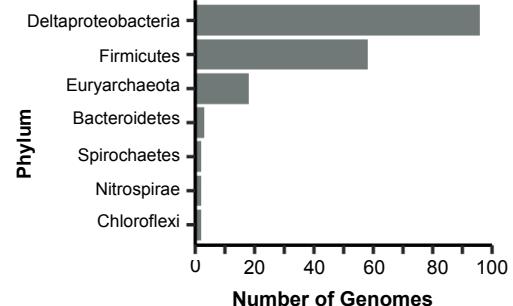
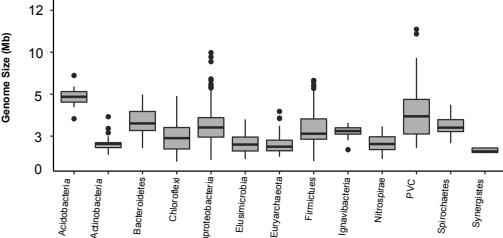
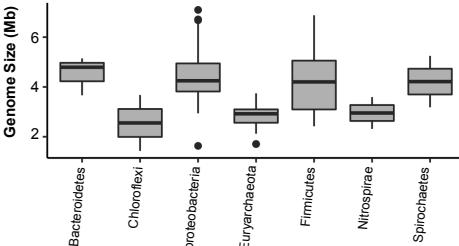
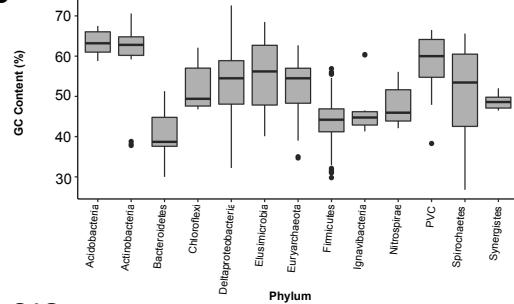
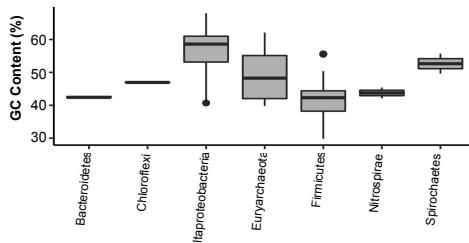
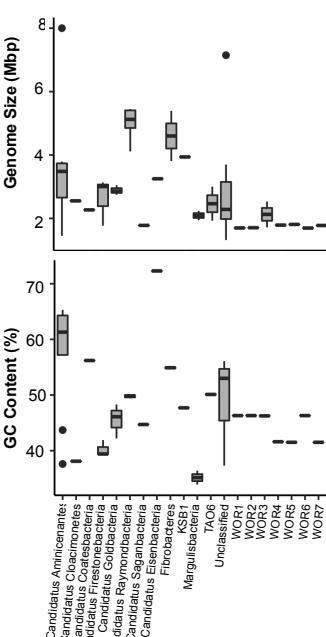
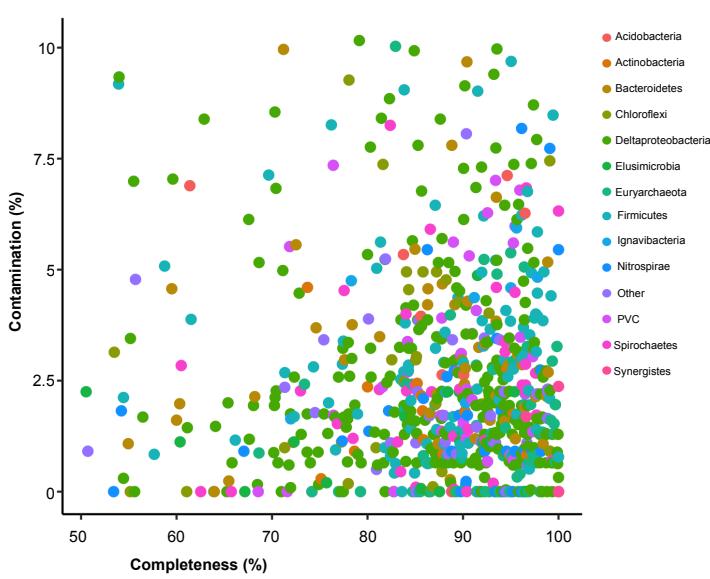
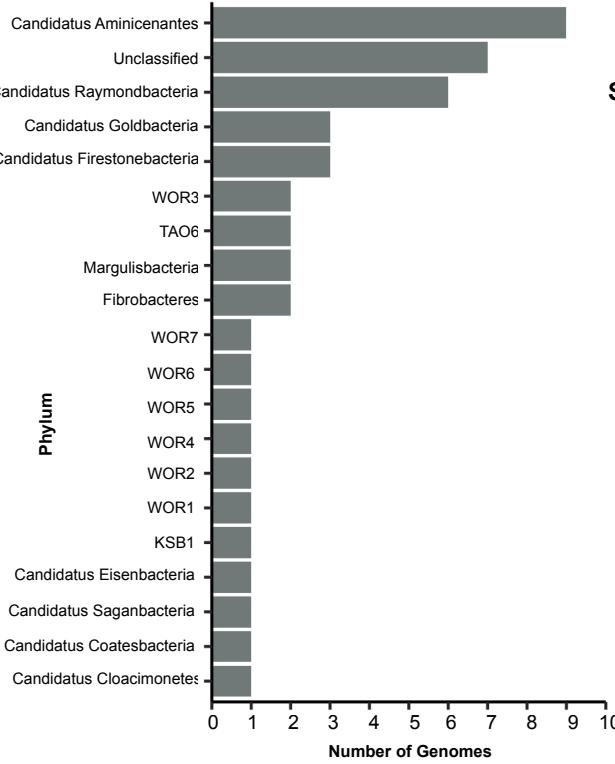
3B.

4.

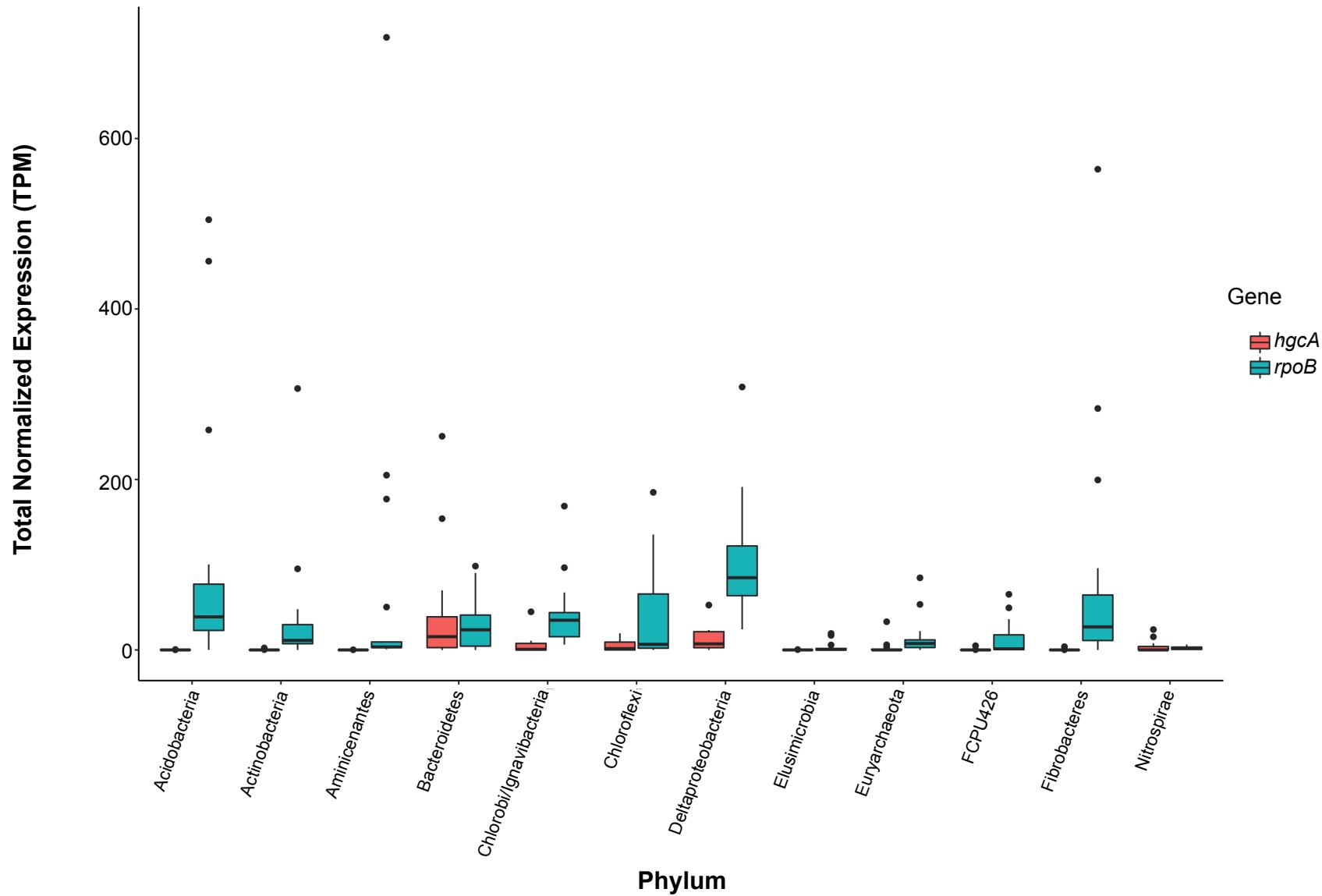


5.


Carbon and
Central Metabolism









Nitrogen Cycle

Sulfur Cycle



6.

S1A**S1B****S1D****S1C****S1E****S1G****S1H****S1F**

Total Expression of *hgcA* vs *rpoB* within Phyla across all Samples

