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For a chemical signal to propagate across a cell, it must navigate a tortuous environment involving
a variety of organelle barriers. In this work we study mathematical models for a basic chemical signal,
the arrival times at the nuclear membrane of proteins that are activated at the cell membrane
and diffuse throughout the cytosol. Organelle surfaces within human B cells are reconstructed
from soft X-ray tomographic images, and modeled as reflecting barriers to the molecules’ diffusion.
We show that signal inactivation sharpens signals, reducing variability in the arrival time at the
nuclear membrane. Inactivation can also compensate for an observed slowdown in signal propagation
induced by the presence of organelle barriers, leading to arrival times at the nuclear membrane that
are comparable to models in which the cytosol is treated as an open, empty region. In the limit
of strong signal inactivation this is achieved by filtering out molecules that traverse non-geodesic
paths.
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I. INTRODUCTION

Spatial dynamics can play a critical role in the successful functioning of cellular signaling processes, where as
basic a property as cell shape can significantly influence the behavior of signaling pathways [1, 2]. Idealized one-
dimensional [3], spherical [2] or planar [4] geometries are commonly used in mathematical models of the cell, with
the cytosol represented as an empty region of fluid [1–3]. Despite the simplicity of the representation of the plasma
membrane and/or cytosolic space, the study of spatial signaling dynamics within mathematical models has provided
key insights into the function of many biological pathways, including cyclic AMP signaling in neurons [1], T cell
synapse formation through T cell receptor signaling [4], and general protein kinase signaling [2, 3]. For example,
changes in idealized cell shapes can induce significant changes in the timing of signal propagation and the size of
concentration gradients across the cytosol [2].

In modeling signal propagation from the cell membrane to the nucleus, a further challenge arises from the crowded,
spatially heterogeneous nature of the cytosolic space [5]. In this work we investigate the question of how spatial
heterogeneity arising from organelle barriers, as illustrated in Fig. 1b, might influence the propagation of signals from
the cell membrane to the nuclear membrane. We consider the simplest possible model for signal propagation from
the cell membrane to the nucleus, the release of a one or more activated proteins from the inner cell membrane,
and their diffusion throughout the cytosol until they first reach the nuclear membrane. As the classical picture of
signal propagation to the nucleus typically involves large pathways of many chemically reacting molecules (such as
the MAPK pathway [3]), this model may seem overly simplified. However, a number of proteins are known to be
activated at the cell membrane and then directly translocate to the nucleus [6, 7]. For example, in Notch signaling
the extracellular domain of Notch receptor can interact with ligands, leading to release of NICD (Notch intracellular
domain) from the plasma membrane into the cytosol. NICD then translocates to the nucleus where it can regulate
gene transcription [6, 7]. More generally, studying signals that correspond to the diffusive propagation from cell
membrane to nucleus of individual proteins provides a first step towards understanding how cellular substructure
might influence the dynamics of more complicated signaling pathways.

Using segmented reconstructions of organelle geometry obtained by soft X-ray tomography (SXT) imaging, we
study how the presence of organelle barriers modifies the time needed for diffusing molecules to reach the nucleus in
comparison to the time required within an empty cytosol. As signaling molecules diffusing through the cytosol can
not persist indefinitely, we next investigate how signal inactivation might influence the search process. This creates a
competition where the diffusing signal may be inactivated or degraded prior to reaching the nuclear membrane. We
study how the strength of signal inactivation can modulate statistics of the first passage time (FPT) for an individual
molecule to reach the nucleus, conditional on it reaching the nucleus before inactivation. It is shown that if the total
signal (i.e. number of molecules) that ultimately reach the nucleus is held constant, increasing the inactivation rate
leads to signal sharpening. We also find that signal inactivation can provide robustness to the presence of organelle
barriers, significantly reducing the difference between the average arrival time of molecules that successfully reach the
nucleus in geometries containing organelle barriers, from the time in geometries containing an empty cytosol.

II. MATHEMATICAL MODEL

We consider the time required for a protein to diffuse from the cell membrane to the nuclear membrane. Let N
denote the nucleus of the cell, with ∂N denoting the nuclear membrane. Similarly, we let C denote the cytosol of the
cell, with ∂C denoting the cell membrane. We assume the cytosol may be filled with a collection of closed subvolumes
corresponding to organelles, denoted by O, with boundary surfaces ∂O. Fig 1a shows a slice plane through a 3D soft
X-ray tomography (SXT) reconstruction of a human B cell illustrating such geometries, with Fig. 1b showing a 3D
reconstruction identifying the nucleus, cytosolic organelles, and the cytosol.

We assume a molecule is initially activated at the cell membrane, and diffuses throughout the cytosolic space until
it first reaches the nuclear membrane. Both the cell membrane and organelle surfaces are assumed to be reflecting
barriers to the molecule’s diffusion. Denote by D = 10(µm)2s−1 the diffusivity of the molecule, and by p(x, t) the
probability density the molecule is located at position x within C at time t. η(x) will denote the unit outward normal
to a surface at x. p(x, t) then satisfies the diffusion equation

∂p

∂t
(x, t) = D∆p(x, t), x ∈ C,

p(x, t) = 0, x ∈ ∂N,
∇p(x, t) · η(x) = 0, x ∈ ∂O or ∂C,

p(x, 0) = g(x), x ∈ C ∪ ∂C.

(2.1)
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(a) (b) (c)

FIG. 1: Soft X-ray tomography (SXT) imaging of human B cells. (a) One 2D image plane within a 3D SXT
reconstruction of a B cell. The corresponding 3D reconstruction is subsequently labeled as Bcell1 in simulations.

Pixel intensity corresponds to linear absorption coefficient (LAC), a measure of the local density of organic
material [8, 9]. Larger LAC values are shown in lighter colors. The bright white band corresponds to the glass
capillary in which the cryo-preserved cell was contained. (b) 3D SXT reconstruction of a human B cell with

cutaway to show segmented organelles: heterochromatin (blue), euchromatin (green), mitochondria (beige), Golgi
(purple) and endoplasmic reticulum (ER) (red). Bulk cytosol is shown in gray, with the cell membrane given by the
outer boundary of the cytosol. In our mathematical model, the nucleus, N , is given by the set of voxels with labels
corresponding to components of the nucleus (e.g. euchromatin and heterochromatin in this image). Cytosol, C, is

given by voxels rendered in gray, while all other (colored) voxels outside the nucleus are labeled as organelles, O. (c)
Organelle label field values for voxels within the cell in the image plane shown in (a). Here free cytosolic space

corresponds to the regions in yellow, and voxels outside the cell are not shown.

Note, in the following we assume the initial position of the molecule is located on the (interior) of the cell membrane,
so that g(x) is zero away from ∂C. The Dirichlet boundary condition on ∂N in (2.1) encodes that the protein is
instantly absorbed upon reaching the nuclear membrane, allowing us to study statistics of diffusing protein’s arrival
time at the nuclear membrane.

Let T denote the random time at which the protein first reaches the nuclear membrane surface. The survival
probability that the protein has not yet reached ∂N at time t is then given by

S(t) = Prob [T > t] =

∫
C

p(x, t) dx.

The corresponding probability per time the molecule reaches ∂N is the probability density function (pdf)

f(t) = −dS
dt

= −D
∫
∂N

∇p(x, t) · η(x)dA(x), (2.2)

where dA(x) denotes the surface area measure at x ∈ ∂N . Knowing f(t), we can calculate statistics of T , using that
the average of a function g(T ), denoted by E [g(T )], is defined by

E [g(T )] =

∫ ∞
0

g(t)f(t) dt.

Our representations of cellular geometry are derived from 3D SXT reconstructions, see Materials and Methods, for
which the label field identifying organelles is provided as a Cartesian grid of cubes with mesh-width h, see Fig. 1. To
simulate the time required for the protein to traverse the cytosol we therefore discretize (2.1) onto this grid, generating
a system of ODEs we solve numerically. Let Ch denote the collection of mesh voxels that are labeled as being cytosol,
with Nh those that are labeled as being within the nucleus, and Oh those within organelles. We label the individual
voxels within the cytosol by Ch = {Vi}Mi=1, and let N (Vi;Ch) denote the indices of the subset of the six Cartesian grid
nearest-neighbors of voxel Vi that are within the cytosol. N (Vi;Nh) will similarly denote the indices of the subset of
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Physiological No ER No Organelles
Bcell1 Mean 0.7070 0.2721 (2.6) 0.2499 (2.8)
Bcell1 Median 0.4054 0.1393 (2.9) 0.1335 (3.0)
Bcell1 STD 0.8472 0.3561 0.3173
Bcell1 CV 1.1983 1.3086 1.2695

TABLE I: Statistics of Th, the random time to reach the nucleus in Bcell1. The diffusing molecule is assumed to
initially be randomly distributed on the cell membrane, ∂Ch. Here STD denotes standard deviation and CV denotes
the coefficient of variation (the standard deviation divided by the mean). Values in parenthesis denote the ratio of
the physiological value to the corresponding no ER or no organelle values. See Table S1 for statistics in Bcells 2 and

3.

the six Cartesian grid nearest-neighbors of Vi that are within the nucleus. For xi denoting the centroid of voxel Vi,
we let ph(xi, t) ≈ p(xi, t). ph then satisfies the semi-discrete diffusion equation that

dph
dt

(xi, t) = D(∆hph)(xi, t), xi ∈ Ch

ph(xi, 0) = g(xi), xi ∈ Ch,
(2.3)

where the discrete Laplacian is defined by

(∆hph)(xi, t) =
D

h2

[ ∑
j∈N (Vi;Ch)

(ph(xj , t)− ph(xi, t))−
∑

j∈N (Vi;Nh)

ph(xi, t)

]
. (2.4)

This semi-discrete model corresponds to approximating the continuous Brownian motion of the particle in C by a
continuous-time random walk of the molecule hopping between nearest-neighbor voxels of Ch.

If we denote by Th the corresponding random time for the protein to first reach a voxel that is labeled as being
within the nucleus, we have the corresponding survival probability,

Sh(t) = Prob [Th > t] =
∑
Vi∈Ch

p(xi, t)h
3,

with analogous definitions for the pdf fh(t) and averages, E [g(Th)], as above.
In the remainder, unless stated otherwise time will be reported in units of seconds, and distance in units of µm.

III. ORGANELLE BARRIERS SLOW THE PROPAGATION OF A SIGNAL FROM THE CELL
MEMBRANE TO NUCLEUS, WHILE INCREASING VARIABILITY IN ARRIVAL TIME FOR SIGNALS

INITIATED AT DIFFERENT LOCATIONS

We begin by numerically solving (2.3) to investigate how the presence of organelles as reflecting barriers influences
statistics of the time required for the diffusing protein to reach the nuclear membrane. Let ∂Ch denote the collection
of voxels within the cytosol that border the exterior of the cell, with |∂Ch| denoting the volume of this set of voxels.
We assume the protein is initially randomly placed on the interior surface of the cell, corresponding to a uniform
surface distribution on the cell membrane,

g(xi) =

{
1
|∂Ch| , Vi ∈ ∂Ch,
0, else.

(3.1)

In Fig. 2a we show the survival probability Sh(t) from Bcell1, the reconstruction shown in Fig. 1 (results from two
additional cell reconstructions, labeled Bcell2 and Bcell3, are shown in SI Figures S1 and S2). We consider three
cases, the physiological data where voxels corresponding to organelles within the cytosol are inaccessible (labeled
“physiological”), a modified geometry where voxels corresponding to the endoplasmic reticulum (ER) are added back
into the collection of cytosolic voxels the protein can diffuse through (labeled “no ER”), and a modified geometry
where all voxels within cytosolic organelles are added back into the collection of cytosolic voxels the protein can
diffuse through (labeled “no organelles”). This latter geometry corresponds to the cytosol filling all space between the
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FIG. 2: The presence of organelles as diffusive barriers increases the time required for a diffusing (signaling)
molecule to traverse from the cell membrane to the nuclear membrane. (a) Survival probability, Sh(t), when the

diffusing molecule is started uniformly distributed on the interior of the cell membrane (3.1). (b) Mean first passage
time (MFPT) u(xi) from each point on the cell membrane ∂Ch to reach the nuclear membrane in the “physiological”
case that organelles are present as diffusive barriers. Colorbar gives the MFPT values in seconds, spatial units are
µm. (c) MFPTs in the “no organelles” case that the molecules can freely diffuse everywhere between the cell and

nuclear membranes. Color scale is the same as (b). (d) Volume rendering of the organelles in Bcell1, with the cell in
the same orientation as in (b) and (c) (but zoomed in). Note, the ER rendering (green) is attenuated to make other
organelles more apparent, and the cell membrane is not shown. Nucleus is in yellow, mitochondria in cyan, and the
Golgi in purple. (e) Distributions of mean first passage times (MFPTs) across all voxels on the cell membrane in

(b), (c) and the “no ER” case. That is, the distribution of the values of uh(xi), see (3.2), over ∂Ch. Bin width is .01
(seconds). (f) Distribution of the ratio of the MFPTs from each voxel on the cell membrane in (b) to the value at
the same voxel in (c). Bin width is .1. Note, almost all locations have a ratio of two or more, showing that organelle

barriers significantly increase the time required to reach the nuclear membrane from most initial positions. SI
Figures S1 and S2 show similar results for Bcell2 and Bcell3 respectively.

cell membrane and the nuclear membrane. In Fig. 2a we observe that the presence of organelle barriers dramatically
increases the time required for the protein to reach the nuclear membrane (shifting the survival probability curve
upwards), with the primary contribution to this shift arising from the barrier provided by the ER. Table I shows that
the corresponding mean and median times to reach the cell membrane change similarly. For Bcell1, the presence of
the ER as a barrier accounts for most of the the time required to reach the nucleus; removing the ER decreases the
median of Th by almost a factor of three.

In Figs. 2b-e we examine how the time to reach the nucleus varies when the diffusing molecule is started at different
points on the cell membrane. Let u(x) denote the mean first passage time (MFPT) to diffuse from x ∈ C to the
nuclear membrane. u(x) then satisfies [10]

∆u(x) = − 1
D , x ∈ ∂C

u(x) = 0, x ∈ ∂N
∇u(x) · η(x) = 0, x ∈ ∂O or ∂C.

In practice, we solve a discretized version of this PDE that gives the corresponding MFPTs on our Cartesian grid
arising from the imaging data. Let uh(xi) denote the MFPT to reach the nucleus from xi, which satisfies the linear
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system of equations

(∆huh)(xi) = − 1
D , xi ∈ Ch. (3.2)

Fig. 2b plots uh(xi) on the cell membrane (∂Ch) in the physiological case, while Fig. 2c shows the case with no
organelles (i.e. an empty cytosol). We see that the presence of organelles significantly slows the MFPT to the nucleus
for most points on the cell membrane. Not surprisingly, locations closest to the nucleus (right side) generally have
smaller MFPTs than locations far from the nucleus (left side). Fig. 2d shows that the distribution of MFPTs across
the cell membrane is much flatter and broader when organelles are present as barriers (green, physiological case) in
comparison to an empty cytosol (purple, no organelles case). Moreover, examining the ratio of the MFPTs at each
point on the surface in the physiological case to the no organelle case, Fig 2e, we find that at almost all initial positions
on the cell membrane the presence of organelle barriers increases the MFPT by a factor of two or more.

In conclusion, we observe that organelle barriers can substantially hinder the diffusion of molecules across the
cytosol, significantly increasing the time required to reach the nuclear membrane, and increasing the variability of
this time across the cell membrane when comparing signals initiated at different membrane points (Fig. 2e). While
our discussion has focused on Bcell1, we observe similar qualitative behavior in Bcell2 and Bcell3, see SI Figures S1
and S2.

IV. INACTIVATION FILTERS OUT MOLECULES UNDERGOING LONGER SEARCHES, REDUCING
VARIABILITY IN SIGNAL ARRIVAL TIME

Activated signaling molecules cannot diffuse throughout the cytosol of cells searching for the nuclear membrane
indefinitely. Whether by degradation mechanisms, or inactivation mechanisms (such as phosphorylation or dephos-
phorylation), cellular signals will eventually be terminated. From the perspective of a diffusing signaling molecule this
creates a competition between the search for the nuclear membrane and the inactivation process. We now examine
how the interplay between these two processes can modulate the timing at which activated signals reach the cell
membrane.

We consider the simplest possible mechanism for modeling signal inactivation, assuming the diffusing molecule can
now also be inactivated with probability per time λ. Let pλ(x, t) denote the probability density the diffusing molecule
is still activated and within the cytosol at time t. pλ then satisfies

∂pλ
∂t

(x, t) = D∆pλ(x, t)− λpλ(x, t), x ∈ C,

pλ(x, t) = 0, x ∈ ∂N,
∇pλ(x, t) · η(x) = 0, x ∈ ∂O or ∂C,

pλ(x, 0) = g(x), x ∈ C ∪ ∂C.

(4.1)

Note that pλ(x, t) = e−λtp(x, t), so that p0(x, t) = p(x, t), the solution to the diffusion equation (2.1).
We are interested in statistics of the exit time through the nuclear membrane, Tλ, conditioned on the protein

actually reaching the nuclear membrane before inactivation (i.e. the event that Tλ < ∞). The probability per time
that the diffusing molecule reaches the nuclear membrane at time t is then

fλ(t) = −D
∫
∂N

∇pλ(x, t) · η(x) dA(x) = e−λtf(t) (4.2)

where f(t) = f0(t) denotes the probability per time to reach the nuclear membrane in the absence of degradation,
given by (2.2). With these definitions, the probability the molecule reaches the nuclear membrane before inactivation
is

Zλ := Prob [Tλ <∞] =

∫ ∞
0

fλ(t) dt =

∫ ∞
0

e−λtf(t) dt.

Denoting the conditional cumulative distribution function (CDF) of Tλ by

Fλ(t) = Prob [Tλ < t | Tλ <∞] =

∫ t
0
fλ(s) ds∫∞

0
fλ(s) ds

, (4.3)

in SI Section S1 we prove the following results
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FIG. 3: Signal inactivation filters out molecules undergoing longer diffusive searches, reducing both the average time
and variance in the time at which a molecule reaches nucleus, conditional on the molecule reaching the nucleus

before inactivation. The figures show statistics of the conditional first passage time, Tλ,h, to reach the nucleus when
the diffusing molecule is started randomly on the cell membrane (i.e. uniformly distributed, see (3.1)), and the

molecule can be inactivated with rate λ. (a) The conditional mean first passage time (MFPT), 〈Tλ,h〉 (4.6). In all
cases we see that 〈Tλ,h〉 is strictly decreasing as λ increases, illustrating Corollary IV.1. (b) The conditional

variance of Tλ,h, given by (4.7), is decreasing as λ increases. (c) The probability that the diffusing molecule reaches
the nucleus, Zλ,h, is strictly decreasing as λ increases, illustrating Theorem IV.1.

Theorem IV.1. For all fixed t > 0 and λ ≥ 0, Zλ(t) is a strictly decreasing function of λ, and Fλ(t) is a strictly
increasing function of λ.

This result gives several immediate corollaries, including that

Corollary IV.1. Both the conditional MFPT, 〈Tλ〉 := E [Tλ | Tλ <∞], and the conditional median first passage
time, M(Tλ) := F−1

λ

(
1
2

)
, are strictly decreasing with respect to λ.

That 〈Tλ〉 is decreasing in λ was also shown in [11] for probability density functions with the factored form e−λtg(t).
Theorem IV.1 and Corollary IV.1 together demonstrate that as the inactivation rate λ is increased, the time for a

molecule to reach the nucleus, conditioned on the molecule actually reaching the nucleus, decreases. Of course, the
probability any individual molecule actually reaches the nucleus, Zλ, decreases as λ increases. In this way strong
signal inactivation will filter out molecules undergoing longer diffusive searches.

To explore how increasing the inactivation rate λ influences statistics of the time to reach the nucleus, we now
study a semi-discrete model defined on the meshes representing the B cell geometries, and corresponding to a spatial
discretization of (4.1). Let pλ,h(xi, t) ≈ pλ(xi, t) denote the probability density that the diffusing molecule is located
at xi at time t, then

dpλ,h
dt

(xi, t) = D(∆hpλ,h)(xi, t)− λpλ,h(xi, t), xi ∈ Ch

pλ,h(xi, 0) = g(xi), xi ∈ Ch,
(4.4)

where pλ,h(xi, t) = e−λtph(xi, t). Similarly, fλ,h(t) = e−λtfh(t), so that the probability the diffusing molecule reaches
the nucleus is given by

Zλ,h =

∫ ∞
0

fλ,h(t) dt =

∫ ∞
0

e−λtfh(t) dt. (4.5)

For Tλ,h the random time at which the nucleus is reached, the conditional MFPT to reach the nucleus is then

〈Tλ,h〉 = E [Tλ,h | Tλ,h <∞] = − d

dλ
ln(Zλ,h) = −

Z ′λ,h
Zλ,h

=

∫∞
0
te−λtfh(t) dt∫∞

0
e−λtfh(t) dt

. (4.6)

In Figure 3 we consider statistics of Tλ,h when the diffusing molecule is initially placed randomly on the cell
membrane (i.e. the uniform initial condition (3.1)). Fig. 3a illustrates Corollary IV.1, showing that for each cell
〈Tλ,h〉 is strictly decreasing as λ is increased. Similarly, Fig. 3c illustrates Theorem IV.1, showing that the probability
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the molecule reaches the nucleus, Zλ,h, is strictly decreasing as λ increases. In Fig. 3b we examine the conditional
variance of Tλ,h, defined by

Var [Tλ,h] := E
[
(Tλ,h − 〈Tλ,h〉)2

∣∣ Tλ,h <∞] =

∫∞
0

(t2 − 〈Tλ,h〉2)e−λtfh(t) dt∫∞
0
e−λtfh(t) dt

. (4.7)

In each B cell the conditional variance is strictly decreasing. In SI Figures S5, S6 and S7 we show that similar results
hold when the diffusing molecule’s initial position is more localized. Here the molecule is initially placed randomly
within small patches of the cell membrane, see SI Section S2 for details.

V. INACTIVATION CAN SHARPEN THE SIGNAL REACHING THE NUCLEAR MEMBRANE

To understand how inactivation can affect signal propagation, we investigate how the signal reaching the nucleus
changes as the inactivation rate λ is increased, but the number of molecules reaching the nucleus is held fixed. By
fixing the number of molecules (i.e. total signal) that ultimately reach the nucleus, we can investigate how inactivation
influences signal timing without modulating the total signal strength. Note, to fix the total signal reaching the nucleus
requires that an increasing number of signaling molecules be released from the cell membrane as λ increases.

Consider a deterministic version of (4.4). Assume N0 molecules are initially uniformly distributed across the interior
of the cell, and let uh(xi, t) denote the (deterministic) concentration of molecules located at xi at time t. We assume
uh has units of number per (µm)3. uh then also satisfies (4.4), but with the initial condition

uh(xi, 0) = N0g(xi), xi ∈ Ch,

so that uh(xi, t) = N0pλ,h(xi, t). The number of molecules per time that successfully reach the nucleus is given by
the total flux of uh into the nucleus, N0fλ,h(t). Similarly, the total number of molecules to successfully reach the
nucleus is

N = N0

∫ ∞
0

fλ,h(t) dt = N0Zλ,h.

We define the signal reaching the nucleus to be the number of molecules per time that reach the nucleus, given that
we assume N molecules overall arrive. N0 is therefore chosen so as to keep N fixed as the inactivation rate is varied,
so that

N0 =
N

Zλ,h
.

With this choice, the signal, i.e. number of molecules per time, reaching the nuclear membrane is then Nfλ,h(t)Z−1
λ,h.

In Fig. 4 we plot the signal reaching the nucleus in Bcell1 as the inactivation rate is increased. SI Fig. S8 shows
the corresponding signals reaching the nucleus in Bcell2 and Bcell3. We see a clear sharpening effect as λ increases,
with molecules arriving within an earlier and more localized time window. In this context we can interpret increasing
activation as speeding up the arrival of the signal at the nuclear membrane.

While the deterministic model shows the window in which the molecules arrive becomes smaller as inactivation
increases, the single-particle stochastic model (4.4) allows us to see how much variation one would have in the number
of molecules that successfully reach the nucleus. We again assume that N0 signaling molecules are activated uniformly
on the interior of the cell membrane, and that the molecules’ dynamics are completely independent. The number of
molecules that reach the nucleus would then be a binomial random variable, N ∼ B(N0, Zλ,h), in N0 with parameter
Zλ,h. The average number of molecules to reach the nucleus would be E [N] = N0Zλ,h, while the coefficient of variation
in the number of molecules to reach the nucleus is

CV [N] =

√
1− Zλ,h
N0Zλ,h

≈ 1√
E [N]

for λ large. Keeping N0Zλ,h fixed as the inactivation rate is increased then preserves the expected number of molecules
to reach the nucleus. Moreover, the relative variation in the number of molecules that reach the nucleus will be small
if the average number of molecules that reach the nucleus, E [N], is sufficiently large. By modulating both the
inactivation rate and the number of signaling molecules released at the cell membrane, a cell can then tune both the
sharpness of the signal, and the noisiness in the number of molecules that successfully reach the nuclear membrane.
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FIG. 4: The signal in Bcell1 that successfully reaches the nuclear membrane is sharpened as the inactivation rate, λ,
is increased. Here signal denotes the expected rate of arrival of signaling molecules at the nuclear membrane when
the number of arriving molecules overall is N . The expected rate of arrival is plotted as a function of the time that

has elapsed since the signaling molecules were released uniformly distributed across the interior of the cell
membrane. Note that the total number of arriving molecules is being held constant in the results plotted here, and
this requires that more signaling molecules be released when λ is greater. This is achieved by choosing the total

number of molecules that are released initially as N0 = NZ−1
λ,h. As explained in Section V, in a deterministic model

with this initial condition, the signal corresponds to the flux (number of molecules per time) successfully reaching
the nucleus (given by Nfλ,h(t)Z−1

λ,h). For the single-particle stochastic model (4.4), N0 = N = 1 and the signal
corresponds to the first passage time density to reach the nucleus, conditional on the molecule arriving before

inactivation (given by fλ,h(t)Z−1
λ,h). A similar signal sharpening effect is observed in Bcell2 and Bcell3, see SI Fig. S8.

VI. INACTIVATION CAN PROVIDE ROBUSTNESS WITH RESPECT TO CELLULAR
SUBSTRUCTURE IN THE TIME FOR A SIGNAL TO REACH THE NUCLEUS

In Fig. 5a we plot the ratio of 〈Tλ,h〉 in the physiological case to the no organelles case. For very small values of the
inactivation rate the figure demonstrates that the presence of organelles can significantly increase the time required
for one diffusing molecule to reach the nucleus. In contrast, as λ increases, for each B cell we see that the ratio
decreases to a value close to one. That is, strong signal inactivation seems to be able to buffer out the effect of cellular
geometry. This comes at the cost of a significantly decreased probability any individual signaling molecule will reach
the nucleus.

These simulations illustrate that the ratio of the MFPTs between the physiological and no organelle cases is
decreased for sufficiently strong signal inactivation. To understand the limit to how much strong signal inactivation
can buffer out the effect of organelle barriers in our model, we therefore examine the large λ asymptotic expansion of
the conditional MFPT. We begin by examining the behavior of fh as λ→∞.

For λ → ∞, it is clear from (4.5) that the behavior of the integral will be determined by the short-time behavior
of fh(t), which can be estimated by direct Taylor series expansion using a matrix exponential representation for the
evolution operator, i.e.

fh(t) = −dSh
dt

= −
∑
Vi∈Ch

dph
dt

(xi, t)h
3

= −Dh3
∑
Vi∈Ch

(
∆he

D∆htg
)

(xi, t)

= −h3
∑
Vi∈Ch

∞∑
n=0

[
(D∆h)n+1tn

n!
g

]
(xi)

= −h3
∞∑
n=0

∑
Vi∈Ch

Dn+1tn

n!

(
(∆h)n+1g

)
(xi). (6.1)

To simplify this expression we make use of the relationship between powers of the discrete Laplacian and geodesic
(nearest-neighbor) graph distances.
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FIG. 5: Strong signal inactivation can buffer out the effects of cellular substructure on the time to find the nucleus.
(a) The ratio of the conditional mean first passage time (MFPT) to reach the nucleus, 〈Tλ,h〉, in the physiological
case to the conditional MFPT in the no organelles case decreases significantly as λ→∞. For each cell the ratio

approaches a number close to one, indicating that strong signal inactivation can completely buffer out the effect of
cellular substructure on the time to find the nucleus. (b) Difference of the ratio of 〈Tλ,h〉 shown in (a) from its
asymptotic limit (6.4). An expanded range of λ values is used to show the approach to the asymptotic limit.

Recall our assumption that g(xi) = 0 for all xi 6∈ ∂Ch, and denote by supp{g} ⊂ ∂Ch the support of g (i.e. the
set of voxels in which g(xi) 6= 0). Given a set of voxels V ⊂ Ch, we define d(V, Nh) to be the shortest (integer) graph
distance along a nearest-neighbor path from each voxel in V to first reach a voxel in Nh. Here by nearest-neighbor we
mean the six nearest-neighbors to a given voxel, two from each of the x, y and z directions. For example, if no voxel
in V is within Nh, but some voxel in V has a nearest neighbor that is within Nh, then d(V, Nh) = 1. As shown in
SI Lemma .1, the supp{(∆h)kg} will contain no voxels bordering the nucleus until k = d(supp{g}, Nh) − 1. For any
smaller k, one additional application of the discrete Laplacian then simply moves probability mass within the cytosol.
As such, mass is conserved and we have the following result which is proven in SI Section S1

Theorem VI.1. ∑
Vi∈Ch

(
(∆h)kg

)
(xi) = 0

for 1 ≤ k ≤ d(supp{g}, Nh)− 1.

With dg = d(supp{g}, Nh), the theorem implies that (6.1) can be simplified to

fh(t) = −h3
∞∑

n=dg−1

∑
Vi∈Ch

Dn+1tn

n!

(
(∆h)n+1g

)
(xi)

∼ −h3D
dg tdg−1

(dg − 1)!

∑
Vi∈Ch

(
(∆h)dgg

)
(xi), as t→ 0.
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Assuming that dg > 1, we obtain the corresponding estimate for Zλ,h as λ→∞ by

Zλ,h =

∫ ∞
0

e−λtfh(t) dt =
1

λ

∫ ∞
0

e−sfh(sλ−1) ds

∼ −h3D
dg

λdg

∑
Vi∈Ch

(
(∆h)dgg

)
(xi), as λ→∞.

(6.2)

In SI Theorem .1 we prove this asymptotic formula holds. Taking logarithmic derivatives, we find that

〈Tλ,h〉 = − d

dλ
log(Zλ,h) ∼ d(supp{g}, Nh)

λ
, as λ→∞. (6.3)

In SI Figure S4 we show the convergence of 〈Tλ,h〉 to this asymptotic formula as λ→∞.
Let d(supp{g}, Nh)phys denote the distance from the support of g to the nucleus in the physiological case, with

d(supp{g}, Nh)n.o. the distance in the no organelle case. Define 〈Tλ,h〉phys and 〈Tλ,h〉n.o. analogously. The ratio of the
conditional MFPTs then approaches

〈Tλ,h〉phys

〈Tλ,h〉n.o.
∼ d(supp{g}, Nh)phys

d(supp{g}, Nh)n.o.
, as λ→∞. (6.4)

That is, how much the effect of geometry on the search time can be buffered out by strong inactivation in our model is
essentially controlled by how the shortest path (nearest-neighbor) graph distance from the support of g to the nucleus
changes between the physiological and no organelle cases. In particular, since the voxels within the cytosol in the
physiological case are always a strict subset of those in the no organelles case, we see the ratio is always at least one
(in the limit).

In Figure 5b we plot the difference between the ratio of the conditional MFPTs and the derived asymptotic limit
in (6.4). We see that for each cell the asymptotic limit is approached as λ→∞, but that the approach is not always
monotonic. In particular, the asymptotic limit (6.4) does not appear to be a rigorous lower bound for how much the
effect of geometry can be buffered out over all possible inactivation rates.

If the diffusing molecule is started at a fixed location, xi, we obtain

〈Tλ,h〉phys

〈Tλ,h〉n.o.
∼ d(xi, Nh)phys

d(xi, Nh)n.o.
, as λ→∞,

the ratio of the shortest graph (nearest-neighbor) distances from xi to the nucleus in the two cases. In particular,
if the shortest path distance from xi to the nucleus is the same in both cases, we find that the effect of organelle
barriers on the conditional MFPT is completely filtered out in the limit of strong signal inactivation.

In SI Section S2, we show analogous results to Figure 5 when the diffusing molecule is started randomly within
small patches of the cell membrane. We see similar qualitative behavior for statistics of Tλ,h, and for the ratio of
〈Tλ,h〉 in the physiological to no organelles cases. Note, however, that we observe a variation in how much the effect
of geometry can be buffered out as the patch of cell membrane where the signal is initiated moves about.

VII. DISCUSSION

Our results demonstrate that organelle barriers to the molecular diffusion of signaling molecules can significantly
slow the propagation of a signal from the cell membrane to the nucleus. Such barriers also increase the variability in
the distribution of times to reach the nucleus for signals activated at different localized portions of the cell membrane.
Strong signal inactivation provides one potential mechanism to both buffer out the effect of organelle barriers, and to
sharpen the timing at which signals reach the nucleus. This comes with a clear cost though; increasing the rate of
signal inactivation requires increasing numbers of signaling molecules to be activated at the cell membrane to maintain
a fixed number of molecules that successfully reach the nucleus.

Our conclusions can be generalized in several ways. First, while we focused on the propagation of a signal between
the cell and nuclear membranes, our results should hold more generally for a variety of signal sources and targets
within cells. In more general signaling pathways they should also apply to the most downstream signaling component,
presuming it is not activated right near the nuclear membrane. Finally, we note that while signaling pathways can
involve complicated reaction kinetics throughout the cytosol, it may be that in some cases their overall effect can be
approximated as a single signal that propagates throughout the cytosol and is inactivated on some timescale.
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Regime of Model Applicability: It is important to note that the large λ asymptotic scaling in (6.3), and
convergence to the ratio (6.4), may require relatively large values of λ (on the order of λ between 104 s−1 and 106 s−1

for D = 10 (µm)2s−1, see Figure 5b and SI Figure S4). Molecules that successfully reach the nucleus would on average
arrive on time scales of 10−4s−1 or less, see Figure S4, which would not necessarily be expected to be physically
plausible in a typical mammalian cell. More generally, as λ → ∞ these results rely on the (increasingly) short-time
behavior of the continuous-time random walk model (4.4). However, both the continuous diffusion model (4.1) and the
continuous time random walk model (4.4) become physically unrealistic as models for the very short-time motion of
a molecule within a cell. Moreover, the very short-time behavior of the semi-discrete model (4.4) and the continuous
diffusion model (4.1) would not be expected to agree, since the former only approximates the latter on sufficiently
large timescales.

The relative behavior of the two models is illustrated in Fig. S9 and SI Section S3. There we compare the analytical
PDE solution, when the nuclear membrane and cell membrane are represented as concentric spheres, to the numerical
solution of the corresponding semi-discrete model on a Cartesian grid approximation of the cytosolic region between
the spheres. We find that for a mesh spacing of h = 0.0352µm, comparable to that of our B cell reconstructions, 〈Tλ〉
and 〈Tλ,h〉 agree exceptionally well until the asymptotic λ−1 scaling takes over in the semi-discrete model. Then we
see a discrepancy due to the different short-time behavior of the semi-discrete model, with the λ−1 scaling, and the
exact solution to the continuous diffusion PDE, which exhibits a λ−1/2 scaling, see (S5).

For these reasons the usefulness of understanding the large λ asymptotic behavior is not in the predicted scaling of
〈Tλ,h〉 (6.3), but in the decreasing asymptotic behavior of the conditional MFPT ratio (6.4). This asymptotic limit
provides insight into why, on physiological timescales, we observe a decrease in the effect of organelle barriers on signal
propagation. Namely, signal inactivation filters out the molecules that would have had to traverse longer paths to get
to the nucleus. This reduces differences between the lengths of paths which molecules that reach the nucleus must
take in the organelle filled, and organelle empty, cell.

Conjectures and Open Problems: For the continuous diffusion model (4.1) we would conjecture that the
corresponding ratio of conditional MFPTs satisfies

〈Tλ〉phys

〈Tλ〉n.o.
∼ d(supp{g}, ∂N)phys

d(supp{g}, ∂N)n.o.
, as λ→∞,

where d(supp{g}, ∂N) refers to the shortest path geodesic distance through the cytosol from the signal initiation
location, supp{g}, to the nuclear membrane ∂N . We have obtained partial results to this effect when there are straight
line paths from supp{g} to ∂N and the principal curvatures of the nuclear membrane satisfy certain constraints, but
the general case remains an open problem.

The geodesic distance has recently been suggested to also arise in the context of the first searcher problem. Here
one is interested in the average time at which the first of N searchers reaches a target as the number of searchers, N ,
becomes large (i.e. N →∞). In [12] it was suggested that, similar to our observations for strong signal inactivation,
this limit also filters out all but the shortest paths, with the average time for the first searcher to reach a target
scaling like the square of the geodesic distance. An interesting future question would be to understand the interplay
of these two problems; i.e. the time required for the first of many searchers to successfully reach a binding target in
the presence of strong signal inactivation.

Finally, we note that it is an open question to understand whether spatial signaling pathways [3, 13, 14] involve
more general mechanisms for filtering out the effect of spatial heterogeneity within the cytosolic environment. It
would be particularly interesting to investigate such questions while also studying the role of two effects that we have
not explicitly resolved; crowding between molecules within the cytosol and active transport of signaling molecules to
the nuclear membrane.

VIII. MATERIALS AND METHODS

Reconstruction of Cellular Substructure

To reconstruct the locations of organelles and membrane surfaces, we made use of soft X-ray tomographic (SXT)
imaging of cells. For an overview of SXT imaging, we refer the reader to [9]. In this work we used reconstructions
of three human B cells (GM12878 lymphoblastoids) from [15]. The experimental protocol for obtaining these recon-
structions was also described in [15]. SXT is similar in concept to medical X-ray CT imaging, but uses soft X-rays
in the “water window,” which are absorbed by carbon and nitrogen dense organic matter an order of magnitude more
strongly than by water [9]. As the absorption process satisfies the Beer–Lambert law, the measured linear absorption
coefficient (LAC) of one voxel of a 3D reconstruction is linearly related to the density of organic material within that
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voxel [9]. In practice, SXT reconstructions are able to achieve resolutions of 50 nm or less. For all reconstructions
used in this work, the underlying voxels were cubes with sides of length 0.03515625µm. Another advantage of SXT
is in the minimal preprocessing of cells that is required before imaging. Cells are cryogenically preserved, but no
segmentation, dehydration, or chemical fixation is necessary. Figure 1a shows the reconstructed LAC values from one
image plane within a 3D SXT reconstruction of Bcell1.

As discussed in [16], many organelles have different underlying densities of organic material, and therefore attenuate
soft X-rays differently. This is reflected in their having different LAC values. Exploiting this property, 3D SXT
reconstructions were labeled and segmented in Amira [17], using a combination of Amira’s automated segmentation
tools based on LAC values, followed by hand segmentation to refine segmentation boundaries [16]. Each underlying
voxel within the 3D SXT reconstruction was labeled as belonging to one of a variety of organelles (heterochromatin,
euchromatin, endoplasmic reticulum, mitochondria, Golgi apparatus, bulk cytosol, etc.). Figure 1c shows one plane
of the resulting label field.

Numerical Solution of Semi-discrete Diffusion Equation (2.3)

The semi-discrete diffusion equation (2.3) was solved in PETSc 3.7.7 [18, 19] using the adaptive Runge-Kutta
Chebyshev (RKC) method of [20] with both the absolute and relative errors set to 10−8. To evaluate the solution,
ph(x, t), at larger times, it was approximated by a truncated eigenvector expansion using all terms with eigenvalues
having a magnitude less than one. The corresponding eigenvalues and eigenvectors of the discrete Laplacian (2.4)
were calculated in SLEPc 3.7.4 [21] using the Krylov-Schur solver with default parameter values and tolerances. For
all simulations the decision to switch from the RKC solver to the eigenvector expansion was made by looking over
the interval 1 < t < 10 for where the two solutions first differed by an absolute error of less than 10−5 and a relative
error of less than .01.

To numerically evaluate the integrals defining statistics such as Zλ,h and 〈Tλ,h〉, we split them into two pieces. The
integral from zero to the time at which the PDE solver switched from the RKC method to the truncated eigenvector
expansion, and the integral from this time to infinity. The first integral was evaluated using the cumulative trapezoidal
rule at the discretization times used in the RKC method. The second integral was evaluated by analytically integrating
the truncated eigenvector expansion. Within these integrals the probability density function for the molecule to reach
the nucleus was calculated directly from the flux into voxels of the nucleus,

fh(t) =
D

h2

M∑
i=1

∑
j∈N (Vi;Nh)

ph(xi, t),

using the numerically computed solutions.
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SUPPORTING INFORMATION

S1. Proofs of Main Text Theorems

In this section we give proofs of the results in Sections IV and VI. We begin with Theorem IV.1 and Corollary IV.1
from Section IV. In our proofs, we do not show here, but make use of, the following basic results on properties of the
solutions to (2.1) and (4.1)

1. The probability per time the diffusing molecule reaches the nucleus in the model without degradation, f(t), is
positive for t > 0.

2. The conditional survival probability Sλ(t) = 1−Fλ(t) approaches zero as t→∞ sufficiently fast that tSλ(t)→ 0
and Sλ(t) is integrable.

Theorem IV.1. For all fixed t > 0 and λ ≥ 0, Zλ(t) is a strictly decreasing function of λ, and Fλ(t) is a strictly
increasing function of λ.

Proof. Let λ2 > λ1 ≥ 0, it is immediate that Zλ1 > Zλ2 . Showing Fλ2(t) > Fλ1(t) for all t > 0 is equivalent to
showing

H(t) = Zλ1

∫ t

0

fλ2(s) ds− Zλ2

∫ t

0

fλ1(s) ds > 0

for t > 0. Note H(0) = 0 and limt→∞H(t) = 0. We then have that

H ′(t) = Zλ1fλ2(t)− Zλ2fλ1(t) = f(t)
(
Zλ1e

−λ2t − Zλ2e
−λ1t

)
.

As such, using that f(t) > 0 for t > 0, we have that H ′(t) = 0 if and only if

Zλ1

Zλ2

= e(λ2−λ1)t.

As the left side is greater than one, there is exactly one point, t∗, where equality can hold for 0 < t < ∞. For
0 < t < t∗, H ′(t) > 0, while for t > t∗, H ′(t) < 0. As such, we conclude that H(t) increases from H(0) = 0 to a global
max, and then decreases to zero as t→∞, implying that H(t) > 0 for 0 < t <∞.

Corollary IV.1. Both the conditional MFPT, 〈Tλ〉 := E [Tλ | Tλ <∞], and the conditional median first passage
time, M(Tλ) := F−1

λ

(
1
2

)
, are strictly decreasing with respect to λ.

Proof. By definition

〈Tλ〉 =

∫∞
0
tfλ(t) dt∫∞

0
fλ(t) dt

= −
∫ ∞

0

t
d

dt
[1− Fλ(t)] dt,

where the conditional CDF, Fλ(t), is given by (4.3). Note that Fλ(t) ∈ [0, 1], Fλ(0) = 0 and limt→∞ Fλ(t) = 1. Using
the assumed integrability of tSλ(t) = t(1− Fλ(t)), and integrating by parts, then gives

〈Tλ〉 =

∫ ∞
0

Sλ(t) dt =

∫ ∞
0

(1− Fλ(t)) dt.

As Fλ(t) is strictly increasing with respect to λ for t > 0 and Fλ(t) > 0 for t > 0, this implies that 〈Tλ〉 is strictly
decreasing in λ.

To prove the monotonicity of the median, let λ2 > λ1 ≥ 0. Then

Fλ1(M(λ1)) = 1
2 = Fλ2(M(λ2)) > Fλ1(M(λ2))

by the monotonicity of Fλ(t) with respect to λ. Since the CDF Fλ(t) is non-decreasing and continuous in t, we
conclude that M(λ1) > M(λ2).

We now prove Theorem VI.1 from Section VI. We first prove the following lemma

Lemma .1. Let k ∈ {0, 1, . . . , d(supp{g}, Nh)− 1}. Then d
(
supp{(∆h)kg}, Nh

)
= d(g,Nh)− k.
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Proof. The case d(supp{g}, Nh) = 1 is trivial. Assume d(supp{g}, Nh) ≥ 2. Let k ≤ d(supp{g}, Nh)− 2, and assume
Σk = supp{(∆h)kg} is the set of nearest neighbor shortest paths of length k from supp{g}. By definition of the discrete
Laplacian, Σk+1 then contains Σk, and all nearest-neighbors of Σk within Ch. This corresponds to all nearest-neighbor
shortest paths from the voxels within supp{g} of integer length ≤ k + 1, so that d(Σk, Nh) = d(Σk+1, Nh) + 1. Since
d(Σ0, Nh) = d(supp{g}, Nh) by definition, the theorem then holds by induction.

The lemma implies that supp{(∆h)kg} will contain no voxels bordering the nucleus until k = d(supp{g}, Nh) − 1.
For any smaller k, one additional application of the discrete Laplacian simply moves probability mass within the
cytosol, but outside of voxels that border the nucleus. This then implies Theorem VI.1:

Theorem VI.1. ∑
Vi∈Ch

(
(∆h)kg

)
(xi) = 0

for 1 ≤ k ≤ d(supp{g}, Nh)− 1.

Proof. Assume d(supp{g}, Nh) ≥ 2. We may then write∑
Vi∈Ch

(
(∆h)kg

)
(xi) =

∑
Vi∈Ch

(∆hg̃) (xi),

where g̃ = ∆
(k−1)
h g. By Lemma .1 g̃(xi) = 0 for all xi that are nearest-neighbors to voxels within the nucleus.

Using (2.4), when acting on g̃ the discrete Laplacian then simplifies to

∑
Vi∈Ch

(∆hg̃) (xi) =
D

h2

∑
Vi

∑
j∈N (Vi;Ch)

g̃(xj)−
∑
Vi

|N (Vi;Ch)| g̃(xi)

 ,
where |N (Vi;Ch)| denotes the number of neighbors of voxel Vi within Ch. Reordering the first sum we have that∑

Vi

∑
j∈N (Vi;Ch)

g̃(xj) =
∑
Vi

|N (Vi;Ch)| g̃(xi)

 ,
so that ∑

Vi∈Ch

(∆hg̃) (xi) = 0.

In the following theorem we prove the asymptotic behavior of Zλ,h given in (6.2).

Theorem .1.

Zλ,h ∼ −h3D
dg

λdg

∑
Vi∈Ch

(
(∆h)dgg

)
(xi), as λ→∞.

Proof. By definition

Zλ,h =

∫ ∞
0

e−λtfh(t) dt =
1

λ

∫ ∞
0

e−sfh(sλ−1) ds.

Plugging in the expansion formula for fh(t),

fh(t) = −h3
∞∑

n=dg−1

∑
Vi∈Ch

Dn+1tn

n!

(
(∆h)n+1g

)
(xi),
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we have that

Zλ,h =− h3D
dg

λdg

∑
Vi∈Ch

(
(∆h)dgg

)
(xi)

− h3

λ

∫ ∞
0

e−s
∞∑

n=dg

∑
Vi∈Ch

Dn+1sn

λnn!

(
(∆h)n+1g

)
(xi) ds.

In the last equation, denote the second, remainder term by I. We claim I = o
(

1
λdg

)
as λ→∞. We have

|I| ≤ |Ch|
λ

∫ ∞
0

e−s
∞∑

n=dg

Dn+1sn

λnn!
‖
(
(∆h)n+1g

)
(xi)‖`2 ds,

where |Ch| denotes the volume of the cytosol and ‖ · ‖`2 denotes the discrete `2 norm over Ch. Let σmax label the
largest singular value of the discrete Laplacian matrix, ∆h, then

|I| ≤ |Ch|
λ

∫ ∞
0

e−s
∞∑

n=dg

Dn+1sn

λnn!
σn+1
max||g||`2 ds

= |Ch| ‖g‖`2
∞∑

n=dg

Dn+1

λn+1n!
σn+1
max

∫ ∞
0

e−ssn ds

= |Ch| ‖g‖`2
∞∑

n=dg

(
σmaxD

λ

)n+1

.

Assuming we take λ > σmaxD large enough the last series is convergent and we have

|I| ≤ |Ch| ‖g‖l2
(
σmaxD

λ

)dg+1(
1− σmaxD

λ

)−1

= o

(
1

λdg

)
as λ→∞.

S2. Statistics of the time to reach the nucleus with localized initial conditions

To understand how localization of the initiation of signals might influence the time for a signal to reach the nucleus,
we also conducted simulations using localized patch initial conditions. This corresponded to the initial condition

ph(xi, 0) = g(xi) =

{
1
|A| , Vi ∈ Ph,
0, else,

(S1)

where Ph denotes the set of voxels within a given patch of the cell membrane and A the area of the patch.
100 patches were determined for each cell by selecting 100 seed points on the cell membrane of the “physiological”

geometries (i.e. cells with all internal organelles present). A 100-bin, equally-spaced histogram for the distribution of
MFPTs across the cell membrane was generated from the values of uh(xi), see (3.2). From each bin one seed location
was then randomly sampled from the collection of voxels with MFPTs within that bin. About each seed point a patch
was constructed by adding all nearest-neighbor voxels of the seed point that were also within the membrane. The
procedure was then repeated, adding all nearest-neighbors to previously calculated neighbors. This procedure was
then repeated recursively for the newly added voxels until at least 100 voxels were obtained. The final patch then
formed a connected graph within the cell membrane containing all k nearest neighbors of the seed voxel for some value
k. In Figure S3 we show the distribution of patch diameters for the 100 patches sampled for each B cell. Typical final
patch sizes were between .3 and .5 µm in diameter.

In Figures S5, S6, and S7 we show statistics of the conditional MFPT to reach the nucleus, Tλ,h, for Bcell1, Bcell2
and Bcell3 respectively. In each case we see similar qualitative behavior in the statistics to what we observed for the
uniform initial condition used in the main text, see Figures 3 and 5.
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S3. Comparison of Semi-Discrete Model to Continuous PDE Model: Spherically Symmetrical Case

We now investigate the accuracy in approximating, and differences between, our semi-discrete model and the
continuous diffusion equation model. As our cellular reconstructions are given as labeled Cartesian meshes, we do
not have an underlying spatially-continuous domain representation with corresponding analytic solution to which we
can compare. We therefore instead consider a simpler problem, the spherically symmetrical case. We model the cell
as a 3D ball with radius R centered at the origin, and model the nucleus as a 3D concentric ball of smaller radius r.
While this problem is idealized, we will solve it using comparable mesh sizes to the B cell reconstructions, allowing
us to characterize how well we resolve the continuous Brownian Motion of molecules when using this resolution in
spherical geometries.

We first consider an initial condition starting from a point y on the cell membrane. Taking the Laplace transform
of (4.1) and denoting Kλ,s(x) =

∫∞
0
pλ(x, t)e−st dt, we obtain

−δ(y − x) = D∆Kλ,s(x)− (λ+ s)Kλ,s(x), r < |x| < R,

Kλ,s(x) = 0, |x| = r,

∇Kλ,s(x) · η(x) = 0, |x| = R.

(S2)

Let Fλ,s(y) = −D
∫
∂N
∇Kλ,s(x, t) · η(x) dA(x). Fλ,s(y) can be solved from the following PDE:

Lemma .2. Fλ,s(x) is a solution to the following boundary value problem:

D∆Fλ,s(x) = (λ+ s)Fλ,s(x), r < |x| < R,

Fλ,s(x) = 1, |x| = r,

∇Fλ,s(x) · η(x) = 0, |x| = R,

(S3)

where η(x) denotes the unit outward normal to the sphere ∂B(0, R) = {|x| = R}.

Proof. Multiplying (S3) by Kλ,s(x) and applying Green’s identity, we obtain

Fλ,s(y) = D

∫
∂B(0,R)∪∂B(0,r)

Kλ,s(x)∇Fλ,s(x) · η(x) dA(x)

−D
∫
∂B(0,R)∪∂B(0,r)

Fλ,s(x)∇Kλ,s(x) · η(x) dA(x).

Plugging in the boundary conditions of (S2) and (S3), we find Fλ,s(y) = −D
∫
∂N
∇Kλ,s(x, t) · η(x) dA(x).

Solving (S3), we obtain

Fλ,s(y) =
Gλ,s(|y|)
Gλ,s(r)

, (S4)

where

Gλ,s(w) =
1

w

(
(mR+ 1)e−m(R−w) + (mR− 1)em(R−w)

)
and

m =

√
λ+ s

D
.

The probability that starting from a point y, the molecule reaches the nuclear membrane before inactivation can
be rewritten as

Zλ =

∫ ∞
0

(
−D

∫
∂N

∇pλ(x, t) · η(x) dA(x)

)
dt = Fλ,0(y).

From (S4), this probability only depends on the length of the initial position, |y|. Therefore, the same exit time
statistics hold for a uniformly distributed initial condition starting from the cell membrane, i.e. |y| = R, so that

Zλ =
Gλ,0(R)

Gλ,0(r)
.
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The conditional mean first passage time can be calculated from

〈Tλ〉 = − d

dλ
ln(Zλ).

In particular, when λ→ 0 we obtain

〈T0〉 =
1

6

(
2

(
R

r

)
+ 1

)(
(R− r)2

D

)
,

and when λ→∞,

〈T∞〉 ∼
(R− r)
2
√
Dλ

. (S5)

As we mention in the main text Discussion, this result is reflective of the short-time behavior of the signaling molecule’s
continuous Brownian motion. Since random walks do not approximate Brownian motions on sufficiently short time
scales, as expected the λ−1/2 scaling we obtain is different than the λ−1 scaling we proved for the semi-discrete model.

For numerical comparison, we generated a cell-centered 3D Cartesian mesh to approximate the spherically sym-
metrical geometry, where if the center of a voxel is within the ball of radius r = 5µm we identified it as being in
the nucleus. Likewise, if the center of a voxel is within the ball radius of R = 10µm but outside the nucleus, we
identified it being in the cytosol. Voxels cut by the sphere of radius R = 10µm were identified as belonging to the
cell membrane. The mesh width in our simulations was h = 0.0352µm, which is comparable to the mesh size for each
of the B cells we studied. The numerical solution method described in the Methods section was used for solving the
corresponding semi-discrete model with one alteration. We used a slightly coarser absolute error tolerance of 1e-4 and
relative error tolerance of .01 for determining the time at which to switch from the Runge-Kutta-Chebyshev method
to the truncated eigenvector expansion.

In Figure S9 we compare the analytical 〈Tλ〉 given by the logarithmic derivative of Fλ,0(R) to the numerical solution
of the semi-discrete model. We see that the two solutions agree exceptionally well until the large λ asymptotic behavior
takes over. Both solutions still continue to decrease as λ is further increased, but with the different asymptotic scalings
discussed above.

S4. Supplemental Figures and Tables

Physiological No ER No Organelles
Bcell1 Mean 0.7070 0.2721 0.2499
Bcell2 Mean 0.9540 0.6041 0.5311
Bcell3 Mean 1.6360 0.6841 0.5861
Bcell1 Median 0.4054 0.1393 0.1335
Bcell2 Median 0.5964 0.3358 0.2941
Bcell3 Median 0.8842 0.3087 0.2706
Bcell1 Variance 0.7178 0.1268 0.1007
Bcell2 Variance 1.0850 0.5390 0.4210
Bcell3 Variance 4.3352 0.9015 0.6337
Bcell1 CV 1.1983 1.3086 1.2695
Bcell2 CV 1.0919 1.2154 1.2218
Bcell3 CV 1.2726 1.3880 1.3582

TABLE S1: Statistics of Th, the random time to reach the nucleus in the absence of signal degradation in Bcell1,
Bcell2 and Bcell3. The diffusing molecule is assumed to initially be randomly distributed on the cell membrane,
∂Ch. Here STD denotes standard deviation and CV denotes the coefficient of variation (the standard deviation

divided by the mean).
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FIG. S1: Statistics of MFPT in the absence of signal degradation for Bcell2. See Figure 2 for subfigure information.
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FIG. S2: Statistics of MFPT in the absence of signal degradation for Bcell3. See Figure 2 for subfigure information.
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FIG. S3: Distribution of patch diameters for the 100 patches in Bcell1, Bcell2 and Bcell3. Here diameter
corresponds to the largest Euclidean distance between the center of two voxels within the patch.
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FIG. S4: Convergence of 〈Tλ,h〉 to the asymptotic limit (6.3) as λ→∞ when the molecule is started uniformly on
the surface of the cell. In Bcell1, the geodesic distance from the cell membrane to the nucleus is different in the
“physiological” and “no organelles” cases, while in Bcell2 and Bcell3 the distance is the same (and so only one

asymptotic line is shown).
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FIG. S5: Statistics of the conditional MFPT, Tλ,h, for Bcell1 for 100 different patch initial conditions (see
Section S2). (a) through (d) show statistics for the physiological case. (e) shows the ratio of the physiological to no

organelle conditional MFPTs, while (f) shows the difference between this ratio and the asymptotic limit.
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FIG. S6: Statistics of the conditional MFPT, Tλ,h, for Bcell2 for 100 different patch initial conditions (see
Section S2). (a) through (d) show statistics for the physiological case. (e) shows the ratio of the physiological to no

organelle conditional MFPTs, while (f) shows the difference between this ratio and the asymptotic limit.

(a) (b) (c)

(d) (e) (f)

FIG. S7: Statistics of the conditional MFPT, Tλ,h, for Bcell3 for 100 different patch initial conditions (see
Section S2). (a) through (d) show statistics for the physiological case. (e) shows the ratio of the physiological to no

organelle conditional MFPTs, while (f) shows the difference between this ratio and the asymptotic limit.
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FIG. S8: Signal successfully reaching the nucleus in Bcell2 and Bcell3. See Fig. 4 in the main text for details.
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FIG. S9: Conditional mean first passage time to reach the nucleus, 〈Tλ〉 = E [Tλ|Tλ <∞], when the nucleus is a
sphere of radius 5µm, the cell membrane is a sphere of radius 10µm, and the cytosolic space between them is open
(no organelle barriers). The figure shows the exact solution 〈Tλ〉 from the corresponding diffusion equation PDE

(blue spheres), obtained by taking the logarithmic derivative of Fλ,0(R), see Section S3. The solid red line gives the
numerical solution 〈Tλ,h〉 to the corresponding semi-discrete model using a Cartesian grid approximation to the

cytosol with mesh spacing h = 0.0352 (comparable to the resolution of our B cell reconstructions). The dashed red
line gives the asymptotic formula for the large λ behavior of 〈Tλ,h〉 (6.3). We see the continuous and discrete models

agree very well until the asymptotic behavior takes over, demonstrating the different short time behavior of the
underlying diffusion equation and semi-discrete diffusion equation solutions. See Section S3 for details on the

analytical solution and numerical simulations.
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