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Abstract

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans, and 

recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the 

MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell 

antimicrobial activity are not fully understood, and the efficacy of these mechanisms against 

antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-

restricted antimicrobial activity against E. coli clinical strains in a manner dependent on the 

activity of cytolytic proteins, but independent of production of pro-inflammatory cytokines or 

induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial 

protein granulysin and the serine protease granzyme B released in response to TCR-mediated 

recognition of MR1-presented antigen is essential to mediate control against both cell-associated 

and free-living E. coli. Furthermore, MAIT cell-mediated bacterial control extend to multidrug-

resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort 

antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes 

directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli 

susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic 

effector proteins in MAIT cell-mediated antimicrobial activity, and indicate that granulysin and 

granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem 

resistance in E. coli.
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Introduction

Mucosa-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in 

mucosal tissues, the liver, lungs and gastrotintestinal tract, and in peripheral blood [1]. MAIT cells 

are mostly CD8α+ [2, 3], express a semi-invariant T cell receptor (TCR), and recognize antigens 

in complex with the MHC-Ib-related protein (MR1) [4]. MR1 displays an extraordinary level of 

evolutionary conservation among placental and marsupial mammals [5], strongly supporting the 

notion that MR1 and MAIT cells perform critical functions in the immune system. The MR1-

presented antigens recognized by MAIT cells are derivatives of intermediates in the microbial 

synthesis of vitamin B2 (riboflavin) and are produced by many bacteria [6-8]. Riboflavin is a 

critical component in a wide variety of bacterial cellular processes [9]. MAIT cells are thus able 

to recognize and respond to a broad set of bacteria [10]. Following TCR-mediated recognition of 

MR1-presented bacterial riboflavin metabolite antigens, MAIT cells rapidly mediate a range of 

effector responses, including cytokine production, cytotoxicity, antimicrobial activity, and tissue 

repair function [11-18]. The abundance and antimicrobial features of MAIT cells, as well as the 

highly-conserved nature of MR1, strongly suggest that MAIT cells are important for the protection 

of the host against bacterial pathogens [19]. Moreover, the conserved nature of the MAIT cell 

antigens across bacterial species via the shared components of the riboflavin biosynthetic pathway 

and antimicrobial features of MAIT cells, support the hypothesis that they may have the capacity 

to recognize and respond to drug-resistant bacteria.

Infections caused by antimicrobial-resistant (AMR) bacteria are a serious threat to global 

public health. In particular, carbapenem-resistant Enterobacteriaceae (CRE), including 

Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp., have emerged as a serious 
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problem for hospitalized patients [20]. CRE are multidrug-resistant Gram-negative bacteria that 

have acquired further resistance to one class of the last resort antibiotics, the carbapenems. 

Resistance to carbapenems in Enterobacteriaceae involves multiple mechanisms, including 

expression of efflux pumps, impermeability due to porin loss, and expression of β-lactamases with 

the ability to degrade carbapenems [20]. The polymyxins, and more specifically colistin, are the 

last resort antibiotics currently available to treat CRE infections. However, polymyxin-resistant 

CRE is on the rise, rendering them extensively drug-resistant (XDR) or even pan-drug resistant 

(PDR) [21]. The World Health Organization has therefore listed CRE in the critical category 

requiring further research and development of new treatments [22]. 

Despite the body of evidence that MAIT cells contribute to bacterial clearance and play a 

protective role in various bacterial infections [19], the mechanisms of MAIT cell antimicrobial 

activity remain relatively little explored. Moreover, it is unknown whether MAIT cell 

antimicrobial activity extends to AMR bacterial pathogens. In this study, we therefore investigated 

the mechanisms underlying MAIT cell antimicrobial activity by dissecting the roles of cytolytic 

proteins and cytokines in controlling bacterial growth. We extended these investigations by 

exploring the ability of MAIT cell cytolytic proteins, released in response to cognate recognition 

of MR1-presented antigen, to potentiate carbapenem-induced bactericidal activity against primary 

clinical isolates of E. coli from patients with CRE infections. Notably, MAIT cell antimicrobial 

activity mediated by the combined action of granulysin (Gnly) and Granzyme (Grz) B potently 

enhanced bactericidal activity of carbapenems against carbapenem-resistant strains of E. coli. Our 

findings thus define the mechanism underlying MAIT cell antimicrobial activity and support the 

concept that MAIT cell mobilization may protect the host from drug-resistant bacterial pathogens.
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Results 

MAIT cells kill E. coli-infected cells and reduce live bacterial load within infected cells

To study the antimicrobial effector functions of MAIT cells, we developed an approach using the 

drug-sensitive E. coli clinical strain EC120S isolated from a patient suffering from a bloodstream 

infection [23]. We also developed a method for short-term MAIT cell expansion to provide the 

cell numbers required to perform such assays (fig. S1A). The E. coli strain EC120S infected HeLa 

cells efficiently as determined by pHrodo red-labelled live bacteria (fig. S1B and C). pHrodo 

becomes fluorescence in the acidic environment of cellular endosomal compartments, and can 

therefore be used to evaluate E. coli internalization [24]. EC120S infected, replicated, and 

remained viable inside HeLa cells for at least 24 h post-infection (fig. S1D). MAIT cells rapidly 

degranulated and killed the tested epithelial cell lines (HeLa and A549) infected with E. coli 

EC120S (Fig. 1A-D and fig. S1E and F) through an MR1-dependent mechanism (Fig. 1C-D).

Because MAIT cells achieved complete lysis (Casp3+ DCM+) of the infected cells by 24 h, 

we examined MAIT cell antimicrobial activity after 3 h, when the cell membrane integrity of most 

infected cells undergoing apoptosis remained intact, as shown by staining with amine-reactive 

cytoplasmic dyes (Fig. 1B and C). Notably, bacterial viability in both HeLa and A549 cells was 

significantly reduced in the presence of MAIT cells, via an MR1-dependent mechanism (Fig. 1E, 

fig. S1G). To assess whether the reduced bacterial load reflected true bacterial killing by MAIT 

cells, or simply the release of bacteria into the supernatants during the assay, the bacterial loads in 

the cell lysates alone or in total lysates were enumerated. In both conditions, the presence of MAIT 

cells decreased bacterial load, indicating direct bacterial control (Fig. 1F). Contrary to MAIT cells, 

Vα7.2- non-MAIT T cells were not able to control bacterial growth (fig. S1H-J). In addition, the 

capacity of MAIT cells to degranulate and induce apoptosis of infected target cells was superior 
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to that of Vα7.2- T cells (fig. S1H and I). We next investigated whether MAIT cells at resting state 

were similarly able to mediate antimicrobial activity. Consistent with previous studies [24, 25], 

resting MAIT cells were inefficient in killing HeLa cells infected with E. coli or pulsed with the 

MR1 ligand 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) (Fig. 1G and H, fig. 

S2A-C). Interestingly, resting MAIT cells also failed to control bacterial loads in infected cells 

(Fig. 1I). To determine if the inability of resting MAIT cells to mediate antimicrobial activity was 

simply due to their weak cytotoxicity, MAIT cells were stimulated with IL-2 + IL-7 for 2 days to 

allow upregulation of cytotoxic molecules [24, 25]. These cytokine-activated MAIT cells were 

able to degranulate and kill cells infected with E. coli or pulsed with 5-OP-RU, but still failed to 

efficiently control bacterial loads within infected cells when compared to MAIT cells cultured for 

15 days (Fig. 1G-I, fig. S2A-C). Interestingly, this temporal regulation of MAIT cell antimicrobial 

activity appeared to correspond to the differential expression of cytolytic proteins by MAIT cells 

(Fig. 1J, fig. S2D and E). These results indicate that antigen-activated MAIT cells have the 

capacity to kill infected target cells in an MR1-dependent manner through caspase 3 activation, 

and progressively over several days develop the ability to control bacterial growth within infected 

cells.

MAIT cells mediate antimicrobial activity through the cytolytic protein-dependent pathway

Next, the intracellular levels of GrzA, GrzB, GrzK, Gnly, and perforin (Prf) were measured using 

flow cytometry to determine the transfer of cytolytic effector proteins into E. coli-infected cells 

after co-culture with MAIT cells. With the exception of GrzK, all measured cytolytic proteins were 

detected in HeLa target cells (Fig. 2A), matching with their expression pattern in MAIT cells (Fig. 

1J, fig. S2D and E). The inhibition of bacterial growth associated negatively with cell viability 
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(Fig. 2B), but positively with apoptosis (Fig. 2C) and MAIT cell expression of GrzB (Fig. 2D and 

E), Gnly (Fig. 2F), and co-expression of GrzB and Gnly (Fig. 2G). Because GrzB was readily 

detected in E. coli-infected target cells co-cultured with MAIT cells (Fig. 2A), we evaluated GrzB 

activity inside the infected target cells using a fluorescent GrzB substrate (GranToxiLux) (24). 

Active GrzB was detected in HeLa target cells infected with E. coli (Fig. 2H), indicating that MAIT 

cells delivered GrzB into infected cells. 

In order to assess MAIT cell use of the cytolytic protein pathway to control bacterial 

growth, cytolytic protein activity was selectively inhibited by pharmacological inhibitors. EGTA, 

a Ca2+-specific chelator that inhibits the release of cytolytic granules (25), was used in the presence 

of Mg2+ supplementation. EGTA strongly decreased MAIT cell degranulation as determined by 

CD107a expression (Fig. 2I and J), reduced the delivery of cytolytic proteins (fig. S2F) and caspase 

3 activation in infected target cells (Fig. 2I and K), and abolished the bacterial control by MAIT 

cells (Fig. 2L). To investigate the role of GrzA and GrzB in MAIT cell antimicrobial activity, their 

activation was blocked using nafamostat mesylate (NAM) and Ac-IETD-CHO, respectively [26, 

27]. NAM had no effect on MAIT cell degranulation, caspase 3 activation, and bacterial counts 

(Fig. 2I-L). In contrast, while Ac-IETD-CHO had no effect on MAIT cell degranulation (Fig. 2I 

and J), it strongly abrogated caspase 3 activation in infected target cells (Fig. 2I and K), and 

impaired bacterial control (Fig. 2L). To assess whether apoptosis of infected cells also contributed 

to bacterial control, caspase 3 activation was blocked using the pan-caspase inhibitor Pro-VAD-

FMK. The pan-caspase inhibitor had no effect on MAIT cell degranulation (Fig. 2I and J), but 

severely diminished caspase 3 activation in infected cells without affecting bacterial counts (Fig. 

2I, K, L). This suggests that bacterial control by MAIT cells was independent of infected cell 

apoptosis. Finally, we assessed whether IFNγ, TNF, and IL-17A, pro-inflammatory cytokines 
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produced by MAIT cells (fig. S2G), played a role in MAIT cell bacterial control by blocking with 

neutralizing Abs. Blocking IFNγ, TNF, or IL-17A did not significantly affect degranulation or 

caspase 3 activation (Fig. 2I-K). IL-17A blockade, but not IFNγ or TNF blockade, only slightly 

diminished MAIT cell antimicrobial activity (Fig. 2L). Altogether, these findings indicate that 

MAIT cells use the cytolytic protein pathway to kill infected cells, and this may play an important 

role in early control of bacterial loads. 

MAIT cells recognize and mediate antimicrobial activity against carbapenem-resistant E. coli 

clinical strains 

Next, we tested the hypothesis that MAIT cells maintain antimicrobial activity against 

carbapenem-resistant E. coli (CREC) clinical isolates. To address this, we first investigated 

whether CREC strains EC234, EC241, EC362, and EC385 (Table S1) were riboflavin autotroph 

by culture in riboflavin assay medium (RAM), a riboflavin-deficient broth. All CREC isolates 

grew in both RAM and nutrient-rich lysogeny broth at comparable growth rates, and the addition 

of external riboflavin did not influence their growth (fig. S3A-H). Moreover, the expression of 

ribA, the gene encoding the first enzyme of the riboflavin biosynthesis pathway, was similar 

among the clinical isolates (fig. S3I). These findings confirmed that the CREC clinical isolates 

were riboflavin-synthesis competent, a requirement for generating the riboflavin biosynthetically 

derived MAIT cell antigens [7]. 

Next, the ability of CREC to stimulate MAIT cells was tested by incubating PBMCs with 

fixed bacteria for 24 h. All CREC strains induced degranulation and expression of GrzB, IFNγ, 

TNF, and IL-17A by MAIT cells at comparable levels (Fig. 3A, fig. S3J). Furthermore, MAIT 

cells displayed similar patterns of polyfunctionality when stimulated with the different CREC 
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strains, although some differences in MAIT cell response profiles were noted (fig. S3K). These 

variations occurred despite similar uptake of the bacteria by the PBMCs (fig. S3L). MAIT cell 

responses to CREC were predominantly MR1-dependent although this differed somewhat between 

the strains (Fig. 3B). 

To assess the capacity of MAIT cells to kill CREC-pulsed cells, the 293T cell line over-

expressing human MR1 (293T-hMR1) was used as target cells as previously described [24]. MAIT 

cells induced caspase 3 activation and cell death in 293T-hMR1 cells pulsed with the CREC EC234 

or EC362 strains, or with the drug-sensitive EC120S (Fig. 3D and E), although at lower 

magnitudes compared to 293T-hMR1 cells pulsed with the synthetic antigen 5-OP-RU. 

To investigate whether MAIT cells can mediate antimicrobial activity against CREC 

strains, we selected strain EC241 because it is the CREC strain with the most efficient entry into 

HeLa cells (fig. S3M). MAIT cells induced caspase 3 activation in HeLa cells infected with strain 

EC241 in an MR1-dependent manner (Fig. 3F), consistent with results using the drug-sensitive 

strain EC120S (Fig. 1). Furthermore, MAIT cells significantly reduced the CREC bacterial loads 

within infected cells in an MR1-dependent fashion (Fig. 3G). Taken together, MAIT cells 

recognize CREC, mediate killing of infected cells, and reduce bacterial loads in an MR1-dependent 

manner.

MAIT cells secrete high levels of cytolytic proteins and mediate antimicrobial activity against 

CREC in the surrounding milieu

We next investigated whether MAIT cells release cytolytic proteins into the surrounding milieu in 

response to MR1-restricted cognate recognition of cells infected with a riboflavin synthesis-

competent strain of E. coli. MAIT cells secreted high levels of GrzA, GrzB, and Gnly into the 
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supernatants already after a short 3 h stimulation with E. coli-infected cells (Fig. 4A). Because 

some cytolytic proteins have direct antimicrobial activity [28, 29], the MAIT cell secretome ability 

to inhibit free-living E. coli growth was investigated. To collect bacteria-free  MAIT cell secretome 

following TCR-stimulation, 293T-hMR1 cells were used as antigen-presenting cells and pulsed 

with the synthetic bacterial riboflavin antigen 5-OP-RU and then co-cultured with MAIT cells (fig. 

S4A). Live E. coli strains were then incubated with supernatants obtained from the co-culture of 

MAIT cells with 5-OP-RU-pulsed 293T-hMR1 cells (fig. S4A). MAIT cells strongly degranulated 

their cytolytic protein content following MR1-restricted TCR triggering, and these proteins 

accumulated at high levels in the supernatants after 24 h of co-culture (fig. S4B and C). To assess 

whether MAIT cell secretomes induce bacterial damage, the cell-impermeable nucleic acid dye 

SYTOX Green was used [30] (fig. S4D). Bacteria were pre-stained with the cell-permeable nucleic 

acid dye SYTO 62 to allow their detection by flow cytometry (Fig. 4B). In the presence of MAIT 

cell supernatants, the CREC strains EC234 and EC362 suffered an increase in membrane 

permeability, as seen by the significant increase of SYTOX Green and SYTO 62 staining when 

compared to the control supernatants (Fig. 4B and C, fig. S4E and F). Finally, the bacterial counts 

of the E. coli strains exposed to the MAIT cell secretomes were significantly reduced, although 

not totally suppressed (Fig. 4D). Taken together, these results indicate that the MAIT cell 

secretomes display antimicrobial activity against E. coli by markedly increasing bacterial cell 

permeability. 

MAIT cell secretomes enhance the bactericidal activity of carbapenems against CREC

Following the observation that MAIT cell secretomes can directly alter bacterial membrane 

permeability (Fig. 4B-D), we asked whether the MAIT cell secretome could enhance the 
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bactericidal activity of carbapenems against CREC strains. To test this, CREC strains EC234 and 

EC362 were incubated in the presence of MAIT cell supernatants with titrated concentrations of 

the carbapenem antibiotics imipenem, ertapenem, and meropenem. Greatly enhanced permeability 

and damage to the bacteria was evident by the appearance of bacteria stained with high intensities 

for SYTOX Green (SYTOX Greenbright), in comparison with bacteria cultured in either MAIT cell 

supernatants or carbapenem antibiotics alone (Fig. 4E and F, fig. S4G,H). Fluorescence intensity 

of SYTO 62 was also increased in bacteria treated with a combination of MAIT cell secretome 

and imipenem (fig. S4I and J). 

Next, effects on the live bacterial counts were evaluated using a time-kill method [31]. 

Notably, MAIT cell secretomes in combination with imipenem killed the highly carbapenem 

resistant E. coli strain EC234 (minimum inhibitory concentrations (MICs) to all carbapenems 

≥32μg/mL; Table S2), as well as the XDR strain EC362 harboring further resistance to colistin 

(Table S1). In both cases, imipenem concentrations were well below the strains’ respective MICs 

(Fig. 4G and H). Growth rates of strains EC234 and EC362 cultured in MAIT cell supernatants 

including titrated concentrations of imipenem were significantly slower compared to their 

respective controls (fig. S5A and B). These growth delays occurred at imipenem concentrations 

up to 4-fold lower than the MIC for EC234, and up to 16-fold lower than the MIC for EC362 (fig. 

S5A and B). Moreover, the MAIT cell secretome decreased the imipenem concentrations required 

to fully suppress the growth of strains EC234 and EC362 by at least 2- and 4-fold, respectively 

(fig. S5C). In the presence of imipenem, the antimicrobial activity of MAIT cell secretomes 

appeared to be superior to that of non-MAIT Vα7.2- T cells from the same donors (fig. S5D). 

Finally, we evaluated whether the antimicrobial activity was derived from the MAIT cells 

themselves, or from the dying 293T-hMR1 cells used as antigen-presenting cells. Firstly, we 
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showed that supernatants of Vα7.2 bead-purified and expanded MAIT cells cultured without 293T-

hMR1 cells still displayed antimicrobial activity in the presence of imipenem against the XDR 

strain EC362 (fig. S5E and F). Secondly, blocking the apoptosis of 293T-hMR1 cells caused by 

MAIT cell cytotoxicity with the pan-caspase inhibitor Pro-VAD-FMK, caused no significant loss 

of antimicrobial activity in the presence of imipenem against strains EC234 and EC362 (fig. S5G 

and H). Taken together, these findings suggest that there is a synergy between MAIT cell 

secretome antimicrobial activity and carbapenems, thereby enhancing the in vitro bactericidal 

activity of carbapenems against CREC strains.  

MAIT cell secretome antimicrobial activity correlates with the levels of secreted cytolytic proteins

We next re-visited the time-kill data (Fig. 4G and H), and analyzed possible associations between 

the amounts of cytolytic proteins present in the MAIT cell supernatants and the antimicrobial 

activity when combined with imipenem. In the bacterial cultures where growth was detected, there 

was significantly less Gnly and GrzB in the MAIT cell secretome (Fig. 5A and B). However, no 

significant difference in GrzA and Prf levels was observed (Fig. 5A and B). Moreover, there were 

negative correlations between viable bacterial counts and Gnly or GrzB levels within the MAIT 

cell secretomes (Fig. 5C-F). However, no correlations with the levels of GrzA or Prf were observed 

(fig. S6A-D). Interestingly, Gnly levels in the supernatants correlated positively with the length of 

the lag-phase for strains EC234 and EC362 in the presence of imipenem (fig. S6E and F). 

Furthermore, the MAIT cell secretomes that contained the highest concentrations of Gnly had 

significantly greater and longer inhibition on EC234 and EC362 (fig. S6G). Taken together, these 

findings suggest that cytolytic proteins, particularly Gnly and GrzB, may significantly contribute 

to the MAIT cell secretome antimicrobial activity against CREC in the presence of imipenem. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.16.908806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.908806
http://creativecommons.org/licenses/by/4.0/


14

Gnly and GrzB contribute to the antimicrobial activity of MAIT cell secretomes and potentiate the 

bactericidal action of carbapenems against CREC

Finally, the functional contribution of different cytolytic proteins to the MAIT cell secretome 

antimicrobial activity was examined. To enable this, the assay dynamic ranges was enhanced by 

using strain EC362, which was more sensitive to the inhibitory effects of the MAIT cell secretomes 

(Fig. 4H), and a lower amount of imipenem (2 μg/mL), to reduce its residual inhibitory effects. 

Blocking MAIT cell degranulation using EGTA + Mg2+ (fig. S6H) nearly completely abolished 

the MAIT cell secretome-mediated bacterial inhibition (fig. S6I), whereas blocking GrzB activity 

alone had no observable effect (fig. S6I). Similarly, blocking the activity of IFNγ, TNF, or IL-17A 

during the MAIT cells-293T-hMR1 cells co-culture period had no significant effect on the 

antimicrobial activity of harvested supernatants (fig. S6I). Importantly, specific depletion of Gnly 

from the supernatants (fig. S6J) significantly reduced the MAIT cell secretome inhibition of 

bacterial growth (fig. S6K), as well as the capacity to induce bacterial cell permeability (fig. S6L). 

Gnly was detected intracellularly by flow cytometry in both EC234 and EC362 bacterial cells 

incubated with MAIT cell supernatants (Fig. 5G and H, fig. S7A). GrzB was also detected, but 

mostly in Gnly-containing bacteria (Fig. 5I), while no GrzA or Prf was detected in bacterial cells 

(Fig. 5I, fig. S7A and B). Notably, bacterial cells containing both Gnly and GrzB had higher 

membrane permeability than those containing only Gnly (Fig. 5J and K). Short-term concomitant 

treatment with imipenem (30 min) did not increase Gnly levels inside bacterial cells despite the 

increase in bacterial permeability and damage (fig. S7C). This suggests that the increase in 

bacterial death following incubation with MAIT cell supernatants and imipenem (Fig. 4H), was 

possibly caused by the higher imipenem penetration into bacterial cells following MAIT cell-
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mediated increase in bacterial cell permeability. Collectively, these findings indicate that Gnly and 

GrzB contribute to the antimicrobial activity of MAIT cell secretomes and potentiate the 

bactericidal action of carbapenem antibiotics against CREC (Fig. 6). 
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Discussion 

Despite a considerable body of evidence that MAIT cells play a protective role in various bacterial 

infections, it is not known whether MAIT cells directly inhibit bacterial growth nor what 

mechanism is operating in mediating antimicrobial activity. It is also unknown whether MAIT 

cells have antimicrobial activity against drug-resistant bacteria. Here, we show that human MAIT 

cells have direct antimicrobial activity against both cell-associated and free-living E. coli primary 

clinical isolates, including CREC strains that are extensively resistant to carbapenems. This 

antimicrobial activity depends on the TCR-mediated activation of cytolytic protein secretion by 

MAIT cells in response to cognate recognition of cells that were infected or have taken up bacteria 

and presented antigen. High levels of cytolytic effector proteins in the MAIT cell secretome 

directly damage free-living CREC bacterial cells by increasing their permeability. Strikingly, 

MAIT cell secretomes restore the bactericidal activity of carbapenems against free-living CREC 

clinical isolates in vitro. The levels of cytolytic proteins secreted by MAIT cells, in particular Gnly 

and GrzB, correlate with the degree of bacterial killing and the potentiating effect of carbapenem 

bactericidal activity. Finally, blocking experiments identified Gnly as an important component of 

the antimicrobial activity of MAIT cell secretomes. Altogether, these results demonstrate potent 

antimicrobial activity of MAIT cells against both cell-associated and free-living E. coli, and show 

that MAIT cells can act to restore the antibiotic effect of carbapenems against CREC. 

MAIT cells promote antimicrobial effects through multiple mechanisms, including killing 

of infected cells, induction of nitric oxide production, and orchestrating downstream effector cell 

responses [14, 25, 32-37]. Here, our findings indicate that both Gnly and GrzB expression are 

required for efficient MAIT cell bacterial control, independent of infected cell death and 

production of pro-inflammatory cytokines. Consistent with this model, a recent study revealed the 
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existence of an adaptive CD8+ T cell subset co-expressing Prf, GrzB and Gnly, which can kill 

intracellular bacteria [38]. In the context of cytolytic protein secretion by cytotoxic CD8+ T cells, 

Gnly-mediated pore formation in bacterial cell walls allows GrzB to penetrate into bacterial 

cytoplasm and cleave oxidative stress defense enzymes and other proteins vital for bacterial 

metabolism. This ultimately leads to the generation of reactive oxygen species (ROS) and bacterial 

death [28, 29]. Interestingly, in a mouse model of Legionella infection, cytolytic proteins did not 

appear to contribute to the MAIT cell protective role [36]. However, because cytolytic proteins are 

structurally and functionally divergent in mammals [39] and Gnly is absent in rodents [40], 

prudence should be exercised in interpreting the mechanism underlying MAIT cell mediated 

antimicrobial activity in murine models. Collectively, our findings indicate that MAIT cells 

mediate antimicrobial activity through the cytolytic protein-dependent pathway, which may 

contribute to the protection of the human host against bacterial infections. 

An important aspect of the present study concerns the differential and temporal regulation 

of MAIT cell cytotoxicity and antimicrobial activity. Resting MAIT cells expressed GrzA and Prf 

but were negative for GrzB and Gnly, with no appreciable cytotoxic or antimicrobial capacity. 

Following antigenic stimulation there was a rapid and strong upregulation of GrzB, accompanied 

by strong cytotoxicity but inefficient antimicrobial activity, and finally a gradual expression of 

Gnly with strong cytotoxicity and antimicrobial activity. How long these cytolytic effector proteins 

remain expressed by MAIT cells following antigenic stimulation and resolution of bacterial 

infection, and whether such temporal regulation influences MAIT cells’ protective roles of the host 

is unclear. We previously observed variable expression levels of Gnly in resting peripheral blood 

MAIT cells [2, 25]. As Gnly is similarly expressed late by activated cytotoxic T cells following 

activation [41], Gnly+ MAIT cells in blood may represent an antigen-imprinted and -experienced 
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MAIT cell subset that may respond to bacterial infection faster. While Gnly is broadly 

antimicrobial, it also has strong pro-inflammatory and chemotactic activity, and has been 

implicated in several inflammatory diseases [40]. Thus, the strict differential and temporal 

regulation of cytotoxicity and antimicrobial activity may also afford some protection against 

MAIT cell-mediated immunopathology that can occur in certain bacterial infections [42, 43]. 

Interestingly, cytolytic proteins are differentially expressed during the development of human 

MAIT cells, with the mature subsets expressing more of these effector proteins [44]. In adult 

human female genital tract, oral mucosa, and placental tissues, MAIT cells express low level of 

GrzB at steady state [12, 45-47], suggesting that the regulation of cytolytic effector proteins in 

tissues may differ from that of blood MAIT cells.

CRE organisms, including CREC, have a high risk of transmission and rapid spread 

between patients in the hospital settings [20]. Carbapenems disrupt bacterial cell wall synthesis 

and the resistance to carbapenems in Enterobacteriaceae often involves carbapenem 

impermeability, efflux pumps, and expression of carbapenemases. Combined with the increasing 

occurrence of pan-drug resistance, the spread of CRE organisms are a rising threat to public health 

[20]. Few studies have considered the role of the host’s immune response in facilitating clearance 

of resistant populations arising during the course of antimicrobial therapy. Yet, strong host’s 

immune response during the course of antimicrobial chemoterapy has been proposed to limit the 

duration of treatment and appearance of resistant populations [48-50]. This is one possible 

explanation for why treatments with single antimicrobial agents most of the time are successful in 

healthy, immunocompetent individuals [51]. In the present study, we show that MAIT cells 

recognize and respond to CREC-infected cells, and mediate efficient killing of infected cells and 

rapid control of bacterial loads. Our findings that MAIT cells retain their ability to mediate 
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antimicrobial activity against resistant bacteria, implies that MAIT cells play a role in defense not 

only against drug-sensitive bacteria, but also help fend off drug-resistant bacteria in hosts that have 

functional MAIT cells. Consistent with this hypothesis, individuals with co-morbidities that are 

frequently linked with low MAIT cell numbers and poor antimicrobial functionality [52-55], are 

more susceptible to infections caused by drug-resistant bacterial pathogens, incl. CRE [56-59]. 

This suggests the potential importance of MAIT cell antimicrobial effector response in the host’s 

defense against drug-resistant bacterial pathogens. It is thus tempting to speculate that it may be 

possible to prevent CRE infections among at-risk individuals by restoring MAIT cell numbers and 

functionality through vaccinations using MR1 ligands [37]. 

Finally, and strikingly, high levels of cytolytic effector proteins secreted by MAIT cells in 

response to MR1-restricted cognate recognition of bacterial riboflavin antigens potentiate the 

bactericidal activity of carbapenems against CREC primary clinical isolates. This restoration of 

carbapenem activity in vitro is likely due to increased bacterial membrane permeability mediated 

by high levels of Gnly, allowing entry of lethal amounts of carbapenems into the bacteria. 

Consistent with this hypothesis, we detected the presence of Gnly in bacterial cells exposed to 

MAIT cell secretomes, and this was associated with increased bacterial permeability and damage. 

Gnly is a cationic, saposin-like antimicrobial protein that binds to and forms pores on cholesterol-

poor bacterial membranes, and kill bacteria by disrupting membrane permeability, including those 

of E. coli [30, 60-62]. Previous studies showed that GrzB enters the bacterial cytoplasm via pores 

formed by Gnly and induces oxidative stress damage [28, 29]. Consistent with this, we detected 

intracellular GrzB in bacterial cells incubated with MAIT cell secretomes, but only when Gnly 

was also present. The dual presence of GrzB and Gnly further increased bacterial permeability and 

damage.  Thus, GrzB contributed to the antimicrobial effector function of MAIT cell secretomes 
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and their potentiation of carbapenem killing activity. It is tempting to hypothesize that MAIT cell 

secretome antimicrobial activity is not only able to control bacterial growth, but also able to disarm 

carbapenem impermeability mechanisms of resistance in CREC by increasing  carbapenem access 

to bacterial intracellular space. In conclusion, the findings in the present study indicate that MAIT 

cell cytolytic properties are an important component of their antimicrobial effector function and 

enable enhancement of carbapenem killing activity against carbapenem-resistant E. coli strains. 

The ability of MAIT cell antimicrobial effector function to overcome drug resistance suggest that 

they may participate in clearance of bacteria acquiring de novo resistance during the course of 

antibiotic therapy.
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Blood processing and MAIT cell expansion

Peripheral blood was collected from healthy donors recruited at the apheresis unit, 

Bloodbank@HSA, Health Services Authority, Singapore. Written informed consent was obtained 

from all donors and ethical approval was obtained from the National University of Singapore 

Institutional Review Board (NUS-IRB reference codes B-15-088 and H-18-029). Peripheral blood 

mononuclear cells (PBMCs) were isolated by standard Ficoll-Histopaque density gradient 

separation (Ficoll-Histopaque Premium; GE Healthcare). After isolation, PBMCs were 

cryopreserved in liquid nitrogen until further use, or immediately used for MAIT cell purification 

or activation assays. 

MAIT cells were expanded using two different protocols in this study. For the first set of 

expansion, MAIT cell were isolated from freshly-isolated PBMCs by positive selection using the 

5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU)-loaded human MR1 tetramer-PE 

using magnetic-activated cell sorting (MACS) and anti-PE microbeads (Miltenyi). MAIT cells 

(>95% purity) were cultured 6-7 days in serum-free and xeno-free ImmunoCult-XF T cell 

expansion medium (STEMCELL Technologies) in the presence of 10 ng/mL recombinant human 

(rh)IL-7 (R&D Systems), 1:100 ImmunoCult human CD3/CD28/CD2 T cell activator 

(STEMCELL Technologies), 50 μg/mL gentamicin (Gibco), and 100 μg/mL normocin 

(Invivogen). For the second set of expansion, cryopreserved PBMCs were thawed and cultured in 

ImmunoCult-XF T cell expansion medium supplemented with 8% (v/v) xeno-free CTS Immune 

Cell Serum Replacement (ThermoFisher Scientific), 5 ng/mL rhIL-2 (Peprotech), 10 ng/mL rhIL-

7, 50 μg/mL gentamicin, and 100 μg/mL normocin. PBMCs were stimulated with 10 nM 5-OP-

RU on day 0, 5, and 10, and the culture media was replenished every 2-3 days. On day 11, viable 

cells were isolated by Ficoll-Histopaque density gradient centrifugation. On day 15-17 cells were 
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checked for MAIT cell purity and numbers by flow cytometry. Cells were immediately used for 

subsequent assays when MAIT cell purity > 70 %.

Bacterial cultures

The E. coli strains 1100-2 and BSV18 were obtained from the Coli Genetic Stock Center, Yale 

University; the DH5α strain was obtained from New England Biolab. Carbapenem-resistant 

isolates were identified from the Singapore General Hospital microbiological database, and 

retrieved from the archived bacteria repository. Further details on strain identification and 

determination of resistance and susceptibility profiles can be found in the Supplementary Materials 

section. 

For MAIT cell stimulation assays, all E. coli strains were grown overnight at 37°C in Luria 

(lysogeny) broth (LB) with shaking as described [63]. Overnight cultures of E. coli were then 

subcultured 10-fold in LB and incubated at 37 oC with shaking until OD600 = 0.5. In selected 

experiments, growth curves were monitored by reading absorbance at 600 nm in a microplate 

reader with discontinuous shaking for 18 h at 37 oC (Cytation 5, BioTek Instruments).

MAIT cell functional and antimicrobial activity assays

MAIT cells within bulk PBMCs, identified as MR1-5-OP-RU+ Vα7.2+ CD161hi CD3+ T cells, 

were activated using formaldehyde-fixed E. coli strains as indicated for 24 h as previously 

described [24]. In selected experiments, 20 μg/mL MR1 blocking mAb (26.5, Biolegend) or IgG2a 

isotype control (MOPC-173, Biolegend) were used (22). In all activation assays, monensin (Golgi 

Stop, BD Biosciences) were added for the last 6 h of incubation. 
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MAIT cell cytotoxicity assay was performed as previously described [24, 25]. Briefly, 

human 293T cells stably transfected with human MR1 (293T-hMR1) were incubated in complete 

RPMI medium with formaldehyde-fixed E. coli at the microbial dose of 30 for 3 h before the 

addition of expanded MAIT cells at the effector to target cell ratio 5:1. 2 nM 5-OP-RU was added 

as a positive control for MAIT cell killing of target cells. Anti-CD107a-BUV395 at 1:200 was 

added at the beginning of the assay to detect MAIT cell degranulation. After 24 h of co-culture, 

cells were stained to detect target cell apoptosis using anti-active caspase 3 mAb (BD Biosciences). 

MAIT cell antimicrobial activity assay was performed as described [64]. Briefly, the 

bacteria sub-cultures were resuspended in RPMI without serum and antibiotics (ASF-RPMI). 

Adherent target epithelial cell lines were infected with live E. coli for 3 h at a microbial dose of 30 

for strain EC120S and 3 for strain EC241 at 37 oC / 5% CO2. Infected cells were washed 

extensively with complete RPMI medium supplemented with 200 μg/mL gentamicin (Gibco) and 

further incubated for 1 h at 37 oC / 5 % CO2 to kill extracellular bacteria, then washed extensively 

with ASF-RPMI. Expanded MAIT cells were labelled with 1 μM CellTrace Violet (CTV) dye 

(Thermo Fisher Scientific) before co-cultured with HeLa cells at an E:T ratio of 5:1 and incubated 

for 3 h at 37 oC / 5 % CO2. For the live bacteria enumeration, a duplicate set of experimental wells 

were done in parallel. Supernatants from the first set were collected, followed by adherent cell 

lysis with 0.1% (v/v) Triton-X for 10 min at room temperature. Equivalent volume of LB broth 

were added to lysates and plated onto LB agar plates in duplicates, incubated at 37 oC for 18 to 24 

h, and counted visually. For the second set, anti-CD107a-BUV395 (1:200) was added into the 

culture medium at the start of the assay to assess MAIT cell degranulation. Cell-free supernatants 

were harvested, snap frozen in liquid nitrogen, and stored at -80 oC until further use. Adherent 

cells were harvested using trypsin-EDTA (Gibco) and stained for flow cytometry as indicated. 
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In selected experiments, MAIT cells or infected HeLa cells were treated with various 

pharmacological inhibitors or mAbs before use in assays. Briefly, MAIT cells were pre-incubated 

for 1 h with 5 mM EGTA (Bioworld) supplemented with 1 mM MgCl2 (Sigma-Aldrich), then 

diluted to 1 mM EGTA with 1 mM MgCl2 in-assay, or with 10 μM nafamostat mesylate (Sigma-

Aldrich), or 100 μM of the GrzB inhibitor II Ac-IETD-CHO (Merck) before co-culture with HeLa 

cells. HeLa cells were pre-treated for 1 h before addition of MAIT cells with 10 μM CAS-BIND 

Pro Pan Caspase Inhibitor (Pro-VAD-FMK) (Vergent Bioscience). For antibody-blocking 

experiments, 20 μg/mL anti-MR1 or IgG2a isotype control was added on HeLa cells 1 h prior to 

co-culture, or 10 μg/mL mAb to IFNγ (B27; Biolegend), TNF (MAb1; Biolegend), IL-17A 

(eBio64CAP17; Invitrogen) or IgG1 isotype control (MOPC-21; Biolegend) 15 min before co-

culture. 

Granzyme B activity detection

Granzyme B activity was measured with GranToxiLux PLUS! (GTL) Kit (Oncoimmunin, Inc). 

Briefly, Hela cells were trypsinized and infected with E. coli as per MAIT cell antimicrobial assay 

and MAIT cells were co-cultured with HeLa cells at E:T ratio of 5:1. Co-cultured cells were 

centrifuged immediately and resuspended in GrzB Substrate solution. The co-culture was done for 

1 h at 37 oC and cells were washed in the GTL Wash Buffer. Cells were stained with viability dye 

and immediately analyzed by flow cytometry.

Preparation of MAIT cell supernatants

293T-hMR1 cells were plated in a 96-well flat bottom plate at 37 0C / 5 % CO2 in complete RPMI 

medium. After overnight incubation, culture medium was replaced with the ImmunoCult medium 
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and 2 nM 5-OP-RU was added into each well for 2 h. Expanded MAIT cells were then further 

purified using the Vα7.2 beads as described (22) (MAIT cell purity >98%) and co-cultured with 

the 5-OP-RU-pulsed 293T-hMR1 cells at an E:T ratio of 10:1. Supernatants from the co-culture 

wells or 5-OP-RU-pulsed 293T-hMR1 cell control wells were collected 24 h after co-culture, 

clarified, and snap-frozen in liquid nitrogen until further use. The cytokine and cytolytic protein 

contents of the supernatants were measured using the LEGENDplex human CD8/NK cell panel 

(Biolegend) as described [2].  

MAIT cell secretome antimicrobial activity assay

Overnight bacteria subcultures were washed with PBS and resuspended in MAIT cell or control 

supernatants at 105 CFU/mL and incubated at 37 0C in flat-bottom 96-well plates without shaking 

for 24 h. To enumerate live bacteria, bacterial suspensions were harvested at various time points 

as indicated, serially diluted in LB broth, plated in triplicates on LB agar plates, and incubated at 

37 0C for 18 to 24 h and counted visually. In selected experiments, MAIT cell and control 

supernatants were spiked with imipenem monohydrate (Sigma-Aldrich) at various concentrations 

as indicated. A three log10 reduction in bacterial counts from the baseline population over 24 h was 

considered as bactericidal. 

To assess bacterial damage, the cell-impermeable SYTOX Green nucleic acid stain 

(Thermo Fisher Scientific) was added at 20 μM during the 2 h-incubation of 106 CFU/mL E. coli 

with MAIT cell or control supernatants, with or without carbapenems at the indicated 

concentrations. Dead bacteria controls were prepared by incubating the bacteria in 70% (v/v) 

ethanol for 30 min at room temperature, washed, then incubated with control medium 

supplemented with Sytox Green. To allow identification of the bacteria versus debris by flow 
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cytometry, the bacteria were stained with SYTO 62 red fluorescent nucleic acid stain (Thermo 

Fisher Scientific; 2.5 μM) during the last 15 min at 37 0C. Bacteria were then fixed with 1% 

formaldehyde for 20 min at 4 0C just prior to FACS acquisition. In selected experiments, to detect 

the intracellular cytolytic proteins in bacterial cells, 105 CFU/mL of E. coli were cultured with 

control or MAIT cell supernatants in the presence of 20 μM SYTOX Green for 30 min at 37 oC 

without shaking. During the last 15-min of incubation, fluorochrome-conjugated mAbs against 

Gnly, GrzA, GrzB, and Prf (Table S3), as well as SYTO 62 nucleic acid dye were added to the 

culture. Bacteria were then washed, fixed, and permeabilised with BD Cytofix/Cytoperm buffers 

(BD Biosciences), then re-stained with the same mAb cocktail for 30 min at 4 oC and washed once 

prior to FACS acquisition.

 

Flow cytometry analysis

Cell surface and intracellular staining for cytokines, cytotoxic molecules, and active caspase 3 

were performed as previously described [2]. Staining with the MR1 5-OP-RU and MR1 6-FP 

tetramers was performed for 40 min at room temperature (RT) [7] before proceeding to the surface 

and intracellular staining with other mAbs (Table S3.) Samples were acquired on an LSRFortessa 

flow cytometer (BD Biosciences) equipped with 355, 405, 488, 561, and 639 nm lasers. Single-

stained polystyrene beads (BD Biosciences) and the compensation platform in FACSDiva v. 8.0.1 

(BD Biosciences) or FlowJo software v. 9.9 and 10.5 (TreeStar) were used for compensation.

Statistical analysis

Statistical analyses were performed using Prism software v.8.3.0 (GraphPad). Data sets were first 

assessed for data normality distribution. Data presented as heatmap shows the mean, whereas data 
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presented as line or bar graphs with error bars represent the mean and standard error. Box and 

whisker plots show median, the 10th to 90th percentile, and the interquartile range. Statistically 

significant differences between samples were determined as appropriate using the unpaired t-test 

or Mann-Whitney’s test for unpaired samples, and the paired t-test or Wilcoxon’s signed-rank test 

for paired samples. The Kruskal-Wallis one-way analysis of variance (ANOVA), the Friedman 

test, ordinary ANOVA, the repeated-measures (RM) one-way ANOVA, or mixed-effects analysis 

followed by the appropriate post-hoc test as indicated was used to detect differences across 

multiple samples. Correlations were assessed using the Spearman rank correlation. Two-sided p-

values < 0.05 were considered significant. 

Supplementary Materials

Supplementary Materials and Methods

Fig. S1. MAIT cells killed E. coli-infected cells and suppressed bacterial loads.

Fig. S2. Expression of cytolytic proteins in MAIT cells is temporally regulated. 

Fig. S3. MAIT cells responses to stimulation with CREC clinical strains. 

Fig. S4. Antimicrobial activity of MAIT cell secretomes.

Fig. S5. MAIT cell secretomes restore imipenem bactericidal activity against CREC strains. 

Fig. S6. Relationship between MAIT cell-derived cytolytic proteins and antimicrobial activity of 

MAIT cell secretomes. 

Fig. S7. Detection of cytolytic proteins inside bacterial cells. 

Table S1. The E. coli clinical isolates used in this study.

Table S2. The minimum inhibitory concentrations (MIC) of the E. coli clinical isolates.

Table S3. Flow cytometry-based antibodies and reagents used in the study.
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Fig. 1. MAIT cells kill bacteria-infected cells and suppress bacterial loads. (A) Assessment of 

apoptosis of E. coli EC120S-infected HeLa cells by caspase (Casp)3 activity and MAIT cell 

degranulation by CD107a expression. (B) Apoptosis of infected HeLa cells at indicated time-point 

(n=11). (C) Measurement of early apoptosis (Casp3+DCM-) on uninfected or EC120S-infected 

HeLa cells, (D) degranulation by MAIT cells, and (E) bacterial counts following lysis of infected 

HeLa cells after 3 h of co-culture with and without MAIT cells in the presence of anti-MR1 or 
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isotype control (n=8 for EC120S-infected HeLa cells+anti-MR1, n=25 for others). (F) Bacterial 

counts in infected HeLa cell lysates or in total lysates (cell lysates plus supernatants) after 3 h of 

co-culture with or without MAIT cells (n=16). (G) Apoptosis of EC120S-infected HeLa cells, (H) 

degranulation by MAIT cells, and (I) relative bacterial loads following co-culture with MAIT cells 

(n=4), and (J) percentage of cytolytic proteins expressed by MAIT cells from day (D)0, 2, and 15 

of culture (n=3-10). Statistical significance was calculated using mixed-effects analysis followed 

by Tukey’s multiple comparison test (C-E), Friedman’s test with Dunn’s multiple comparisons 

test (F), or repeated-measure one-way ANOVA (G-I). ns, not significant.
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Fig. 2. MAIT cell antimicrobial activity is associated with cytolytic protein expression. (A) 

Detection of MAIT cell-derived cytolytic protein contents in E. coli EC120S-infected or 

uninfected HeLa cells following 3 h co-culture with MAIT cells obtained at different days 

following MAIT cell activation. Representative histograms from 4 independent donors are shown. 

(B) Correlation between live and (C) apoptotic EC120S-infected HeLa cells, (D) GrzB intensity, 

(E) GrzB expression, (F) Gnly expression, and (G) Gnly-GrzB co-expression in MAIT cells with 

the inhibition of bacterial growth (n=19 for G, others n=28). (H) Levels of the GrzB substrate 

GranToxiLux activity in uninfected or EC120S-infected HeLa cells with or without MAIT cells 

(n=4). (I) Flow cytometry plots of (J) degranulation by MAIT cells, (K) apoptosis in EC120S-

infected HeLa cells, and (L) the relative bacterial loads in the presence of the indicated inhibitors 

or mAbs. Statistical significance was determined using the ordinary one-way ANOVA (H), or 

mixed-effects analysis (J-L) followed by Dunnett’s or Tukey’s post-hoc test as appropriate. 

Correlations were calculated using the Spearman test. **** p<0.0001, *** p<0.001, * p<0.05. ns: 

not significant.
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Fig. 3. MAIT cells respond to and control CREC. (A) Expression of CD107a, GrzB, IFNγ, TNF, 

and IL-17A in MAIT cells stimulated for 24 h with E. coli strains DH5α, EC120S, and the 

carbapenem-resistant strains EC234, EC241, EC362 and EC385 (n=5 (EC241, EC385), 7 

(EC120S), 16 (DH5α, EC234, EC362)). (B) MR1-dependency of effector protein and cytokine 

production by MAIT cells stimulated with indicated strains. MR1-dependency was calculated as 
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previously described (49) (n=7) (C) Representative flow cytometry plots of caspase 3 activation 

and apoptosis in 293T-hMR1 cells alone,  293T-hMR1 cells infected with EC234, or co-culture 

with MAIT cells with or without EC234 for 24 h. (D, E) Caspase 3 activation and apoptosis in 

293T-hMR1 cells alone or co-cultured with MAIT cells in the presence of 5-OP-RU, DH5α, 

EC120S, EC234, or EC362 (n=9). (F,G) Caspase 3 activation (F) and bacterial loads (G) in HeLa 

cells infected with EC241 co-cultured with MAIT cells in the presence of anti-MR1 antibody or 

isotype control (n=8 for EC241-infected HeLa cells+anti-MR1 mAb, n=16-25 others). Statistical 

significance was determined using the Kruskal-Wallis ANOVA (A) or the Friedman test (B-E) 

followed by Dunn’s multiple comparison test, and mixed-effects analysis followed by Dunnett’s 

multiple comparison test (F,G). * p<0.05.
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Fig. 4. MAIT cell secretomes mediate antimicrobial activity against CR-E-coli. (A) 

Concentration of cytolytic proteins in the supernatant of MAIT cells following 3 h co-culture with 

E. coli EC120S-infected HeLa cells (n=6). (B) Gating strategy for E. coli identification and 

quantification of SYTOX Green by flow cytometry. (C) SYTOX green levels (n=9) and (D) 

bacterial counts of various E. coli strains after incubation with MAIT cell or control supernatants 
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for 2 h (n=6 (EC120S), others n=12). (E, F) Levels of SYTOX Greenbright in E. coli EC234 and 

EC362 in the presence of MAIT cell or control supernatants supplemented with imipenem for 2 h 

(n=10) or (G, H) the live bacterial counts over 24 h (n=15-17 (EC234), 11-13 (EC362)). Statistical 

significance was determined using paired t-test (C), Wilcoxon’s signed-rank test (D), RM one-way 

ANOVA with Dunnett’s post-hoc test (F), and mixed-effects analysis with Sidak’s post-hoc test 

(G, H). Significant differences in bacterial counts cultured in control vs. MAIT cell supernatants 

at indicated time-points and imipenem concentrations in (G) and (H) were indicated by asterisks 

(**** p<0.0001, ** p<0.01, * p<0.05). S/n, supernatant. 
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Fig. 5. Cytolytic proteins contribute to the antimicrobial activity of MAIT cell secretomes. 

(A,B) Concentration of cytolytic proteins in the MAIT cell supernatants spiked with imipenem in 

the E. coli EC234 and EC362 cultures where growth was detected or not at the indicated time-

points. (C, D) Correlation between Gnly and (E, F) GrzB levels in the MAIT cell supernatants and 

E. coli EC234 and EC362 bacterial loads after 24 h incubation in the MAIT cell supernatants 

spiked with imipenem (n=12 (EC234), 28 (EC362)). (G) Gating strategy of Gnly flow cytometry 

staining and (H) proportion of Gnly in E. coli EC234 and EC362 following 30 min incubation with 

MAIT cell or control supernatants (n=4-6). (I) Representative histograms of GrzA, GrzB, Prf, and 

(J) SYTOX Green staining and (K) intensity in E. coli EC234 and EC362 following 30 min 

incubation in MAIT cell or control supernatants (n=4-6). Statistical significance was determined 

using Mann-Whitney’s test (A, B), paired t-test for intra-strain or unpaired t-test for inter-strain 

analyses (H), and Friedman’s test with Dunn’s post-hoc test (K). Correlations were calculated 

using the Spearman test.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 16, 2020. ; https://doi.org/10.1101/2020.01.16.908806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.908806
http://creativecommons.org/licenses/by/4.0/


53

Apoptosis

E. coli

Infected cells

Caspase 3
activation

Granzyme B
Granulysin

Perforin

MAIT
cells

Cytokines
(IFNγ, TNF, IL-17A)

Vα7.2-
Jα12/20/33

MR1

Bacterial
Vit B2 metabolites

Granzyme B
Granulysin

Perforin

MAIT
cells

Vα7.2-
Jα12/20/33

Granzyme B
Granulysin

Perforin

MAIT
cells

Carbapenem resistance:
- Carbapenem degradation
- Carbapenem impermeability
- Carbapenem expulsion

Survival and growth

Carbapenems

Vα7.2-
Jα12/20/33

Increased bacterial permeability
Potentiation of carbapenem
bactericidal activity

A MAIT cell antimicrobial activity against cell-associated E. coli 

B MAIT cell antimicrobial activity against free-living E. coli

MR1-restricted triggering of MAIT cell TCR

MR1-restricted triggering of MAIT cell TCR

MAIT cell secretomes potentiation of carbapenems against carbapenem-resistant E. coliC

Fig. 6. A model of MAIT cell antimicrobial activity against cell-associated (A) and free-living 

(B) drug-sensitive and carbapenem-resistant E. coli, and (C) MAIT cell secretome 

potentiation of carbapenem killing activity against carbapenem-resistant E. coli strains. 
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