

1 **C subunit of the ATP synthase is an amyloidogenic channel-forming peptide: possible
2 implications in mitochondrial pathogenesis.**

3

4

5 Giuseppe Federico Amodeo¹, Brenda Yasie Lee², Natalya Krilyuk¹, Carina Teresa Filice^{2,3},
6 Denis Valyuk¹, Daniel Otzen⁴, Sergey Noskov⁵, Zoya Leonenko^{2,3}, Evgeny V. Pavlov^{1,*}

7

8 ¹ Department of Basic Science, New York University

9 ² Department of Physics & Astronomy, University of Waterloo, Canada

10 ³Department of Biology, University of Waterloo, Canada

11 ⁴ Interdisciplinary Nanoscience Center (iNANO) and Department of Molecular Biology and
12 Genetics, Aarhus University, Aarhus C, Denmark

13 ⁵Centre for Molecular Simulation and Biochemistry Research Cluster, Department of
14 Biological Sciences, University of Calgary, Canada

15

16

17

18

19

20

21

22

23

24

25

26

27

28 *Correspondence:
29 Evgeny Pavlov, Ph.D.
30 Associate Professor
31 New York University College of Dentistry
32 Department of Basic Science
33 345 East 24th Street New York, New York 10010-4086
34 Tel: 212-998-9166
35 Ep37@nyu.edu

36 **Abstract**

37

38 The c subunit is an inner mitochondrial membrane (IMM) protein and is an integral part of the
39 F_0 complex of the ATP synthase. Under physiological conditions, this short 75 residue-long
40 peptide folds into an α -helical hairpin and forms oligomers spanning the lipid bilayer. In
41 addition to its physiological role, the c subunit has been proposed as a key participant in stress-
42 induced IMM permeabilization by the mechanism of calcium-induced permeability transition.
43 However, the molecular mechanism of the c subunit participation in IMM permeabilization is
44 not completely understood. Here we used fluorescence spectroscopy, atomic force microscopy
45 and black lipid membrane methods to gain insights into the structural and functional properties
46 of c subunit protein that make it relevant to mitochondrial toxicity. We discovered that c
47 subunit is an amyloidogenic peptide that can spontaneously fold into β -sheets and self-
48 assemble into fibrils and oligomers. C subunit oligomers exhibited ion channel activity in lipid
49 membranes. We propose that the toxic effects of c subunit might be linked to its amyloidogenic
50 properties and are driven by mechanisms similar to those of neurodegenerative polypeptides
51 such as A β and α -synuclein.

52

53

54 **Introduction**

55

56 The c subunit of ATP synthase is a short (75 residue long) peptide whose sequence is highly
57 conserved from bacteria to humans. In eukaryotes, this highly hydrophobic peptide is a
58 transmembrane α -helical “hairpin” localized in the mitochondrial inner membrane where it
59 assembles into oligomers of 8 to 16 units depending on the species. Under normal physiological
60 conditions oligomers of the c subunit are an integral part of the F_0 complex of the ATP synthase
61 where they form the c-ring that is the main constituent of the rotor¹.

62

63 It has recently been proposed by several groups that, in addition to its normal physiological
64 function, the c subunit may play a critical role in mitochondrial pathology by participating in
65 calcium-induced permeability transition (PT)²⁻⁴. PT is a phenomenon of increased inner
66 mitochondrial membrane (IMM) permeability by the mechanism of opening of the PT pore in
67 response to toxic levels of reactive oxygen species and/or calcium^{5,6}. PT is believed to be a
68 major contributor to cell and tissue damage under conditions of acute stress, including
69 ischemia-reperfusion injury. While multiple experimental studies support the involvement of
70 the c subunit in PT, the molecular basis of its participation remains poorly understood and is a
71 subject of considerable debate⁷⁻¹⁰. Indeed, fractions containing c subunit extracted from
72 mitochondria exhibit channel activity in model lipid bilayers^{2,4,11} suggesting the possibility of
73 its direct participation in PT through the formation of an ion conducting pore. However, in its
74 physiological “c-ring” assembly c subunit is not expected to allow ion flux due to the highly
75 hydrophobic environment within its lumen¹². We hypothesized that ion conducting capability
76 of c subunit might involve conformational rearrangements and/or assemblies not present in
77 basal conditions. Here we investigated this possibility by testing whether the c subunit protein
78 could form channels in model lipid bilayers. To exclude potential contributions of other
79 biological compounds, we used a synthetic c subunit protein. We combined a structural and
80 functional approach to characterize the peptide and test its channel forming properties. We
81 found that the c subunit is an amyloidogenic peptide that can fold into a β -sheet conformation
82 by forming either fibrils or oligomers in a calcium dependent manner. We observed that the
83 oligomers can form stable pores in model lipid bilayers. We propose that in addition to its
84 native role in the ATP synthase, c subunit can exert its pathological action on mitochondria
85 caused by misfolded oligomers. We hypothesize that the mechanism of c subunit toxicity on
86 mitochondrial membranes might occur through similar structural rearrangements that have

87 been described for other amyloidogenic polypeptides including A β (Alzheimer's Disease) and
88 α -synuclein (Parkinson's Disease and other synucleinopathies)¹³.

89
90 **Materials and methods**

91

92 *Chemicals*

93

94 Synthetic peptides with free termini were purchased from LifeTein Inc. (Somerset, NJ, USA)
95 with a purity of 98%.

96

97 *Circular Dichroism*

98

99 CD spectra of synthetic c subunit were recorded on a Jasco J-1500 spectropolarimeter (Jasco
100 Corporation, Japan) with a 1 mm path length cell. Spectra were recorded in the spectral range
101 of 180– 260 nm, with a scan rate of 10 nm/min at 0.5 nm intervals. Data were acquired at 25°C,
102 and 10 scans were averaged for each spectrum. Peptide CD spectra were collected in 2%
103 Genapol and phosphate buffer saline pH 7 at a final concentration of 30 μ M.

104

105 *BLM recordings*

106

107 The painting method was used to form phospholipid bilayer using 1,2-diphytanoyl-*sn*- glycer-
108 3-phosphocholine (DiPhPC, Avanti Polar Lipids). Bilayer was formed at the 50 – 100 μ m
109 diameters apertures of Delrin cuvettes as previously described¹⁴. Briefly, the aperture was pre-
110 treated with 25 mg/mL of DiPhPC in decane and allowed to dry. Bilayers were formed using
111 the painting method after filling up the cuvettes with the recording solution (150 mM KCl, 20
112 mM HEPES, pH 7.4) on both sides of the chamber. Ion currents were measured using standard
113 silver- silver chloride electrodes from WPI (World Precision Instruments) that were placed in
114 each side of the cuvette. Measurements of the conductance of single channels were performed
115 by painting the protein to the *cis* side of the chamber (the side connected to the ground
116 electrode). Spontaneous channel insertion was typically obtained under an applied voltage of
117 20 mV. Conductance measurements were performed using an eONE amplifier (Elements) with
118 a sampling rate of 10 kHz (809.1 μ s interval). Traces were filtered by low-pass Bessel filter at
119 10 Hz for analyses performed with Origin Pro 8 (OriginLab) and Clampfit software (Molecular
120 devices).

121

122 *Thioflavin T assay*

123

124 Fresh stock solutions of c subunit in 2% Genapol/PBS were prepared at room temperature and
125 transferred into a clear-bottomed 96-well plate (CELLSTAR, GBO, Austria) at a final
126 concentration of 5 μ M together with 30 μ M thioflavin T. Readings were conducted in
127 triplicates either with or without 1 mM Ca^{2+} . The plate was loaded into a Flexstation 3
128 microplate reader (Molecular Devices, San Jose, CA) and incubated at 37 °C without agitation
129 for 20 hours. The fluorescence was measured at 30-sec intervals, with excitation at 440 nm and
130 with emission at 480 nm.

131

132 *AFM imaging*

133

134 The JPK/Bruker Nanowizard II atomic force microscope was used to image each mica slide
135 with c subunit. Aggregates formed without and with 1 mM CaCl_2 and adsorbed onto the surface
136 of the mica slide. NCH AFM cantilevers were purchased from NanoWorld (Neuchâtel,
137 Switzerland), designed for non-contact and tapping mode imaging to offer high sensitivity and
138 speed while scanning (320 kHz resonance frequency, 42 N/m force constant, thickness 4 μ m,
139 no coating). 5x5 μ m images were taken in air in Intermittent Contact mode. A minimum of
140 three samples made were used for statistical analysis, with at least six 5x5 μ m images obtained
141 for each sample at a resolution of 2048 pixels, and at least 100 measurements were used for
142 statistical analysis of height and diameters calculated.

143

144 *SDS-PAGE*

145

146 Gradient 4-20% Tris-TGX gels were used. Prior to loading, the samples were incubated for 2
147 hours at room temperature with and without calcium. Next, samples were treated with 5
148 volumes of 12% (wt/vol) trichloroacetic acid solution and incubated on ice for 5 min. The pellet
149 was collected by centrifugation (11,000 x g for 5 min at 4°C) and dissolved in 2% (wt/vol)
150 SDS-containing loading buffer. Prior to being loaded on an SDS-gel, samples were neutralized
151 by the addition of 1 μ l aliquots of 0.5 M NaOH until the color of the bromophenol blue-stained
152 loading buffer turned from yellow to blue and were then heated at 98°C for 10 minutes¹⁵. The

153 separation was performed by applying a constant current of 30 mA. Finally, the gels were
154 stained with silver.

155

156 *Bioinformatic analyses*

157

158 The secondary structure predictions were performed using the Chou & Fasman secondary
159 structure prediction server (CFSSPS) applying a window of three residues^{16,17}.

160

161 *Data availability*

162

163 The data that support the findings of this study are available on request.

164

165 **Results**

166

167 *C subunit spontaneously folds into a β -sheet conformation*

168

169 To investigate the conformational properties of c subunit, we dissolved lyophilized synthetic
170 peptide in a buffer containing a high concentration of a non-ionic surfactant to mimic a
171 membrane-like environment (2 % Genapol and phosphate buffer saline (PBS) at pH 7). After
172 incubation for 15 to 24 hours, we recorded the peptide's far-UV circular dichroism (CD)
173 spectrum (Figure 1A). The CD spectrum differs markedly from the clear α -helical features of
174 the c subunit found in native conditions, *i.e.* minima around 209 and 222 nm and a maximum
175 around 193 nm. Instead there is a maximum around 198 nm and a minimum around 226 nm.
176 These values are higher than a canonical β -sheet, which typically shows a minimum around
177 215 nm and a maximum around 195 nm. This suggests additional contributions from other
178 conformations. A CD-spectrum enabled secondary structure analysis performed with BestSel¹⁸
179 software suggested that membrane-inserted c subunit oligomers are comprised of \approx 44% of
180 antiparallel β -strands and the remaining \approx 56% being either turns or other conformations such
181 as β -bridges, bends or unordered structures. Our results are consistent with a secondary
182 structure prediction based on the primary sequence of the c subunit (Fig. 1B and C). The
183 prediction indicates that while the probability of folding into a β -sheet is uniformly distributed
184 along the sequence, there is a gap between A14 and A50 where the score for the α -helix is very
185 low. These results suggest the possibility that similar to some other amyloidogenic

186 polypeptides, if the c subunit is not folded into its native conformation by a functional protein
187 folding machinery it might enter a misfolding pathway that leads to β -sheets.

188

189 *Fibrillation and Ca^{2+} -induced oligomerization of the c subunit*

190

191 Next we tested if, similarly to other amyloidogenic peptides, the c subunit in β -sheet
192 conformation could form aggregates. We therefore monitored the formation of cross- β
193 aggregates using the amyloid-binding dye Thioflavin T (ThT). In the absence of Ca^{2+} ions,
194 there was a rapid rise in ThT fluorescence within 3-4 hours at 37°C, which reached a plateau
195 level around 10-15 hrs after the start (Fig. 2A). The aggregation process was strongly
196 suppressed by 1 mM Ca^{2+} (Fig. 2A). The tendency of the c subunit to form complexes was
197 further confirmed by gel electrophoresis (Fig 2B) which shows that the c subunit preparation
198 contains a number to oligomers with MW ranging from 15 up to 250 kDa. Importantly these
199 assemblies were present in both Ca^{2+} and Ca^{2+} -free samples, suggesting that calcium ion
200 inhibits fibril formation rather than inducing oligomerization. To visualize the ultrastructure of
201 these c subunit assemblies, we performed atomic force microscopy (AFM) imaging of c subunit
202 samples pre-incubated for 4 hours at 37°C under conditions identical to the ThT assay and
203 deposited on mica. In agreement with CD and ThT data, AFM images of the c subunit samples
204 prepared in the absence of Ca^{2+} showed densely packed fibril structures. The typical diameter
205 estimated from the height measurements of these fibrils was around 20 nm (22.2 \pm 0.9nm) (Fig.
206 2C). In contrast, the presence of 1 mM Ca^{2+} led to the formation of small oligomers with
207 diameters around 60nm (67.6 \pm 1.4nm) and few larger aggregates and, importantly, completely
208 inhibited formation of fibrils (Fig. 2D). These assays demonstrate a critical role for Ca^{2+} in the
209 folding and self-assembly of c subunits into oligomers rather than fibrils.

210

211 *Ion channel activity of c subunit oligomers*

212

213 One of the most critical properties that underlie the toxicity of amyloidogenic peptides is their
214 ability to form ion channels in lipid bilayers¹⁹. Considering the implications of c subunit in
215 mitochondrial membrane permeabilization and after establishing its amyloidogenic properties
216 we tested its channel forming activity. To do this we reconstituted the preparations described
217 in the previous section into artificial planar lipid bilayers and measured their electrical currents
218 enabled by amyloidogenic peptides by voltage clamping. We observed that both samples

219 prepared with and without Ca^{2+} exhibit robust ion currents. Figure 3A shows representative ion
220 channel behaviour of the c subunit observed in our experiments. These channels show multiple
221 conductance states and were voltage dependent with a tendency to switch to the low
222 conductance states at higher voltages (Fig. 3 B-D). The channel activity was similar in both
223 preparation with slight cation selectivity ($P_K/P_{\text{Cl}}=6\pm2$, $n=8$) and an average conductance
224 ranging from 300 to 400 pS. The point distributions of the channel conductances (Fig. 3E)
225 show slightly lower values for the channels from the preparations containing fibrils, but the
226 difference was not statistically significant ($p=0.13$). The similarity between channel activities
227 of preparations with or without Ca^{2+} suggests that pore forming assembly is not related to the
228 fibrils but rather to oligomers which are present in both samples (Fig 2B). This behaviour is
229 consistent with other known channel-forming amyloidogenic peptides^{19,20}.

230

231 **Discussion**

232

233 Here we report that synthetic c subunit is an amyloidogenic peptide and its oligomers are
234 capable of forming ion conducting pores in planar lipid bilayers.

235

236 A number of previous studies reported that c subunit extracted from mitochondria either as a
237 “c-ring”² or monomer can form channels^{4,21} in lipid bilayers. However, physicochemical
238 properties of c subunit in its native conformation are not consistent with ionophoretic
239 function¹². It has been argued that the channel forming activity might require the presence of
240 other components that co-purify with the c subunit or post-translational modifications. Our
241 findings indicate that the c subunit alone is sufficient to form ion channels but in order to do
242 so it needs to assemble into oligomers in a β -sheet conformation. We hypothesize that the
243 overall mechanism of the c subunit permeabilization of the inner mitochondrial membrane
244 might be similar to the mechanism of some other amyloidogenic peptides that form β -sheet
245 oligomeric pores²². Our work was focused specifically on the synthetic peptide that allowed us
246 to exclude contributions of other biological molecules while focusing on the unmodified c
247 subunit. There is a significant possibility that similar conformational changes might occur *in*
248 *vivo*. Specifically, it has been established that, similar to other amyloidogenic peptides, c
249 subunit tends to form aggregates both *in vivo* and *in vitro* supporting the notion that it can
250 convert to a toxic form under pathological conditions^{21,23}.

251

252 The presence of misfolded c subunit peptides could resolve the ongoing controversy regarding
253 PT development through the participation of ATP synthase. None of the currently existing
254 models that require the involvement of ATP synthase in PT provide a mechanistic explanation
255 as to how ion conducting pores can physically form. Our work suggests that such stress induced
256 conformational changes may be the basis of the pore formation. In this scenario the high order
257 rearrangements of the ATP synthase such as F₁ complex dissociation from F₀ proposed by
258 Jonas *et al*² or ATP synthase dimerization proposed by Bernardi *et al*²⁴ might provide suitable
259 conditions for c subunit transformation to occur.

260

261 In summary we report for the first time that c subunit is an amyloid forming peptide and that
262 the ionophoretic properties of c subunit are linked to its amyloidogenic nature and ability to

263 self-assemble into β -sheet oligomers. We propose that toxic forms of misfolded c subunit might
264 play a significant role in cell pathophysiology.

265

266 **Figure Legends**

267

268 Figure 1. C subunit forms β -sheet structures. (A) CD spectrum of the 50 μ M c subunit in 2%
269 Genapol and PBS; (B) Bioinformatic prediction of the probability score of the secondary
270 structure of the c subunit based on its primary sequence according to the Chou & Fasman
271 method; (C) Most probable predicted structure per individual residue.

272

273 Figure 2. Aggregation properties of the c subunit. (A) Thioflavin T fluorescence spectra
274 showing calcium dependence of c subunit aggregation; (B) SDS PAGE of the c subunit
275 showing presence of oligomeric and monomeric forms; (C) 5x5 μ m AFM image of c subunit
276 fibrils after incubation at 37 °C for 4 hours in 2% Genapol and PBS; (D) 5x5 μ m AFM image
277 of the c subunit oligomers (arrows) after incubation at 37°C for 4 hours and deposited on mica.
278 Below each image is provided the height profile of the indicated white line.

279

280 Figure 3. Ion channel activity of c subunit oligomers. (A) Representative current trace of
281 oligomers showing typical channel behaviour with frequent transitions between fully open and
282 lower conductance states; (B) Representative c subunit channel activity at different voltages;
283 (C) all points histogram corresponding to the trace shown at panel B; (D) Voltage dependence
284 of the open probability of the c subunit channel; (E) Channel open state conductance values of
285 the c subunit channels from multiple independent experiments alone (n=5) and in the presence
286 of Ca^{2+} (n=11).

287

288 **Acknowledgements**

289 This work was supported by an NIH R01GM115570, United States grant and an American
290 Heart Association, United Sates grant (16GRNT27260229) (to E.V.P.). AFM experiments
291 and instrumentation were supported by NSERC Discovery and CFI grants (to Z.L.) SYN was
292 supported by NSERC Discovery Grant RGPIN-315019, D.E.O. acknowledges support from
293 the Lundbeck Foundation (grant no. R276-2018-671).

294

295 **Author contributions**

296 Conception and design of the work: GFA and EP; Acquisition, analysis, and interpretation of
297 data (all authors); Drafted the manuscript GFA and EP; Revised the manuscript (all authors).

298

299

300 **References**

301

302 1 Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown.
303 *Biochem Soc Trans* **41**, 1-16, doi:10.1042/BST20110773 (2013).

304 2 Alavian, K. N. *et al.* An uncoupling channel within the c-subunit ring of the F1FO ATP
305 synthase is the mitochondrial permeability transition pore. *Proc Natl Acad Sci U S A*
306 **111**, 10580-10585, doi:10.1073/pnas.1401591111 (2014).

307 3 Bonora, M. *et al.* Role of the c subunit of the FO ATP synthase in mitochondrial
308 permeability transition. *Cell Cycle* **12**, 674-683, doi:10.4161/cc.23599 (2013).

309 4 Azarashvili, T. *et al.* Potential role of subunit c of FOF1-ATPase and subunit c of
310 storage body in the mitochondrial permeability transition. Effect of the
311 phosphorylation status of subunit c on pore opening. *Cell Calcium* **55**, 69-77,
312 doi:10.1016/j.ceca.2013.12.002 (2014).

313 5 Zoratti, M. & Szabo, I. The mitochondrial permeability transition. *Biochim Biophys
314 Acta* **1241**, 139-176, doi:10.1016/0304-4157(95)00003-a (1995).

315 6 Bernardi, P., Rasola, A., Forte, M. & Lippe, G. The Mitochondrial Permeability
316 Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal
317 Transduction, and Role in Pathophysiology. *Physiol Rev* **95**, 1111-1155,
318 doi:10.1152/physrev.00001.2015 (2015).

319 7 Carraro, M., Checchetto, V., Szabo, I. & Bernardi, P. F-ATP synthase and the
320 permeability transition pore: fewer doubts, more certainties. *FEBS Lett*,
321 doi:10.1002/1873-3468.13485 (2019).

322 8 Neginskaya, M. A. *et al.* ATP Synthase C-Subunit-Deficient Mitochondria Have a Small
323 Cyclosporine A-Sensitive Channel, but Lack the Permeability Transition Pore. *Cell Rep*
324 **26**, 11-17 e12, doi:10.1016/j.celrep.2018.12.033 (2019).

325 9 Jonas, E. A., Porter, G. A., Jr., Beutner, G., Mnatsakanyan, N. & Alavian, K. N. Cell
326 death disguised: The mitochondrial permeability transition pore as the c-subunit of
327 the F(1)F(O) ATP synthase. *Pharmacol Res* **99**, 382-392,
328 doi:10.1016/j.phrs.2015.04.013 (2015).

329 10 He, J. *et al.* Persistence of the mitochondrial permeability transition in the absence
330 of subunit c of human ATP synthase. *Proc Natl Acad Sci U S A* **114**, 3409-3414,
331 doi:10.1073/pnas.1702357114 (2017).

332 11 McGeoch, J. E., McGeoch, M. W., Mao, R. & Guidotti, G. Opposing actions of cGMP
333 and calcium on the conductance of the F(0) subunit c pore. *Biochem Biophys Res
334 Commun* **274**, 835-840, doi:10.1006/bbrc.2000.3231 (2000).

335 12 Zhou, W., Marinelli, F., Nief, C. & Faraldo-Gomez, J. D. Atomistic simulations indicate
336 the c-subunit ring of the F1Fo ATP synthase is not the mitochondrial permeability
337 transition pore. *Elife* **6**, doi:10.7554/elife.23781 (2017).

338 13 Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease.
339 *Annu Rev Biochem* **75**, 333-366, doi:10.1146/annurev.biochem.75.101304.123901
340 (2006).

341 14 Pavlov, E. *et al.* A large, voltage-dependent channel, isolated from mitochondria by
342 water-free chloroform extraction. *Biophys J* **88**, 2614-2625,
343 doi:10.1529/biophysj.104.057281 (2005).

344 15 Meier, T., Ferguson, S. A., Cook, G. M., Dimroth, P. & Vonck, J. Structural
345 investigations of the membrane-embedded rotor ring of the F-ATPase from
346 *Clostridium paradoxum*. *J Bacteriol* **188**, 7759-7764, doi:10.1128/JB.00934-06 (2006).

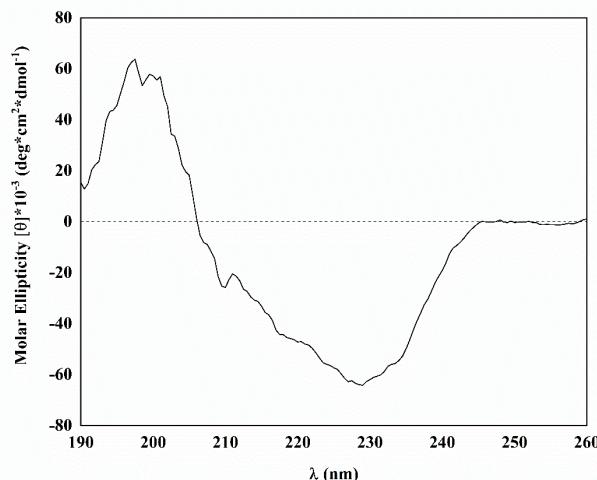
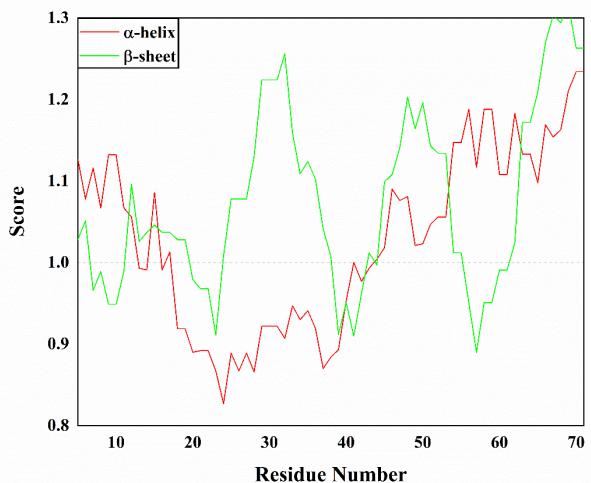
347 16 Chou, P. Y. & Fasman, G. D. Prediction of protein conformation. *Biochemistry* **13**,
348 222-245, doi:10.1021/bi00699a002 (1974).

349 17 Chou, P. Y. & Fasman, G. D. Conformational parameters for amino acids in helical,
350 beta-sheet, and random coil regions calculated from proteins. *Biochemistry* **13**, 211-
351 222, doi:10.1021/bi00699a001 (1974).

352 18 Micsonai, A. *et al.* Accurate secondary structure prediction and fold recognition for
353 circular dichroism spectroscopy. *Proc Natl Acad Sci U S A* **112**, E3095-3103,
354 doi:10.1073/pnas.1500851112 (2015).

355 19 Arispe, N., Rojas, E. & Pollard, H. B. Alzheimer disease amyloid beta protein forms
356 calcium channels in bilayer membranes: blockade by tromethamine and aluminum.
357 *Proc Natl Acad Sci U S A* **90**, 567-571, doi:10.1073/pnas.90.2.567 (1993).

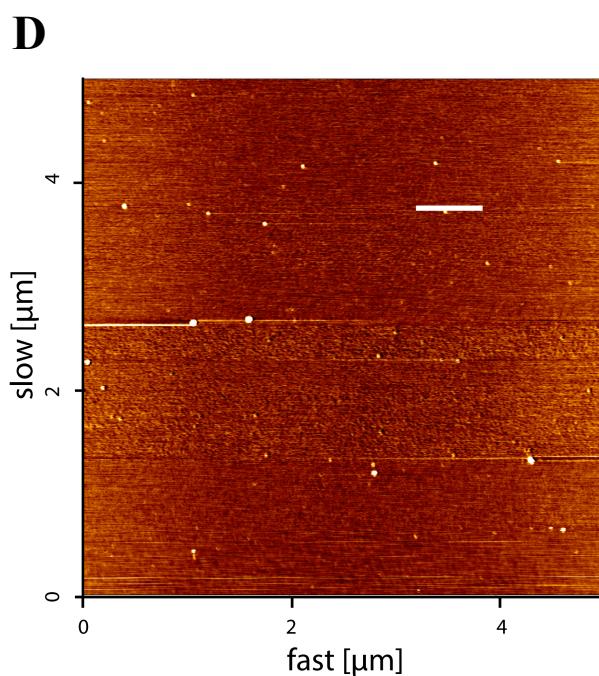
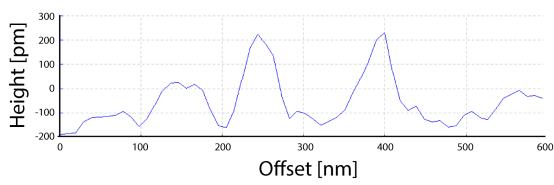
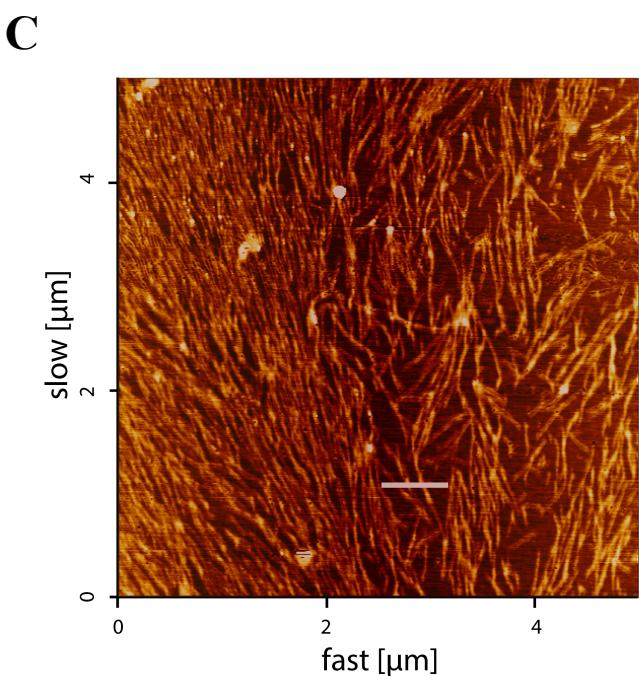
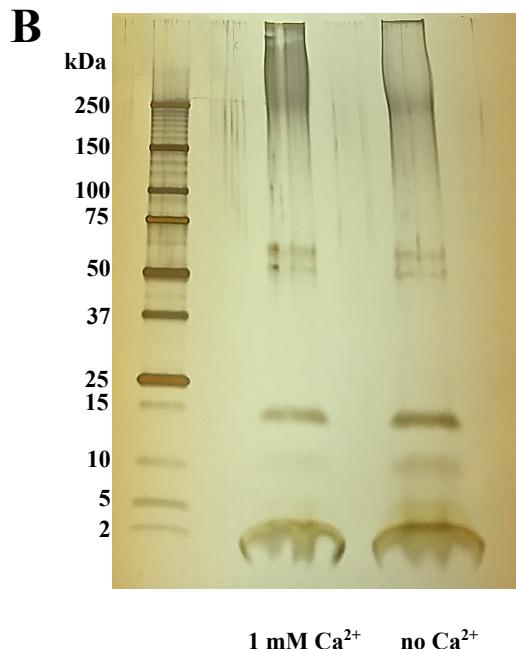
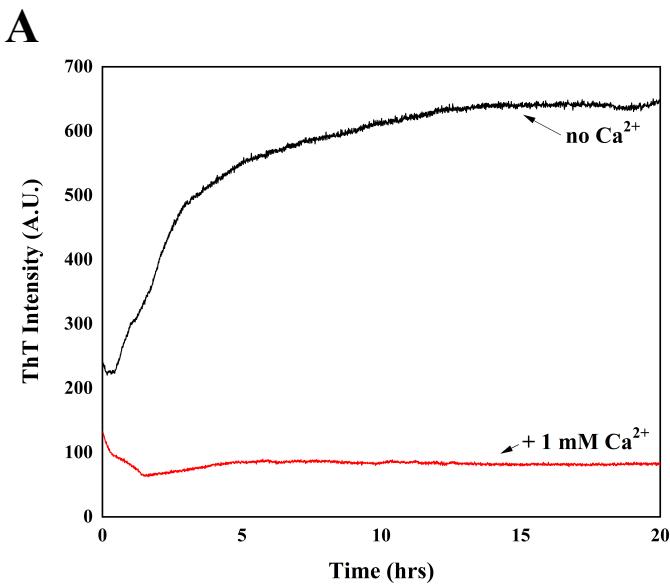
358 20 Angelova, P. R. *et al.* Ca²⁺ is a key factor in alpha-synuclein-induced neurotoxicity. *J
359 Cell Sci* **129**, 1792-1801, doi:10.1242/jcs.180737 (2016).

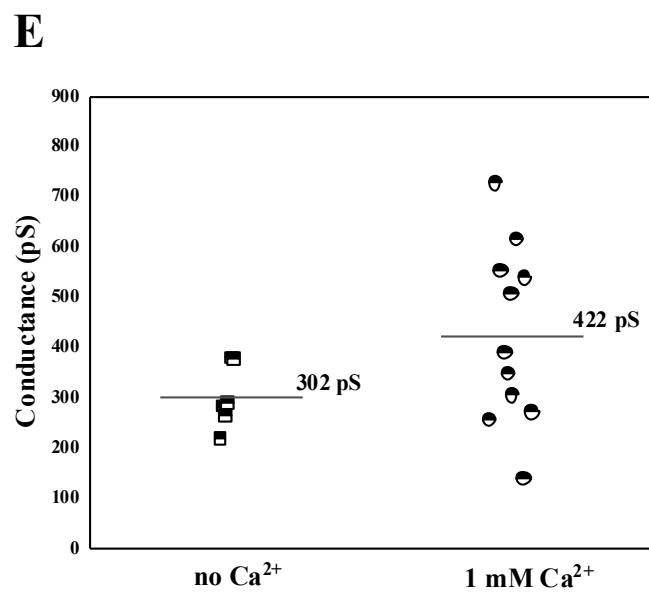
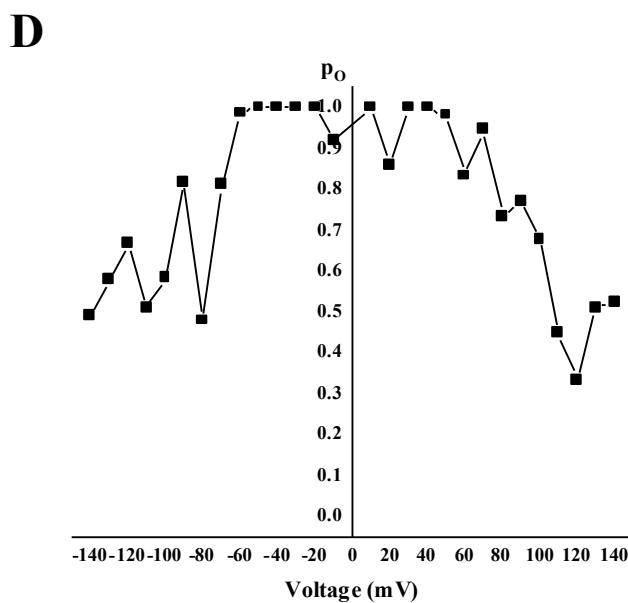
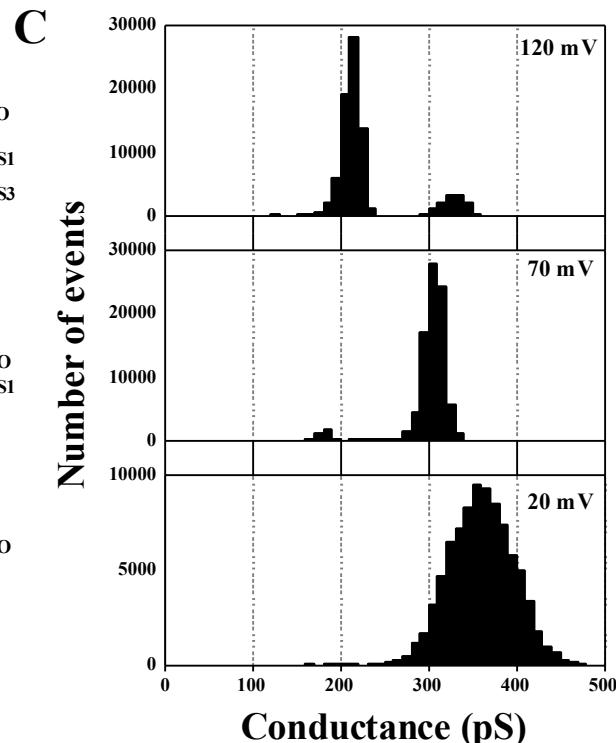
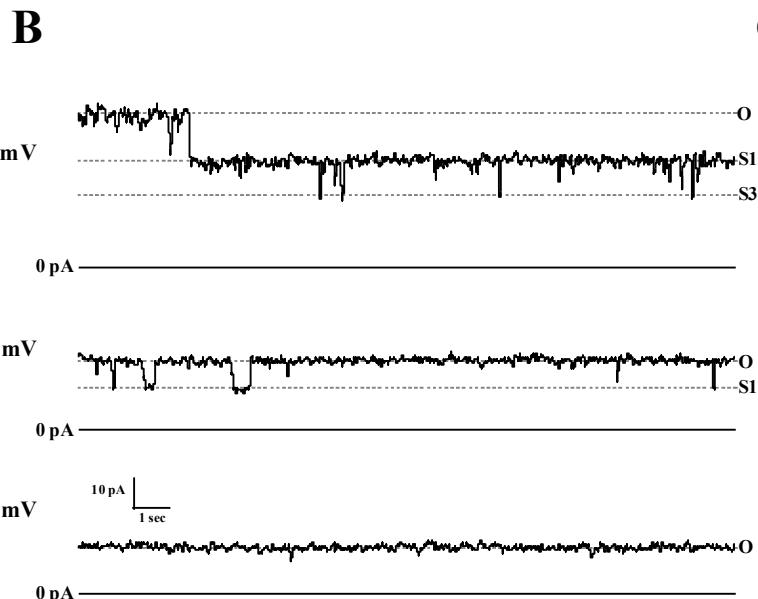
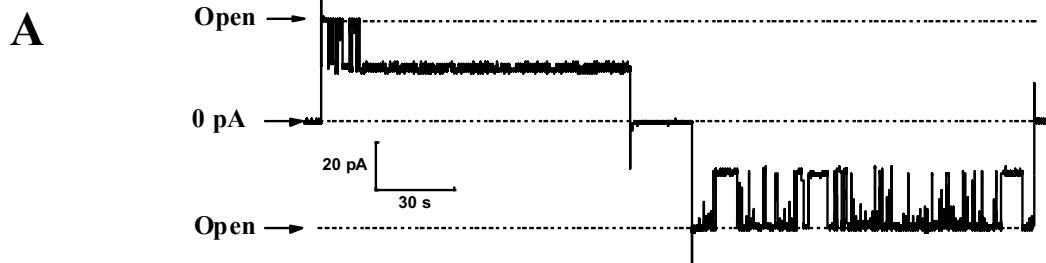


360 21 McGeoch, J. E. & Palmer, D. N. Ion pores made of mitochondrial ATP synthase
361 subunit c in the neuronal plasma membrane and Batten disease. *Mol Genet Metab*
362 **66**, 387-392, doi:10.1006/mgme.1999.2822 (1999).

363 22 Quist, A. *et al.* Amyloid ion channels: a common structural link for protein-misfolding
364 disease. *Proc Natl Acad Sci U S A* **102**, 10427-10432, doi:10.1073/pnas.0502066102
365 (2005).

366 23 Palmer, D. N. The relevance of the storage of subunit c of ATP synthase in different
367 forms and models of Batten disease (NCLs). *Biochim Biophys Acta* **1852**, 2287-2291,
368 doi:10.1016/j.bbadi.2015.06.014 (2015).

369 24 Giorgio, V. *et al.* Dimers of mitochondrial ATP synthase form the permeability
370 transition pore. *Proc Natl Acad Sci U S A* **110**, 5887-5892,
371 doi:10.1073/pnas.1217823110 (2013).







372






A**B****C**

10 20 30 40
DIDTAAKFIGAGAATVGVAGSGAGIGTVFGSLIIGYARNPSLK
HHHHHHHEEEHHHHHHHEEEECCCTCCCEEEEEEEEEECCCTTTCHH

50 60 70
QQLFSYAILGFALSEAMGLFCLMVAFLILFAM
EEEEEEEEEHHHHHHHHHEEEEEEHHHEEEEEEHHHC

H: α -helix E: β -sheet
C: coil T: turn

